(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
 

Метод причинной развертки научит ИИ понимать логику

Источник: neurohive

 

логика искусственный интеллект

Одна из фундаментальных задач в машинном обучении - поиск и расшифровка причинно-следственных связей в больших массивах данных. Исследование, проведенное учеными KAUST, предлагает новый подход к решению проблемы иерархического структурирования данных и индуктивного вывода.

Проблема причинности 

Современный искусственный интеллект (вернее, так называемый, "слабый ИИ" - прим. ред.) не способен принимать решения на основе обнаруженных причинно-следственных связей. Пока что алгоритмы умеют выявлять только закономерности в данных, которые обрабатывают. Чем больше данных обработает ИИ - тем точнее будет результат.

Например, языковая модель GPT-2 от разработчиков OpenAI обучилась генерации текста, обобщению и переводу просто анализируя огромное количество данных. Алгоритм работает используя индуктивный научный метод - выдает нужный результат, сопоставляя множество факторов. Для перевода слова перебираются все варианты, где оно встречается. То слово, которое наиболее часто встречается в похожем контексте, выбирается как результат.

При этом модель не способна делать выводы и решать проблемы на основе уже полученного опыта - для каждой новой задачи ей нужно учиться заново.

Метод "причинной развертки"

Исследователи KAUST описали подход, который позволит обойти вышеописанные проблемы. Работа "Causal deconvolution by algorithmic generative models", опубликованная в журнале Nature, описывает алгоритмическую генеративную модель, которая способна более глубоко понимать причинные механизмы, обучаясь без учителя.

Метод "причинной развертки"
Подтверждение концепции, примененной к двоичной строке, состоящей из двух сегментов с различными базовыми механизмами генерации (компьютерными программами).

Метод использует сочетание подходов математической концепции алгоритмической теории информации и исчисление причинности Дж. Пёрла для создания механизма логического вывода. Основное отличие от предыдущих подходов - переход от взгляда наблюдателя к объективному анализу явлений, основываясь на отклонениях от беспорядочности.

"Наш подход использует основанное на отклонениях каузальное вычисление, чтобы вывести представления модели" - пишут исследователи.

Получается, что логика - это отклонение от беспорядочности. Находя такие отклонения в большом массиве данных, алгоритм находит причинно-следственные связи между объектами отклонения, и затем может использовать это для оптимального решения задачи. 

Подход позволит алгоритмам лучше справляться с абстрактными умозаключениями и пониманием причин и сможет дополнить статистические методы, улучшая модели, основанные на глубоком обучении.

Автор: Olga Kravchenko
    Источник: phys.org


     Распечатать »
     Правила публикации »
      Написать редактору 
     Рекомендовать » Дата публикации: 01.03.2019 
     

    Магазин программного обеспечения   WWW.ITSHOP.RU
    Allround Automation PL/SQL Developer - Unlimited license
    Quest Software. TOAD Xpert Edition
    IBM RATIONAL Clearcase Floating User License + Sw Subscription & Support 12 Months
    Panda Gold Protection - ESD версия - на 1 устройство - (лицензия на 1 год)
    Enterprise Connectors (1 Year term)
     
    Другие предложения...
     
    Курсы обучения   WWW.ITSHOP.RU
     
    Другие предложения...
     
    Магазин сертификационных экзаменов   WWW.ITSHOP.RU
     
    Другие предложения...
     
    3D Принтеры | 3D Печать   WWW.ITSHOP.RU
     
    Другие предложения...
     
    Новости по теме
     
    Рассылки Subscribe.ru
    Информационные технологии: CASE, RAD, ERP, OLAP
    Программирование на Microsoft Access
    CASE-технологии
    OS Linux для начинающих. Новости + статьи + обзоры + ссылки
    СУБД Oracle "с нуля"
    Каждый день новые драйверы для вашего компьютера!
    Adobe Photoshop: алхимия дизайна
     
    Статьи по теме
     
    Новинки каталога Download
     
    Исходники
     
    Документация
     
     



        
    rambler's top100 Rambler's Top100