Курс "Введение в нейронные сети"

Код: PYNN
Специализация: Авторские курсы: СУБД и хранилища данных

Продолжительность - 3 дня

Расписание:
24 марта 2025 года (Москва)        
16 июня 2025 года (Москва)        

Стоимость:  54 000 руб.  

Практический курс «Введение в нейронные сети» — основы нейросетей для аналитиков, разработчиков Big Data, руководителей и специалистов по работе с большими данными.

Искусственная нейронная сеть (нейросеть) – это математическая модель с программной или аппаратной реализацией, имитирующая функционирование биологических нервных клеток живого организма. В отличие от других вычислительных моделей, нейросети ориентированы на биологические принципы. Благодаря этому нейросетевые модели обладают следующими качествами:

  • массовый параллелизм;
  • распределённое представление информации и вычисления;
  • способность к обучению и обобщению;
  • адаптивность;
  • обработки информации в контексте окружающей среды;
  • толерантность к ошибкам;
  • низкое энергопотребление.

Правила работы нейросетевых алгоритмов не программируются, а вырабатываются в процессе обучения. Это обеспечивает адаптивность моделей к изменениям входных сигналов, включая шумовые воздействия. Сегодня нейросети считаются одним из наиболее популярных методов машинного обучения (Machine Learning) и используются в различных областях деятельности для решения следующих прикладных задач в условиях неполноты входной информации:

  • распознавание образов (визуальных, аудиозаписей, видеопотоков, графических изображений, рукописного текста и пр.);
  • прогнозирование будущих событий (поведение пользователей, погодные явления, курсы валют, возникновение и развитие чрезвычайных ситуаций и пр.);
  • классификация и кластеризация данных (финансовый скоринг, медицинская диагностика, выявление мошеннических операций);
  • интеллектуальный анализ данных, оптимизация бизнес-процессов и принятие управленческих решений.

Как именно нейросетевые алгоритмы и инструменты моделирования можно использовать для конкретных бизнес-кейсов, вы узнаете в рамках нашего образовательного курса «Введение в нейронные сети».

Аудитория: Специалисты по работе с большими данными, разработчики, руководители желающие понять принципы функционирования нейронных сетей и получить практический навык их использования.

Уровень подготовки: Опыт программирования на Python

О курсе:

Данный курс является введением в тематику нейронных сетей. Основная цель – познакомить слушателей с современными подходами в нейросетевой обработке различных типов данных: текста, аудио и изображений. Большое внимание в курсе уделено именно практическому решению указанных задач на языке Python. По окончанию курса вы овладеете навыками создания полноценных решений с использованием нейросетей от сбора данных и выбора архитектуры нейросети до продуктивизации в виде API сервиса.

Продолжительность: 6 дней, 24 академических часа / 8 дней, 32 академических часа*

Соотношение теории к практике 50/50

Методические материалы: учебное пособие на русском языке

Программа курса «Введение в нейронные сети»

1. Введение в нейронные сети

  • Теоретическая часть: в рамках занятия рассказывается о задачах, которые решаются методами машинного обучения. Даются основные понятия о постановке таких задач, метриках качества, цикле разработки решения. Подробно рассказывается, в каких случаях классические методы уступают в качестве работы нейронным сетям.
  • Практическая часть: погружение в фреймворк PyTorch языка Python. Рассматривается пример модели для классификации изображений.

2. Работа с табличными данными* (входит в расширенную версию курса — 32 ак.ч.)

  • Теоретическая часть: в рамках занятия рассматриваются методы обработки и анализа табличных данных с использование библиотек pandas и matplotlib. Дается описание архитектуры полносвязной нейронной сети и разбираются математические основы ее работы.
  • Практическая часть: рассматриваются примеры решения задачи классификации на табличных данных. Разбирается код создания модели с нуля на PyTorch, подготовка данных и обучение модели.

3. Обработка изображений и решение задач компьютерного зрения

  • Теоретическая часть: на занятии вы знакомитесь с основными задачами компьютерного зрения (CV – computer vision), а именно: классификацией изображений, детектированием объектов на них, сегментацией различных участков изображений и определением ключевых точек. Даются основные понятия сверточных нейронных сетей и современных архитектур для решения указанных задач.
  • Практическая часть: примеры использования алгоритма Yola для детекции объектов на изображении. Разметка изображений с использованием инструмента Label Studio.

4. Задачи обработки текстовых данных

  • Теоретическая часть: на занятии рассказывается о задачах в области обработки естественного языка (NLP – natural language processing), среди которых выделяются классификация текстов, поиск ключевых сущностей, расстановка знаков препинания и капитализация, векторизация и поиск семантически близких текстов, а также суммаризация. Описываются классические частотные подходы к обработке текстов, а также нейросетевые на основе рекуррентных нейронных сетей и трансформеров.
  • Практическая часть: решение задачи поиска ключевых сущностей на основе регулярных выражения, фреймворка Natasha и предобученной сети BERT.

5. Большие языковые модели* (входит в расширенную версию курса — 32 ак.ч.)

  • Теоретическая часть: рассмотрим передовые решения для задач суммаризации и построения чат-ботов на основе больших языковых моделей (LLM – large language model). Дается обзор проприетарных и открытых решений. Описываются нюансы эксплуатации и обучения LLM.
  • Практическая часть: создание чат-бота на основе открытой модели. Тестирование модели суммаризации текста.

6. Основы работы с аудиоданными

  • Теоретическая часть: в этом уроке рассказывается о том, с чего начинается обработка аудио данных, какие задачи стоят перед инженерами и как они их решают. Упор делается на современные подходы для перевода речи в текст (ASR – automatic speech recognition), диаризации спикеров и классификации голоса по полу и эмоциям.
  • Практическая часть: построение пайплайна речевой аналитики с дополнительной частью по суммаризации полученных транскриптов речи

7. Подготовка моделей перед использованием в продуктиве

  • Теоретическая часть: в рамках урока делается обзор основных фреймворков для работы с нейронными сетями на языке Python, а также других языках. Дается описание основных форматов, в которые нейронные сети могут быть сконвертированы для дальнейшей эксплуатации. Отдельно уделяется вопрос унификации формата и конвертации в onnx, а также оптимизации под разные вычислительные платформы.
  • Практическая часть: конвертация PyTorch моделей в форматы onnx и trt. Пример использования фреймворка Tensorflow.

8. Встраивание моделей машинного обучения в программные решения

  • Теоретическая часть: на уроке подводятся итоги курса, систематизируется пройденный материал. Дополнительно рассказывается о современных подходах работы с моделями машинного обучения – MLOps. Раскрываются плюсы и минусы использования моделей в монолитных и микросервисных архитектурах.
  • Практическая часть: создание микросервисов для инференса моделей машинного обучения в рамках REST API сервиса и отдельного инфереснс сервиса для запуска моделей на примере Triton Inference Server и Tensorflow Serving.

Программа читается совместно с Школа Больших Данных.

В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения


В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных.

Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации.

В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных.

Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас!

В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на основании оценок, полученных обучающимся при проверке усвоения изучаемого материала на основании оценок за практические работы, выполненные в процессе обучения.

Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.

  • Нужна помощь в поиске курса?
    Наша цель заключается в обеспечении подготовки специалистов, когда и где им это необходимо. Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса. Если вам нужен курс, который вы не видите на графике или у нас на сайте, или если Вы хотите пройти курс в другое время и в другом месте, пожалуйста, сообщите нам, по адресу mail@interface.ru или shopadmin@itshop.ru
  • Поговорите со своим личным тренинг-менеджером!
    Мы предоставляет Вам индивидуальное обслуживание. Если у вас есть потребность обсудить, все вопросы касательно обучения, свяжитесь, пожалуйста c нами по телефонам: +7 (495) 925-0049, + 7 (495) 229-0436. Или любым другим удобным для Вас средствами связи, которые Вы можете найти на сайтах www.interface.ru или www.itshop.ru

Страница сайта http://test.interface.ru
Оригинал находится по адресу http://test.interface.ru/iservices/training.asp?iId=412859