|
|
|||||||||||||||||||||||||||||
|
Курс "NLP с Python"Код: PNLP
Продолжительность - 5 дней
10-дневный практический курс для Data Scientist’ов, специалистов по машинному обучению и Python-разработчиков NLP-приложений, которые хотят освоить продвинутые методы решения задач обработки естественного языка с помощью нейронных сетей. NLP (Natural Language Processing, NLP) или обработка естественного языка — это целое направление искусственного интеллекта и математической лингвистики, направленное на анализ (компьютерное понимание) текста и речи, а также их грамотный синтез (генерацию нового). NLP-технологии нужны не только для распознавания живого языка средствами искусственного интеллекта. Они дают возможность адекватного взаимодействия человека с вычислительными системами. Классическими NLP-задачами считаются следующие:
Сегодня большинство этих задач решается с помощью современных методов Machine Learning — нейросетевых алгоритмов, которые обладают свойством самообучаемости и способны решать проблемы в условиях неполноты и изменчивости входной информации. Соотношение теории к практике 50/50 Продолжительность курса 40 академических часов, проводится в течение 10 дней. Курс «NLP с Python» представляет собой прикладные основы обработки естественного языка с помощью Machine Learning, включая всю необходимую теорию и практику по этой области искусственного интеллекта. В программе рассмотрены операции преобразования текстовых данных для дальнейшей обработки нейросетевыми алгоритмами: стемминг, лемматизация, векторизация. Приведены базовые NLP-задачи, которые могут быть решены с помощью методов машинного обучения: классификация и распознавание текстов, анализ звуковой информации. Большое внимание уделено практическому решению задач с использованием методов машинного обучения на языке Python с применением самых передовых нейросетей: BERT, GPT-2. Также курс «NLP с Python» включает изучение особенностей промышленной разработки Data Science решений и их эффективного развертывания в production: фреймворки Flask, Flacon, Django, технологии контейнеризации с помощью Docker, специализированные облачные сервисы. На практике вы самостоятельно создадите, обработаете и проанализируете тексты и звуковые сигналы, а также создадите собственный production-сервис для решения NLP-задач. В результате освоения программы курса вы овладеете не только основными навыками Machine Learning, необходимыми для обработки естественного языка, но и освоите популярные фреймворки и технологии для промышленного развертывания Data Science решений. Требования к предварительному уровню подготовки слушателей:
Программа курса «NLP с Python»Модуль 1. Введение в NLP Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов NLP, стандартный pipeline обработки текстовых данных (очистка, стемминг, лемматизация, классические представления текстовых данных: Bow, Tf-Idf). Обзор алгоритмов стемминга и лемматизации. Популярные библиотеки для работы с текстовыми данными (nltk, spacy, gensim, TextBlob). Практическая часть: первичный анализ текстовых данных, предобработка текстовых данных, построение простейшей модели бинарной классификации на примере задачи определения спама в смс сообщениях. Домашняя работа: улучшение простейшей модели классификации. Использование различных подходов к обработке текстовых данных и различных моделей машинного обучения. Модуль 2. Embeddings Теоретическая часть: векторные представления слов/текста. Алгоритмы обучения векторных представлений: word2vec, Glove. Векторные представления текста: doc2vec. Embedding своими руками с помощью SVD разложения. Предобученные векторные представления для английского и русского языка. Практическая часть: обучение векторного представления слов и его использование в задаче множественной классификации на примере датасета 20 News groups. Домашняя работа: улучшение результатов работы построенной модели с использованием предобученных векторных представлений. Модуль 3. Применение свёрточных нейронных сетей в NLP Теоретическая часть: сверточные нейронные сети, параметры сверточных нейронных сетей, параметры обучения сверточных нейронных сетей, архитектура сверточных нейронных сетей в NLP. Ответ на вопроc когда использовать сверточные сети, а когда классические модели машинного обучения в NLP. Практическая часть: использование сверточных нейронных сетей на примере задачи классификации твитов (датасет Рубцовой). Домашняя работа: улучшение качества работы построенной модели. Модуль 4. Рекуррентные нейронные сети Теоретическая часть: архитектура RNN, CRNN, LSTM, GRU. Нейронные сети с attention. Задачи класса sequence to sequence. Машинный перевод. Архитектура нейронных сетей для машинного перевода. Практическая часть: пишем нейронную сеть для машинного перевода "from scratch". Домашняя работа: тюнинг нейронной сети/обучение своей нейронной сети на другой паре языков. Модуль 5. Работа со звуковой информацией Теоретическая часть: физическая природа звука, оцифровка звукового сигнала. Виды цифровых представлений звукового сигнала (ряды, изображения). Speech to text / text to speech, подходы к решению. SOTA нейронные сети для Speech to text. Практическая часть: пишем рекуррентную нейронную сеть классификации музыкальных жанров (речевых команд). Домашняя работа : обучить сверточную нейронную сеть на представлениях звуковых сигналов в виде изображения на датасете с речевыми командами. Модуль 6. SOTA нейронные сети в NLP Теоретическая часть: предобученные нейронные сети в NLP, обзор архитектур нейронных сетей Bert и GPT-2. Режимы работы Bert и GPT-2. Использование Bert в задаче определения близких по смыслу текстов. Практическая часть: решение задачи определения близких по смыслу текстов. Использование подхода без учителя. Использование Bert. Домашняя работа : решение задачи с помощью GPT-2. Модуль 7. Key word extraction / text summarization Теоретическая часть: подходы к решению задач key word extraction, text summarization. Алгоритм PageRank. Архитектуры нейронных сетей для задач key word extraction и text summarization Практическая часть: пишем нейронную сеть для key word extraction. Домашняя работа : пишем нейронную сеть для text summarization. Модуль 8. Named Entity Recognition Теоретическая часть: подходы к решению задач NER. Condition Random Fields. Нейронные сети для решения задачи NER. Практическая часть: решаем NER c помощью CRF. Домашняя работа : пишем нейронную сеть для NER. Модуль 9. Использование нейронных сетей в production Теоретическая часть: сериализация/десериализация объектов в Python, фреймворки Flask, Flacon, Django. Контейнеризация, Docker. Использование сервиса с нейронной сетью в облаке, AWS. Специализированные серверы для использования нейронных сетей (tensorflow serving, torchServe) Практическая часть: создание API с нейронной сетью с использованием специализированных серверов. Домашняя работа: создание API с несколькими нейронными сетями. Дополнительные разделы:
Программа читается совместно с Школа Больших Данных. В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных. Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации. В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных. Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас! В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
|
|