Код: PYNN Специализация: Авторские курсы: СУБД и хранилища данных
Продолжительность - 3 дня
Расписание:
24 марта 2025 года (Москва)
16 июня 2025 года (Москва)
Стоимость:
54 000 руб.
Практический курс «Введение в нейронные сети» — основы нейросетей для аналитиков, разработчиков Big Data, руководителей и специалистов по работе с большими данными.
Искусственная нейронная сеть (нейросеть) – это математическая модель с программной или аппаратной реализацией, имитирующая функционирование биологических нервных клеток живого организма. В отличие от других вычислительных моделей, нейросети ориентированы на биологические принципы. Благодаря этому нейросетевые модели обладают следующими качествами:
массовый параллелизм;
распределённое представление информации и вычисления;
способность к обучению и обобщению;
адаптивность;
обработки информации в контексте окружающей среды;
толерантность к ошибкам;
низкое энергопотребление.
Правила работы нейросетевых алгоритмов не программируются, а вырабатываются в процессе обучения. Это обеспечивает адаптивность моделей к изменениям входных сигналов, включая шумовые воздействия. Сегодня нейросети считаются одним из наиболее популярных методов машинного обучения (Machine Learning) и используются в различных областях деятельности для решения следующих прикладных задач в условиях неполноты входной информации:
распознавание образов (визуальных, аудиозаписей, видеопотоков, графических изображений, рукописного текста и пр.);
прогнозирование будущих событий (поведение пользователей, погодные явления, курсы валют, возникновение и развитие чрезвычайных ситуаций и пр.);
классификация и кластеризация данных (финансовый скоринг, медицинская диагностика, выявление мошеннических операций);
интеллектуальный анализ данных, оптимизация бизнес-процессов и принятие управленческих решений.
Как именно нейросетевые алгоритмы и инструменты моделирования можно использовать для конкретных бизнес-кейсов, вы узнаете в рамках нашего образовательного курса «Введение в нейронные сети».
Аудитория: Специалисты по работе с большими данными, разработчики, руководители желающие понять принципы функционирования нейронных сетей и получить практический навык их использования.
Уровень подготовки: Опыт программирования на Python
О курсе:
Данный курс является введением в тематику нейронных сетей. Основная цель – познакомить слушателей с современными подходами в нейросетевой обработке различных типов данных: текста, аудио и изображений. Большое внимание в курсе уделено именно практическому решению указанных задач на языке Python. По окончанию курса вы овладеете навыками создания полноценных решений с использованием нейросетей от сбора данных и выбора архитектуры нейросети до продуктивизации в виде API сервиса.
Продолжительность: 6 дней, 24 академических часа / 8 дней, 32 академических часа*
Соотношение теории к практике 50/50
Методические материалы: учебное пособие на русском языке
Программа курса «Введение в нейронные сети»
1. Введение в нейронные сети
Теоретическая часть: в рамках занятия рассказывается о задачах, которые решаются методами машинного обучения. Даются основные понятия о постановке таких задач, метриках качества, цикле разработки решения. Подробно рассказывается, в каких случаях классические методы уступают в качестве работы нейронным сетям.
Практическая часть: погружение в фреймворк PyTorch языка Python. Рассматривается пример модели для классификации изображений.
2. Работа с табличными данными* (входит в расширенную версию курса — 32 ак.ч.)
Теоретическая часть: в рамках занятия рассматриваются методы обработки и анализа табличных данных с использование библиотек pandas и matplotlib. Дается описание архитектуры полносвязной нейронной сети и разбираются математические основы ее работы.
Практическая часть: рассматриваются примеры решения задачи классификации на табличных данных. Разбирается код создания модели с нуля на PyTorch, подготовка данных и обучение модели.
3. Обработка изображений и решение задач компьютерного зрения
Теоретическая часть: на занятии вы знакомитесь с основными задачами компьютерного зрения (CV – computer vision), а именно: классификацией изображений, детектированием объектов на них, сегментацией различных участков изображений и определением ключевых точек. Даются основные понятия сверточных нейронных сетей и современных архитектур для решения указанных задач.
Практическая часть: примеры использования алгоритма Yola для детекции объектов на изображении. Разметка изображений с использованием инструмента Label Studio.
4. Задачи обработки текстовых данных
Теоретическая часть: на занятии рассказывается о задачах в области обработки естественного языка (NLP – natural language processing), среди которых выделяются классификация текстов, поиск ключевых сущностей, расстановка знаков препинания и капитализация, векторизация и поиск семантически близких текстов, а также суммаризация. Описываются классические частотные подходы к обработке текстов, а также нейросетевые на основе рекуррентных нейронных сетей и трансформеров.
Практическая часть: решение задачи поиска ключевых сущностей на основе регулярных выражения, фреймворка Natasha и предобученной сети BERT.
5. Большие языковые модели* (входит в расширенную версию курса — 32 ак.ч.)
Теоретическая часть: рассмотрим передовые решения для задач суммаризации и построения чат-ботов на основе больших языковых моделей (LLM – large language model). Дается обзор проприетарных и открытых решений. Описываются нюансы эксплуатации и обучения LLM.
Практическая часть: создание чат-бота на основе открытой модели. Тестирование модели суммаризации текста.
6. Основы работы с аудиоданными
Теоретическая часть: в этом уроке рассказывается о том, с чего начинается обработка аудио данных, какие задачи стоят перед инженерами и как они их решают. Упор делается на современные подходы для перевода речи в текст (ASR – automatic speech recognition), диаризации спикеров и классификации голоса по полу и эмоциям.
Практическая часть: построение пайплайна речевой аналитики с дополнительной частью по суммаризации полученных транскриптов речи
7. Подготовка моделей перед использованием в продуктиве
Теоретическая часть: в рамках урока делается обзор основных фреймворков для работы с нейронными сетями на языке Python, а также других языках. Дается описание основных форматов, в которые нейронные сети могут быть сконвертированы для дальнейшей эксплуатации. Отдельно уделяется вопрос унификации формата и конвертации в onnx, а также оптимизации под разные вычислительные платформы.
Практическая часть: конвертация PyTorch моделей в форматы onnx и trt. Пример использования фреймворка Tensorflow.
8. Встраивание моделей машинного обучения в программные решения
Теоретическая часть: на уроке подводятся итоги курса, систематизируется пройденный материал. Дополнительно рассказывается о современных подходах работы с моделями машинного обучения – MLOps. Раскрываются плюсы и минусы использования моделей в монолитных и микросервисных архитектурах.
Практическая часть: создание микросервисов для инференса моделей машинного обучения в рамках REST API сервиса и отдельного инфереснс сервиса для запуска моделей на примере Triton Inference Server и Tensorflow Serving.
Программа читается совместно с Школа Больших Данных.
В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения
В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных.
Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации.
В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных.
Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас!
В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на основании оценок, полученных обучающимся при проверке усвоения изучаемого материала на основании оценок за практические работы, выполненные в процессе обучения.
Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
Нужна помощь в поиске курса? Наша цель заключается в обеспечении подготовки специалистов, когда и где им это необходимо. Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса. Если вам нужен курс, который вы не видите на графике или у нас на сайте, или если Вы хотите пройти курс в другое время и в другом месте, пожалуйста, сообщите нам, по адресу mail@interface.ru или shopadmin@itshop.ru
Поговорите со своим личным тренинг-менеджером! Мы предоставляет Вам индивидуальное обслуживание. Если у вас есть потребность обсудить, все вопросы касательно обучения, свяжитесь, пожалуйста c нами по телефонам: +7 (495) 925-0049, + 7 (495) 229-0436. Или любым другим удобным для Вас средствами связи, которые Вы можете найти на сайтах www.interface.ru или www.itshop.ru
Подтвердить полученные знания можно, сдав сертификационные экзамены. Учебный центр "Интерфейс" является авторизованным центром тестирования Pearson VUE
Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса.
Где Вам удобнее учиться? В Москве? Санкт-Петербурге? Подмосковье? В вашем собственном офисе? Позвоните нам по тел.:+7 (495) 925-0049 и мы обсудим удобный для Вас вариант обучения.