(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
 

Какие специалисты нужны для работы с Big Data

Источник: e-xecutive

Как найти data scientist и других технических специалистов для работы с большими данными? Рассказывает Георгий Шатиров.

Все чаще можно услышать про проекты в области больших данных - Big Data. Что это за технологии, и как их использует бизнес? Технически под платформой Big Data обычно понимают основу для специализированных аналитических систем, которые помогают организации делать правильные аналитические выводы для развития бизнеса. По оценке Wikibon, в 2015 году мировой рынок продуктов и услуг для работы с Big Data вырос на 17%, до $33,3 млрд, а к 2020 году увеличится до $61 млрд. Его российский сегмент Московская биржа оценивала в 2015 году в $500 млн, считая, что в 2018 году он вырастет до $1,7 млрд.

Но за последние годы термин Big Data оброс дополнительными смыслами, стал более емким и бизнес-ориентированным. Сегодня он скорее означает общую концепцию управления данными любой организации. Это одновременно и культура современного цифрового ландшафта, которую учитывают все виды организаций при формировании своих стратегий, чтобы не отстать от конкурентов, и комплекс технологических инструментов, обеспечивающих поддержку новых процессов. Такие процессы, как извлечение данных, очистка, трансформация, обработка, анализ и построение на их базе продуктов и сервисов стали частью большой и дружной семьи технологий работы с большими данными.

Почти каждая компания в процессе работы накапливает огромный массив архивных и вновь создаваемых данных. И при этом они редко используются для принятия управленческих решений. Хотя возможности огромны. Технологии Big Data, снабженные аналитической надстройкой, умеют обрабатывать данные разного типа - от текста и формализованных баз данных до аудиозаписей и фото- видеоизображений, превращая ее в информацию, необходимую менеджменту. Например, данные, полученные системами контроля за входом/выходом сотрудников в офис (из офиса) помогли уже многим компаниям оптимизировать свои операционные затраты. А владельцам торговых центров знания о перемещении клиентов по различным зонам позволяют определять наилучшие места для размещения рекламы. Активно развиваются технологии, распознающие лица посетителей, входящих в центр, автоматически восстанавливающие историю их покупок и в режиме реального времени предлагающие персональные скидки и новые виды услуг.

С чего начать процесс по внедрению Big Data в компании

Обычно решение о внедрении технологий больших данных принимается тогда, когда внутри организации возникает потребность в новых типах сервисов, невозможных на текущих технологиях. Один из вариантов - это внедрение технологий и методологий продвинутой аналитики, которые позволяют создать базу для дополнительных персонифицированных услуг, тарифов и предложений. Внедрение таких технологий в организации на первом этапе, как правило - стратегический проект. И первое, что необходимо сделать - это сформировать команду технических специалистов. Изначально команда формируется для предварительной проработки концепции развития: какие направления компании больше остальных нуждаются в технологическом улучшении. Проводятся интервью с внутренними заказчиками, определяются составы и цели задач. По итогам такого предпроектного обследования производится оценка требуемых ресурсов.

В этот же момент принимается стратегическое решение о том, будет ли компания создавать внутреннюю команду, решит отдать задачи целиком на аутсорсинг, либо будет собирать гибридную команду (часть специалистов находится внутри компании, а часть - привлекается извне). Как правило, большинство западных и российских компаний придерживаются гибридной схемы, когда есть экспертная команда внутри, отвечающая за постановку задач и оценку результатов, контроль качества работ и формирование стратегии движения, и есть команда снаружи из внешних компаний, которая реализует алгоритмы проверки гипотез развития того или иного направления на техническом уровне.

Формируем команду для внедрения Big Data

Команда формируется коллегиально - руководителем, отвечающим за проект, и сотрудниками HR-службы, которые принимают активное участие в формировании внутренней команды. Продвинутая аналитика - достаточно молодое для России направление. Ее культура только начала свое развитие среди специалистов, и ряд ролей или профессий в этой сфере начали активно формироваться лишь в последние годы.

Во-первых, команде потребуется инженер-исследователь данных, или, как его называют в Силиконовой долине, data scientist, чьей задачей является формирование гипотез на основании потребностей бизнеса либо анализа имеющегося массива данных. Найденные корреляции могут в дальнейшем быть использованы для построения новых продуктов и сервисов. Задача HR-отдела, на мой взгляд, здесь первостепенна. Именно сотрудник HR-службы решает, кто сможет выполнить требуемую для развития направления работу, где его найти и чем замотивировать. Data scientist, или инженер-исследователь данных, - штучный товар.

Минимум один специалист этого профиля, в зависимости от стратегических целей направления продвинутой аналитики, должен присутствовать в организации, иначе потеряется фокус проекта. Data scientist совмещает в себе и разработчика, и аналитика данных, и бизнес-аналитика. Кроме того, он должен быть коммуникабельным, уметь излагать свои мысли в виде понятных визуальных элементов - для презентации результатов своей работы коллегам.

Ищем data scientist

Все действуют по-разному. Одна компания заказала специальное такси "Big Data", которое ездило по Москве и подвозило всех желающих. Во время поездки пассажирам задавались вопросы из области продвинутой аналитики, и, в случае, если на большую их часть давались корректные ответы, компания-организатор акции делала пассажирам предложение о работе. К сожалению, такой метод подбора персонала не дал ожидаемого результата, и лишь единицы из победителей согласились пройти собеседование.

Более верный метод, на мой взгляд - проведение хакатона (соревнования по решению аналитического бизнес-кейса с денежным призом). Так, решить задание, которое в рамках хакатона было организовано крупным российским банком, изъявили желание более тысячи человек. Тем, кто достиг лучшего результата, было сделано предложение о работе. Насколько мне известно, победители отказались от предложения, но по другой причине - их интересовал денежный приз. Тем не менее, по результатам акции несколько специалистов влились в команду банка. Это очень хороший результат!

В Силиконовой долине, откуда родом культура управления данными и продвинутой аналитики, в крупных компаниях работают от трех до пяти инженеров-исследователей. Такая команда уже считается зрелой. Тем организациям, которые находятся в начале пути, стоит начать хотя бы с одного такого специалиста.

Задача сотрудников HR-службы состоит здесь в том, чтобы найти таких специалистов, которые смогут развиваться в данном направлении, хотя, возможно, и сами еще об этом не догадываются. Искать необходимо среди аналитиков данных, хорошо понимающих специфику отраслевого бизнеса, способных разобраться - где и какими параметрами необходимо оперировать, чтобы построить ту или иную алгоритмическую модель. Нужны открытые к коммуникациям люди, имеющие опыт в программировании, знакомые с базовым набором технологий, таким как Python, R, Statistica, RapidMiner и прочими технологиями, применяемыми большинством экспертов в данной области.

Три лидера проекта

Один инженер-исследователь в поле не воин. Нужна слаженная команда. Если рассматривать продвинутую аналитику как инновационное направление развития организации, то также потребуется сотрудник, развивающий такой бизнес, или просто -  менеджер по развитию бизнеса . Если инженер-исследователь в первую очередь проверяет и строит гипотезы, анализируя получаемые результаты, то в функции руководителя проекта Big Data входит развитие стратегии управления данными как направления бизнеса, создание новых продуктов, разработка идей, согласование их с заказчиком и проработка кейсов. Также он выполняет расчет бизнес-кейсов, обосновывая затраты на внедрение того или иного продукта или сервиса.

В начале формирования в компании направления Big Data приблизительное соотношение производимых внутренних и внешних продуктов будет колебаться в пропорции 80% к 20%. Сразу становится понятным, кто будет являться первым заказчиком направления - это подразделения самой организации. Задача менеджера по развитию бизнеса - взаимодействовать с ними. Он - лидер данного этапа работы. Вместе с инженером-исследователем он встречается с коллегами, отвечающими за различные участки работы, выясняя их потребности, либо рассказывает о новых возможностях, которые открывает анализ Big Data. Подход, на котором построено интеллектуальное управление большими данными, отличается от ранее принятых классических подходов к аналитике и требует предварительного внутреннего обсуждения. Получив обратную связь, менеджер по развитию бизнеса формирует кейсы, на основании которых в компании принимается решение - в каком направлении двигаться на коротком промежутке времени.

После того, как предпочтения по кейсам сформированы, задачи передаются на проработку к  инженеру-исследователю . Именно он становится лидером на данном этапе. Обычно процесс является итерационным, и в среднем для достижения первых значимых результатов может потребоваться от трех до пяти итераций. Первые результаты будут скорее намекать, куда дальше двигаться, чем непосредственно решать конкретную бизнес-задачу. Когда результат достигает требуемого заказчику качества, получается модель и набор параметров, которые срабатывают.

После этого инженер-исследователь презентует результат, утверждает и передает его участникам третьего этапа - команде разработки. Data scientist либо формирует команду разработки внутри компании, либо для первых пилотных проектов приглашает на короткий срок со стороны. Многие наши клиенты предпочитают привлекать команды по аутсорсингу.

Лидер данного этапа -  руководитель команды разработки , плотно взаимодействующий как с инженером-исследователем, так и с менеджером по развитию бизнеса. Его задача - автоматизировать модель работы с Big Data, реализовать ее на уровне требуемого функционала и интеграции со смежными системами.



 Распечатать »
 Правила публикации »
  Написать редактору 
 Рекомендовать » Дата публикации: 26.09.2016 
 

Магазин программного обеспечения   WWW.ITSHOP.RU
Quest Software. Toad for DBA Suite for Oracle
Stimulsoft Reports Server Team 10 users
Zend Server with Z-Ray Developer Edition - Standard
IBM Domino Messaging Client Access License Authorized User License + SW Subscription & Support 12 Months
Traffic Inspector GOLD 5 Учетных записей
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Программирование на Microsoft Access
CASE-технологии
OS Linux для начинающих. Новости + статьи + обзоры + ссылки
СУБД Oracle "с нуля"
Утиль - лучший бесплатный софт для Windows
Новые программы для Windows
 
Статьи по теме
 
Новинки каталога Download
 
Исходники
 
Документация
 
 



    
rambler's top100 Rambler's Top100