(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
 

Мультиагентные технологии

Источник: technology

Мультиагентные технологии - новый способ решения сложных задач, использующий принципы самоорганизации и эволюции, присущие живым системам.

Суть мультиагентных технологий заключается в принципиально новом методе решения сложных задач, которые не решаются или трудно решаются классическими математическими методами.

В отличие от классического способа решения задачи, когда проводится комбинаторный поиск вариантов решения по чётко определенному (детерминированному) алгоритму, позволяющего найти наилучшее решение проблемы, в мультиагентных технологиях решение задачи получается в ходе самоорганизации множества программных агентов, способных к конкуренции и кооперации, и имеющих собственные критерии, предпочтения и ограничения. Решение считается найденным, когда в ходе своих недетерминированных взаимодействий агенты достигают неулучшаемого консенсуса (временного равновесия или баланса интересов), который и принимается за решение задачи.

Решение задачи в такого рода системах всегда рассматривается как временное "равновесие" (неустойчивое равновесие или устойчивое неравновесие), получаемое как динамический останов системы в случае, когда ни один из агентов более не может улучшить свое состояние, что и свидетельствует о достижении разумного компромисса, баланса интересов или согласия (гармонии) всех участников в решении проблемной ситуации, даже если часть агентов остается не полностью удовлетворена (у них просто нет других лучших вариантов).

Агенты могут действовать как от лица и по поручению человека, так и любых физических и абстрактных сущностей, как это планируется в Интернете вещей, чтобы учесть действие и находить баланс как можно большего числа факторов.

Существует много определений понятия агента, но основные признаки программного агента следующие:

  • автономность: обладает автономностью, т.е способен сам ставить и достигать цели;
  • реагирует на изменения в среде, принимает решения и их исполняет для достижения цели;
  • социальность: проактивно взаимодействует с другими агентами или пользователями

В нашем понимании основные отличия мультиагентных технологий могут быть показаны на схеме ниже:

Отличия систем 

 
  • иерархии больших программ;
  • последовательное выполнение операций;
  • инструкции сверху вниз;
  • централизованные решения;
  • управляют данными;
  • предсказуемость;
  • стабильность;
  • стремление уменьшать сложность;
  • тотальный контроль.
  • большие сети малых агентов;
  • параллельное выполнение операций;
  • переговоры;
  • распределенные решения;
  • управляются знаниями;
  • самоорганизация;
  • эволюция;
  • стремление наращивать сложность;
  • создание условий для развития.

 

В мультиагентной модели каждой сущности реального мира ставится в соответствие программный агент, который представляет интересы данной сущности и может согласовывать свои решения с другими агентами.

Преимущества мультиагентных технологий, позволяющих строить самоорганизующиеся системы, в особенности проявляются в условиях априорной неопределенности и высокой динамики окружающего мира, позволяя строить адаптивные системы, перестраивающие свои планы по событиям в реальном времени.

Так, в классических методах планирования и оптимизации считается, что все заказы и ресурсы заданы наперед и не меняются в ходе решения задачи, а размерность задачи существенно ограничена во избежание комбинаторного взрыва и экспоненциально быстрого замедления решения задачи.

В предлагаемых нами моделях, методах и алгоритмах изначально применяется распределенный подход к решению задачи (Distributed Problem Solving), когда сложная задача разбивается на много малых, а потом путем самоорганизации решаются конфликты между получаемыми решениями. При этом система не ищет единственное глобальное решение, а за счет множества параллельных и асинхронных взаимодействий, быстро находит допустимое рациональное решение, несмотря на наличие множества самых различных и часто противоречивых критериев, причем в задачах любой размерности.

Шаг к искусственному интеллекту: интеллект роя и эмерджентный интеллект

Мы привыкли к тому, что компьютер всегда действует строго по заложенной в него программе, имеющей мало общего с интеллектом человека.

На наш взгляд, интеллект человека строится совершенно по другим принципам, как самоорганизующаяся неравновесная термодинамическая система, что и дает возможность ориентироваться в сложной обстановке, иметь дело с нечетко поставленными задачам, адаптироваться к меняющимся условиям и т.д.

В этом контексте, мультиагентные технологии предлагают новые модели, методы и средства для создания действительно интеллектуальных систем, способных самостоятельно решать сложные задачи в условиях неопределенности и высокой динамики изменений.

Для решения сложных задач управления ресурсами мы предлагаем набор специальных агентов потребностей и возможностей, которые взаимодействуют на виртуальном рынке системы и образуют между собой связи, формируя сеть потребностей и возможностей (ПВ-сеть), которые максимизируют их собственные функции удовлетворенности при заданных функциях бонусов и штрафов.

Виртуальный рынок

Построенная так система демонстрирует функции интеллектуального резонатора, позволяющего при определенных условиях даже в случае относительно простых агентов и небольших изменений на входе получать на выходе довольно сложные решения, образующиеся в ходе длинных цепных автокаталитических реакций пересмотров ранее принятых решений.

В этом случае можно говорить о наблюдении феномена "интеллекта роя" (Swarm Intelligence) - как  важной альтернативе принятому ныне в искусственном интеллекте (ИИ) классическому пониманию интеллектуальной системы, механически собираемой из таких компонент, как блок индукции и дедукции и т.д.

Действительно ведь умственные возможности одного муравья или пчелы может быть и относительно малы, но действуя вместе, как единый организм, рой пчел или колония муравьев представляют собой мощную силу с высокой степенью интеллекта, позволяющий защищать гнездо от непредвиденных нашествий, постоянно осваивать новые территории, находить пропитание в незнакомой местности и решать многие другие критически важные жизненные задачи в условиях постоянно изменяющихся условий в среде.

Развивать "интеллект роя" можно создавая модели все более сложных командных взаимодействий, включая новые классы агентов и протоколов их переговоров для достижения уступок, обучение из опыта и т.д.

Чем выше интеллект каждого агента и чем богаче возможности такой коммуникации между агентами - тем более сложное и творческое поведение может демонстрировать система.

Такого рода системам, по определению, присуща совершенно другая феноменология, связанная с недетерминированным поведением, явлениями порядка и хаоса, бифуркаций, катастроф и многими другими нелинейностями.

Различного рода классы таких моделей ИИ нового поколения мы будем называть "Эмерджентным интеллектом" (ЭИ), отражая присущую ему природу самоорганизации. 

В сравнении с ИИ в ЭИ нет никакого главного блока управления, отвечающего за интеллект системы - напротив, ЭИ рассматривается как временно возникающее свойство самоорганизующейся системы. 

Для наблюдателя ЭИ может проявляться как автокаталитическая реакция или цепочка согласованных изменений в системе решений агентами, которая возникает спонтанно, в заранее не известный момент времени, и распространяется в системе как волна согласований (как пожар в лесу или молния в грозу), после чего также неожиданно исчезает, но в момент своего существования определяет работу своих элементов.

В результате ЭИ возникает как бы ниоткуда "из воздуха" - на самом деле за счет потенциальной энергии принятых ранее решений, отражающих накопившиеся неудовлетворенности или неравновесия - но в процессе своего существования определяющим образом "правит" работой всей системы также, как пробка на дороге управляет водителями.

Этот феномен "двойной спирали" в принятии решений известен в теории самоорганизации, где локальные взаимодействия агентов формируют глобальные структуры, которые в свою очередь влияют на поведение образовавших их локальных агентов (принцип Кауфмана).

В развитие данного направления большой вклад внесли Александр Богданов (теория организации), Илья Пригожин (самоорганизация в физических системах), Марвин Минский (психология и теория мышления), Артур Кестлер (биология)  и ярд других ученых.

В настоящее время мультиагентные технологии - одно из наиболее динамично развивающихся и перспективных направлений в области информационных технологий, успешно дополняющее такие передовые направления как семантический интернет и онтологии, сетецентрические системы, Интернет вещей и другие.

По оценкам всемирно известной компании Gartner рынка информационных технологий к  2020 году мультиагентные технологии будут служить основой для более чем 40% всех мобильных приложений.

Перспективные области применения мультиагентных технологий:

В настоящее время выделяются следующие перспективные области применения мультиагентных технологий:

  • Промышленность
  • Транспорт
  • Энергетика
  • Цепочки поставок
  • Электронная коммерция
  • Интеллектуальный поиск товаров и услуг в сети Интернет
  • Направленная реклама и маркетинг
  • Военное дело
  • Здравоохранение
  • Строительство
  • Связь

В этих областях могут решаться следующие сложные задачи:

  • Управление ресурсами
  • Конструирование сложных изделий
  • Проектирование
  • Мониторинг и контроль
  • Распознавание образов
  • Понимание текстов
  • Извлечение знаний

Важные перспективы технологии связываются с развитием Интернета вещей и повсеместных вычислений.

Результаты применения мультиагентных технологий:

Разработка интеллектуальных систем на основе мультиагентных технологий позволяет добиваться результатов:

  • Решаются сложные задачи, которые ранее не могли быть автоматизированы;
  • Результаты решения дают качество, сопоставимое с решением человеком;
  • Начальное решение строится эффективно (линейно или полиномиально);
  • Изменения в постановке задачи приводят лишь к адаптации решения "на лету";
  • Поддерживается работа по событиям в режиме реального времени;
  • Обеспечивается возможность решения задачи в диалоге с пользователем;
  • Вычисления могут быть легко распараллелены для решения сверх сложных задач.

В результате, мультиагентные технологии позволяют строить интеллектуальные системы нового поколения, отличающиеся высокой открытостью, гибкостью и эффективностью, производительностью, масштабируемостью, надежностью и живучестью.

 


 Распечатать »
 Правила публикации »
  Написать редактору 
 Рекомендовать » Дата публикации: 09.11.2020 
 

Магазин программного обеспечения   WWW.ITSHOP.RU
Allround Automation PL/SQL Developer - Annual Service Contract - Single user
Microsoft Windows Professional 10, Электронный ключ
SmartBear LoadComplete - Node-Locked License Subscription w/ 250 Virtual Users (includes 1 year of Maintenance)
Microsoft 365 Business Basic (corporate)
TeeChart for .NET Standard Business Edition 2017 single license
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Программирование на Microsoft Access
CASE-технологии
OS Linux для начинающих. Новости + статьи + обзоры + ссылки
СУБД Oracle "с нуля"
Программирование на Visual С++
Новые программы для Windows
 
Статьи по теме
 
Новинки каталога Download
 
Исходники
 
Документация
 
 



    
rambler's top100 Rambler's Top100