|
|
|||||||||||||||||||||||||||||
|
Курс "Визуализация данных на языке Python"Код: VIP.
Продолжительность - 4 дня
8-ми дневный курс для широкого круга специалистов (анализ данных, менеджеры, руководители и др.), которые хотят освоить навыки визуализации данных на языке python. Навыки, полученные на курсе можно применять с целью анализа данных, составления презентаций и отчетов. В курсе также решаются кейсы по проектированию дашбордов и использованию BI-систем Курс «Визуализация данных на языке Python» является введением в тематику визуализации данных. В курсе будут описаны основные подходы к визуализации данных, позволяющие наглядно подчеркнуть имеющиеся в них закономерности и особенности. Вы познакомитесь с возможностями библиотек визуализации на языке Python (matplotlib, seaborn, plotly, pandas, bokeh) для решения таких задач, как построение графиков функций распределения, отображение статистических закономерностей, визуализация изменяющихся во времени данных, демонстрация взаимосвязи отдельных компонент данных и многих других. Также вы узнаете, как можно использовать полученные визуальные представления данных для их дальнейшей подготовки и обработки. В курсе делается уклон в сторону развития практических навыков по визуализации данных и даются только самые необходимые теоретические сведения. Самостоятельный итоговый проект, который будет затрагивать все пройденные в рамках курса тематики, продемонстрирует приобретенные навыки и послужит хорошим сборником рецептов для вашей дальнейшей работы. Аудитория: Специалисты по работе с большими данными, разработчики, руководители, желающие понять подходы к визуализации данных как при построении стратегий развития бизнеса с использованием больших данных, так и решения бизнес задач на основе алгоритмов машинного обучения, а также получить практический навык в данной области. Предварительная подготовка:
Программа курса1. Основные статистические характеристики данных. Графики функций распределения и визуализация зависимости компонент данныхЦель: познакомить участников с основными статистическими характеристиками данных, их визуализацией, анализом и подходами к обработке данных, использующими данные характеристики Теоретическая часть:
Практическая часть: решение практических задач по построению графиков одномерных и многомерных функций распределения, точечных диаграмм, тепловых карт. 2. Сравнительный анализ компонент данныхЦель: познакомить участников с подходами к анализу компонент данных относительно временных изменений и сравнению компонент данных с использованием группировки и агрегирования Теоретическая часть:
Практическая часть: решение задач анализа изменяющихся во времени данных, а также подходам к анализу данных с использованием группировки и агрегирования. 3. Композиционные методы визуализации данныхЦель: познакомить участников с основными подходами к композиционным представлениям данных при работе со статичными и изменяющимися во времени данными Теоретическая часть:
Практическая часть: анализ данных с использованием композиционных представлений компонент данных. 4. Проектная работаЦель: закрепить полученные слушателями курса знаний по визуализации данных Теоретическая часть: краткий обзор пройденного материала с отсылками на рабочие блокноты, в которых решалась та или иная задача визуализации данных Практическая часть: самостоятельное решение задачи анализа данных с использованием всех изученных подходов визуализации данных на собственной базе данных или же на лабораторном наборе, предоставляемом организаторами курса. Итоговый разбор работ слушателей курса. Программа читается совместно с Школа Больших Данных. В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных. Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации. В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных. Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас! В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
|
|