(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
 

3D в AutoCAD. Несколько слов о субъективных препятствиях и объективной реальности

Источник: cadmaster
Александр Шмидт

Когда в рабочем проектировании целесообразно использовать 3D? На взгляд автора, - в тех случаях, когда нет базы двумерных типовых элементов и узлов или она недостаточна, а также в случае работы с конструкциями, имеющими неплоскую пространственную форму. Трехмерное проектирование оправдано, когда плоские виды элемента не дают ясного представления о его конструкции, когда для показа узла требуется большое число 2D-видов и сечений, а также для показа сборочного узла или последовательности его сборки.

Даже в вузе многие преподаватели не считают нужным уделять внимание проектированию в AutoCAD, полагая, что на ранних курсах достаточно научить рисовать в нем "линии и кружочки", а уж старшекурсники запросто создадут любой проект. Почтенные профессора искренне полагают, что чертеж проекта - это просто большой набор линий и кружочков. Они, как и два десятка лет назад, считают, что графический редактор - это просто электронный кульман, где мышка и кнопочки на экране - аналог карандаша, а "перекрестье с прицелом" - рейсшинка на лесках. Отсюда в учебных планах на старших курсах для компьютерного графического проектирования времени вообще не предусмотрено, а на младших - самый минимум, чтобы научить чертить те самые "линии и кружочки".

И это логично, так как что такое проект студенты второго курса еще не знают и поймут только через два года. Людям невдомек, что современный программный инструментарий не просто помогает "мозгам" чертить линии, а перестраивает эти мозги для работы совершенно по-другому, открывает пользователю такие возможности, которые не сможет дать никакой самый крутой кульман. Эффект перехода на другой уровень проектирования можно сравнить с телепортацией в другое пространство. Человеку, незнакомому с современным инструментарием (или знакомому с ним только по рекламе), никогда этого не понять. Видя, как работают наши студенты над курсовыми проектами на старших курсах, просматривая чертежи некоторых проектных организаций и регулярно посещая форумы различных сайтов, убеждаешься, что в стране очень мало инженеров-проектировщиков, грамотно использующих чрезвычайно разнообразные средства AutoCAD - их основного на сегодняшний день инструмента.


Снова о 2D и 3D в "рабочке"

А теперь о 3D в рабочей документации. По данным различных источников, трехмерные объекты в документации на стадии рабочего проектирования применяют не более 5-10% российских проектировщиков.

Причем, как правило, речь идет не обо всем объекте, а лишь об отдельных или нестандартных элементах конструкций. Эти цифры подтверждают сказанное автором выше и свидетельствуют, что 95 из 100 российских проектировщиков до сих пор работают в 2D-среде и не очень стремятся перейти в 3D. Однако в данном случае упрекать их в нежелании постигать "премудрости" AutoCAD не стоит. Само по себе построение и редактирование 3D-объектов - дело несложное. В большинстве случаев создать трехмерную модель гораздо проще и значительно быстрее, нежели три ее плоские проекции и разрезы в 2D. Это знают многие проектировщики. Здесь важнее разобраться, почему они отказываются от 3D в пользу 2D. Ведь одно дело создать 3D-объект, а другое - выполнить лист рабочего чертежа со всеми условными обозначениями по ГОСТ. По мнению автора, здесь присутствуют как субъективные, так и объективные причины.

Субъективные причины заключаются в инерции мышления и скепсисе, связанном с опытом работы исключительно в 2D, недостатках обучения, отсутствии контроля от экспертизы, безразличии к данной проблеме заказчика и т.д.

К объективным же причинам можно отнести:

  • наличие большого числа готовых типовых узлов и элементов, разработанных в советское время в институтах типового проектирования и переведенных теперь в 2D в формате DWG или просто отсканированных в одном из растровых форматов. Перевод их в 3D относительно трудоемок;
  • невозможность и нерациональность замены некоторых условных обозначений трехмерным представлением. Например, 3D-изображение кладочной сетки (50x50х4) в кирпичной кладке, в зависимости от величины и масштаба объекта, либо будет практически не видно, либо будет "заливать" весь объект;
  • неприспособленность отечественных стандартов к электронному представлению документации, так как ввод некоторых условных обозначений достаточно трудоемок или просто нерационален в 3D-среде AutoCAD. К примеру, представьте себе, как вы покажете на плане трехмерную одно- или двухпольную дверь с качающимся полотном, если в ГОСТ для этого установлены схематичные изображения из линий, часть которых штриховые. Или, например, каналы вытяжки, венткамеры и прочее. Даже если построить их в 3D и потом сделать Section (сечение) в отдельном слое, все равно придется вставлять условное обозначение, "замораживать" ненужные слои и выводить этот участок в отдельный видовой экран. Получается не очень быстро и не очень просто;
  • наличие достаточно большого числа типовых сечений (например, полов, кровель, покрытий и перекрытий), представленных в типовых сериях схематически с произвольными пропорциями. Параметризация и перевод их в 3D целесообразны только в особых случаях;
  • появление в строительстве множества новых западных технологий, привнесших с собой неисчислимые варианты конструкций и узлов. В рекламных проспектах и в сопроводительной документации они на 80-90% имеют двумерные схемы и изображения. Параметризация и перевод их в 3D также нецелесообразны;
 
 

Церковь Святой Троицы в Антарктиде: после освящения, рабочий чертеж, 3D-модель

  • отсутствие возможности избирательного отображения невидимых ребер трехмерного объекта. Например, с помощью команды Obscure невидимые ребра можно отображать различным типом линий (штриховым, пунктирным или другим), но отобрать, какие показывать, а какие нет, мы не можем. А ведь это очень важно, особенно для сложного пространственного объекта. Порой этих невидимых ребер так много, что глаз не способен остановиться на том, на что хочет обратить внимание проектировщик (скажем, в стене с примыкающими перегородками надо показать разветвления вентканалов и дымоходов. А если эта стена выполнена еще и колодцевой кладкой…);
  • опыт показывает, что в некоторых случаях наличие простой схемы 2D-узла вместо такого же простого, но 3D-узла дает немалую экономию времени без ущерба для понимания чертежа.

Однако не хотелось бы излишне оправдывать противников 3D в "рабочке". Гораздо конструктивнее обратить внимание на то, что требуется для эффективного 3D-проектирования. Для этого проектировщику необходимо овладеть неким набором средств, учесть ряд рекомендаций и сделать кое-какие предварительные заготовки. А именно:

  • строить пространственные модели из ряда стандартных объемных примитивов (параллелепипеда, цилиндра, конуса и т.д.);
  • активно применять пользовательские системы координат USC и инструментарий их быстрого переориентирования;
    свободно владеть средствами редактирования и модифицирования 3D-моделей;
  • свободно владеть средствами создания и редактирования в пространстве листа нескольких видовых экранов различной формы, строить список масштабов изображений для масштабирования в видовом экране в соответствии с СПДС;

 
принципиально настроиться на то, что:

  • все объекты следует строить в единых размерных единицах (например, в миллиметрах) только в пространстве модели без простановки каких-либо размеров, обозначений (кроме штриховок) и поясняющих текстов, все остальные элементы чертежа (основная надпись, размеры, поясняющие тексты, спецификации, прочие таблицы, условные обозначения и др.) следует размещать только в пространстве листа;
  • создать один текстовый и один размерный стиль, которые будут использоваться в пространстве листа;
    создать две группы слоев:
  • слои первой группы - для размещения в них 3D-объектов. Этим слоям желательно присвоить имена таких групп объектов, которые впоследствии обладали бы некоторой автономностью, например: "Оси", "Металл", "Бетон", "Фундамент", "Стены наружные", "Перегородки" и пр. Можно придать слоям соответствующие цвета, установить типы и толщины линий (lineweight) и пр. Слой "Оси" надо будет впоследствии блокировать от случайного редактирования. Эта группа слоев предназначена только для объектов в пространстве модели, слои второй группы - для размещения элементов оформления чертежа (размеров, текста, выносок, условных обозначений по СПДС и др.). Обычно достаточно создать 3-5 слоев, не более. Эта группа слоев ориентирована на элементы, которые будут располагаться в пространстве листа, - например "Л-Размер", "Л-Текст", "Л-Рис" и др. Рекомендуется создать специальный слой под именем, к примеру, "Невидим", в котором будут размещаться только рамки видовых экранов. Этому слою надо придать свойство "Не печатать" и еле заметный цвет, чтобы границы этих экранов были видны, но не мешали другим объектам и не выводились при печати;
    для простановки всех размеров и пояснений в пространстве листа очень полезно создать вкладку на палитре с обозначениями осей, уклонов, отметок, узлов и т.д. в соответствии с СПДС. Там же можно разместить блоки наиболее употребляемых пояснений (например, по сварке, защите конструкций) или стандартные фразы и сокращения;
    использовать очень эффективное окно LayerWalk для быстрого управления слоями в видовых экранах;
  • настроить свое рабочее окружение (среду с самыми необходимыми инструментами), создать шаблоны листа, наработать динамические блоки и отредактировать под себя PGP-файл псевдоимен.

Металлоизделие

Следует помнить, что самое ценное на экране монитора - это рабочее поле чертежа, а наиболее популярной операцией является масштабирование изображения (с помощью колеса мышки). Поэтому надо стремиться к тому, чтобы панели с инструментами занимали как можно меньше места в пользу увеличения чертежного пространства. Для этого все команды, к которым привык пользователь, можно условно разделить на три группы:

  • наиболее часто употребляемые команды (отрисовка примитивов, редактирование, образмеривание и другое). Эти команды должны иметь псевдоимена и быстро вызываться с клавиатуры;
  • блоки и команды, которые следует разместить в палитре (вызываемой по Ctrl+3);
  • команды на кнопках инструментов, число которых надо свести к минимуму, используя при настройке пользовательского интерфейса плавающие панельки и создавая свои кнопки. Остальные команды, которые используются редко, всегда можно выбрать из главного меню. Такая организация вызова команд значительно сокращает время работы.

Когда же целесообразно использовать 3D в рабочем проектировании? На мой взгляд, в тех случаях, когда нет базы двумерных типовых элементов и узлов или она недостаточна, а также в случае работы с конструкциями, имеющими неплоскую пространственную форму.

 

3D-модель опалубки

Трехмерное проектирование оправдано, когда плоские виды элемента не дают ясного представления о его конструкции, когда для показа узла требуется большое число 2D-видов и сечений, а также для показа сборочного узла или последовательности его сборки.

Особо хочется отметить, что делать категоричный вывод типа "только 3D" или "только 2D" некорректно и в общем-то бессмысленно. Совершенно очевидно, что разумное сочетание 2D- и 3D-изображений в пропорциях, отвечающих каждому конкретному случаю, даст оптимальный результат.


Пример работы с 2D и 3D

Интересным примером такого комбинирования работы с 2D и 3D может служить проектирование и строительство церкви Святой Троицы в Антарктиде. Архитектурная часть проекта была выполнена архитекторами П.И. Анисифоровым, С.Г. Рыбак и А.Б. Шмидтом. В разработке проекта приняли участие алтайские архитекторы, а также московские и нижегородские эксперты. В окончательном варианте проекта остов церкви представлял собой деревянный сруб из бревен диаметром 260 мм. Размеры сооружения - в плане 10,2x5,5 м, высота - 12 м по верху креста.

Лестница 3D

Главными особенностями воздействия антарктического климата на храм были:

  • сверхвысокая ветровая нагрузка с порывами ветра до 60 м/с;
  • высокая постоянная влажность (около 90%) с преобладанием осадков в виде мокрого снега, ледяного дождя, мороси и тумана;
  • высококонцентрированная солевая атмосфера, обусловленная ветровыми наносами с расположенных неподалеку морских акваторий.

Было принято решение использовать при строительстве стен хвойные породы деревьев, такие как лиственница и кедр. Оказалось, что на станции Беллинсгаузен, где планировалось возведение церкви, древесина прекрасно сохраняется - в отличие от стальных и железобетонных конструкций, которые быстро корродируют. Кроме того, выяснилось, что среднегодовая температура воздуха в этом месте составляет около 0°С: средняя температура зимой - минус 5-8°С, летом же температура может доходить до плюс 6-8°С.

Таким образом, основной инженерной задачей при возведении храма было обеспечить устойчивость сооружения при ветрах в 60 м/с. Расчеты показали, что при подобной силе ветра усилия, отрывающие здание от земли, составляют около 12 тонн. Конструктивное решение задачи напоминает ситуацию с Останкинской телебашней в Москве. Неглубокий, относительно тяжелый фундамент как якорь удерживает весь остов сооружения посредством стальных тяг, проходящих до верха пирамидального купола. Стальные остовые тяги, выполненные из цепей, проходят по внутренним углам храма, так что в интерьере они практически не видны и не мешают проведению богослужений. Именно эти стяжки и проектировались в 3D. Кроме того, 3D использовалось при проектировании опалубки и сруба.

Работая над чертежом, каждый инженер должен в первую очередь думать о мастере или прорабе, который будет читать этот чертеж и по нему строить. Если допустишь в чертеже небрежность или недостаточную ясность замысла, будь готов услышать в свой адрес совсем не ласковое слово. А возможно, придется и что-то переделывать. Таких проблем как раз и помогает избежать 3D-изображение, которое становится неотъемлемой частью культуры проектирования.

Ссылки по теме


 Распечатать »
 Правила публикации »
  Написать редактору 
 Рекомендовать » Дата публикации: 06.12.2011 
 

Магазин программного обеспечения   WWW.ITSHOP.RU
AutoCAD LT 2022 Commercial New Single-user ELD Annual Subscription
Allround Automation PL/SQL Developer - Unlimited license
SAP® Crystal Presentation Design 2016 WIN INTL NUL
ESET NOD32 Антивирус на 1 год для 3ПК или продление на 20 месяцев
SAP Crystal Reports 2008 INTL WIN NUL License
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Новости ITShop.ru - ПО, книги, документация, курсы обучения
Программирование в AutoCAD
Компьютерный дизайн - Все графические редакторы
Delphi - проблемы и решения
Новые программы для Windows
Adobe Photoshop: алхимия дизайна
 
Статьи по теме
 
Новинки каталога Download
 
Документация
 
 



    
rambler's top100 Rambler's Top100