(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
Категории     Компании    
 
11.12.2013 Бизнес-анализ больших данных
Меняются потребители, меняется мир бизнеса. Сегодня уже недостаточно изучения только данных о продажах. Цель развертывания интегрированной платформы для бизнес-аналитики и анализа больших данных заключается в том, чтобы копать глубже и лучше понимать - почему, где, что и как - о клиентах, продуктах и компании. В этой статье обсуждается интеграция бизнес-аналитики и анализа больших данных. Подробнее »

09.12.2013 Применение углубленного анализа данных в оптовой дистрибуции
В этой статье излагаются примеры применения прогностического анализа для совершенствования бизнес-операций в нескольких различных функциональных подразделениях компании оптовой дистрибьюции и описывается набор продуктов IBM, которые применяются на всем протяжении от начального исследования и применения первых приложений до анализа "больших данных" Подробнее »

05.12.2013 Преобразование данных в устройстве IBM Netezza с помощью решения IBM InfoSphere Data Masking Solution
В статье описывается порядок использования решения IBM® InfoSphere® Optim® Data Masking Solution вместе с продуктом IBM InfoSphere Federation Server для де-идентификации (de-identify) данных, размещенных на устройстве IBM Netezza Data Warehouse Appliance. Подробнее »

29.11.2013 Кремниевый учёный ищет средства от рака
В борьбу со страшной болезнью включаются "умные" машины. Речь идёт о программном обеспечении, созданном совместно IBM и Бэйлоровском медицинском колледжем. Подробнее »

29.11.2013 Зачем нефтяникам, диспетчерам и производителям зубной пасты технологии "Формулы-1"
Моментальный анализ данных, который предлагает "Формула-1", дает преимущество не только в гонках, но и других отраслях, где используются большие данные. Ведь это чрезвычайно заманчивая перспектива - получать информацию на лету, выделять ключевые моменты и преобразовывать данные в дальнейшую стратегию действий. Подробнее »

28.11.2013 Использование IBM InfoSphere Streams для моделирования
Это статья о том, как использовать IBM® InfoSphere® Streams для моделирования. В качестве примера мы построим модель движения автотранспорта по автомобильным дорогам в соответствии с моделью Нагеля-Шрекенберга. Подробнее »

26.11.2013 Обработка больших данных реального времени с помощью Twitter Storm
Storm ― это система обработки больших данных с открытым исходным кодом, которая отличается от других систем тем, что предназначена для распределенной обработки в режиме реального времени и не зависит от языка программирования. Познакомьтесь с системой Twitter Storm, ее архитектурой и спектром решений для пакетной и поточной обработки. Подробнее »

20.11.2013 Методы интеллектуального анализа данных
Познакомьтесь с различными методами и решениями для интеллектуального анализа данных и научитесь создавать такие решения с помощью существующего программного обеспечения и систем. Подробнее »

18.11.2013 Укрощение больших данных
Огромные потоки информации подчиняются новым правилам. Что изменилось в "мультипетабайтном" мире? Как большие данные меняют нашу деятельность? Подробнее »

12.11.2013 Распределенная обработка данных с помощью Hadoop: Часть 3. Создание приложения
В заключительной части серии статей о Hadoop рассмотрены API-интерфейсы и потоки данных Hadoop. Кроме того, продемонстрировано их использование на примере небольших приложений map и reduce. Подробнее »

08.11.2013 Распределенная обработка данных с помощью Hadoop: Часть 2. Двигаемся дальше
В этой статье мы будем настраивать Hadoop в более сложной конфигурации с несколькими узлами для параллельной обработки данных. В статье будут описаны различные типы узлов, необходимые для построения многоузловых кластеров, а также работа процедур MapReduce в параллельной среде. Также будут рассмотрены вопросы администрирования Hadoop - как с помощью интерфейса командной строки, так и с помощью Web-интерфейсов. Подробнее »

07.11.2013 Управление основными данными: ключ к максимально полезному применению больших данных
Справочный документ по инструментам и методам, позволяющим обрабатывать и с максимальной пользой применять большие данные. Подробнее »

07.11.2013 IBM InfoSphere BigInsights Enterprise Edition. Эффективное управление большими данными и их анализ с целью извлечения ценных идей
Спецификация IBM InfoSphere BigInsights Enterprise Edition - решения по преобразованию больших объемов комплексных данных в аналитические выводы по различным направлениям решения задач в бизнесе.

06.11.2013 Распределенная обработка данных с помощью Hadoop: Часть 1. Начало работы
В этой статье рассматривается фреймворк Hadoop и его основные элементы - файловая система HDFS и типы узлов. Вы узнаете, как установить и настроить одноузловой кластер Hadoop, и познакомитесь с приложением на основе MapReduce. В заключение вы узнаете о способах мониторинга и управления фреймворком Hadoop с помощью его базовых Web-интерфейсов. Подробнее »

04.11.2013 Обработка данных при помощи Apache Pig
Apache Pig - это высокоуровневый процедурный язык, предназначенный для выполнения запросов к большим слабоструктурированным наборам данных с помощью платформ Hadoop и MapReduce. Pig упрощает использование Hadoop, позволяя выполнять SQL-подобные запросы к распределенным наборам данных. В этой статье описывается язык, лежащий в основе Pig, и приводится пример его использования для простого кластера Hadoop. Подробнее »

02.11.2013 Практическое занятие: Обработка журналов с помощью Apache Hadoop
Журналы - это важнейший элемент любой компьютерной системы, обеспечивающий выполнение обширного перечня задач - от аудита до управления ошибками. В условиях роста объема журналов и количества источников информации для них (включая облачные среды) для эффективной обработки этих журналов необходима масштабируемая система. Это практическое занятие посвящено обработке журналов с помощью технологии Apache Hadoop в типичной Linux-системе. Подробнее »

29.10.2013 Введение в Apache Mahout
Интеллектуальные приложения, которые обучаются на данных и информации, вводимой пользователем ― некогда прерогатива научно-исследовательских институтов и корпораций с крупными бюджетами НИОКР ― получают все более широкое распространение. Сегодня потребность в методах машинного обучения, таких как кластеризация, коллаборативная фильтрация и классификация, применяемых как для поиска общих интересов среди больших групп людей, так и для автоматического маркирования больших объемов Web-контента, велика как никогда. Проект Apache Mahout поставил перед собой цель упростить и ускорить создание интеллектуальных приложений. Сооснователь Mahout Грант Ингресолл знакомит читателей с основными понятиями машинного обучения и демонстрирует, как использовать Mahout для кластеризации документов, выдачи рекомендаций и организации контента. Подробнее »

27.10.2013 Прогнозирование будущего: Часть 4. Внедрение прогностического решения
Это заключительная часть цикла из четырех статей, посвященных наиболее важным аспектам прогностического анализа. В первой части дается общее представление о прогностическом анализе. Вторая часть посвящена методам прогностического моделирования: математическим алгоритмам, составляющим ядро прогностического анализа. В третьей части эти методы применяются для принятия и описания прогностического решения. Наконец, эта, заключительная часть посвящена практическому внедрению прогностического анализа, то есть процессу претворения прогностических решений в жизнь. Подробнее »

25.10.2013 Прогнозирование будущего: Часть 3. Создание прогностического решения
Это третья часть цикла из четырех статей, посвященных наиболее важным аспектам прогностического анализа. В первой части дается общее представление о прогностическом анализе. Вторая часть посвящена методам прогностического моделирования: математическим алгоритмам, составляющим ядро прогностического анализа. В этой, третьей статье говорится о том, как создавать прогностические решения с применением этих методов. Подробнее »

23.10.2013 Прогнозирование будущего: Часть 2. Методы прогностического моделирования
Эта вторая часть цикла из четырех статей посвящена наиболее важным аспектам прогностического анализа. В первой части дается общее представление о прогностическом анализе. Эта статья посвящена методам прогностического моделирования ― математическим алгоритмам, составляющим ядро прогностического анализа. Подробнее »

Страница: 1 2 3 4 5 6 7 8



 Распечатать »
 Правила публикации »
   
 Рекомендовать »  
 

Магазин программного обеспечения   WWW.ITSHOP.RU
Bitdefender Antivirus Plus 2020/1 год/1 ПК
SAP® Crystal Reports 2016 WIN INTL NUL
Quest Software. Toad for DBA Suite for Oracle
ABBYY Lingvo x6 Английская Домашняя версия, электронный ключ
Oracle Database Personal Edition Named User Plus Software Update License & Support
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Безопасность компьютерных сетей и защита информации
Новости ITShop.ru - ПО, книги, документация, курсы обучения
CASE-технологии
СУБД Oracle "с нуля"
Adobe Photoshop: алхимия дизайна
 
Статьи по теме
 
Новинки каталога Download
 
Документация
 
 



    
rambler's top100 Rambler's Top100