

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous
Testing

IBM Limited Edition

by Marianne Hollier
and Allan Wagner

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous Testing For Dummies®, IBM Limited Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. IBM and the IBM logo are registered trademarks of International
Business Machines Corporation. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/
go/custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-119-36583-9 (pbk); ISBN: 978-1-119-36584-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor: Carrie A. Burchfield

Editorial Manager: Rev Mengle

Acquisitions Editor: Steve Hayes

Business Development
Representative: Sue Blessing

IBM Contributors: Bernie Coyne,
Jennifer Moore, James Hunter,
John Chewter

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons Used in This Book ... 2
Beyond the Book .. 2

CHAPTER 1:	 Defining	Continuous	Testing .. 3
What Is DevOps? ... 4
Why Test Continuously? .. 6
Testing Is Costly .. 7
The Need for Quality and Speed .. 9
Finding the Right Set of Tests ... 10

CHAPTER 2:	 Looking	at	the	Key	Elements	
of	Continuous	Testing .. 13
Managing Defects ... 14
Managing Tests ... 15
Automating Tests ... 16
Analyzing Effort ... 18
Creating Test Environments .. 18
Virtualizing Dependent Services ... 19
Gathering Test Data ... 20

CHAPTER 3:	 Testing	Smarter .. 21
Looking at Current Testing Challenges .. 21
Shift Left .. 23
Shift Right .. 24
Testing across Industries ... 25

CHAPTER 4:	 Adopting	Continuous	Testing .. 27
Finding the Path to Achieving Continuous Testing 27
Determining Where to Begin .. 29

Identify bottlenecks .. 29
Determine areas with high return on investment (ROI)........... 30

Processes in Continuous Testing .. 31
Making Continuous Testing Work: One Scenario 32
Technologies in Continuous Testing .. 35

Table of Contents iii

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5:	 Ten	Continuous	Testing	Myths 37
Continuous Testing Is Only Executing Test Scripts 37
Continuous Testing Is Just a Fad ... 38
Continuous Testing Is Only for Agile Teams 38
Continuous Testing Is Only for Testers .. 39
Continuous Testing Isn’t for Regulated Industries 40
Continuous Testing Isn’t for Large, Complex Systems................... 40
Continuous Testing Isn’t Part of DevOps ... 41
Continuous Testing Isn’t for Cloud or Hybrid
Cloud Applications ... 41
Automating Tests Means We Need Fewer Testers 42
Quality Is the Test Team’s Responsibility .. 42

iv Continuous	Testing	For	Dummies,	IBM	Limited	Edition

Introduction 1

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Welcome to Continuous Testing For Dummies, IBM Limited
Edition. We hope you find this material helpful as you
begin or continue your journey toward higher quality

software and faster delivery. Successful companies are honing
their software development approach to be as efficient as possi-
ble. This allows the software development, testing, and ops teams
to spend their time on innovation instead of rework and manual,
error-prone tasks.

Software testing can be a bottleneck or a competitive advantage,
depending on your approach. Many IBM clients are adopting the
right capabilities and best practices to achieve continuous testing
that supports their DevOps transformation. And they’re seeing
solid improvements in their speed and quality.

The goal of taking an IBM DevOps approach is to accelerate soft-
ware delivery while at the same time balancing speed, cost, quality,
and risk all with a goal of improving the client experience — no
small task, as you may expect.

And when the testing finds that the code isn’t up to snuff, it
can have a devastating effect. If an announced date is missed or
the quality of the release is compromised, you can damage your
brand’s reputation or, even worse, lose customers. But when
all your development, testing, and ops teams are focused on
testing earlier and more often, they’ll be able to consistently
deliver quality software in a timely manner. And you can grow
your market share while delighting your customers.

About This Book
In this book, we share how IBM software and best practices
can help software development, testing, and ops teams adopt a
continuous testing approach. Continuous testing means adopting
the right set of automated tests along with service virtualization,
which allows the team to simulate missing services and environ-
ments so they can start testing earlier and more frequently.

2 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By becoming more efficient and effective, teams can reduce their
costs as well as decrease the time it takes to get high-quality,
innovative software to users. You can’t test everything, and you
can’t automate all your tests, so in this book we share how to
find the right balance. You also discover the key concepts for
enabling your software development team to test earlier, or shift
left, so the team improves software quality and gathers feedback
faster than ever.

Icons Used in This Book
You’ll find several icons in the margins of this book. Here’s what
they mean.

The Tip icon points out helpful information on various aspects of
continuous testing.

Anything that has a Remember icon is something that you want
to keep in mind.

The Warning icon alerts you to critical information.

Technical Stuff material goes beyond the basics of continuous
testing. It isn’t essential reading, however.

Beyond the Book
You can find additional information about continuous testing and
IBM’s DevOps approach and services available by visiting the fol-
lowing web pages:

 » IBM Continuous Testing (solutions): http://developer.
ibm.com/testing

 » IBM DevOps (website): http://ibm.com/devops

http://developer.ibm.com/testing/
http://developer.ibm.com/testing/
http://ibm.com/devops

CHAPTER 1 Defining Continuous Testing 3

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Defining Continuous
Testing

You may have heard the term continuous testing, presented as
one of the DevOps (short for development and operations)
practice areas, but are struggling to understand what it is

and how to achieve it. Like continuous integration and continuous
deployment are adopted to remove bottlenecks in the delivery
pipeline, project teams need to improve their ability to test each
valid software build as it becomes available. Continuous testing
relies on test automation integrated as part of a deployment
process where software is validated in realistic test environments.
Adding service virtualization to the mix allows teams to shift left,
which means to begin checking software quality earlier in the life
cycle, by simulating dependent yet unavailable software and
systems.

Service virtualization simulates the behavior of select components
within an application to enable end-to-end testing of the appli-
cation as a whole. Test environments can use virtual services in
lieu of actual services or systems to conduct integration testing
earlier in the development process.

Chapter 1

IN THIS CHAPTER

 » Explaining DevOps

 » Seeing the need to test continuously

 » Understanding why testing is costly

 » Delivering quality and speed

 » Identifying the most important tests
to run

4 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Combining test automation with service virtualization enables
teams to test applications end to end providing immediate feed-
back on quality — so issues can be resolved earlier and at a lower
cost. Encouraging and embracing this immediate feedback on the
quality of the solution enables businesses to predict delivery with
greater accuracy and deliver high-quality innovative solutions to
the market quickly.

Continuous testing helps project teams execute tests when
needed, not when possible.

What Is DevOps?
The practices that make up DevOps are a broad set of capabilities
that span the software delivery life cycle, and continuous testing
is one of these practices.

DevOps, like most new approaches, is only a buzzword for many
people. In broad terms, DevOps is an approach based on lean
and agile principles in which business owners and development,
operations, and quality assurance departments collaborate to
deliver software in a continuous manner that enables the business
to more quickly respond to market opportunities and reduce the
time to include customer feedback. However, opinions on what
DevOps is and how to use DevOps differ greatly.

Some people say that DevOps is for practitioners only; others say
that it revolves around the cloud. IBM takes a broad and holis-
tic view and sees DevOps as a business-driven software delivery
approach — an approach that takes a new or enhanced business
capability from an idea all the way to production, providing value
to customers in an efficient manner and capturing feedback as
customers engage with the capability. To do this, you need par-
ticipation from stakeholders beyond just the development and
operations teams. A true DevOps approach includes lines of busi-
ness, practitioners, executives, partners, suppliers, and so on.

The DevOps movement has produced several principles that have
evolved over time and are still evolving. Several solution pro-
viders, including IBM, have developed their own variants of the
 principles which are

CHAPTER 1 Defining Continuous Testing 5

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Develop and test against production-like systems

 » Deploy with repeatable, reliable processes

 » Monitor and validate operational quality

 » Amplify feedback loops

To help you get started and then scale your solution, there are
some public DevOps methodologies available to help. IBM’s Blue-
mix Garage Method is one example that breaks down DevOps into
teams and roles. It includes how-to guides on culture, best prac-
tices, tools, self-guided or hands-on training, and even sample
code and architectures. You can find out more information at
http://ibm.com/devops/method.

A successful organization is centered on a culture of innovation.
The IBM Bluemix Garage Method shown in Figure 1-1 is divided
into seven phases. Each phase includes a set of practices and
tools to help you achieve your DevOps transformation goals. The
phases are arranged in a repetitive cycle where the team continu-
ally gathers more intelligence on the application and its usage
and iteratively improves the application . . . and the process itself.

FIGURE 1-1: The IBM Bluemix Garage Method.

http://ibm.com/devops/method

6 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Wondering why you don’t see Test explicitly listed as one of the
phases? After all, this is a book about continuous testing, right?
In an agile world, programmers and testers are both considered to
be developers — full-fledged members of the delivery team. And
as test automation requires the same disciplines as software
development where developers build, manage, and maintain
functioning software in the form of test automation assets, it is
combined under the coding phase.

Why Test Continuously?
Today’s customers demand change. They want functionality,
which satisfies their needs; they want new releases delivered
with speed; they want high-quality software, and they want their
voices to be heard when planning for the next release. Today’s
end-user is the final tester and determines the financial success
of the application. These demands require businesses to deliver
software that meets the needs of today’s consumer and deliver it
with speed.

Having the ability to get feedback on software quality through-
out the entire development life cycle helps business leaders predict
with greater accuracy. Shift left and shift right” (potentially) means
doing things faster and more efficiently, including getting soft-
ware into the end-user’s hands sooner than ever before.

Shift right is deploying software to the end-user that may not be
fully tested or development may not be complete, in order to close
the feedback loop earlier. Find out more on shift right in Chapter 3.

EXPLORE CONTINUOUS
TESTING SOLUTIONS
Find out more information about IBM continuous testing solutions by
visiting http://developer.ibm.com/testing. This site is the IBM
continuous testing community where you can explore plenty of infor-
mation on all aspects of continuous testing, including IBM products,
events, news, forums, blogs, videos, eBooks, how-to guides, product
documentation, downloads, whitepapers, and the free starter editions
of several IBM testing tools.

http://developer.ibm.com/testing

CHAPTER 1 Defining Continuous Testing 7

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In a nutshell, continuous testing means that organizations don’t
have to wait for all the pieces to be deployed before testing can
start. Continuous testing is checking the software through a vari-
ety of techniques — including the execution of unit tests authored
by programmers — with each and every build.

The sooner and more frequently an organization can get feedback
on software quality the sooner it can react to architectural flaws,
poor design decisions, erroneous application functionality, secu-
rity vulnerabilities, and scalability issues. Continuous testing is
the practice where this capability can be a reality.

Testing Is Costly
It should be no surprise that for many testing is a necessary step
in their software development life cycle. Testing is also an area
under constant scrutiny because testing software isn’t cheap and
is often a source of delay in trying to get software to market. So,
why is testing so costly? Well, you don’t have to look any further
than the movement toward service based architectures, microser-
vices, and container technology. New approaches to application
development and adoption of cloud technologies challenge your
delivery teams as they need to validate both the new innova-
tive application front ends while ensuring the systems of record
maintained in the legacy systems remain safe and secure.

Software development and delivery is evolving from complex,
monolithic applications, whose many dependencies are resolved
at build-time, toward a more distributed, service-centric archi-
tecture whose dependencies can be resolved at runtime. Most
enterprise applications are a combination of existing applica-
tions originally designed for a pre-cloud environment (also called
systems of record) and new systems of engagement applications
developed for the cloud. Their architectures tend to be complex
due to their many dependencies, and they use application pro-
gram interfaces (APIs) to bridge between the new systems of
engagement and the existing systems of record. They leverage
API management and cloud integration technologies to enable
integration while addressing the organization security require-
ments. Their workloads can run across multiple environments:
on-premises, private cloud, public cloud — the combination of
which is an architecture also referred to as hybrid cloud.

8 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Hybrid cloud architecture is becoming the norm for both cloud-
enabled and cloud-native applications. In fact, IBM released a
white paper in 2016 that stated that hybrid cloud provides flex-
ibility in deployment, enabling organizations to choose the right
platform to run their workloads. And the International Data Cor-
poration (IDC) predicts that 80 percent of enterprise IT compa-
nies will commit to hybrid cloud architectures by 2017.

For many organizations who are unable or unwilling to adopt a
shift-right approach, testing simply costs what it costs as they
can’t afford to have buggy or non-compliant software escape into
production. To decrease the cost of testing, organizations are work-
ing to adopt test automation and develop frameworks to increase
testing efficiency. While test automation can certainly help in
testing efficiency, one must not overlook the fact that creating test
automation assets is development — an effort that requires man-
agement, resources, and funding and doesn’t necessarily decrease
testing costs. But the speed at which software functionality can be
validated and delivered into the hands of the customer to increase
market share, disrupt the competition, and establish leadership in
a new market could offset the cost of any investment.

TESTING IMPROVEMENTS DELIVER
SIGNIFICANT SAVINGS AND A
COMPETITIVE EDGE
Because of potential delays or bottlenecks related to testing, it is an
area ripe for increasing efficiency. The average spend on quality
assurance, as a percentage of the total IT budget, is projected to rise
to 40 percent by 2018. According to the World Quality Report, costs
are aggravated by the fact that many organizations spend more than
a third of their testing budget on test environments. So, efforts need
to be focused on process improvement and test automation.

Why? Competitive advantage comes from being better, cheaper,
faster — better quality, lower cost to produce, faster and more fre-
quent deployments. Get it right and you can disrupt the competition.
Offering a product that is superior in quality and developed at a lower
cost to the business (and also offering frequent improvements) can
be the difference between growing your business or going out of
business.

CHAPTER 1 Defining Continuous Testing 9

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The Need for Quality and Speed
Business stakeholders demand project teams deliver new applica-
tions, integrations, migrations, and changes as quickly as pos-
sible. In turn, project teams ask testers to validate the following:

 » Technical environments work as required

 » Business processes and transactions run as expected

 » Solutions scale to the expected usage

 » Applications are secure and user data is protected

Regardless of the industry or technologies involved, a care-
ful balance needs to exist between speed and quality. With the
increased acceptance of cloud technologies, software teams
have more tools than ever at their fingertips to make their work
more efficient. However, while software and system programmers
do the best they can to avoid making mistakes, human errors are
inevitable — which is why you test in the first place. The risk cre-
ated by not testing greatly outweighs the cost of performing even
a small number of tests.

A recent survey conducted by Application Development Trends
found that testing is by far the number one reason for delays when
deploying to production. Using analytics and testing insight, IBM
focuses on optimizing the test effort and the related deployment
operations so more resources remain available for innovation.

AND THE CLOUDS COME
ROLLING IN
Another piece of the testing puzzle comes with the new hybrid cloud
applications — where part of the application is on-premise and part is
hosted in either a private or public cloud, or both. From a testing per-
spective, as long as testers have access to those systems, the automa-
tion tools needed for continuous testing (test automation, service
virtualization, deployment automation, and so on) can do their robotic
magic as well. Understanding this requirement at the outset of a proj-
ect will help prevent barriers to achieving continuous testing.

10 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

With the increasing adoption of Agile and DevOps practices,
re-executing manual tests in every iteration is not a sustainable
pattern. There is never enough time, and adding more personnel
to execute manual regression tests results in diminishing returns.
Even more importantly, the slow speed of feedback to the pro-
grammers decreases productivity significantly. Test effectiveness
is a critical aspect to keeping up with the faster-paced develop-
ment life cycles. It is optimized by running the fewest number
of tests that find the largest number of problems. Even teams
working in more traditional development life cycles, where all
the testing is performed in a single phase, have found that they
can’t keep up with the regression testing each time they get a new
build — with defect fixes, changes to existing features, and even
new functionality all bundled into the new build.

Figure 1-2 shows that after just a few iterations, the quan-
tity of new features, and therefore number of tests, increased
significantly.

The only way to keep up with the needed regression testing is
to automate the right set of tests to ensure the change hasn’t
impacted existing functionality. To accomplish this balance,
mature DevOps teams use a combination of test automation and
manual exploratory testing, both running in a continuous pattern.

Finding the Right Set of Tests
Attempting to automate all tests is impossible, and the cost of
trying to do so eventually outweighs the benefit. For any rea-
sonably complex application, you can’t test every possible path

FIGURE 1-2: Test accumulation.

CHAPTER 1 Defining Continuous Testing 11

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

through the system because even if there is only a single loop in
the application, the number of possible paths becomes infinite.
If you then add in the test data permutations, you quickly realize
that attempting to test everything is just not feasible.

The key is to identify the most important subset of tests — the
ones where you

 » Typically find issues

 » Have seen regressions

 » Have customer complaints

 » Know the occurrence of a failure would be significant or even
catastrophic

Impact analysis of the new code changes is a critical aspect in
identifying which regression tests to run. But without good
change set input, the data and analysis of the code changes can be
misleading. This analysis of what are the right tests to automate
should involve the entire team, from business to development, to
test, to operations, and support. Each role brings a different per-
spective on where things can and do go wrong, so it’s important
to include everyone.

Some examples of where test automation can be applied include
the following:

 » Data-driven tests: Tests where the data sets are complex
and cover critical aspects

 » Business logic validation: Scenarios that ensure the correct
results are achieved

 » Integration with a third-party system: Tests where
programmers and testers might not have full access to that
third-party system

 » Low-intensity performance testing: Running small-scale
stress, load, volume, or memory leak checks across builds to
identify degradations early, well before conducting formal
load testing

 » Verifying error scenarios are handled: Ensuring that
applications behave consistently and correctly when external
dependencies are in error

12 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Installation and upgrade of customer-installed software:
Testing across the many platforms and operating systems
for commercially available software

 » Scanning for security vulnerabilities: Important tests
when financial or personal information could be at risk

Test automation implementation comes in all shapes and forms;
some key examples are

 » Unit testing

 » Functional testing at the user interface (UI) layer

 » Functional testing via APIs

 » Performance testing, via the UI or API

 » Security testing

In addition, there are tests that are extremely valuable when
conducted manually. Continue these tests in parallel with test
automation:

 » Exploratory testing: Unscripted tests where the tester
analyzes different aspects of the system without a pre-
scribed end result. This helps find new scenarios that carry
defects but are not yet covered by automated tests.

 » Usability testing: End-users are asked to test specific
aspects of the system and give verbal feedback as they
progress. This allows the team to better understand what
users are thinking when they use the system.

CHAPTER 2 Looking at the Key Elements of Continuous Testing 13

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Looking at the Key
Elements of Continuous
Testing

Building a continuous testing culture requires people, prac-
tices, tools, and time. Finding the right balance of effort
across all testing practices is critical in achieving continu-

ous testing. But before you start deploying code for testing, one
activity often overlooked is the code review. Everything that will
be included in a build and used during deployment to an environ-
ment (testing or production) should be reviewed by a team of
experts assembled for this purpose.

Code reviews need to be efficiently run and deemed to be effective;
otherwise, the team may view them as a waste of time. The review
process should confirm that the new and modified software is
following the organization’s coding standards and adheres to its
best practices.

Chapter 2

IN THIS CHAPTER

 » Managing defects

 » Looking at test management

 » Understanding how to automate tests

 » Analyzing your efforts

 » Provisioning test environments

 » Increasing testing efficiency with service
virtualization

 » Having the right sets of test data

14 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

With the code successfully passing the review step, Figure 2-1
shows the key elements that enable continuous testing, and teams
need to spend effort on each of these practices — whether or not
they want to.

The sections in this chapter explain each element in Figure 2-1
and give you questions that may help your teams understand
where they’re spending time and perhaps where their time might
be better spent.

Managing Defects
When applying a traditional testing approach, defects are the
 initial communication channel between testers and programmers.
Testers think “I found a bug!”, and programmers then agree or
disagree that there is a problem with the code. Many times the
defect isn’t a problem with the code itself but with the require-
ments, design, or even the test. Sometimes, the problem lies
outside the application itself — in the test environment, the test
data, the test script itself, or some combination of these things.

Having a collaborative environment to log and track defects is
essential in any software development life cycle, but managing
defects is just the tip of the iceberg when it comes to adopting the
right set of practices.

FIGURE 2-1: The important practices of continuous testing.

CHAPTER 2 Looking at the Key Elements of Continuous Testing 15

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When analyzing your level of effort that you spend managing
defects, ask yourself the following questions:

 » Are we spending too much time logging, triaging, or
 analyzing defects?

 » What about time we spend on defects that aren’t “real”
defects, such as where there’s a misunderstanding between
the test and the code?

 » What if we could prevent entire schools of defects from ever
being created in the first place?

It is important that a definition or understanding of what’s
 considered a defect and what’s considered a request for enhance-
ment (RFE, also known as a change request, enhancement request,
and so on) is shared across the entire delivery team. Often
 personal opinions or preferences surface as defects, which should
really be treated as future enhancements. If you’re only submit-
ting defects and not submitting enhancements, that can drive a
wedge between programmers and testers where collaborating on
the best way to deliver an RFE can lead to better teaming.

We differentiate between defects and enhancements as follows:

 » Defect: An issue where the software under test doesn’t
match the application requirements

 » Enhancement: An issue where the software under test
doesn’t function as expected and there’s no application
requirement that captures the expected behavior

Managing Tests
One of the next practices that test teams typically adopt is test
management, which includes the following:

 » Planning the testing effort

 » Identifying needed tests

 » Creating test cases and scripts

 » Gathering existing tests

16 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Executing the tests

 » Identifying redundant, duplicate, and overlapping tests

 » Tracking and reporting on the progress of testing

This test management practice helps both teams and manage-
ment understand at a glance if tests are passing, failing, or being
blocked.

Questions to ask yourself in this area include

 » Are we spending time manually crafting status reports and
rolling up test execution results?

 » Do we have a tool that provides test execution results in
real-time and allows us to drill down as needed?

 » How do we know if we are on schedule for our test effort (or
behind, or even ahead!)?

Automating Tests
Test automation practices typically come after managing tests
(see the preceding section), when teams discover that running
all their tests manually is inefficient, ineffective, and, in many
cases, downright impossible. Successfully creating a robust and
maintainable test automation framework can be difficult if not
approached as a software development project itself. There needs
to be a shared vision, requirements, architecture, design, coding
in some instances, and validation that the automation does what
was intended. Without these aspects, test automation frameworks
tend to be fragile, brittle, difficult to maintain, costly to refactor,
and frequently abandoned.

IBM advocates automating testing at all layers of the application,
including the component layer, service layer, and user interface
layer. It is important to find the right balance of tests across those
layers, and the industry is finding that the percentages shown
in Figure 2-2 are a good starting place — depending on your
application.

CHAPTER 2 Looking at the Key Elements of Continuous Testing 17

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When determining or reviewing your test automation strategy,
ask these questions:

 » How efficient are we at re-executing existing tests?

 » Do we run most or even all of the tests manually?

 » If we automated tests, are we focused only on functional
tests at the user interface layer, or are we running unit,
functional API-layer tests, performance tests, and even
security tests?

 » Do we have a robust and maintainable test automation
framework?

 » Are we incorporating automated tests into the delivery
pipeline?

As programmers write the code, doesn’t it make sense to have
them run the first round of unit tests? Executing unit tests to
validate that programmer’s code works properly in their develop-
ment environment would go a long way to building trust across
the delivery team. So, why is it that so many organizations aren’t
enforcing this as a policy? Ignoring best practices that could (and
we argue, should) be delivered much earlier in the software devel-
opment life cycle (SDLC) often results in unnecessary delays in
later stages and increased costs. If you want to deliver software
faster than ever before while decreasing risk to the business, every
team member, including programmers, shares a responsibility in
contributing to the quality of that software.

FIGURE 2-2: Recommended test automation percentages.

18 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Analyzing Effort
Alongside test automation, test analytics and insights practices
start to grow to help the teams know where to spend their precious
testing effort. Code change impact analysis can be a difficult task,
especially if the programmers aren’t rigorous and consistent with
their code change sets. Understanding what has changed from
the last build is critical for selecting the right sets of tests to run.
Defect density versus test execution coverage in specific areas of
the application can provide insightful data to identify root causes
of defects. However, analyzing that data can be time consuming.
This is where analytical services can help. Without that analysis,
over-testing — or retesting everything — is a tempting but costly
answer.

When analyzing your testing efforts, think of the answers to these
questions:

 » How do we know what tests to run, and when, and even why
we’re running those tests at those times?

 » How good is our test effectiveness? Are we running the
fewest number of tests that find the largest number of
problems?

Creating Test Environments
Another critical aspect of being able to test continuously is
automating the provisioning of test environments. Standing up
 production-like test labs to meet the demands of modern software
delivery teams requires four main components: dynamic infra-
structure, deployment automation, test data management, and
service virtualization. And if all the moving pieces can be brought
together with orchestration making the process repeatable,
 reliable, and traceable, the benefit potential is huge! Automated
creation and configuration of test environments decreases the
time it takes to start testing a new build from hours, or even days
or weeks, to minutes. This automation also reduces the number of
false errors due to test environment issues, incorrectly installed
dependent software, and other manual processes that introduce
problems. In the IBM DevOps approach, test automation goes
hand-in-hand with deployment automation.

CHAPTER 2 Looking at the Key Elements of Continuous Testing 19

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ask yourself these questions:

 » Are we constantly waiting on our test environments to be
provisioned and configured properly?

 » Do we run tests and discover after the fact that our test
environment wasn’t “right,” so we have to fix the environ-
ment and then rerun all the tests again?

 » Do we hear from programmers “it works on my machine!”,
but it doesn’t work in our test environment?

Virtualizing Dependent Services
In conjunction with the test execution and test environment
automation, service virtualization, or stubbing, greatly increases
testing efficiency. By creating virtual services from known and
agreed-on interfaces, programmers and testers write code and
test against the same interface, even when that dependent sys-
tem isn’t available. By deploying the application components that
are available and virtualizing those that aren’t, testing can begin
much earlier and run much more frequently on every build. Ser-
vice virtualization also allows testing of scenarios that might not
be readily tested with a live system. For example

 » Exceptions and errors

 » Missing data

 » Delayed response times

 » Large volumes of data or users

Incorporating service virtualization into the overall test effort
enables teams to build and effectively test the riskiest parts of
the system earlier, instead of just building and testing the
easy-to-test parts of the system. When you then automate tests
for those risky parts of the system and execute them on each
build, you get better coverage of those parts. This ensures regres-
sions are identified as quickly as a new build is made available.

A typical scenario might be that mobile and web develop-
ment teams work on cloud applications, and mainframe teams
work on-premises. With service virtualization, the environment

20 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

dependencies in these hybrid cloud scenarios are decoupled.
Teams then build and test at their own speeds and adopt the right
DevOps approach that fits with their culture.

When virtualizing dependent services, ask these questions:

 » Are we waiting for dependent systems to become available
before we can “really” test?

 » Are we using a “big bang” approach to conduct end-to-end
system testing, where we throw all the systems together and
hope they work and interact properly?

 » Can we test exception and error scenarios before we get to
production?

 » Are we testing the easiest parts first just because they’re
available and delaying the high-risk areas for the end of our
testing effort?

Gathering Test Data
Another aspect of testing that increases test effectiveness is having
the right sets of test data. Using test data that is as production-
like as possible provides better coverage with more scenarios.
Extracting right-sized data from a production environment and
automatically masking it for security purposes accelerates the
availability of realistic test data. A good set of test data also helps
the team create exception or error situations that might be dif-
ficult to test otherwise.

When gathering test data, think about the answers to these
questions:

 » Do we have the needed sets of production-like test data to
ensure we are covering the right test scenarios?

 » Are there exception and error scenarios that we can’t
execute because we don’t have the right sets of test data?

CHAPTER 3 Testing Smarter 21

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Testing Smarter

Have you ever been told, “Test smarter, not harder!”?
Unfortunately, test and development managers send this
message to their teams frequently. But, they don’t provide

guidance on how to accomplish this smarter testing. Teams are so
busy trying to keep up with their existing test workload that they
don’t have time to figure it out for themselves.

A key aspect of testing smarter is to test earlier and more often, or
shift left, in the delivery life cycle. This way, the team can test the
riskiest elements early, and those tests can then be continuously
reused. This smarter approach provides early, iterative feedback
on code quality directly to development teams to ensure that
fewer problems are found late in the life cycle where they’re more
expensive to fix.

This chapter describes current testing challenges as well as
approaches that may help, including shift left, shift right, and
industry-specific concepts.

Looking at Current Testing Challenges
They say that money and time can solve most problems. How-
ever, those are exactly the two major challenges testers face (and
also maybe figuring out who “they” is). There is never enough

Chapter 3

IN THIS CHAPTER

 » Recognizing the current challenges in
testing

 » Understanding the shift left concept

 » Knowing when shift right is useful

 » Approaching testing in all industries

22 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

time, and with increased pressure to accelerate delivery, testers
need to find ways to increase efficiency in how they check appli-
cation functionality, performance, and security. And how often, in
recent times, have you heard of organizations increasing testing
funds — something that’s already viewed as being too expensive.
So, we discuss each challenge individually and how to uncover a
resolution to these challenges.

There never seems to be enough time. In a traditional water-
fall approach to software development, requirements gathering,
analysis, design, and development always seem to take more time
than what was allotted. And with the release date holding strong,
the expectation is that testing needs to get things done in what-
ever time is left. Unfortunately, things often slip, and steps are
missed. In agile or iterative shops, testers are often testing a pre-
vious sprint’s deliverables while the programmers are working
on developing the next sprint — putting the delivery team out of
sync. Then there’s the biggest bottleneck: the exorbitant amount
of time spent standing up test labs and creating test data, deploy-
ing the bits, or waiting for help from others. Test teams spend
days and even weeks waiting for dependent systems, test envi-
ronments, and new builds.

Money is also a challenge. Businesses are looking for ways to save
while the cost of testing continues to skyrocket. Teams can free
up budget by becoming more efficient so savings can be rein-
vested to add valuable features, increase productivity, and even
decrease time to market.

So, how do you begin to address these time and money chal-
lenges? Here are some tips:

 » Start by focusing on testing the high risk business transac-
tions to ensure they are working properly as early as
possible and to protect the business.

 » Consider leveraging cloud technology to quickly stand up
and tear down test environments on demand and embrace
infrastructure as code to provision environments rapidly,
while turning capital expenses (CAPEX) into operating
expenses (OPEX).

 » Look at deployment automation solutions that can

• Continuously move application changes through the
many test labs en route to production

CHAPTER 3 Testing Smarter 23

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

• Instantiate virtual services to “mock” dependent yet
unavailable software and systems

• Reset test databases

• Kick off the execution of automated tests orchestrating a
repeatable, reliable, traceable process

These points are all proactive steps that teams can take in
 adopting a shift left approach to testing, which we discuss in the
next section.

Shift Left
The term shift left refers to a practice in software development in
which teams focus on building quality in, work on problem pre-
vention instead of detection, and begin testing software earlier
than ever before. The goal is to increase quality, shorten long test
cycles, and reduce the possibility of unpleasant surprises at the
end of the development cycle — or even worse and scarier, in
production.

In many organizations, automated testing of today’s compos-
ite applications is being executed via the user interface after
the complete application has been developed and deployed to a
test environment. Waiting for all the application components
to become available before testing commences, however, often
causes delays, adds risk to the project, or results in discovery of
late-stage and architecturally significant defects — when they’re
more expensive to fix.

Shift left practices help avoid rework, delays, and churn that
can occur when major defects are discovered late in the testing
cycle — after all integrations and product components are finally
brought together as a composite application and made available
for the team to test. It aims to avoid these issues by perform-
ing integration tests as soon as the code is deployed in a realistic
production-like test lab. If any of the dependent application com-
ponents are not available to test, virtual services can mimic the
real components’ behavior until they’re ready.

Figure 3-1 shows an example of a shift left testing solu-
tion by combining IBM Rational Test Virtualization Server and
IBM UrbanCode Deploy to work in conjunction to provision

24 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

production-like test environments no matter where in the life
cycle you are. For more detail on this shift left solution, visit
https://developer.ibm.com/urbancode/products/
urbancode-deploy/features/shift-left

Shift Right
Shift right describes an organization’s willingness to carry a level
of risk in production by deploying software to the end-user that
may not be fully tested or development may not be complete. This
is often done to accelerate capturing user feedback on software
quality or to hear what users have to say about the new func-
tionality being delivered. By leveraging deployment strategies like
canary deployments, performing A/B testing, or inserting busi-
ness toggles into the code base to manage the scope of functional-
ity to the end-user community, businesses can reduce their risk
of exposure. The value lies in software getting into the hands of
the end-user as quickly as possible and obtaining feedback faster.
Shift right practices allow organizations to leverage the feedback,
perform sentiment analysis, and predict outcomes with greater
accuracy.

Canary deployment is a technique to reduce the risk of introducing
a new software version in production by gradually rolling out the
change to a small subset of users before incrementally making it
available to everybody.

FIGURE 3-1: Shift left with virtual services and automated deployment.

https://developer.ibm.com/urbancode/products/urbancode-deploy/features/shift-left/
https://developer.ibm.com/urbancode/products/urbancode-deploy/features/shift-left/

CHAPTER 3 Testing Smarter 25

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In the testing domain, shift right is often associated with testing
in production. Can you think of any better audience in your world
who will provide truthful feedback on new functionality during
A/B testing than the “real” end-user? You want to manage risk,
but in this new DevOps approach to speeding software delivery,
the reward probably outweighs the risk.

Shift right testing also means that you’re testing the software in
an actual production environment. This provides companies with
the ability to observe and measure the stability and scalability
of the application as well as capture real usage patterns — how
the end-user actually uses the application. In fact, some organi-
zations will even inject performance testing robots or probes into
their production environments or use an application performance
monitoring solution to do synthetic analysis, monitoring end-user
response times from locations around the world.

The shift right practice is a great way to accelerate delivery and
close the feedback loop while minimizing risk to the business by
controlling the size of the audience.

Testing across Industries
Different industries require different testing capabilities. For
example, a banking or financial service project might need to test
a scenario that uses a financial-based API to manage the flow of
a payment. On a healthcare-industry project, there is more likely
to be a need to test the flow of Health Level-7 (HL7) messages,
which is a standard for transferring data between applications
used throughout the healthcare industry.

HL7 refers to a set of international standards for transfer of clini-
cal and administrative data between software applications used
by various healthcare providers.

As well as domain-based industries such as banking and
 healthcare, there are also technology-based industries such as
Mainframe, WebSphere, SAP, Blockchain, and others. In a similar
manner, each of these also has its own specific technology inter-
faces, constraints, and behavior that need to be tested.

To help those tasked with testing activities on industry-focused
projects, a common approach exists that can be applied to testing

26 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

across all industries — or as is more commonly found on projects,
a combination of industries. The provision and consumption of
multiple-industry specific APIs means testers follow these steps:

1. Ensure test coverage of the points of contact (the APIs)
throughout the technical ecosystem.

The nature of industry-based business use cases often
means there is a dependency on multiple systems — some
public, some private, and some purchased just for the
execution of a particular business scenario. Ensuring test
coverage of these points of contact means a team is able to
test the technical ecosystem required to execute the business
scenarios.

2. Make sure the end-to-end business scenarios work as
expected across the different industry-specific
technologies.

When industry-focused business scenarios are defined,
they’re typically driven by business processes, industry
regulatory requirements, and end-user experience. After
ensuring the dependent technical ecosystem is available (see
Step 1), the project can begin to test the end-to-end business
scenarios on a dependable test environment.

3. Certify the scalability of both the technology ecosystem
and the business processes.

The cost and impact of industry-led regulatory control and
reporting can be significant so it’s important that the business
scenarios can scale. After the technical environment has been
validated (see Step 1) and the business scenarios have been
validated (see Step 2), it’s important to ensure both can scale
appropriately. The objective is to execute performance tests
against both business scenarios and across the technical
ecosystem.

CHAPTER 4 Adopting Continuous Testing 27

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Adopting Continuous
Testing

Adopting continuous testing practices may seem insur-
mountable, but the sections in this chapter should get you
well along your way to achieving your goals. There is no

“right” answer on how best to embrace continuous testing prac-
tices, so finding the right path to start your journey is the first step.

The sections in this chapter also explain the processes and tech-
nologies used in continuous testing, as well as an end-result sce-
nario of how continuous testing can work seamlessly in practice.

Finding the Path to Achieving
Continuous Testing

The path to achieving continuous testing is not one size fits
all. You can get there through different avenues. To help get
you started in setting up this process, we offer a basic strategy-
planning exercise.

Chapter 4

IN THIS CHAPTER

 » Taking the right path to achieving
continuous testing

 » Knowing where to begin on your journey

 » Looking at the processes in continuous
testing

 » Making continuous testing work: one
scenario

 » Explaining the technologies in
continuous testing

28 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

1. Understand the maturity level of your testing
capabilities.

This step is your starting point. Is your team primarily manual
testers, are your programmers and testers working in sync,
do the testers have a development background or program-
ming skills, are you leveraging test automation today? These
basic questions help you get started, but the list of other
things to consider is quite long. See Chapter 2 for more
questions to help you understand your testing maturity level.

2. Determine what your near-term and longer-term
objectives are.

You want to begin with the end goal in mind. However, to
simply state that “From this day forward, we will test continu-
ously” without providing the cultural transformation, giving
the opportunity to review and change process, and imple-
menting tools to automate the process and support the
team, you’re likely to fail.

Starting with people and the cultural change is important because
behavior defines your culture. You need to support, acknowledge,
and reward certain behaviors to establish the culture you seek.
Certain behaviors can be

 » Open collaboration and transparency across the team

 » Everyone on the team having an equal voice

 » Everyone openly sharing their opinions without fear of being
ridiculed or called out in front of others

 » A world where everyone contributes to software quality

 » A world where finger pointing no longer exists and the name
of the game is experimentation

Don’t forget that you also need to provide training — perhaps
not formal training but providing opportunities for testing
communities of practice to share ideas across squads, learn
from each other, and report on the result of past experiments.
Lunch-and-learns or meet-ups are great for this. Training could
also involve short videos that show how to do a task combined
with just-in-time mentoring (don’t use the dreaded 1-hour
classroom video — nobody has time for those and you forget what
you learned by the time you need it).

CHAPTER 4 Adopting Continuous Testing 29

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Another hurdle many organizations face is that automation is
perceived as head-count reduction, which builds fear. To get buy-
in to test automation and continuous testing, testers will need
to see the value and how they benefit from automation. Work to
convince them that automation will free them up to work on more
value-add activities that use their minds instead executing as
robots. Remember that testing is so much more than automating
the checking of applications to see if they’re working properly.
After testers are convinced that they will finally get to do the job
they were hired to do, the move to automation will become less
of an issue.

Determining Where to Begin
After you convince your testers that automation and continuous
testing benefit them, the next step is to figure out where to get
started on your continuous testing journey. We suggest taking the
initial steps outlined in this section.

Identify bottlenecks
Your first step is identifying the processes and process steps that
are slowing you down:

 » Test efficiency: Test efficiency measures if you’re able to
run the needed tests and provide feedback quickly. Industry
experts say that you should be able to run your daily
regression tests in less than two hours.

 » Test effectiveness: Check your test effectiveness, which
means finding out if you’re running the fewest number of
tests that find the largest number of problems. If you are
running regression tests that never find a defect, perhaps
those tests aren’t needed anymore.

 » Look upstream and downstream: Bottlenecks may also be
upstream or downstream from actual test execution effort.
Don’t wait on dependent systems or test environment
provisioning.

30 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Determine areas with high return
on investment (ROI)
Spend time baselining your ability to test software. Then you can
look at all aspects of your test effort to find the biggest pain points
and focus on eliminating those bottlenecks first. Next, you need
to start measuring your progress because those past and current
measurements help you determine the best ROI. To identify waste
during a value mapping stream exercise, think about the follow-
ing questions:

 » How long are your delays in test environment provision-
ing, and are the environments accurate when they’re
provisioned? If you have issues here, automate your test
environment provisioning and configuration to eliminate
manual errors and gain accuracy and reliability.

 » Are you waiting on dependent systems to start testing?
If so, use service virtualization to simulate those unavailable
systems so you can start testing sooner.

 » Are you unable to run all the needed tests before the
next build is available? If this is the case, automate your
high-risk regression tests to improve test efficiency.

 » Do you find performance problems late in the life cycle
or even in production? Outages can result in long-term
damage to a business, so conduct load, performance, and
stress testing earlier in the life cycle.

 » Do you find significant problems when all systems are
integrated? Identify and agree on system interface and data
definitions and create automated API level tests for the
high-risk integration points.

 » Are there misunderstood requirements, so code and
tests don’t align and a lot of defects are logged? Work
with the whole team early to make sure requirements are
well understood by both programmers and testers. Business
analysts and programmers tend to see the glass as half full,
and testers tend to see it as half empty, so by working
together they can flesh out a set of robust requirements.

Value stream mapping is a lean-management method for analyz-
ing the current state and designing a future state for the series of
events that take a product or service from its beginning through
to the customer. As part of this exercise, organizations will begin

CHAPTER 4 Adopting Continuous Testing 31

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to understand how long each step takes and identify the con-
straints in their end-to-end process. The objective is to identify,
analyze, and prioritize the bottlenecks with the intent of discov-
ering opportunity for improvement. During this analysis of each
process step, it is important to look at not only the lead time to
completion (or when the clock starts) but also the process time
(the time when the work actually starts until the work is com-
pleted). This process is shown in Figure 4-1. Increasing the effi-
ciency of a process step while maintaining the thoroughness of
that step can often be achieved by simply reducing or eliminating
the wait time. To learn more, you may want to further explore the
“Theory of Constraints” concept.

Processes in Continuous Testing
In the context of continuous testing, test automation is a require-
ment for success. In order to have unattended automation from
code commit to production, teams need to deliver several levels of
automated tests to measure the quality of what’s being delivered,
as well as to quickly understand the state of the application.

An obvious benefit of automating testing, in contrast with man-
ual testing, is that testing can happen quickly, repeatedly, and
on demand. It becomes a simple matter to verify that the appli-
cation continues to run as it has before. In addition, using the
practices of test-driven development (TDD) and behavior-driven
development (BDD), where test cases and scripts are created
before a line of code is written, has shown to improve coding
quality and design.

To learn more about the process of continuous testing as part of
the IBM Bluemix Garage Method (we discuss in Chapter 1) visit
www.ibm.com/devops/method/content/code/tool_rtw.

FIGURE 4-1: Value stream mapping.

http://www.ibm.com/devops/method/content/code/tool_rtw

32 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Making Continuous Testing Work:
One Scenario

Imagine a situation where a live application has low quality and
bad reviews. Here, we give you a scenario that describes how the
project team can improve its ability to test when needed, not just
when possible.

First, all stakeholders (business, development, test, operations,
and so on) work together to understand the root causes of pro-
duction defects. By using defect data and analysis, the team dis-
covers that the most significant defects arise from two areas:

 » Integration with other systems

 » User response delays

When you are working to understand root causes of production
defects, this activity should not be executed as a “witch hunt”
but rather a no blame postmortem. Remember to focus on driv-
ing out the “What happened?” and avoiding pointing fingers by
spending time trying to find out “Who caused it?” If people feel
that they are at risk, activities which contributed to the issue may
be covered up. You need to know all the facts, and people need to
be willing to openly share what happened without fear. Root cause
analysis should be considered to be a learning exercise with the
goal of process improvement trying to discover ways to make sure
the issue doesn’t repeat itself.

The team decides that it needs to test the high-risk integrations
earlier in the development process and not wait until just before
deployment to production. It is agreed that the solution is to
increase collaboration and capture the agreed-on interface and
data definitions as part of its system architecture.

The team also decides to conduct some low-intensity perfor-
mance testing — checking the stability of the application with
very few users — as soon as a build is available, so critical issues
can be identified and fixed much earlier. Performance tests across
each build are tracked so the team can immediately see if there’s
any degradation in performance.

CHAPTER 4 Adopting Continuous Testing 33

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In performance testing, the user load is gradually increased from
low intensity to high intensity. Testing the performance of the
application with very few users is referred to as low-intensity
performance testing. Typically, you require a separate automated
testing solution to do performance testing. However, with IBM
Rational Test Workbench, you can do functional testing and low-
intensity performance testing with the same functional test assets.

Based on the interfaces, the programmers and testers work
together to create virtual services, or stubs, for each high-risk
interface. The interface stubs mimic the other systems and allow
the programmers and testers to test the high-risk areas earlier in
the development process — as soon as the code is written and built.

The team then automates many of the functional integration tests
and key response time tests — needed after root cause analysis
and source of the significant production defects. Now whenever a
new build is made, the successful build process triggers the auto-
mated activities shown in Figure 4-2.

The activities from Figure 4-2 are described as follows:

1. Create a new build.

The new application build is automated and unit tests are run.

2. Install in Dev test environment.

The new build is deployed into the automatically provisioned
development hybrid cloud test environment.

FIGURE 4-2: A typical continuous testing scenario.

34 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

3. Start stubs.

The stubs for any missing dependent services or test
scenarios are started.

4. Execute integration and low-intensity performance tests.

An automated integration test suite is triggered as part of the
automated deployment process for execution, followed by
the low-intensity performance tests. The test execution
results are then made available to the entire team. The team
analyzes the results for any regressions, especially around
application performance.

5. Snapshot application to System test environment.

Provided the integration and performance tests pass or
conditions of the quality gate are met, a snapshot of the
specific application component versions and the deployment
assets is created. This snapshot is then used to consistently
move the software to the next test environment — the
System test environment.

6. Execute user interface tests.

If the deployment to the next environment is successful, the
automated user-interface-based test suites are triggered and
executed in the system test environment. Testing the
software at a different layer is the next step in the process.

7. Capture test results and resolve defects.

Test results are captured, feedback is provided, defects are
resolved, and a new build is created.

After the dependent systems are available, the team runs those
same automated integration and performance tests again, against
the real systems, to confirm their application still behaves as
expected without the use of stubs. Re-using the automated tests
across test environments not only saves time but also highlights
any inconsistencies found in the applications being validated.

This scenario can be applied to any pattern of defects. It enables
whole teams to work together to not only start testing earlier in
the life cycle but also to automate the most important tests first,
so those tests are executed repeatedly. This ensures good test
coverage of the riskiest parts of the application.

CHAPTER 4 Adopting Continuous Testing 35

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Teams that improve their test efficiency and effectiveness
significantly reduce their costs and the time it takes to deliver
high-quality, innovative solutions to end-users. You can’t test
everything, and we aren’t suggesting that you need to do more
testing, and you can’t automate all your tests, so it is critical to
find the right subset of tests in the riskiest areas. Remember that
service virtualization is key and allows testing to begin as soon
as a build is made by mimicking missing dependencies. By com-
bining test automation and service virtualization, teams can test
earlier, or shift left, so they gather feedback faster than ever.

Technologies in Continuous Testing
Technology orchestrates the continuous testing process, making
it repeatable, reliable, and traceable. Maybe you already have a
build automation solution in place, but what additional capabili-
ties might you benefit from? Deployment automation with the
ability to treat infrastructure as code and create blueprints in a
graphical interface to accelerate the provisioning of test quickly
comes to mind. Those same capabilities are delivered by IBM
UrbanCode Deploy.

IBM UrbanCode Deploy is a tool for automating application
deployments through your environments. It is designed to facili-
tate rapid feedback and continuous delivery in agile development
while providing the audit trails, versioning, and approvals needed
in production. For more information visit developer.ibm.com/
urbancode.

Technology can also help in eliminating testing delays. The API
testing ability of IBM Rational Test Workbench coupled with
IBM Rational Test Virtualization Server would meet your needs,
enabling the delivery team to create virtual components and
deploy those stubs to the enterprise where they’re shared across
the entire organization. And when deployment automation and
service virtualization are integrated, the team is now able to stand
up complete applications in dev-and-test labs much earlier than
ever before. This is a significant savings because teams may spend
30 to 50 percent of their time standing up realistic test environ-
ments or delaying testing until all the application components are
available.

http://developer.ibm.com/urbancode
http://developer.ibm.com/urbancode

36 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Finally, you need to automate the other tests that you probably
want to run — functional, performance, and security. Along with
API testing, IBM Rational Test Workbench can also be used to
author, maintain, and execute functional and performance tests.
And just to make sure we don’t forget about application security,
IBM Security AppScan scans your application for vulnerabilities
that hackers are trying to exploit.

While you may want to investigate other solutions, the IBM soft-
ware solution will help you take a giant step along the path of
achieving your continuous testing goal.

CHAPTER 5 Ten Continuous Testing Myths 37

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ten Continuous
Testing Myths

The time has come to attempt the potentially impossible —
busting the myths around continuous testing. This task
means changing some people’s understanding of the test

profession, test automation, and continuous testing after years of
misconception or lack of understanding. Wish us well.

Continuous Testing Is Only
Executing Test Scripts

If we’re dispelling myths in this chapter, we should remove the
misconceptions in this statement immediately. The execution
of test scripts — manual or automated — is simply checking
application functionality, performance, usability, reliability, and
so on to verify and measure if it meets the acceptance criteria and
quality standards of your organization.

Testing and checking application functionality are not equal.
Testing is collaborating, planning, managing, thinking, explor-
ing, analyzing, automating, checking, reporting, validating,
reviewing, and so on — the list is long. To suggest that testing is
limited to the execution of test scripts is actually insulting to the
test professional.

Chapter 5

IN THIS CHAPTER

 » Breaking the myth of the fad

 » Knowing who continuous testing is for

38 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous Testing Is Just a Fad
Continuous testing isn’t just a fad or a buzzword you hear in your
work. In this era of DevOps, continuous testing is an essential part
of a successful transition to the continuous delivery of software.
It is an automated approach that accelerates getting new soft-
ware with higher quality into the hands of customers. Those goals
aren’t going to change anytime soon and neither is the continuing
automation of the life cycle. So we are confident that the term and
the process will stick around for the foreseeable future.

Continuous Testing Is Only
for Agile Teams

You may think that achieving continuous testing only works for
teams following agile practices, but any team can adopt some or
all of the continuous testing methods (even if that team is follow-
ing a more traditional waterfall approach). For example, when all
the testing occurs at the end of the project, teams can be proac-
tively working to determine how they will ultimately create and
execute the tests.

You must first understand the different systems that your team’s
application needs to interact with and then determine if those
systems will be available when needed. If not, create virtual ser-
vices for those systems based on known interfaces.

After that, even if the user interface (UI) isn’t final, create non-
UI automated API-level tests to ensure the data and messages
exchanged both within and outside the application are accurate.
As soon as a first build is made available for testing, those auto-
mated integration tests can be run quickly to provide insight on
software quality.

Having production-like test environments and realistic test data
are critical for any team. Getting the test labs provisioned and
configured on demand is another proactive step that can happen
well before actual test execution needs to take place.

CHAPTER 5 Ten Continuous Testing Myths 39

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous Testing Is Only for Testers
Absolutely not! The entire team, from requirements analysts,
architects, designers, programmers, testers, and operations engi-
neers need to embrace the spirit of continuous testing and support
the effort. Here’s a rundown of how everyone plays a role:

 » Requirements analysts trigger the testing process when
they capture requirements, so ensuring the team has
designable and testable requirements is key.

 » The architects are critical in the continuous testing effort
because they provide the full architectural picture of the
application — and any dependent systems that the applica-
tion needs — as well as test data needs. Architects also
provide valuable insight into impact analysis on code
changes, especially those changes that could impact
performance, usability, or reliability. They should ensure that
the ability to test is provided at all layers of the application in
order to support the initiative.

 » Designers have significant input into what data is needed,
and when. They can greatly improve the overall test effec-
tiveness by collaborating with the testers to help them
understand where there are potential fragile parts of the
application.

 » Programmers, of course, can provide detailed information
on the upcoming changes as they create new features and
fix defects, so testers know which sets of regression tests to
execute.

 » Operations engineers are the people that actually keep the
application running smoothly, and they know where things
typically go wrong in production. They provide critical input
to which tests need to be created and executed and why.

40 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous Testing Isn’t for
Regulated Industries

While continuous testing is beneficial for all industries, it can
actually provide additional benefits for compliance-mandated
and regulated industries. Continuous testing solutions deliver
automation, and anything automated typically means audit logs
are part of the process. For any component of any release in pro-
duction, you can definitively trace its full history of versions and
deployments.

What this means is that the audit files contain definitive “proof”
of exactly what components have been tested and are currently
running in production and more importantly what was running
in production at any previous point in time. When continuous
testing and continuous deployment solutions are implemented as
part of a DevOps continuous delivery pipeline, organizations have
the ability to prove compliance as a by-product of their auto-
mated delivery process.

Continuous Testing Isn’t for
Large, Complex Systems

Continuous testing can greatly improve testing productivity
for large or complex systems. In the past, teams have assumed
(incorrectly) that if each subsystem does its own testing, then
when all the subsystems are integrated together, everything will
magically work between those subsystems. We know this magic
rarely occurs, and the root cause of the integration failures is due
to misunderstood interfaces between the subsystems. Creating
virtual services and API-level tests as part of the continuous test-
ing practice can significantly reduce the time and effort it takes to
fully test all the integrations between subsystems.

And even outsourced teams can design, develop, and main-
tain automated testing suites as well as virtual services, thereby
relieving, or in some instances, paralleling the development
team’s work. This can help reduce costs, eliminate bottlenecks,
and accelerate the delivery of software changes.

CHAPTER 5 Ten Continuous Testing Myths 41

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Don’t be alarmed if your organization has invested in open-source
or other tools. There is no need to rip and replace all of them in
order to add continuous testing capabilities. There are a number
of integrations that exist for many tools. Meaning, your team can
keep the tools it’s familiar with, and you can simply add new test
automation and service virtualization capabilities on top of them.

Continuous Testing Isn’t Part of DevOps
Perhaps this belief comes from the fact that the word test is not
visible between Dev and Ops — DevTestOps. Another thought is
that some people believe that you don’t need testers at all. But
thought leaders in the testing domain would argue that point to
the bitter end. Perhaps it’s best to finally accept that while the
testers may not write application software, they do create test
automation code — both they and the programmer fall equally
into the Dev of DevOps and are full-fledged and equal members
of the delivery team.

Continuous Testing Isn’t for Cloud
or Hybrid Cloud Applications

The cloud has been around for a lot longer than you might
think — we just didn’t call it that back when we were using a
single CPU that had multiple virtual machines running to execute
our tests. Who knew you could have your own little private cloud
right there under your desk? And, testing applications that are in
a dedicated on-premises data center, or hosted on a private cloud,
or hosted on a public cloud, or any combination of those are not
barriers to adopting continuous testing practices. All you need is
access to the systems (which you would need anyway to test them
manually), and voila! — you can now implement your continuous
testing automation robots to check software deployed to cloud or
hybrid cloud environments.

If anything, users of new cloud-based software demand faster
delivery of high quality features, which increases the need to
adopt continuous testing.

42 Continuous Testing For Dummies, IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Automating Tests Means We
Need Fewer Testers

This myth is an oldie but a goodie. Automating tests should never
be used as an excuse to reduce head count. Automating testing
should be implemented with the purpose of freeing up a tester’s
time to do more important things.

Let the automation robots repeatedly perform the same test steps
over and over — they are good at it. They don’t get bored, they
can run the same test repeatedly with a high level of accuracy, and
they do it without thought.

In contrast, the testers have analytical minds, they’re pessimists
by nature, and they like to think and figure out how things work
and potentially discover issues. They do this by thinking outside
the box, at times pushing the limits of what the software was
intended to deliver and then reporting back their findings.

So, embrace automation as a means to free testers from their
robotic existence, empowering them to spend more time learning
and experimenting. And most importantly, make sure the tes-
ters in your organization understand the move to automation is
because they’re highly valued resources who shouldn’t be wasting
their time taking the place of a machine. The move to test auto-
mation should be embraced because management would prefer
testers spent their time doing the things that a machine can’t do.

Quality Is the Test Team’s Responsibility
When the entire DevOps team focuses on quality, you get much
better outcomes. Quality is a mindset right from the start of
ideation through to the customer experience. Of course, blatant
design flaws or bugs must be eliminated, but even more subtle
aspects of components, such as UI design and application perfor-
mance, must all be part of a quality mindset for an application to
be perceived as high quality. That means taking a DevOps whole-
team approach where quality is one of the parameters of every
decision and role in the DevOps life cycle.

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Defining Continuous Testing
	What Is DevOps?
	Why Test Continuously?
	Testing Is Costly
	The Need for Quality and Speed
	Finding the Right Set of Tests

	Chapter 2 Looking at the Key Elements of Continuous Testing
	Managing Defects
	Managing Tests
	Automating Tests
	Analyzing Effort
	Creating Test Environments
	Virtualizing Dependent Services
	Gathering Test Data

	Chapter 3 Testing Smarter
	Looking at Current Testing Challenges
	Shift Left
	Shift Right
	Testing across Industries

	Chapter 4 Adopting Continuous Testing
	Finding the Path to Achieving Continuous Testing
	Determining Where to Begin
	Identify bottlenecks
	Determine areas with high return on investment (ROI)

	Processes in Continuous Testing
	Making Continuous Testing Work: One Scenario
	Technologies in Continuous Testing

	Chapter 5 Ten Continuous Testing Myths
	Continuous Testing Is Only Executing Test Scripts
	Continuous Testing Is Just a Fad
	Continuous Testing Is Only for Agile Teams
	Continuous Testing Is Only for Testers
	Continuous Testing Isn’t for Regulated Industries
	Continuous Testing Isn’t for Large, Complex Systems
	Continuous Testing Isn’t Part of DevOps
	Continuous Testing Isn’t for Cloud or Hybrid Cloud Applications
	Automating Tests Means We Need Fewer Testers
	Quality Is the Test Team’s Responsibility

	EULA

