

1

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2014 Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to

this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this

book at http://aka.ms/tellpress.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people,

places, and events depicted in examples herein are fictitious. No association with any real company, organization,

product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under

copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their

respective owners.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions, Developmental, and Project Editor: Devon Musgrave

Cover: Twist Creative • Seattle and Joel Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx

2

Table of Contents

Introduction .. 21

Who This Book Is For .. 23

What You'll Need (Can You Say “Samples”?) .. 24

A Formatting Note.. 25

Acknowledgements .. 26

Free Ebooks from Microsoft Press ... 28

The “Microsoft Press Guided Tours” App ... 28

Errata & Book Support .. 28

We Want to Hear from You... 29

Stay in Touch ... 29

Chapter 1 The Life Story of a Windows Store App: Characteristics of the

Windows Platform .. 30

Leaving Home: Onboarding to the Windows Store ... 32

Discovery, Acquisition, and Installation.. 35

Playing in Your Own Room: The App Container .. 39

Different Views of Life: Views and Resolution Scaling ... 42

Those Capabilities Again: Getting to Data and Devices .. 46

Taking a Break, Getting Some Rest: Process Lifecycle Management 49

Remembering Yourself: App State and Roaming... 51

Coming Back Home: Updates and New Opportunities .. 56

And, Oh Yes, Then There’s Design ... 58

Feature Roadmap and Cross-Reference ... 59

Chapter 2 Quickstart .. 65

A Really Quick Quickstart: The Blank App Template .. 65

Blank App Project Structure .. 68

3

QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio 72

Design Wireframes ... 73

Create the Markup ... 76

Styling in Blend... 78

Adding the Code... 83

Extra Credit: Improving the App .. 97

Receiving Messages from the iframe ... 98

Improving the Placeholder Image with a Canvas Element .. 99

Handling Variable Image Sizes ... 100

Moving the Captured Image to AppData (or the Pictures Library) 103

Using a Thumbnail Instead of the Full Image .. 105

The Other Templates: Projects and Items .. 107

Navigation App Template.. 107

Grid App Template ... 107

Hub App Template.. 108

Split Template .. 108

Item Templates .. 108

What We’ve Just Learned ... 109

Chapter 3 App Anatomy and Performance Fundamentals .. 111

App Activation ... 112

Branding Your App 101: The Splash Screen and Other Visuals 113

Activation Event Sequence .. 117

Activation Code Paths ... 119

WinJS.Application Events .. 121

Optimizing Startup Time ... 124

WinRT Events and removeEventListener.. 126

App Lifecycle Transition Events and Session State .. 128

Suspend, Resume, and Terminate.. 129

4

Basic Session State in Here My Am! ... 133

Page Controls and Navigation ... 136

WinJS Tools for Pages and Page Navigation .. 136

The Navigation App Template, PageControl Structure, and PageControlNavigator 139

The Navigation Process and Navigation Styles .. 146

Optimizing Page Switching: Show-and-Hide ... 148

Page-Specific Styling ... 149

Async Operations: Be True to Your Promises .. 151

Using Promises ... 151

Joining Parallel Promises ... 153

Sequential Promises: Nesting and Chaining .. 153

Managing the UI Thread with the WinJS Scheduler... 156

Scheduler Priorities .. 157

Scheduling and Managing Tasks .. 158

Setting Priority in Promise Chains .. 160

Long-Running Tasks .. 162

Debugging and Profiling.. 165

Debug Output and Logging.. 165

Error Reports and the Event Viewer... 166

Async Debugging .. 169

Performance and Memory Analysis ... 170

The Windows App Certification Toolkit .. 175

What We’ve Just Learned ... 176

Chapter 4 Web Content and Services .. 177

Network Information and Connectivity .. 179

Network Types in the Manifest.. 180

Network Information (the Network Object Roster) ... 181

The ConnectionProfile Object.. 183

5

Connectivity Events .. 184

Cost Awareness .. 185

Running Offline .. 189

Hosting Content: the WebView and iframe Elements ... 191

Local and Web Contexts (and iframe Elements) .. 192

Dynamic Content.. 195

App Content URIs ... 197

The <x-ms-webview> Element... 198

HTTP Requests ... 209

Using WinJS.xhr.. 210

Using Windows.Web.Http.HttpClient... 211

Suspend and Resume with Online Content... 216

Prefetching Content ... 218

Background Transfer .. 219

Basic Downloads .. 221

Basic Uploads ... 225

Completion and Error Notifications ... 226

Providing Headers and Credentials .. 227

Setting Cost Policy .. 227

Grouping Transfers ... 228

Suspend, Resume, and Restart with Background Transfers .. 228

Authentication, the Microsoft Account, and the User Profile .. 230

The Credential Locker ... 231

The Web Authentication Broker .. 233

Single Sign-On .. 237

Using the Microsoft Account ... 238

The User Profile (and the Lock Screen Image) ... 244

What We’ve Just Learned ... 246

6

Chapter 5 Controls and Control Styling.. 248

The Control Model for HTML, CSS, and JavaScript .. 249

HTML Controls ... 251

Extensions to HTML Elements ... 254

WinJS Controls ... 255

Syntax for data-win-options .. 259

WinJS Control Instantiation ... 261

Strict Processing and processAll Functions ... 262

Example: WinJS.UI.HtmlControl... 263

Example: WinJS.UI.Rating (and Other Simple Controls) ... 264

Example: WinJS.UI.Tooltip .. 265

Example: WinJS.UI.ItemContainer ... 266

Working with Controls in Blend ... 269

Control Styling ... 272

Styling Gallery: HTML Controls .. 274

Styling Gallery: WinJS Controls .. 276

Some Tips and Tricks .. 284

Custom Controls .. 285

Implementing the Dispose Pattern .. 288

Custom Control Examples ... 289

Custom Controls in Blend .. 293

What We’ve Just Learned ... 297

Chapter 6 Data Binding, Templates, and Collections .. 298

Data Binding .. 299

Data Binding Basics... 299

Data Binding in WinJS ... 301

Under the Covers: Binding mixins .. 311

Programmatic Binding and WinJS.Binding.bind... 313

7

Binding Initializers .. 315

Binding Templates.. 319

Template Options, Properties, and Compilation ... 322

Collection Data Types ... 324

Windows.Foundation.Collection Types .. 325

WinJS Binding Lists ... 331

What We’ve Just Learned ... 342

Chapter 7 Collection Controls ... 344

Collection Control Basics... 345

Quickstart #1: The WinJS Repeater Control with HTML controls 345

Quickstart #2: The FlipView Control Sample ... 349

Quickstart #3: The ListView Essentials Sample .. 351

Quickstart #4: The ListView Grouping Sample .. 353

ListView in the Grid App Project Template ... 357

The Semantic Zoom Control .. 361

How Templates Work with Collection Controls... 364

Referring to Templates ... 364

Template Functions (Part 1): The Basics ... 365

Creating Templates from Data Sources in Blend ... 368

Repeater Features and Styling... 372

FlipView Features and Styling.. 377

Collection Control Data Sources .. 380

The Structure of Data Sources (Interfaces Aplenty!).. 381

A FlipView Using the Pictures Library ... 384

Custom Data Sources and WinJS.UI.VirtualizedDataSource ... 386

ListView Features and Styling .. 393

When Is ListView the Right Choice? ... 393

Options, Selections, and Item Methods.. 395

8

Styling ... 399

Loading State Transitions .. 401

Drag and Drop .. 402

Layouts .. 405

Template Functions (Part 2): Optimizing Item Rendering .. 414

What We’ve Just Learned ... 419

Chapter 8 Layout and Views ... 421

Principles of Page Layout .. 423

Sizing, Scaling, and Views: The Many Faces of Your App.. 426

Variable View Sizing and Orientations .. 426

Screen Resolution, Pixel Density, and Scaling ... 437

Multiple Views ... 442

Pannable Sections and Styles .. 446

Laying Out the Hub ... 447

Laying Out the Sections .. 448

Panning Styles and Railing ... 449

Panning Snap Points and Limits ... 451

Zooming Snap Points and Limits .. 452

The Hub Control and Hub App Template.. 453

Hub Control Styling... 460

Using the CSS Grid .. 461

Overflowing a Grid Cell ... 463

Centering Content Vertically ... 463

Scaling Font Size ... 464

Item Layout ... 465

CSS 2D and 3D Transforms .. 466

Flexbox .. 466

Nested and Inline Grids... 467

9

Fonts and Text Overflow ... 468

Multicolumn Elements and Regions ... 470

What We’ve Just Learned ... 472

Chapter 9 Commanding UI .. 474

Where to Place Commands ... 475

The App Bar and Nav Bar .. 480

App Bar Basics and Standard Commands ... 481

App Bar Styling ... 490

Command Menus ... 494

Custom App Bars .. 495

Nav Bar Features .. 497

Nav Bar Styling ... 505

Flyouts and Menus ... 507

WinJS.UI.Flyout Properties, Methods, and Events... 509

Flyout Examples ... 510

Menus and Menu Commands ... 513

Message Dialogs .. 518

Improving Error Handling in Here My Am! ... 519

What We’ve Just Learned ... 525

Chapter 10 The Story of State, Part 1: App Data and Settings ... 527

The Story of State... 529

App Data Locations... 532

App Data APIs (WinRT and WinJS) ... 533

Settings Containers... 534

State Versioning ... 536

Folders, Files, and Streams.. 537

FileIO, PathIO, and WinJS Helpers (plus FileReader) .. 543

Encryption and Compression... 544

10

Q&A on Files, Streams, Buffers, and Blobs.. 544

Using App Data APIs for State Management... 552

Transient Session State ... 552

Local and Temporary State.. 553

IndexedDB, SQLite, and Other Database Options .. 555

Roaming State .. 556

Settings Pane and UI... 559

Design Guidelines for Settings ... 561

Populating Commands .. 563

Implementing Commands: Links and Settings Flyouts ... 566

Programmatically Invoking Settings Flyouts.. 568

Here My Am! Update ... 570

What We’ve Just Learned ... 571

Chapter 11 The Story of State, Part 2: User Data, Files, and OneDrive 573

The Big Picture of User Data ... 574

Using the File Picker and Access Cache .. 579

The File Picker UI .. 580

The File Picker API .. 585

Access Cache.. 589

StorageFile Properties and Metadata .. 592

Availability ... 593

Thumbnails .. 594

File Properties .. 598

Media-Specific Properties ... 601

Folders and Folder Queries ... 607

KnownFolders and the StorageLibrary Object ... 609

Removable Storage .. 612

Simple Enumeration and Common Queries .. 613

11

Custom Queries.. 618

Metadata Prefetching with Queries ... 623

Creating Gallery Experiences... 625

File Activation and Association .. 627

What We’ve Just Learned ... 632

Chapter 12 Input and Sensors ... 634

Touch, Mouse, and Stylus Input .. 635

The Touch Language and Mouse/Keyboard Equivalents .. 636

What Input Capabilities Are Present? .. 643

Unified Pointer Events .. 645

Gesture Events ... 649

The Gesture Recognizer .. 658

Keyboard Input and the Soft Keyboard .. 659

Soft Keyboard Appearance and Configuration .. 660

Adjusting Layout for the Soft Keyboard .. 663

Standard Keystrokes ... 666

Inking .. 667

Geolocation ... 669

Geofencing .. 673

Sensors.. 676

What We’ve Just Learned ... 680

Chapter 13 Media... 681

Creating Media Elements .. 682

Graphics Elements: Img, Svg, and Canvas (and a Little CSS) ... 684

Additional Characteristics of Graphics Elements ... 688

Some Tips and Tricks .. 689

Rendering PDFs .. 694

Video Playback and Deferred Loading.. 699

12

Disabling Screen Savers and the Lock Screen During Playback 703

Video Element Extension APIs ... 703

Applying a Video Effect ... 705

Browsing Media Servers.. 706

Audio Playback and Mixing ... 706

Audio Element Extension APIs ... 708

Playback Manager and Background Audio .. 708

The Media Transport Control UI .. 714

Playing Sequential Audio... 717

Playlists ... 719

Text to Speech ... 723

Loading and Manipulating Media .. 725

Image Manipulation and Encoding... 726

Manipulating Audio and Video .. 732

Handling Custom Audio and Video Formats ... 735

Media Capture ... 742

Flexible Capture with the MediaCapture Object ... 744

Selecting a Media Capture Device.. 748

Streaming Media and Play To .. 751

Streaming from a Server and Digital Rights Management.. 751

Streaming from App to Network.. 753

Play To ... 754

What We Have Learned .. 757

Chapter 14 Purposeful Animations.. 759

Systemwide Enabling and Disabling of Animatio ns ... 761

The WinJS Animations Library ... 762

Animations in Action .. 765

CSS Animations and Transitions .. 769

13

Designing Animations in Blend for Visual Studio ... 775

The HTML Independent Animations Sample ... 777

Rolling Your Own: Tips and Tricks .. 779

What We’ve Just Learned ... 785

Chapter 15 Contracts .. 786

Share ... 788

Share Source Apps.. 793

Share Target Apps .. 805

The Clipboard... 816

Launching Apps with URI Scheme Associations .. 818

Search ... 823

The Search Charm UI .. 825

The WinJS.UI.SearchBox Control.. 829

Providing Query Suggestions ... 831

Providing Result Suggestions ... 835

SearchBox Styling ... 837

Indexing and Searching Content .. 840

The Search Contract ... 849

Contacts .. 850

Contact Cards... 850

Using the Contact Picker ... 856

Appointments .. 860

What We’ve Just Learned ... 864

Chapter 16 Alive with Activity: Tiles, Notifications, the Lock Screen, and

Background Tasks.. 865

Alive with Activity: A Visual Tour ... 866

The Four Sources of Updates and Notifications .. 875

Tiles, Secondary Tiles, and Badges ... 878

14

Secondary Tiles .. 880

Basic Tile Updates .. 887

Cycling, Scheduled, and Expiring Updates .. 900

Badge Updates ... 902

Periodic Updates .. 904

Creating an Update Service ... 907

Debugging a Service Using the Localhost.. 911

Windows Azure and Azure Mobile Services .. 912

Toast Notifications ... 917

Creating Basic Toasts .. 919

Butter and Jam: Options for Your Toast ... 921

Tea Time: Scheduled Toasts and Alarms... 923

Toast Events and Activation .. 926

Push Notifications and the Windows Push Notification Service ... 927

Requesting and Caching a Channel URI (App) ... 929

Managing Channel URIs (Service) .. 931

Sending Updates and Notifications (Service) .. 932

Raw Notifications (Service).. 933

Receiving Notifications (App) .. 934

Debugging Tips ... 935

Tools and Providers for Push Notifications ... 935

Background Tasks and Lock Screen Apps.. 937

Background Tasks in the Manifest ... 938

Building and Registering Background Tasks .. 939

Conditions ... 941

Tasks for Maintenance Triggers ... 942

Tasks for System Triggers (Non-Lock Screen) .. 944

Lock Screen–Dependent Tasks and Triggers ... 945

15

Debugging Background Tasks .. 949

What We’ve Just Learned (Whew!) ... 950

Chapter 17 Devices and Printing ... 952

Declaring Device Access.. 956

Enumerating and Watching Devices .. 957

Scenario API Devices .. 962

Image Scanners .. 962

Barcode and Magnetic Stripe Readers (Point-of-Service Devices) 967

Smartcards... 970

Fingerprint (Biometric) Readers... 971

Bluetooth Call Control .. 972

Printing Made Easy... 973

The Printing User Experience .. 974

Print Document Sources ... 977

Providing Print Content and Configuring Options.. 979

Protocol APIs: HID, USB, Bluetooth, and Wi-Fi Direct .. 981

Human Interface Devices (HID).. 983

Custom USB Devices ... 990

Bluetooth (RFCOMM) ... 992

Bluetooth Smart (LE/GATT) ... 996

Wi-Fi Direct .. 999

Near Field Communication and the Proximity API..1000

Finding Your Peers (No Pressure!) ..1002

Sending One-Shot Payloads: Tap to Share ...1007

What We’ve Just Learned ..1009

Chapter 18 WinRT Components: An Introduction ...1010

Choosing a Mixed Language Approach (and Web Workers)..1012

Quickstarts: Creating and Debugging Components ..1014

16

Quickstart #1: Creating a Component in C# ...1015

Simultaneously Debugging Script and Managed/Native Code1020

Quickstart #2: Creating a Component in C++ ...1021

Comparing the Results ...1023

Key Concepts for WinRT Components...1026

Implementing Asynchronous Methods ...1028

Projections into JavaScript ...1042

Scenarios for WinRT Components ..1044

Higher Performance (Perhaps) ...1044

Access to Additional APIs ...1047

Obfuscating Code and Protecting Intellectual Property ..1051

Concurrency..1052

Library Components ..1053

What We’ve Just Learned ..1056

Chapter 19 Apps for Everyone, Part 1: Accessibility and World-Readiness1058

Accessibility ..1059

Screen Readers and Aria Attributes ..1063

Handling Contrast Variations ..1068

World Readiness and Localization ..1075

Globalization ...1077

Preparing for Localization ..1087

Creating Localized Resources: The Multilingual App Toolkit ..1101

Localization Wrap-Up ..1108

What We’ve Just Learned ..1109

 Chapter 20 Apps for Everyone, Part 2: The Windows Store ...1110

Your App, Your Business ..1111

Planning: Can the App Be a Windows Store App? ..1113

Planning for Monetization (or Not) ...1114

17

Growing Your Customer Base and Other Value Exchanges ...1125

Measuring and Experimenting with Revenue Performance ..1126

The Windows Store APIs ..1127

The CurrentAppSimulator Object..1130

Trial Versions and App Purchase...1133

Listing and Purchasing In-App Products...1137

Handling Large Catalogs ...1145

Receipts ..1146

Instrumenting Your App for Telemetry and Analytics ...1148

Releasing Your App to the World..1155

Promotional Screenshots, Store Graphics, and Text Copy...1156

Testing and Pre-Certification Tools ...1158

Creating the App Package ..1159

Onboarding and Working through Rejection ...1163

App Updates ...1166

Getting Known: Marketing, Discoverability, and the Web ..1168

Connecting Your Website and Web-Mapped Search Results ..1170

Face It: You’re Running a Business! ..1171

Look for Opportunities...1172

Invest in Your Business ..1172

Fear Not the Marketing ...1172

Support Your Customers ..1173

Plan for the Future ..1173

Selling Your App When It’s Not Running..1174

You’re Not Alone ...1175

Final Thoughts: Qualities of a Rock Star App ...1175

What We’ve Just Learned ..1176

Appendix A Demystifying Promises..1178

18

What Is a Promise, Exactly? The Promise Relationships ...1178

The Promise Construct (Core Relationship) ...1181

Example #1: An Empty Promise! ...1183

Example #2: An Empty Async Promise...1185

Example #3: Retrieving Data from a URI ..1186

Benefits of Promises ..1187

The Full Promise Construct ..1188

Nesting Promises...1192

Chaining Promises ...1195

Promises in WinJS (Thank You, Microsoft!) ...1200

The WinJS.Promise Class ..1201

Originating Errors with WinJS.Promise.WrapError ...1203

Some Interesting Promise Code ...1204

Delivering a Value in the Future: WinJS.Promise.timeout ...1204

Internals of WinJS.Promise.timeout ..1205

Parallel Requests to a List of URIs ...1205

Parallel Promises with Sequential Results ...1206

Constructing a Sequential Promise Chain from an Array...1208

PageControlNavigator._navigating (Page Control Rendering)1208

Bonus: Deconstructing the ListView Batching Renderer ...1210

Appendix B WinJS Extras ...1214

Exploring WinJS.Class Patterns ...1214

WinJS.Class.define ...1214

WinJS.Class.derive ...1217

Mixins...1218

Obscure WinJS Features ..1219

Wrappers for Common DOM Operations ..1219

WinJS.Utilities.data, convertToPixels, and Other Positional Methods 1221

19

WinJS.Utilities.empty, eventWithinElement, and getMember1222

WinJS.UI.scopedSelect and getItemsFromRanges ..1222

Extended Splash Screens ...1223

Adjustments for View Sizes ..1229

Custom Layouts for the ListView Control ..1231

Minimal Vertical Layout ...1233

Minimal Horizontal Layout ...1235

Two-Dimensional and Nonlinear Layouts ..1239

Virtualization ..1241

Grouping...1243

The Other Stuff ...1244

Appendix C Additional Networking Topics..1249

XMLHttpRequest and WinJS.xhr ...1249

Tips and Tricks for WinJS.xhr ..1250

Breaking Up Large Files (Background Transfer API) ..1251

Multipart Uploads (Background Transfer API) ...1252

Notes on Encryption, Decryption, Data Protection, and Certificates 1255

Syndication: RSS, AtomPub, and XML APIs in WinRT ..1255

Reading RSS Feeds ...1256

Using AtomPub ...1259

Sockets ...1260

Datagram Sockets..1261

Stream Sockets..1265

Web Sockets: MessageWebSocket and StreamWebSocket...1268

The ControlChannelTrigger Background Task ..1273

The Credential Picker UI ..1273

Other Networking SDK Samples ...1277

Appendix D Provider-Side Contracts ..1279

20

File Picker Providers ..1279

Manifest Declarations..1280

Activation of a File Picker Provider..1281

Cached File Updater ..1288

Updating a Local File: UI...1291

Updating a Remote File: UI ..1292

Update Events ...1294

Contact Cards Action Providers ..1297

Contact Picker Providers ..1300

Appointment Providers..1303

About the Author ...1309

21

Introduction

Welcome, my friends, to Windows 8.1! On behalf of the thousands of designers, program managers,

developers, test engineers, and writers who have brought the product to life, I'm del ighted to welcome

you into a world of Windows Reimagined.

This theme is no mere sentimental marketing ploy, intended to bestow an aura of newness to

something that is essentially unchanged, like those household products that make a big splash on the

idea of "New and Improved Packaging!" No, starting with version 8, Microsoft Windows truly has been

reborn—after more than a quarter-century, something genuinely new has emerged.

I suspect—indeed expect—that you're already somewhat familiar with the reimagined user

experience of Windows 8 and Windows 8.1. You're probably reading this book, in fact, because you

know that the ability of Windows to reach across desktop, laptop, and tablet devices, along with the

global reach of the Windows Store, will provide you with many business opportunities, whether you're

in business, as I like to say, for fame, fortune, fun, or philanthropy.

We'll certainly see many facets of this new user experience throughout the course of this book. Our

primary focus, however, will be on the reimagined developer experience.

I don't say this lightly. When I first began giving presentations within Microsoft about building

Windows Store apps, I liked to show a slide of what the world was like in the year 1985. It was the time

of Ronald Reagan, Margaret Thatcher, and Cold War tensions. It was the time of VCRs and the

discovery of AIDS. It was when Back to the Future was first released, Michael Jackson topped the charts

with Thriller, and Steve Jobs was kicked out of Apple. And it was when software developers got their

first taste of the original Windows API and the programming model for desktop applications.

The longevity of that programming model has been impressive. It's been in place for nearly three

decades now and has grown to become the heart of the largest business ecosystem on the planet. The

API itself, known today as Win32, has also grown to become the largest on the planet! What started

out on the order of about 300 callable methods has expanded three orders of magnitude, well beyond

the point that any one individual could even hope to understand a fraction of it. I'd certainly given up

such futile efforts myself.

So when I bumped into my old friend Kyle Marsh in the fall of 2009, just after Windows 7 had been

released, and heard from him that Microsoft was planning to reinvigorate native app development for

Windows 8, my ears were keen to listen. In the months that followed I learned that Microsoft was

introducing a completely new API called the Windows Runtime (or WinRT). This wasn't meant to

replace Win32, mind you; desktop applications would still be supported. No, this was a programming

model built from the ground up for a new breed of touch-centric, immersive apps that could compete

with those emerging on various mobile platforms. It would be designed from the app developer's point

of view, rather than the system's, so that key features would take only a few lines of code to implement

22

rather than hundreds or thousands. It would also enable direct native app development in multiple

programming languages. This meant that new operating system capabilities would surface to those

developers without having to wait for an update to some intermediate framework. It also meant that

developers who had experience in any one of those language choices would find a natural home when

writing apps for Windows 8 and Windows 8.1.

This was very exciting news to me because the last time that Microsoft did anything significant to

the Windows programming model was in the early 1990s with a technology called the Component

Object Model (COM), which is exactly what allowed the Win32 API to explode as it did. Ironically, it was

my role at that time to introduce COM to the developer community, which I did through two editions

of Inside OLE (Microsoft Press, 1993 and 1995) and seemingly endless travel to speak at conferences

and visit partner companies. History, indeed, does tend to repeat itself, for here I am again, with

another second edition!

In December 2010, I was part of the small team who set out to write the very first Windows Store

apps using what parts of the new WinRT API had become available. Notepad was the text editor of

choice, we built and ran apps on the command line by using abstruse Powershell scripts that required

us to manually type out ungodly hash strings, we had no documentation other than oft-incomplete

functional specifications, and we basically had no debugger to speak of other than the tried and true

window.alert and document.writeln. Indeed, we generally worked out as much HTML, CSS, and

JavaScript as we could inside a browser with F12 debugging tools, adding WinRT-specific code only at

the end because browsers couldn't resolve those APIs. You can imagine how we celebrated when we

got anything to work at all!

Fortunately, it wasn't long before tools like Visual Studio Express and Blend for Visual Studio became

available. By the spring of 2011, when I was giving many training sessions to people inside Microsoft on

building apps for Windows 8, the process was becoming far more enjoyable and exceedingly more

productive. Indeed, while it took us four to six weeks in late 2010 to get even Hello World to show up

on the screen, by the fall of 2011 we were working with partner companies who pulled together

complete Store-ready apps in roughly the same amount of time.

As we've seen—thankfully fulfilling our expectations—it's possible to build a great app in a matter

of weeks. I'm hoping that this ebook, along with the extensive resources on http://dev.windows.com,

will help you to accomplish exactly that and to reimagine your own designs.

Work on this second edition began almost as soon as the first edition was released. (I’d make a quip

about the ink not being dry, but that analogy doesn’t work for an ebook!) When Windows 8 became

generally available in the fall of 2012, work on Windows 8.1 was already well underway: the

engineering team had a long list of improvements they wanted to make along with features that they

weren’t able to complete for Windows 8. And in the very short span of one year, Windows 8.1 was itself

ready to ship.

At first I thought writing this second edition would be primarily a matter of making small updates to

each chapter and perhaps adding some pages here and there on a handful of new features. But as I got

deeper into the updated platform, I was amazed at just how much the API surface area had expanded!

http://dev.windows.com/

23

Windows 8.1 introduces a number of additional controls, an HTML webview element, a stronger HTTP

API, content indexing, deeper OneDrive support, better media capabilities, more tiles sizes (small and

large), more flexible secondary tile, access to many kinds of peripheral devices, and more options for

working with the Windows Store, like consumable in-app purchases. And clearly, this is a very short list

of distinct Windows 8.1 features that doesn’t include the many smaller changes to the API. (A fuller list

can be found on Windows 8.1: New APIs and features for developers).

Furthermore, even as I was wrapping up the first edition of this book, I already had a long list of

topics I wanted to explore in more depth. I wrote a number of those pieces for my blog, with the

intention of including them in this second edition. A prime example is Appendix A, “Demystifying

Promises.”

All in all, then, what was already a very comprehensive book in the first edition has become even

more so in the second! Fortunately, with this being an ebook, neither you nor I need feel guilty about

matters of deforestation. We can simply enjoy the process of learning about and writing Windows

Store Apps with HTML, CSS, and JavaScript.

And what about Windows Phone 8.1? I’m glad you asked, because much of this book is completely

applicable to that platform. Yes, that’s right: Windows Phone 8.1 supports writing apps in HTML, CSS,

and JavaScript, just like Windows 8.1, meaning that you have the same flexibility of implementation

languages on both. However, the decision to support JavaScript apps on Windows Phone 8.1 came very

late in the production of this book, so I’m only able to make a few notes here and there for Phone -

specific concerns. I encourage you to follow the Building Apps for Windows blog, where we’ll be

posting more about the increasingly unified experience of Windows and Windows Phone.

Who This Book Is For

This book is about writing Windows Store apps using HTML, CSS, and JavaScript. Our primary focus will

be on applying these web technologies within the Windows platform, where there are unique

considerations, and not on exploring the details of those web technologies themselves. For the most

part, I'm assuming that you're already at least somewhat conversant with these standards. We will cover

some of the more salient areas like the CSS grid, which is central to app layout, but otherwise I trust

that you're capable of finding appropriate references for most everything else. For JavaScript

specifically, I can recommend Rey Bango’s Required JavaScript Reading list, though I hope you’ll spend

more time reading this book than others!

I'm also assuming that your interest in Windows has at least two basic motivations. One, you

probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the

Windows Store sooner rather than later. Toward that end, Chapter 2, “Quickstart,” gives you an

immediate experience with the tools, APIs, and some core aspects of app development and the

platform. On the other hand, you probably also want to make the best app you can, one that performs

really well and that takes advantage of the full extent of the platform. Toward this end, I've also

http://msdn.microsoft.com/library/windows/apps/bg182410
http://www.kraigbrockschmidt.com/blog
http://go.microsoft.com/fwlink/?LinkID=392425
http://code.tutsplus.com/tutorials/required-javascript-reading--net-33131

24

endeavored to make this book comprehensive, helping you at least be aware of what's possible and

where optimizations can be made.

Let me make it clear, though, that my focus in this book is the Windows pla tform. I won’t talk much

about third-party libraries, architectural considerations for app design, and development strategies and

best practices. Some of these will come up from time to time, but mostly in passing.

Nevertheless, many insights have come from working directly with real-world developers on their

real-world apps. As part of the Windows Ecosystem team, myself and my teammates have been on the

front lines bringing those first apps to the Windows Store. This has involved writing bits of code for

those apps and investigating bugs, along with conducting design, code, and performance reviews with

members of the Windows engineering team. As such, one of my goals with this book is to make that

deep understanding available to many more developers, including you!

What You'll Need (Can You Say “Samples”?)

To work through this book, you should have Windows 8.1 (or a later update) installed on your

development machine, along with the Windows SDK and tools. All the tools, along with a number of

other resources, are listed on Developer Downloads for Windows Store Apps. You’ll specifically need

Microsoft Visual Studio Express 2013 for Windows. (Note that for all the screenshots in this book, I

switched Visual Studio from its default “dark” color theme to the “light” theme, as the latter works

better against a white page.)

We’ll also acquire other tools along the way as we need them in this ebook, specifically to run some

of the examples in the companion content. Here’s the short list:

 Live SDK (for Chapter 4)

 Bing Maps SDK for Windows Store Apps (for Chapters 10 and beyond)

 Visual Studio Express 2013 for Web (for Chapter 16)

 Multilingual App Toolkit (for Chapter 19)

Also be sure to visit the Windows 8.1 Samples Pack page and download at least the JavaScript

samples. We'll be drawing from many—if not most—of these samples in the chapters ahead, pulling in

bits of their source code to illustrate how many different tasks are accomplished.

One of my secondary goals in this book, in fact, is to help you understand where and when to use

the tremendous resources in what is clearly the best set of samples I’ve ever seen for any release of

Windows. You’ll often be able to find a piece of code in one of the samples that does exactly what you

need in your app or that is easily modified to suit your purpose. For this reason I’ve made it a point to

personally look through every one of the JavaScript samples, understand what they demonstrate, and

then refer to them in their proper context. This, I hope, will save you the trouble of having to do that

level of research yourself and thus make you more productive in your development efforts.

http://msdn.microsoft.com/windows/apps/br229516
http://www.microsoft.com/en-us/download/details.aspx?id=40739
http://visualstudiogallery.msdn.microsoft.com/224eb93a-ebc4-46ba-9be7-90ee777ad9e1
http://www.microsoft.com/en-us/download/details.aspx?id=40747
http://msdn.microsoft.com/en-us/windows/apps/bg127574
http://go.microsoft.com/fwlink/p/?LinkID=302156

25

In some cases I’ve taken one of the SDK samples and made certain modifications, typically to

demonstrate an additional feature but sometimes to fix certain bugs or demonstrate a better

understanding that came about after the sample had to be finalized. I’ve included these modifications

in the companion content for this book, which you can download at

http://aka.ms/BrockschmidtBook2/CompContent

The companion content also contains a few additional examples of my own, which I always refer to

as “examples” to make it clear that they aren’t official SDK content. (I’ve also rebranded the modified

samples to make it clear that they’re part of this book.) I’ve written these examples to fill gaps that the

SDK samples don’t address or to provide a simpler demonstration of a feature that a related sample

shows in a more complex manner. You’ll also find many revisions of an app called “Here My Am!” that

we’ll start building in Chapter 2 and we’ll refine throughout the course of this book. This includes

localizing it into a number of different languages by the time we reach the end.

There are also a number of videos that I’ve made for this book, which more readily show dynamic

effects like animations and user interaction. You can find all of them at

http://aka.ms/BrockschmidtBook2/Videos

Beyond all this, you’ll find that the Windows Store app samples gallery as well as the Visual Studio

sample gallery let you search and browse projects that have been contributed by other developers—

perhaps also you! (On the Visual Studio site, by the way, be sure to filter on Windows Store apps

because the gallery covers all Microsoft platforms.) And of course, there will be many more developers

who share projects on their own.

In this book I occasionally refer to posts on a number of blogs. First are a few older blogs, namely

the Windows 8 App Developer blog, the Windows Store for Developers blog, and—for the Windows 8

backstory of how Microsoft approached this whole process of reimagining the operating system—the

Building Windows 8 blog. As of the release of this book, the two developer blogs have merged into the

Building Apps for Windows blog that I mentioned earlier.

A Formatting Note

Throughout this book, identifiers that appear in code, such as variable names, property names, and API

functions and namespaces, are formatted with a color and a fixed-point font. Here’s an example:

Windows.Storage.ApplicationData.current. At times, certain fully qualified names—those that that

include the entire namespace—can become quite long, so it’s necessary to occasional ly hyphenate

them across line breaks, as in Windows.Security.Cryptography.CryptographicBuffer.-

convertStringToBinary. Generally speaking, I’ve tried to hyphenate after a dot or between whole

words but not within a word. In any case, these hyphens are never part of the identifier except in CSS

where hyphens are allowed (as in -ms-high-contrast-adjust) and with HTML attributes like aria-

label or data-win-options.

http://aka.ms/BrockschmidtBook2/CompContent
http://aka.ms/BrockschmidtBook2/Videos
http://code.msdn.microsoft.com/windowsapps/
http://code.msdn.microsoft.com/vstudio
http://code.msdn.microsoft.com/vstudio
http://blogs.msdn.com/b/windowsappdev/
http://blogs.msdn.com/b/windowsstore/
http://blogs.msdn.com/b/b8/
http://go.microsoft.com/fwlink/?LinkID=392425

26

Occasionally, you’ll also see identifiers that have a different color, as in datarequested. These

specifically point out events that originate from Windows Runtime objects, for which there are a few

special considerations for adding and removing event listeners in JavaScript, as discussed toward the

end of Chapter 3. I make a few reminders about this point throughout the chapters, but the purpose of

this special color is to give you a quick reminder that doesn’t break the flow of the discussion

otherwise.

Acknowledgements

In many ways, this isn't my book—that is, it's not an account of my own experiences and opinions

about writing apps for Windows. I'm serving more as a storyteller, where the story itself has been

written by the thousands of people in the Windows team whose passion and dedication have been a

constant source of inspiration. Writing a book like this wouldn't be possible without all the work that's

gone into customer research; writing specs; implementing, testing, and documenting all the details;

managing daily builds and public releases; and writing again the best set of samples I've ever seen for a

platform. Indeed, the words in some sections come directly from conversations I've had with the people

who designed and developed a particular feature. I'm grateful for their time, and I’m delighted to give

them a voice through which they can share their passion for excellence with you.

A number of individuals deserve special mention for their long-standing support of this project. To

Mahesh Prakriya, Ian LeGrow, Anantha Kancherla, Keith Boyd and their respective teams, with whom

I've worked closely, and to Kathy Carper, Roger Gulrajani, Keith Rowe, Dennis Flanagan, and Adam

Denning, under whom I've had the pleasure of serving.

Thanks also to Devon Musgrave at Microsoft Press, who put in many long hours editing my many

long chapters, many times over. My teammates, Kyle Marsh, Todd Landstad, Shai Hinitz, Patrick

Dengler, Lora Heiny, Leon Braginski, and Joseph Ngari have also been invaluable in sharing what

they've learned in working with real-world partners. A special thanks goes to Kenichiro Tanaka of

Microsoft Japan, for always being the first one to return a reviewed chapter to me and for joyfully

researching different areas of the platform whenever I asked. Many bows to you, my friend! Nods also

to others in our international Windows Ecosystem teams who helped with localizing the Here My Am!

app for Chapter 19: Gilles Peingné, Sam Chang, Celia Pipó Garcia, Juergen Schwertl, Maarten van de

Bospoort, Li-Qun Jia, and Shai Hinitz.

The following individuals all contributed to this book as well, with chapter reviews, answers to my

questions, deep discussions of the details, and much more. I’m grateful to all of you for your time and

support:

Shakil Ahmed Ryan Demopoulos Jakub Kotynia Jason Olson Adam Stritzel

Arvind Aiyar Scott Dickens Jared Krinke Elliot H Omiya Shijun Sun

Jessica Alspaugh Tyler Donahue Victoria Kruse Lisa Ong Ellick Sung

Gaurav Anand Brendan Elliott Nathan Kuchta Larry Osterman Sou Suzuki

27

Chris Anderson Matt Esquivel Elmar Langholz Rohit Pagariya Simon Tao

Erik Anderson David Fields Bonny Lau Ankur Patel Henry Tappen

Axel Andrejs Sean Flynn Wonhee Lee Harry Pierson Chris Tavares

Tarek Ayna Erik Fortune Travis Leithead Steve Proteau David Tepper

Art Baker Jim Galasyn Dale Lemieux Hari Pulapaka Lillian Tseng

Adam Barrus Gavin Gear Chantal Leonard Arun Rabinar Sara Thomas

Megan Bates Derek Gephard Cameron Lerum* Matt Rakow Ryan Thompson

Tyler Beam Marcelo Garcia Gonzalez Brian LeVee Ramu Ramanathan Bill Ticehurst

Matthew Beaver Sean Gilmour Jianfeng Lin Sangeeta Ranjit Peter Torr

Kyle Beck Sunil Gottumukkala Tian Luo Ravi Rao Stephen Toub

Ben Betz Scott Graham Sean Lyndersay Brent Rector Tonu Vanatalu

Johnny Bregar Ben Grover David Machaj Ruben Rios Jeremy Viegas

John Brezak Paul Gusmorino Mike Mastrangelo Dale Rogerson Alwin Vyhmeister

John Bronskill Chris Guzak Jordan Matthiesen Nick Rotondo Nick Waggoner

Jed Brown Zainab Hakim Ian McBurnie David Rousset David Washington

Kathy Carper Rylan Hawkins Sarah McDevitt George Roussos Sarah Waskom

Vincent Celie John Hazen Isaac McGarvey Jake Sabulsky Marc Wautier

Raymond Chen Jerome Holman Jesse McGatha Gus Salloum Josh Williams

Rian Chung Scott Hoogerwerf Matt Merry Michael Sciacqua Lucian Wischik

Arik Cohen Stephen Hufnagel Markus Mielke Perumaal Shanmugam Dave Wood

Justin Cooperman Sean Hume Pavel Minaev Edgar Ruiz Silva Kevin Michael Woley

Michael Crider Mathias Jourdain John Morrow Poorva Singal Charing Wong

Monica Czarny Damian Kedzierski Feras Moussa Karanbir Singh Bernardo Zamora

Nigel D’Souza Suhail Khalid John Mullaly Peter Smith Michael Ziller

Priya Dandawate Deen King-Smith Jan Nelson* Sam Spencer

Darren Davis Daniel Kitchener Marius Niculescu Edward Sproull

Jack Davis Kishore Kotteri Daniel Oliver Ben Srour

* For Jan and Cameron, a special acknowledgement for riding down from Redmond, Washington, to visit me in

Portland, Oregon (where I was living at the time), and sharing an appropriately international Thai lunch while we

discussed localization and multilingual apps.

Let me add that during the production of this second edition, I did manage to lose the extra weight

that I’d gained during the first edition. All things must balance out, I suppose!

Finally, special hugs to my wife Kristi and our son Liam (now seven and a half), who have lovingly

28

been there the whole time and who don't mind my traipsing through the house to my office either late

at night or early in the morning.

Free Ebooks from Microsoft Press

From technical overviews to drilldowns on special topics, these free ebooks are available in PDF, EPUB,

and/or Mobi for Kindle formats, ready for you to download:

http://aka.ms/mspressfree

The “Microsoft Press Guided Tours” App

Check the Windows Store soon for the Microsoft Press Guided Tours app, which provides insightful

tours of new and evolving technologies created by Microsoft. While you’re exploring each tour’s

original content, the app lets you manipulate and mark that content in ways to make it more useful to

you. You can, of course, do the usual things—such as highlight, add notes, mark as favorite, and mark

to read later—but you can also

 view all links to external documentation and samples in one place via a Resources view;

 sort the Resources view by Favorites, Read Later, and Noted;

 view a list of all your notes and highlights via the app bar;

 share text, code, or links to resources with friends via email; and

 create your own list of resources, as you navigate online resources, beyond those pointed to in the

Guided Tour.

Our first Guided Tour is based on this ebook. Kraig acts as a guide in two senses: he leads

experienced web developers through the processes and best practices for building Windows Store

apps, and he guides you through Microsoft’s extensive developer documentation, pointing you to the

appropriate resources at each step in your app development process so that you can build your apps as

effectively as possible.

Enjoy the app, and we look forward to providing more Guided Tours soon!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this ebook and its companion content. Any errors

that are reported after the book’s publication will be listed on http://aka.ms/BrockschmidtBook2/Errata.

If you find an error that is not already listed, you can report it to us through the comments area of the

same page.

http://aka.ms/mspressfree
http://aka.ms/BrockschmidtBook2/Errata

29

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the

previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

Support for developers can be found on the Windows Developer Center’s support section, especially in

the Building Windows Store apps with HTML5/JavaScript forum. There is also an active community on

Stack Overflow for the winjs, windows-8 , windows-8.1, windows-store-apps, and winrt tags.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this book at

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly to

the editors at Microsoft Press. (No personal information will be requested.) Thanks for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress. And you can

keep up with Kraig here: http://www.kraigbrockschmidt.com/blog.

mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://msdn.microsoft.com/en-US/windows/apps/hh690938
http://social.msdn.microsoft.com/Forums/en-US/winappswithhtml5/threads
http://stackoverflow.com/questions/tagged/winjs
http://stackoverflow.com/questions/tagged/windows-8
http://stackoverflow.com/questions/tagged/windows-8.1
http://stackoverflow.com/questions/tagged/windows-store-apps
http://stackoverflow.com/questions/tagged/winrt
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://www.kraigbrockschmidt.com/blog

30

Chapter 1

The Life Story of a Windows Store

App: Characteristics of the

Windows Platform

Paper or plastic? Fish or cut bait? To be or not to be? Standards-based or native? These are the

questions of our time….

Well, OK, maybe most of these aren’t the grist for university-level philosophy courses, but certainly

the last one has been increasingly important for app developers. Standards-based apps are great

because they run on multiple platforms; your knowledge and experience with standards like HTML5

and CSS3 are likewise portable. Unfortunately, because standards generally take a long time to

produce, they always lag behind the capabilities of the platforms themselves. After all, competing

platform vendors will, by definition, always be trying to differentiate! For example, while HTML5 has a

standard for geolocation/GPS sensors and has started on working drafts for other forms of sensor input

(like accelerometers, compasses, near-field proximity, and so on), native platforms already make these

available. And by the time HTML’s standards are in place and widely supported, the native platforms

will certainly have added another set of new capabilities.

As a result, developers wanting to build apps around cutting-edge features—to differentiate from

their own competitors!—must adopt the programming language and presentation technology

imposed by each native platform or take a dependency on a third-party framework that tries to bridge

the differences.

Bottom line: it’s a hard choice.

Fortunately, Windows 8 and Windows 8.1 provide what I personally think is a brilliant solution for

apps. Early on, the Windows team set out to solve the problem of making native capabilities—the

system API, in other words—directly available to any number of programming languages, including

JavaScript. This is what’s known as the Windows Runtime API, or just WinRT for short (an API that’s

making its way onto the Windows Phone platform as well) .

WinRT APIs are implemented according to a certain low-level structure and then “projected” into

different languages—namely C++, C#, Visual Basic, and JavaScript—in a way that looks and feels

natural to developers familiar with those languages. This includes how objects are created, configured,

and managed; how events, errors, and exceptions are handled; how asynchronous operations work (to

keep the user experience fast and fluid); and even the casing of method, property, and event names.

31

The Windows team also made it possible to write native apps that employ a variety of presentation

technologies, including DirectX, XAML, and, in the case of apps written in JavaScript, HTML5 and CSS3.

This means that Windows gives you—a developer already versed in HTML, CSS, and JavaScript

standards—the ability to use what you know to write fully native Windows Store apps using the WinRT

API and still utilize web content! And I do mean fully native apps that both offer great content in

themselves and integrate deeply with the surrounding system and other apps (unlike “hybrids” where

one simply hosts web content within a thin, nearly featureless native shell) . These apps will, of course,

be specific to the Windows platform, but the fact that you don’t have to learn a completely new

programming paradigm is worthy of taking a week off to celebrate—especially because you won’t have

to spend that week (or more) learning a complete new programming paradigm!

It also means that you’ll be able to leverage existing investments in JavaScript libraries and CSS

template repositories: writing a native app doesn’t force you to switch frameworks or engage in

expensive porting work. That said, it is also possible to use multiple languages to write an app,

leveraging the dynamic nature of JavaScript for app logic while leveraging languages like C# and C++

for more computationally intensive tasks. (See “Sidebar: Mixed Language Apps” later in this chapter,

and if you’re curious about language choice for apps more generally, see My take on HTML/JS vs.

C/XAML vs. C++/DirectX on my blog.)

A third benefit is that as new web standards develop and provide APIs for features of the native

platform, the fact that your app is written in the same language as the web will make it easier to port

features from your native app to cross-platform web applications, if so desired.

Throughout this book we’ll explore how to leverage what you know of standards-based web

technologies—HTML, CSS, and JavaScript—to build great Windows Store apps for Windows 8.1. In the

next chapter we’ll focus on the basics of a working app and the tools used to build i t. Then we’ll look at

fundamentals like the fuller anatomy of an app, incorporating web content, using controls and

collections, layout, commanding, state management, and input (including sensors), followed by

chapters on media, animations, contracts through which apps work together, live tiles and toast

notifications, accessing peripheral devices, WinRT components (through which you can use other

programming languages and the additional APIs they can access), expanding your reach through

localization and accessibility, and working with the Windows Store. There is much to learn—it’s a rich

platform!

For starters, let’s talk about the environment in which apps run and the characteristics of the

platform on which they are built—especially the terminology that we’ll depend on in the rest of the

book (highlighted in italics). We’ll do this by following an app’s journey from the point when it first

leaves your hands, through its various experiences with your customers, to where it comes back home

for renewal and rebirth (that is, updates). For in many ways your app is like a child: you nurture it

through all its formative stages, doing everything you can to prepare it for life in the great wide world.

So it helps to understand the nature of that world!

http://kraigbrockschmidt.com/blog/?p=304
http://kraigbrockschmidt.com/blog/?p=304

32

Terminology note What we refer to as Windows Store apps, or sometimes just Store apps, are those

that are acquired from the Windows Store and for which all the platform characteristics in this chapter

(and book) apply. These are distinctly different from traditional desktop applications that are acquired

through regular retail channels and installed through their own setup programs. Unless noted, then, an

“app” in this book refers to a Windows Store app.

What about Windows Phone? The answer is yes! Windows Phone 8.1 supports writing apps with

HTML, CSS, and JavaScript using much of what we’ll be learning about in this book for Windows Store

apps. However, this capability on Windows Phone happened very late in the production of this book,

so I’m able to provide only a few details. I’ve included a brief overview later in this chapter under

“Sidebar: Writing Windows Phone Apps with HTML, CSS, and JavaScript,” with pointers to where you’ll

be able to find more information.

Leaving Home: Onboarding to the Windows Store

For Windows Store apps, there’s really one port of entry into the world: customers always acquire,

install, and update apps through the Windows Store. Developers and enterprise users can side-load

apps, but for the vast majority of the people you care about, they go to the Windows Store and

nowhere else.

This obviously means that an app—the culmination of your development work—has to get into the

Store in the first place. This happens when you take your pride and joy, package it up, and upload it to

the Store by using the Store/Upload App Packages command in Visual Studio. To do this, you’ll need to

create a developer account with the Store by using the Store > Open Developer Account command in

Visual Studio Express (and this account works for both Windows and Windows Phone). Visual Studio

Express and Expression Blend, which we’ll also be using, are free tools you can obtain from

http://dev.windows.com. This also works in Visual Studio Ultimate, the fuller, paid version of Microsoft’s

development environment.

The package itself is an appx file (.appx)—see Figure 1-1—that contains your app’s code, resources,

libraries, and a manifest, up to a combined limit of 8GB. The manifest describes the app (names, logos,

etc.), the capabilities it wants to access (such as media libraries or specific devices like cameras), and

everything else that’s needed to make the app work (such as file associations, declaration of

background tasks, and so on). Trust me, we’ll become great friends wi th the manifest!

http://dev.windows.com/

33

FIGURE 1-1 An appx package is simply a zip file that contains the app’s files and assets, the app manifest, a

signature, and a sort of table-of-contents called the blockmap. When uploading an app, the initial signature is

provided by Visual Studio; the Windows Store will re-sign the app once it’s certified.

Blockmaps make updates easy The blockmap is hugely important for the customer experience of app

updates (which are automatically installed by default in Windows 8.1) and, as a consequence, for your

confidence in issuing updates. It describes how the app’s files are broken up into 64K blocks. In

addition to providing certain performance optimizations and security functions (like detecting whether

a package has been tampered with), the blockmap describes exactly what parts of an app have been

updated between versions so that the Windows Store need download only those specific blocks rather

than the whole app anew. This greatly reduces the time and overhead that a user experiences when

acquiring and installing updates. That is, even if your whole app package is 300MB, an update that

affects a total of four blocks would mean your customers are downloading only 256 kilobytes.

The upload process will walk you through setting your app’s name (which you do ahead of time

using the Store > Reserve App Name and Store > Associate App with the Store commands in Visual

Studio), choosing selling details (including price tier, in-app purchases, and trial periods), providing a

description and graphics, and also providing notes to manual testers. After that, your app goes through

a series of job interviews, if you will: background checks (malware scans and GeoTrust certification) and

manual testing by a human being who will read the notes you provide (so be courteous and kind!).

Along the way you can check your app’s progress through the Windows Store Dashboard.1

The overarching goal with these job interviews (or maybe it’s more like getting through a irport

security!) is to help users feel confident and secure in trying new apps, a level of confidence that isn’t

generally found with apps acquired from the open web. Because all apps in the Store are certified,

signed, and subject to ratings and reviews, customers can trust all apps from the Store as they would

1 All of the automated tests except the malware scans are incorporated into the Windows App Certification Kit, affectionately

known as the WACK. This is part of the Windows SDK that is itself included with the Visual Studio Express/Expression Blend

download. If you can successfully run the WACK during your development process, you shouldn’t have any problem passing the

first stage of onboarding. We’ll learn about the WACK in Chapter 20.

https://appdev.microsoft.com/StorePortals

34

trust those recommended by a reliable friend. Truly, this is wonderful news for most developers,

especially those just getting started—it gives you the same access to the worldwide Windows market

that has been previously enjoyed only by those companies with an established brand or reputation.

It’s worth noting that because you set up pricing, trial versions, and in-app purchases during the on-

boarding process, you’ll have already thought about your app’s relationship to the Store quite a bit!

After all, the Store is where you’ll be doing business with your app, whether you’re in business for fame,

fortune, fun, or philanthropy.

Indeed, this relationship spans the entire lifecycle of an app—from planning and development to

distribution, support, and servicing. This is, in fact, why I’ve started this life story of an app with the

Windows Store, because you really want to understand that whole lifecycle from the very beginning of

planning and design. If, for example, you’re looking to turn a profit from a paid app or in-app

purchases, perhaps also offering a time-limited or feature-limited trial, you’ll want to engineer your app

accordingly. If you want to have a free, ad-supported app, or want to use a third-party commerce

solution for in-app purchases (bypassing revenue sharing with the Store), these choices also affect your

design from the get-go. And even if you’re just going to give the app away to promote a cause or to

just share your joy, understanding the relationship between the Store and your app is still important.

For all these reasons, you might want to skip ahead and read the “Your App, Your Business” section of

Chapter 20, "Apps for Everyone, Part 2," before you start writing your app in earnest. Also, take a look

at the Certify your app topic on the Windows Developer Center.

Anyway, if your app hits any bumps along the road to certification, you’ll get a report back with all

the details, such as any violations of the App certification requirements for the Windows Store (part of

the Windows Store agreements section). Otherwise, congratulations—your app is ready for customers!

Sidebar: The Store API and Product Simulator

At run time, apps use the Windows.ApplicationModel.Store.CurrentApp class in WinRT to

retrieve their product information from the Store (including in-app purchase listings), check

license status, and prompt the user to make purchases (such as upgrading a trial or making an

in-app purchase).

This begs a question: how can an app test such features before it’s even in the Store? The

answer is that during development, you use these APIs through the CurrentAppSimulator class

instead. This is entirely identical to CurrentApp (and in the same namespace) except that it works

against local data in an XML file rather than live Store data in the cloud. This allows you to

simulate the various conditions that your app might encounter so that you can exercise all your

code paths appropriately. Just before packaging your app and sending it to the Store, just

change CurrentAppSimulator to CurrentApp and you’re good to go. (If you forget, the

simulator will simply fail on a non-developer machine, like those used by the Store testers,

meaning that you’ll fail certification.)

http://msdn.microsoft.com/library/windows/apps/hh694079.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx

35

Discovery, Acquisition, and Installation

Now that your app is out in the world, its next job is to make itself known and attractive to potential

customers. What’s vital to understand here is what the Windows Store does and does not do for you. Its

primary purpose is to provide a secure and trustworthy marketplace for distributing apps, updating

apps, transparently handling financial transactions across global markets, and collecting customer

reviews and basic telemetry (crash dumps)—which taken together is a fabulous service! That said, the

mere act of onboarding an app to the Windows Store does not guarantee anyone will find it. That’s

one reality of publishing software that certainly hasn’t changed. You still need to write great apps and

you still need to market them to your potential customers, using advertising, social media, and

everything else you’d do when trying to get a business off the ground.

That said, even when your app is found in the Store it needs to present itself well to its suitors. Each

app in the Store has a product description page where people see your app description, promotional

graphics, ratings and reviews, and the capabilities your app has declared in its manifest, as shown in

Figure 1-2. That last bit means you want to be judicious in declaring your capabilities. A music player

app, for instance, will obviously declare its intent to access the user’s music library but usually doesn’t

need to declare access to the pictures library unless it has a good justification. Similarly, a

communications app would generally ask for access to the camera and microphone, but a news reader

app probably wouldn’t. On the other hand, an ebook reader might declare access to the microphone if

it had a feature to attach audio notes to specific bookmarks.

FIGURE 1-2 A typical app page in the Windows Store; by tapping the Permissions link at the upper left, the page

pans to the Details section, which lists all the capabilities that are declared in the manifest (overlay). You can see

here that Skype declares five different capabilities, all of which are appropriate for the app’s functionality.

36

The point here is that what you declare must make sense to the user, and if there are any doubts

you should clearly indicate the features related to those declarations in your app ’s description.

Otherwise the user might really wonder just what your news reader app is going to do with the

microphone and might opt for another app that seems less intrusive.2

The user will also see your app pricing, of course, and whether you offer a trial period. Whatever the

case, if they choose to install the app (getting it for free, paying for it, or accepting a trial), your app

now becomes fully incarnate on a real user’s device. The appx package is downloaded to the device

and installed automatically along with any dependencies, such as the Windows Library for JavaScript

(see “Sidebar: What is the Windows Library for JavaScript?”). As shown in Figure 1-3, the Windows

deployment manager creates a folder for the app, extracts the package contents to that location,

creates appdata folders (local, roaming, and temp, which the app can freely access, along with settings

files for key-value pairs), and does any necessary fiddling with the registry to install the app’s tile on the

Start screen, create file associations, install libraries, and do all those other things that are again

described in the manifest. It can also start live tile updates before your app is even run the first time if

you provide an appropriate URI in your manifest. There are no user prompts during this process—

especially not those annoying dialogs about reading a licensing agreement!

FIGURE 1-3 The installation process for Windows Store apps; the exact sequence is unimportant. Any roaming state

that exists in the cloud from the app on other devices is automatically downloaded as part of installation.

2 The user always has the ability to disallow access to sensitive resources and devices at run time for those apps that have declared

the intent. They can do this for a specific app through the system-provided Settings > Permissions command or generally through

the various section under PC Settings > Privacy.

37

In fact, licensing terms are integrated into the Store; acquisition of an app implies acceptance of

those terms. (However, it is perfectly allowable for apps to show their own license acceptance page on

startup, as well as require an initial login to a service if applicable.) But here’s an interesting point: do

you remember the real purpose of all those lengthy, annoyingly all-caps licensing agreements that we

pretend to read? Almost all of them basically say that you can install the software on only one machine.

Well, that changes with Windows Store apps: instead of being licensed to a machine, they are licensed

to the user, giving that user the right to install the app on up to eighty-one different devices.

In this way Store apps are a much more personal thing than desktop apps have traditionally been.

They are less general-purpose tools that multiple users share and more like music tracks or other media

that really personalize the overall Windows experience. So it makes sense that users can replicate their

customized experiences across multiple devices, something that Windows supports through automatic

roaming of app data and settings between those devices. (More on that later.)

In any case, the end result of all this is that the app and its necessary structures are wholly ready to

awaken on a device as soon as the user taps a tile on the Start screen or launches it through features

like Search and Share. And because the system knows about everything that happened during

installation, it can also completely reverse the process for a 100% clean uninstall—completely blowing

away the appdata folders, for example, and cleaning up anything and everything that was put in the

registry. This keeps the rest of the system entirely clean over time, even though the user may be

installing and uninstalling hundreds or thousands of apps. This is like the difference between having

guests in your house and guests in a hotel. In your house, guests might eat your food, rearrange the

furniture, break a vase or two, feed leftovers to the pets, stash odds and ends in the backs of drawers,

and otherwise leave any number of irreversible changes in their wake (and you know desktop apps that

do this, I’m sure!). In a hotel, on the other hand, guests have access only to a very small part of the

whole structure, and even if they trash their room, the hotel can clean it out and reset everything as if

the guest was never there.

Sidebar: What Is the Windows Library for JavaScript?

The HTML, CSS, and JavaScript code in a Windows Store app is only parsed, compiled, and

rendered at run time. (See the “Playing in Your Own Room: The App Container” section below.)

As a result, a number of system-level features for apps written in JavaScript, like controls,

resource management, and default styling are supplied through the Windows Library for

JavaScript, or WinJS, rather than through the Windows Runtime API. This way, JavaScript

developers see a natural integration of those features into the environment they already

understand, rather than being forced to use different kinds of constructs.

WinJS, for example, provides HTML implementations of a number of controls, meaning that

instances of those controls appear as part of the DOM and can be styled with CSS like other

intrinsic HTML elements. This is much more natural for developers than having to create an

instance of some WinRT class, bind it to a separate HTML element, and style it through code or

some other proprietary markup scheme. Similarly, WinJS provides an animations library built on

38

CSS that embodies the Windows user experience so that apps don’t have to figure out how to re-

create that experience themselves.

Generally speaking, WinJS is a toolkit that contains a number of independent capabilities that

can be used together or separately. WinJS thus also provides helpers for common JavaScript

coding patterns, simplifying the definition of namespaces and object classes, handling of

asynchronous operations (that are all over WinRT) through promises, and providing structural

models for apps, data binding, and page navigation. At the same time, it doesn’t attempt to wrap

WinRT unless there is a compelling scenario where WinJS can provide real value. After all, the

mechanism through which WinRT is projected into JavaScript already translates WinRT structures

into forms that are familiar to JavaScript developers.

Truth be told, you can write a Windows Store app in JavaScript without WinJS or just pick and

choose what parts of the library are to your liking! But I think you’ll find that it saves you all kinds

of tedious work. In addition, WinJS is shared between every Store app written in JavaScript, and

it's automatically downloaded and updated as needed when dependent apps are installed. We’ll

see nearly all of its features throughout this book, and you can always explore what’s available

through the Windows API reference (just scroll down to where you see WinJS and its subsidiary

namespaces in the left-hand table of contents).

Sidebar: Third-Party Libraries

Apps can freely use third-party libraries by bundling them into their own app package, provided

of course that the libraries use only the APIs available to Windows Store apps and follow

necessary security practices that protect against script injection and other attacks . Many apps use

jQuery 2.0 (see jQuery and WinJS working together in Windows Store apps); others use

Angular.js, Box2D, Prototype, and so forth. Apps can also use third-party binaries, such as WinRT

components, by bundling them with their app package. See this chapter’s "Sidebar: Mixed

Language Apps."

For an index of the ever-growing number of third-party solutions that are available for

Windows Store apps, visit the Windows Partner Directory at http://services.windowsstore.com/.

Of course, bundling libraries and frameworks into your app package will certainly make that

package larger, raising natural concerns about longer download times for apps and increased

disk footprint. This has prompted requests for the ability to create shared framework packages in

the Store (which Microsoft supports only for a few of its own libraries like WinJS). However, the

Windows team devised a different approach. When you upload an app package to the Store, you

will still bundle all your dependencies. On the consumer side, however, the Windows Store

automatically detects when multiple apps share identical files. It then downloads and maintains a

single copy of those files, making subsequent app installations faster and reducing overall disk

footprint.

This way the user sees all the benefits of shared frameworks in a way that’s almost entirely

http://msdn.microsoft.com/library/windows/apps/br211377.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/07/10/jquery-and-winjs-working-together-in-windows-store-apps.aspx
http://services.windowsstore.com/

39

transparent to developers. The one requirement is that you should avoid, if possible, recompiling

or otherwise modifying third-party libraries, especially larger ones like game engines, because

you’ll then produce different variations that must be managed separately.

Playing in Your Own Room: The App Container

Now, just as the needs of each day may be different when we wake up from our night’s rest, Store apps

can wake up—be activated—for any number of reasons. The user can, of course, tap or click the app’s

tile on the Start screen. An app can also be launched in response to charms like Search and Share,

through file or protocol associations, and a number of other mechanisms. We’ll explore these variants

as we progress through this book. But whatever the case, there’s a little more to this part of the story

for apps written in JavaScript.

In the app’s package folder are the same kind of source fi les that you see on the web: .html files, .css

files, .js files, and so forth. These are not directly executable like .exe files for apps written in C#, Visual

Basic, or C++, so something has to take those source files and produce a running app with them. When

your app is activated, then, what actually gets launched is that something: a special app host process

called wwahost.exe3, as shown in Figure 1-4.

FIGURE 1-4 The app host is an executable (wwahost.exe) that loads, renders, and executes HTML, CSS, and

JavaScript, in much the same way that a browser runs a web application.

3 “wwa” is an old acronym for Windows Store apps written in JavaScript; some things just stick….

40

The app host is more or less Internet Explorer without the browser chrome—more in that your app

runs on top of the same HTML/CSS/JavaScript engines as Internet Explorer, less in that a number of

things behave differently in the two environments. For example:

 A number of methods in the DOM API are either modified or not available, depending on their

design and system impact. For example, functions that display modal UI and block the UI thread

are not available, like window.alert, window.open, and window.prompt. (Try Windows.UI.-

Popups.MessageDialog instead for some of these needs.)

 The MSApp object, which represents the app host’s capabilities, provides many of the same

methods like requestAnimationFrame as it does within Internet Explorer, and it also provides

additional features for Store apps.

 The engines support additional methods and properties on a variety of elements—such as

audio, video, and canvas—that are specific to being an app as opposed to a website.

 The default page of an app written in JavaScript runs in what’s called the local context wherein

JavaScript code has access to WinRT, can make cross-domain HTTP requests, and can access

remote media (videos, images, etc.). However, you cannot load remote script (from http[s]

sources, for example), and script is automatically filtered out of anything that might affect the

DOM and open the app to injection attacks (e.g., document.write and innerHTML properties).

 Other pages in the app, as well as webview and iframe elements within a local context page,

can run in the web context wherein you get web-like behavior (such as remote script) but don’t

get WinRT access nor cross-domain HTTP requests (though you can still use much of WinJS).

Web context elements are generally used to host web content on a locally packaged page (like

a map control, as we’ll see in Chapter 2, "Quickstart"), or to load pages that are directly hosted

on the web, while not allowing web pages to drive the app (a violation of Store policy).

For full details on all these behaviors, see HTML and DOM API changes list and HTML, CSS, and

JavaScript features and differences on the Windows Developer Center, http://dev.windows.com. As with

the app manifest, you should become good friends with the Developer Center.

All Store apps, whether hosted or not, run inside an environment called the app container. This is an

insulation layer, if you will, that generally blocks local interprocess communication and either blocks or

brokers access to system resources. The key characteristics of the app container are described as follows

and illustrated in Figure 1-5:

 All Store apps run within a dedicated environment that cannot interfere with or be interfered by

other apps, nor can apps interfere with the system.

 Store apps, by default, get unrestricted read/write access only to their specific appdata folders

on the hard drive (local, roaming, and temp). Access to everything else in the file system

(including removable storage) has to go through a broker. This gatekeeper provides access only

if the app has declared the necessary capabilities in its manifest and/or the user has specifically

allowed it. We’ll see the specific list of capabilities shortly.

http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://dev.windows.com/

41

 Access to sensitive devices (like the camera, microphone, and GPS) and certain classes of

peripherals is similarly controlled—the WinRT APIs that work with those devices will fail if the

broker blocks those calls because the app hasn’t declared the appropriate capability in its

manifest or the user has denied permission at run time. And access to critical system resources,

such as the registry, simply isn’t allowed at all.

 Store apps cannot programmatically launch other apps by name or file path but can do so

through file or URI scheme associations. Because these associations are ultimately under the

user’s control, there’s no guarantee that such an operation will start a specific app. However, we

do encourage app developers to use app-specific URI schemes that will effectively identify your

specific app as a target. Technically speaking, another app could come along and register the

same URI scheme (thereby giving the user a choice), but this is unlikely with a URI scheme that’s

closely related to the app’s identity.

 Store apps are isolated from one another to protect from various forms of attack. This also

means that some legitimate uses (like a snipping tool to copy a region of the screen to the

clipboard) cannot be written as a Windows Store app; they must be a desktop application.

 Direct interprocess communication is blocked between Store apps, between Store apps and

desktop applications, and between Store apps and local services. (Exceptions are made for side-

loaded apps in enterprise environments, and in some debugging conditions.) Apps can still

communicate through the cloud (web services, sockets, etc.), and many common tasks that

require cooperation between apps—such as Search and Share—are handled through contracts

in which those apps need not know any details about each other.

FIGURE 1-5 Process isolation for Windows Store apps.

42

Sidebar: Mixed Language Apps

Windows Store apps written in JavaScript can access only WinRT APIs directly. Apps or libraries

written in C#, Visual Basic, and C++ also have access to a subset of Win32 and .NET APIs , as

documented on Win32 and COM for Windows Store apps. Unfair? Not entirely, because you can

write a WinRT component in those other languages that make functionality built with those other

APIs available in the JavaScript environment (through the same projection mechanism that WinRT

itself uses). Because these components are written in compiled languages, they can execute faster

than the equivalent code written in JavaScript and also offer some degree of intellectual property

protection (e.g., hiding algorithms either through obfuscation or by using a fully compiled

language like C++).

Such mixed language apps thus use HTML/CSS for their presentation layer and JavaScript for

some app logic while placing the most performance critical or sensitive code in compiled

components. The dynamic nature of JavaScript, in fact, makes it a great language for gluing

together multiple components. We’ll see more in Chapter 18, "WinRT Components."

Note that when your main app is written in JavaScript, we recommend using only WinRT

components written in C++ to avoid having two managed environments loaded into the same

process. Using WinRT components written in C# or Visual Basic does work but incurs added

memory overhead and risks memory leaks across multiple garbage collectors.

Sidebar: Assigned Access (Kiosk Mode)

In a variety of scenarios, such as a public kiosk, it’s desirable to allow only a single app to run on

a device and to prevent users from accessing most system capabilities like the Start screen. This

feature, called assigned access, is configured through PC Settings > Accounts > Other Accounts >

Set Up An Account For Assigned Access, where you associate a specific account with the one app

that’s allowed for that account. This can also be done through PowerShell scripts. For more

information, see Assigned access: FAQ and Assigned Access Cmdlets.

Different Views of Life: Views and Resolution Scaling

So, the user has tapped on an app tile, the app host has been loaded into memory, and it’s ready to get

everything up and running. What does the user see?

The first thing that becomes immediately visible is the app’s splash screen, which is described in its

manifest with an image and background color. This system-supplied screen guarantees that at least

something shows up for the app when it’s activated, even if the app completely gags on its first line of

code or never gets there at all. In fact, the app has 15 seconds to get its act together and display its

main window, or Windows automatically gives it the boot (terminates it, that is) if the user switches

away. This avoids having apps that hang during startup and just sit there like a zombie, where often the

http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://windows.microsoft.com/en-us/windows-8/assigned-access
http://technet.microsoft.com/library/dn336438.aspx

43

user can only kill it off by using that most consumer-friendly tool, Task Manager. (Yes, I’m being

sarcastic—Task Manager is today much more user-friendly than it used to be.) Of course, we highly

recommend that you get your app to an interactive state as quickly as possible; we’ll look at some

strategies for this in Chapter 3, “App Anatomy and Performance Fundamentals.” That said, some apps

will need more time to load, in which case you can create an extended splash screen by making the

initial view of your main window look the same as the splash screen. This satisfies the 15-second time

limit and lets you display other UI while the app is getting ready. Details are in Appendix B, “WinJS

Extras.”

Now, when a normally launched app comes up, it might share space with other apps, but often it

has full command of the entire screen—well, not entirely. Windows reserves a one pixel space along

every edge of the display through which it detects edge gestures, but the user doesn’t see that detail.

Your app still gets to draw in those areas, mind you, but it will not be able to detect pointer events

therein. A small sacrifice for full-screen glory!

The purpose of those edge gestures—swipes from the edge of the screen toward the center—is to

keep both system and app commands (like menus and other commanding UI) out of the way until

needed—an aspect of the design principle called “content before chrome.” This helps the user stay fully

immersed in the app experience. The left and right edge gestures are reserved for the system, whereas

the top and bottom are for the app. Swiping up from the top or bottom edges, as you’ve probably

seen, brings up the app bar on the bottom of the screen where an app places most of its commands,

and possibly also a navigation bar on the top. We’ll see these in Chapter 9, “Commanding UI.”

When running full-screen, the user’s device can be oriented in either portrait or landscape, and apps

can process various events to handle those changes. An app can also lock the orientation as needed, as

well as specify its supported orientations in the manifest, which prevent Windows from switching to an

unsupported orientation when the app is in the foreground. For example, a movie player will generally

want to lock into landscape mode during playback such that rotating the device doesn’t change the

display. We’ll see these details in Chapter 8, "Layout and Views."

What’s also true is that your app might not always be running full-screen, even from first launch. In

landscape mode, you app can share the screen real estate with perhaps as many as four other apps,

depending on the screen size.4 (See Figure 1-6.) In these cases it’s helpful to refer to the app’s display

area as a view. By default, Windows allows the user to resize a view down to 500 pixels wide, and you

can indicate in your manifest that your app supports going down to 320 pixels wide, increasing the

likelihood that the user will keep it visible alongside other apps.

4 For developers familiar with Windows 8, the distinct view states of filled, snapped, fullscreen-portrait, and fullscreen-

landscape are replaced in Windows 8.1 with variable sizing.

44

FIGURE 1-6 Various arrangements of Windows Store apps—a 50/50 split view on the smaller screen (in front), and

four apps sharing the screen on a large monitor (behind). Depending on the minimum size indicated in their

manifests, apps must be prepared to show properly in any width and orientation, a process that generally just

involves visibility of elements and layout and that can often be handled entirely within CSS media queries.

In practical terms, variable view sizing means that your layout must be responsive, as it’s called with

web design, accommodating different aspect ratios and different widths and heights. Generally

speaking, most if not all of this can be handled through CSS media queries using the orientation

feature (to detect portrait or landscape aspect ratio) along with min-width and max-width. We’ll see

distinct examples in Chapter 2. It’s also worth noting that when one app launches another through

associations or other contracts, it can specify whether and how it wants its view to remain visible. This

makes it possible to really have two apps working together side by side for a shared purpose. Indeed,

the default behavior when the user activates a hyperlink in an app is that the browser will open in a

50/50 split view alongside the app.

Apps can also programmatically spawn multiple views, which the user can size and position

independently of one another, even across multiple monitors. (For this reason, views cannot depend on

their relative placement and should represent separate functions of the app.) An app can even project a

secondary view such that it always shows full-screen on a second monitor, as is appropriate for an app

that shows speaker notes in one view and a presentation in the other.

In narrow views, especially the optional 320px minimum, apps will often change the presentation of

content or its level of detail. For instance, in portrait aspect ratios (height > width), horizontally

oriented lists are typically switched to a condensed vertical orientation. But don’t be nonchalant about

this: consciously design views for every page in your app and design them well. After all, users like to

look at things that are useful and beautiful, and the more an app does this with all its views, the more

likely it is that users will again keep that app visible even while they’re working in another.

45

Another key point for all views is that they aren’t mode changes. When a view is resized but still

visible, or when orientation changes, the user is essentially saying, “Please stand over here in this

doorway, or please lean sideways.” So the app should never change what it’s doing (like switching from

a game board to a high score list) when updating a view’s layout; it should just present a view

appropriately for that width and orientation.

With all views, an app should make good use of all its available screen real estate. Across your

customer base, your app will be run on many different displays, anywhere from 1024x768 (the

minimum hardware requirement) to resolutions like 2560x1440 and beyond that are becoming more

common. The guidance here is that views with fixed content (like a game board) will generally scale in

size to fill the available space, whereas views with variable content (like a news reader) will generally

show more content. For more details, refer to Guidelines for window sizes and scaling to screens and

the Windows Design Center.

It might also be true that you’re running on a high-resolution device that has a very small screen

(high pixel density), such as the 10.6” Surface Pro that has a 1920x1200 resolution, a 13.3” QHD device,

or an 8” device with an even sharper screen. Fortunately, Windows does automatic scaling such that the

app still sees a 1366x768 display (more or less) through CSS, JavaScript, and the WinRT API. In other

words, you almost don’t have to care. The only concern is bitmap (raster) graphics, with which you’ll

ideally provide scale-specific variants as we’ll see in Chapters 3 and 8. Fortunately, the Windows Store

automatically manages resources across scale factors and languages (for localization) such that it

downloads only those resources that a user needs for their configuration.

As a final note, when an app is activated in response to a contract like Search or Share, its initial view

might not be a typical app view at all but rather its specific landing page for that contract that overlays

the current foreground app. We’ll see these details in Chapter 15, "Contracts."

Sidebar: Single-Page vs. Multipage Navigation

When you write a web application with HTML, CSS, and JavaScript, you typically end up with a

number of different HTML pages and navigate between them using <a href> tags or by setting

document.location.

This is all well and good and works in a Windows Store app, but it has several drawbacks. One

is that navigation between pages means reloading script, parsing a new HTML document, and

parsing and applying CSS again. Besides obvious performance implications, this makes it difficult

to share variables and other data between pages, as you need to either save that data in

persistent storage or stringify the data and pass it on the URI.

Furthermore, switching between pages is visually abrupt: the user sees a blank screen while

the new page is being loaded. This makes it difficult to provide a smooth, animated transition

between pages as generally seen within the Windows personality—it’s the antithesis of “fast and

fluid” and guaranteed to make designers cringe.

http://msdn.microsoft.com/library/windows/apps/hh465349.aspx
http://design.windows.com/

46

To avoid these concerns, apps written in JavaScript are typically structured as a single HTML

page (basically a container div) into which different bits of HTML content, called page controls in

WinJS, are loaded into the DOM at run time, similar to how AJAX works. This DOM replacement

scheme has the benefit of preserving the script context and allows for transition animations

through CSS and/or the WinJS animations library. We’ll see the details in Chapter 3.

Those Capabilities Again: Getting to Data and Devices

At run time, now, even inside the app container, your app has plenty of room to play and to delight

your customers. It can employ web content and connectivity to its heart’s content, either directly

hosting content in its layout with the webview control or obtaining data through HTTP requests or

background transfers (Chapter 4). An app has many different controls at its disposal, as we’ll see in

Chapters 5, 6, and 7, and can style them however it likes from the prosaic to the outrageous. Similarly,

designers have the whole gamut of HTML and CSS to work with for their most fanciful page layout

ideas, along with a Hub control that simplifies a common home page experience (Chapter 8). An app

can work with commanding UI like the app bar (Chapter 9), manage state and user data (Chapters 10

and 11), and receive and process pointer events, which unify touch, mouse, and stylus (Chapter 12—

with these input methods being unified, you can design for touch and get the others for free; input

from the physical and on-screen keyboards are likewise unified). Apps can also work with sensors

(Chapter 12), rich media (Chapter 13), animations (Chapter 14), contracts (Chapter 15), tiles and

notifications (Chapter 16), and various devices and printers (Chapter 17). They can optimize

performance and extend their capabilities through WinRT components (Chapter 18), and they can

adapt themselves to different markets (Chapter 19), provide accessibility (Chapter 19), and work with

various monetization options like advertising, trial versions, and in-app purchases (Chapter 20).

Note For a more complete mapping between different app features and the chapters of this book, see

the “Feature Roadmap and Cross-Reference” section at the end of this chapter.

Many of these features and their associated APIs have no implications where user privacy is

concerned, so apps have open access to them. These include controls, touch/mouse/stylus input,

keyboard input, and sensors (like the accelerometer, inclinometer, and light sensor). The appdata

folders (local, roaming, and temp) that were created for the app at installation are also openly

accessible. Other features, however, are again under more strict control. As a person who works

remotely from home, for example, I really don’t want my webcam turning on unless I specifically tell it

to—I may be calling into a meeting before I’ve had a chance to wash up! Such devices and other

protected system features, then, are again controlled by a broker layer that will deny access if (a) the

capability is not declared in the manifest, or (b) the user specifically disallows that access at run time.

Those capabilities are listed in the following table:

47

Capability Description Prompts for user

consent at run time

Internet (Client) Outbound access to the Internet and public networks (which includes

making requests to servers and receiving information in response).5

No

Internet (Client & Server)

(superset of Internet (Client);

only one needs to be declared)

Outbound and inbound access to the Internet and public networks

(inbound access to critical ports is always blocked).

No

Private Networks

(Client & Server)

Outbound and inbound access to home or work intranets (inbound access

to critical ports is always blocked).

No

Music Library

Pictures Library

Video Library6

Read/write access to the user’s Music/Pictures/Videos area on the file

system (all files).

No

Removable Storage Read/write access to files on removable storage devices for specifically

declared file types.

No

Microphone Access to microphone audio feeds (includes microphones on cameras). Yes

Webcam Access to camera audio/video/image feeds. Yes

Location Access to the user’s location via GPS. Yes

Proximity The ability to connect to other devices through near-field communication

(NFC).

No

Enterprise Authentication Access to intranet resources that require domain credentials; not typically

needed for most apps. Requires a corporate account in the Windows

Store.

No

Shared User Certificates Access to software and hardware (smart card) certificates. Requires a

corporate account in the Windows Store.

Yes, in that the user

must take action to

select a certificate,

insert a smart card, etc.

[other arbitrary devices and

peripherals]

Access to specific devices via USB, HID, Bluetooth, WiFi Direct, and NFC

communication transports.

Yes

When user consent is involved, calling an API to access the resource in question will prompt for user

consent, as shown in Figure 1-7. If the user accepts, the API call will proceed; if the user declines, the

API call will return an error. Apps must accordingly be prepared for such APIs to fail, and they must

then behave accordingly.

FIGURE 1-7 A typical user consent dialog that’s automatically shown when an app first attempts to use a brokered

capability. This will happen only once within an app, but the user can control their choice through the Settings

charm’s Permissions command for that app or through PC Settings > Privacy.

5 Note that network capabilities are not necessary to receive push notifications because those are received by the system

and not the app.
6 The Documents Library capability that was present in Windows 8 no longer exists in Windows 8.1 because the scenarios

that actually needed it can be handled through file pickers.

48

When you first start writing apps, really keep the manifest and these capabilities in mind—if you

forget one, you’ll see APIs failing even though all your code is written perfect ly (or was copied from a

working sample). In the early days of building the first Windows Store apps at Microsoft, we routinely

forgot to declare the Internet (Client) capability, so even things like getting to remote media with an

img element or making a simple call to a web service would fail. Today the tools do a better job of

alerting you if you’ve forgotten a capability, but if you hit some mysterious problem with code that

you’re sure should work, especially in the wee hours of the night, check the manifest!

We’ll encounter many other sections of the manifest besides capabilities in this book. For example,

you can provide a URI through which Windows can request tile updates so that your app has a live tile

experience even before it is run the first time. The removable storage capability requires you to declare

the specific file types for your app (otherwise access will generally be denied). The manifest also

contains content URIs: specific rules that govern which URIs are known and trusted by your app and can

thus act to some degree on the app’s behalf. Furthermore, the manifest is where you declare things like

your supported orientations, background tasks (like playing audio, tracking geofences, or handling real-

time communication), contract behaviors (such as which page in your app should be brought up in

response to being invoked via a contract), custom protocols, and the appearance of tiles and

notifications. You and your app will become bosom buddies with the manifest.

The last note to make about capabilities is that while programmatic access to the file system is

controlled by certain capabilities, the user can always point your app to other noncritical areas of the

file system—and any type of file—through the file picker UI. (See Figure 1-8.) This explicit user action is

taken as consent for your app to access that particular file or folder (depending on what you’re asking

for). Once you’re app is given this access, you can use certain APIs to record that permission so that you

can get to those files and folders the next time your app is launched.

In summary, the design of the manifest and the brokering layer is to ensure that the user is always in

control where anything sensitive is concerned, and as your declared capabilities are listed on your app’s

description page in the Windows Store, the user should never be surprised by your app’s behavior.

49

FIGURE 1-8 Using the file picker UI to access other parts of the file system from within a Store app, such as folders

on a drive root (but not protected system folders). This is done by tapping the down arrow next to “Files.” Typically,

the file picker will look much more interesting when it’s pointing to a media library!

Taking a Break, Getting Some Rest: Process Lifecycle

Management

Whew! We’ve covered a lot of ground already in this first chapter—our apps have been busy, busy,

busy, and we haven’t even started writing any code yet! In fact, apps can become really busy when they

implement certain sides of contracts. If an app declares itself as a Share target, a Contact or

Appointments provider, or a File Picker provider in its manifest (among other things), Windows will

activate the app in response to the appropriate user actions. For example, if the user invokes the Share

charm and picks your app as a Share target, Windows will activate the app with an indication of that

purpose. In response, the app displays its specific share UI—not the whole app—and when that task is

complete, Windows will shut your app down again (or send it to the background if it was already

running) without the need for additional user input.

This automatic shutdown or sending the app to the background are examples of built-in lifecycle

management for Windows Store apps that helps conserve power and optimize battery life. One reality

of traditional multitasking operating systems is that users typically leave a bunch of apps running, all of

which consume power. This makes sense with desktop apps because many of them can be at least

partially visible simultaneously. But for Store apps, the system is boldly taking on the job itself and

using the full-screen nature of those apps (or the limited ability to share the screen) to its advantage.

Apps typically need to be busy and active only when the user can see them (in whatever view).

When most apps are no longer visible, there is really little need to keep them idling. It’s better to just

turn them off, give them some rest, and let the visible apps utilize the system’s resources.

50

So when an app goes to the background, Windows will automatically suspend it after about 5

seconds (according to the wall clock). The app is notified of this event so that it can save whatever state

it needs to (which I’ll describe more in the next section). At this point the app is still in memory, with all

its in-memory structures intact, but it will simply not be scheduled for any CPU time. (See Figure 1-9.)

This is very helpful for battery life because most desktop apps idle like a gasoline-powered car, still

consuming a little CPU in case there’s a need, for instance, to repaint a portion of a window. Because a

Windows Store app in the background is completely obscured, it doesn’t need to do such small bits of

work and can be effectively frozen. In this sense it is much more like a modern electric vehicle that can

be turned on and off as often as necessary to minimize power consumption.

If the user then switches back to the app (in whatever view, through whatever gesture), it will be

scheduled for CPU time again and resume where it left off (adjusting its layout for the view, of course).

The app is also notified of this event in case it needs to re-sync with online services, update its layout,

refresh a view of a file system library, or take a new sensor reading because any amount of time might

have passed since it was suspended. Typically, though, an app will not need to reload any of its own

state because it was in memory the whole time.

FIGURE 1-9 Process lifetime states for Windows Store apps.

There are a couple of exceptions to this. First, Windows provides a background transfer API—see

Chapter 4, “Web Content and Services”—to offload downloads and uploads from app code, which

means apps don’t have to be running for such purposes. Apps can also ask the system to periodically

update live tiles on the Start screen with data obtained from a service, or they can employ push

notifications (through the Windows Push Notification Service, WNS) that Windows can handle

directly—see Chapter 16, “Alive with Activity.” Second, certain kinds of apps do useful things when

they’re not visible, such as audio players, communications apps, or those that need to take action when

specific system events occur (like a network change, user login, etc.). With audio, as we’ll see in Chapter

13, “Media,” an app specifies background audio in its manifest (where else!) and sets certain properties

on the appropriate audio elements. This allows it to continue running in the background. With system

51

events, as we’ll also see in Chapter 16, an app declares background tasks in its manifest that are tied to

specific functions in their code. In this case, Windows will run that task (while the app is suspended)

when an appropriate trigger occurs. This is shown at the bottom of Figure 1-9.

Over time, of course, the user might have many apps in memory, and most of them will be

suspended and consume very little power. Eventually there will come a time when the foreground

app—especially one that’s just been launched—needs more memory than is available. In this case,

Windows will automatically terminate one or more apps, dumping them from memory. (See Figure 1-9

again.)

But here’s the rub: unless a user explicitly closes an app—by using Alt+F4 or a top-to-bottom swipe-

and-hold, because Windows Store policy specifically disallows apps with their own close commands or

gestures—she still rightly thinks that the app is running. If she activates it again (as from its tile), she will

expect to return to the same place she left off. For example, a game should be in the same place it was

before (though automatically paused), a reader should be on the same page, and a video should be

paused at the same time. Otherwise, imagine the kinds of ratings and reviews your app will be getting

in the Windows Store!

So you might say, “Well, I should just save my app’s state when I get terminated, right?” Actually, no:

your app will not be notified when it’s terminated. Why? For one, it’s already suspended at that t ime, so

no code will run. In addition, if apps need to be terminated in a low memory condition, the last thing

you want is for apps to wake up and try to save state which might require even more memory! It’s

imperative, as hinted before, that apps save their state when being suspended and ideally even at other

checkpoints during normal execution. So let’s see how all that works.

Remembering Yourself: App State and Roaming

To step back for a moment, one of the key differences between traditional desktop applications and

Windows Store apps is that the latter are inherently stateful. That is, once they’ve run the first time, they

remember their state across invocations (unless explicitly closed by the user or unless they provide an

affordance to reset the state explicitly). Some desktop applications work like this, but most suffer from

a kind of identity crisis when they’re launched. Like Gilderoy Lockhart in Harry Potter and the Chamber

of Secrets, they often start up asking themselves, “Who am I?”7 with no sense of where they’ve been or

what they were doing before.

Clearly this isn’t a good idea with Store apps whose lifetime is being managed automatically. From

the user’s point of view, apps are always running (even if they’re not). It’s therefore critical that apps

first manage settings that are always in effect and then also save their session state when being

7 For those readers who have not watched this movie all the way through the credits, there’s a short vignette at the very end.

During the movie, Lockhart—a prolific, narcissistic, and generally untruthful autobiographer—loses his memory from a backfiring

spell. In the vignette he’s shown in a straitjacket on the cover of his newest book, Who am I?

52

suspended. This way, if the app is terminated and restarted, it can reload that session state to return to

the exact place it was before. (An app receives a flag on startup to indicate its previous execution state,

which determines what it should do with saved session state. Details are in Chapter 3.)

There’s another dimension to statefulness: remember from earlier in this chapter that a user can

install the same Windows Store app on up to eighty-one devices? Well, that means that an app,

depending on its design, of course, can also be stateful between those devices. That is, if a user pauses a

video or a game on one device or has made annotations to a book or magazine on one device, the

user will naturally want to be able to go to another device and pick up at exactly the same place.

Fortunately, Windows makes this easy—really easy, in fact—by automatically roaming app settings

and state, along with Windows settings, between trusted devices on which the user is logged in with

the same Microsoft account, as shown in Figure 1-10. When roaming state exists, it’s automatically

downloaded as part of app installation, so it’s there when the app is first launched on a new device.

FIGURE 1-10 Automatic roaming of app roaming data (folder contents and settings) between devices.

They key here is understanding how and where an app saves its state. (We already know when.) If

you recall, there’s one place on the file system where an app has unrestricted access: its appdata folder.

Within that folder, Windows automatically creates subfolders named LocalState, RoamingState, and

TempState when the app is installed. (I typically refer to them without the “State” suffix.) The app can

programmatically get to any of these folders at any time and can create in them all the files and

subfolders that will fulfill its heart’s desire. There are also APIs for managing individual Local and

53

Roaming settings (key-value pairs), along with groups of settings called composites that are always

written to, read from, and roamed as a unit. (These are useful when implementing the app’s Settings

features for the Settings charm, as covered in Chapter 10, “The Story of State, Part 1.”)

Now, although the app can write as much as it wants to the appdata areas (up to the capacity of the

file system), Windows will automatically roam the data in your Roaming sections only if you stay below

an allowed quota (~100K, but there’s an API for that). If you exceed the limit, the data will still be there

locally but none of it will be roamed. Also be aware that cloud storage has different limits on the length

of filenames and file paths as well as the complexity of the folder structure. So keep your roaming state

small and simple. If the app needs to roam larger amounts of data, use a secondary web service like

OneDrive or Windows Azure Mobile Services (which we’ll see more of in Chapter 16) .

The app really needs to decide what kind of state is local to a device and what should be roamed.

Generally speaking, any kind of settings, data, or cached resources that are device-specific should

always be local (and Temp is also local), whereas settings and data that represent the user’s interaction

with the app are potential roaming candidates. For example, an email app that maintains a local cache

of messages would keep those local but would roam account settings (sans passwords; see Tip below)

so that the user can configure the app on one device and have that configuration apply on every other

device. The app would probably also maintain a per-device setting for how it downloads or updates

emails so that the user can minimize network/radio traffic on a mobile device. A media player, similarly,

would keep local caches that are dependent on the specific device’s display characteristics, and it would

roam playlists, playback positions, favorites, and other such settings (should the user want that

behavior, of course).

Tip For passwords in particular, always store them in the Credential Locker (see Chapter 4). If the user

allows password roaming (PC Settings > OneDrive > Sync Settings > Other Settings > Passwords), the

locker’s contents will be roamed automatically.

When state is roamed, know that there’s a simple “last writer wins” policy where collisions are

concerned. If you run the same app on two devices at the same time, don’t expect there to be any

fancy merging or swapping of state. After all kinds of tests and analysis, Microsoft’s engineers finally

decided that simplicity was best!

Along these same lines, if a user installs an app, roams some settings, uninstalls the app, and then

within "a reasonable time" reinstalls the app, she will find that those settings are still in place. This

makes sense, because it would be too draconian to blow away roaming state in the cloud the moment

she just happened to uninstall an app on all her devices. There's no guarantee of this behavior, mind

you, but Windows will apparently retain roaming state for an app for some time.

54

Sidebar: Local vs. Temp Data

For local caching purposes, an app can use either local or temp storage. The difference is that

local data is always under the app’s control. Temp data, on the other hand, can be deleted if the

user runs the Disk Cleanup utility. Local data is thus best used to support an app’s functionality,

and temp data is used to support run-time optimization at the expense of disk space.

For Windows Store apps written in HTML and JavaScript, you can also use existing caching

mechanisms like HTML5 local storage, IndexedDB, and app cache, along with third-party

database options like SQLite, which act like local storage.

Sidebar: The Opportunity of Per-User Licensing and Data Roaming

Details aside, I personally find the cross-device roaming aspect of the platform very exciting,

because it enables the developer to think about apps as something beyond a single-device or

single-situation experience. As I mentioned earlier, a user’s collection of apps is highly personal

and it personalizes the device; apps themselves are licensed to the user and not the device. In

that way, we as developers can think about each app as something that projects itself

appropriately onto whatever device and into whatever context it finds itself. On some devices it

can be oriented for intensive data entry or production work, while on others it can be oriented

for consumption or sharing. The end result is an overall app experience that is simply more

present in the user’s life and appropriate to each context.

An example scenario is illustrated below, where an app can have different personalities or

flavors depending on user context and how different devices might be used in that context. It

might seem rather pedestrian to think about an app for meal planning, recipe management, and

shopping lists, but that’s something that happens in a large number of households worldwide.

Plus it’s something that my wife would like to see me implement if I ever get around to writing

more code than text!

This, to me, is the real manifestation of the next era of personal computing, an era in which

personal computing expands well beyond, yet still includes, a single device experience and

includes embracing the power of cloud-based resources for your personal needs. Devices, then,

are merely viewports for your apps and data, each viewport having a distinct role in the larger

story of how your move through and interact with the world at large.

55

Sidebar: Writing Windows Phone Apps with HTML, CSS, and JavaScript

The diagram in the previous sidebar shows that a Windows Phone can be part of an overall app

presence across multiple devices. At present, apps for Windows 8.1 and Windows Phone 8.1 are

still separate entities, each with their own identity, app package, and storefront. As such, they do

not as yet share common roaming data. They can, however, use common backend services such

as Windows Azure Mobile Services for data sharing and managing push notifications. You can

also use a common live tile service as the tile update XML format is the same on both.

Indeed, much is the same on the platform level, including the fact that Windows Phone 8.1

supports apps written in HTML, CSS, and JavaScript, exactly like those we’re talking about in this

book. With the appropriate update to Visual Studio 2013, you can create solutions in which you

can easily share code between Windows and Windows Phone projects.

On the API level, you’ll find that most of WinRT is identical between both platforms, excepting

those areas where the underlying hardware can’t support a particular feature or the form factor

isn’t suitable. For example, inking, printing, USB/HID device access, the built-in camera capture

56

UI, and various aspects of a full file system are not available on Windows Phone. Similarly, phone-

specific features like the Wallet API are not available on Windows.

WinJS is available on both platforms as well but differs somewhat in the available controls,

which I’ll detail in Chapter 5. That said, the app model that WinJS presents is identical across

both, as are the mechanisms for dealing with async operations and data binding.

Suffice it to say that much of what you’ll learn in this Second Edition will be completely

applicable to Windows Phone projects, which is great news because it means you can use all the

skills you develop to write apps for a much larger combined market! And as the platforms

become increasingly converged in the future, your investments of today will continue to bear

fruit.

As I mentioned at the beginning of this chapter, the ability to write Windows Phone apps with

HTML, CSS, and JavaScript came quite late in the production cycle of this book, so our focus here

will still be Windows Store apps. That said, the Windows Developer Center will have more

information for Windows Phone Apps written in JavaScript, such as clear documentation on the

variations in WinJS and WinRT. I’ll also be working on content for both the Windows/Windows

Phone developer blog (where you’ll also find announcements about the platforms) and my

personal blog. Hope to see you there!

Coming Back Home: Updates and New Opportunities

If you’re one of those developers that can write a perfect app the first time, I have to ask why you’re

actually reading this book! Fact of the matter is that no matter how hard we try to test our apps before

they go out into the world, our efforts pale in comparison to the kinds of abuse that customers will

heap on them. To be more succinct: expect problems. An app might crash under circumstances we

never predicted, or there just might be usability problems because people are finding creative ways to

use the app outside of its intended purpose.

Fortunately, the Windows Store dashboard—go to http://dev.windows.com and click the Dashboard

tab at the top—makes it easy for you get the kind of feedback that has traditionally been very difficult

to obtain. For one, the Store maintains ratings and reviews for every app, which will be a source of

valuable insight into how well your app fulfills its purpose in life and a source of ideas for your next

release. And you might as well accept it now: you’re going to get praise (if you’ve done a decent job),

and you’re going to get criticism, even a good dose of nastiness (even if you’ve done a decent job!).

Don’t take it personally—see every critique as an opportunity to improve, and be grateful that people

took the time to give feedback. As a wise man once said upon hearing of the death of his most vocal

critic, “I’ve just lost my best friend!”

The Store will also provide you with crash analytics so that you can specifically identify problem

areas in your app that evaded your own testing. This is incredibly valuable—maybe you’re already

http://dev.windows.com/
http://go.microsoft.com/fwlink/?LinkID=392425
http://go.microsoft.com/fwlink/?LinkID=392425
http://www.kraigbrockschmidt.com/blog
http://www.kraigbrockschmidt.com/blog
http://dev.windows.com/

57

clapping your hands in delight!—because if you’ve ever wanted this kind of data before, you’ve had to

implement the entire mechanism yourself. No longer. This is one of the valuable services you get in

exchange for your annual registration with the Store. Of course, crash analytics are only the

beginning—you’ll typically want to instrument your app for much more detailed telemetry so that you

can understand exactly how your customers are using your app and where you want to invest more

effort. For this there are a number of third-party solutions found on the Windows Partner Directory,

and we’ll talk about this a little more in Chapter 20.

With this data in hand and all the other ideas you either had to postpone from your first release or

dreamt up in the meantime, you’re all set to have your app come home for some new love before its

next incarnation.

Updates are onboarded to the Windows Store just like the app’s first version. You create and upload

an app package (with the same package name as before but a new version number), and then you

update your description, graphics, pricing, and other information. After that your updated package

goes through the same certification and signing process as before, and when all that’s complete your

new app will be available in the Store and automatically installed for your existing customers (unless

they opt out). And remember that with the blockmap business described earlier, only those parts of the

app that have actually changed will be downloaded for an update (to a 64K resolution). This means

that issuing small fixes (especially if they’re placed at the end of files) won’t force users to repeat

potentially large downloads each time, bringing the update model closer to that of web app lications.

When an update gets installed that has the same package name as an existing app, all the settings

and appdata for the prior version remain intact. Your updated app should be prepared, then, to

migrate a previous version of its state if and when it encounters such.

This brings up an interesting question: what happens with roaming data when a user has different

versions of the same app installed on multiple devices? The answer is twofold: first, app state (which

includes roaming data) has its own version number independent of the app, and second, Windows will

transparently maintain multiple versions of the roaming state so long as there are apps installed on the

user’s devices that reference those state versions. Once all the devices have updated apps and have

converted their state, Windows will delete old versions. We’ll talk more of this in Chapter 10.

Another interesting question with updates is whether you can get a list of the customers who have

acquired your app from the Store. The answer is no, because of privacy considerations. However, there

is nothing wrong with including a registration feature in your app through which users can opt in to

receive additional information from you, such as more detailed update notifications. Your Settings

panel is a great place to include this.

The last thing to say about the Store is that in addition to basic analytics about your own app—

which also includes data like sales figures, of course—it also provides you with marketwide analytics.

These help you explore new opportunities to pursue—maybe taking an idea you had for a feature in

one app and breaking that out into a new app in a different category. Here you can see what’s selling

well (and what’s not) or where a particular category of app is underpopulated or generally has less than

average reviews. For more details, again see the Dashboard at http://dev.windows.com.

http://services.windowsstore.com/
http://dev.windows.com/

58

And, Oh Yes, Then There’s Design

In this first chapter we’ve covered the nature of the world in which Windows Store apps live and

operate. In this book, too, we’ll be focusing on the details of how to build such apps with HTML, CSS,

and JavaScript. But what we haven’t talked about, and what we’ll only be treating minimally, is how you

decide what your app does—its purpose in the world!—and how it clothes itself for that purpose.

This is really the question of good design for Windows Store apps—all the work that goes into apps

before we even start writing code.

I said that we’ll be treating this minimally because I simply do not consider myself a designer. I

encourage you to be honest about this yourself: if you don’t have a good designer working w ith you,

get one. Sure, you can probably work out an OK design on your own, but the demands of a consumer-

oriented market combined with a newer design language like that employed in Windows—where the

emphasis is on simplicity and tailored experiences—underscores the need for professional help. It’ll

make the difference between a functional app and a great app, between a tool and a piece of art,

between apps that consumers accept and those they love.

With design, I do encourage developers to peruse the material on the Windows Design Center for a

better understanding of design principles. And if you’re going to be playing the role of designer, a

great place to start is the Category ideas area where you’ll find case studies for converting websites, iOS

apps, and enterprise LOB apps to a Windows Store app and many idea books that serve as starting

points for different kinds of experiences.

But let’s be honest: as a developer, do you really want to ponder every design principle and design

not just static wireframes but also the dynamic aspects of an app like animations , page transitions, and

progress indicators? Do you want to spend your time in graphic design and artwork (which is essential

for a great app)? Do you want to haggle over the exact pixel alignment of your layout in all variable

views? If not, find someone who does, because the combination of their design sensibilities and your

highly productive hacking will produce much better results than either of you working alone. As one of

my co-workers puts it, a marriage of “freaks” and “geeks” often produces the most creative, attractive,

and inspiring results.

Let me add that design is neither a one-time nor a static process. Developers and designers will

need to work together throughout the development experience, as design needs will arise in response

to how well the implementation really works. For example, the real-world performance of an app might

require the use of progress indicators when loading certain pages or might be better solved with a

redesign of page navigation. It may also turn out, as we found with one of our early app partners, that

the kinds of graphics called for in the design simply weren’t available from the app’s backend service.

The design was lovely, in other words, but couldn’t actually be implemented, so a design change was

necessary. So make sure that your ongoing relationship with your designers is a healthy and happy one .

And on that note, let’s get into your part of the story: the coding!

http://design.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh868274

59

Feature Roadmap and Cross-Reference

As a means of indexing the content in this book, the tables below identifies the primary platform

features of Windows 8.1, the chapter and section(s) where they’re covered, and the purpose that those

features serve in apps. Note that this is only a cross-reference for platform features: it does not

represent nonfeature topics such as tooling, best practices, custom extensions, and design.

Feature – Chapter 3 Section Purpose

Visual assets in the app

manifest

“Branding Your App 101” Defines your app’s basic presence on the Start screen and

elsewhere, including the splash screen on first launch.

App lifecycle management

and basic state

“App Lifecycle Transition Events and

Session State”

Allows Windows to manage whether apps are in memory while

maintaining the appearance that they’re always running.

WinJS Page controls “Page Controls and Navigation” Provides an HTML page loader so that apps can maintain a

single script context.

WinJS navigation “Page Controls and Navigation” Provides a means to dynamically load and unload page

controls, maintaining a navigation history.

Asynchronous APIs “Async Operations” Avoids unresponsive apps due to blocking the UI thread.

WinJS Scheduler “Managing the UI Thread with the

WinJS Scheduler”

Allows apps to set relative priorities of work on the UI thread to

increase app responsiveness.

Feature – Chapter 4 Section Purpose

Connectivity and cost

awareness

“Network Information and

Connectivity”

Enables apps to understand network state to implement great

offline support and to prevent bill shock on metered networks.

Webview element “Hosting Content” Allows an app to display arbitrary HTML content, including

content that’s downloaded, dynamically generated, or hosted

on the web.

HttpClient API “HTTP Requests” The more powerful and flexible way to perform HTTP requests

to online services, with support for protocol-level filtering,

cookie control, and precaching.

Background Transfer API “Background Transfers” Configures download and upload operations that will continue

when an app is suspended or terminated, with the ability to set

priorities, cost policies, and grouping.

Credential Locker “The Credential Locker” Provides secure roaming storage for credentials and other

information that should be protected.

Web Authentication Broker “The Web Authentication Broker”

and “Single Sign On”

Provides UI for server-managed login to web services such that

the app never touches user credentials.

Feature – Chapter 5 Section Purpose

Core HTML controls: button,

checkbox, drop-down list,

listbox, hyperlink, file upload,

slider, progress, and radio

button

“HTML Controls” and “Styling

Gallery: HTML Controls”

The UI elements that are declared through standard HTML5

and implemented in the app host.

WinJS controls: back button,

date picker, time picker,

rating, toggle switch, tooltip,

HTML control, item container

“WinJS Controls” and “Styling

Gallery: WinJS Controls”

The UI elements that are declared using WinJS syntax and

implemented in the WinJS library.

60

Feature – Chapter 6 Section Purpose

WinJS data binding “Data Binding” Facilitates creating automated connections between UI

elements and data sources.

WinJS Template controls “Binding Templates” Defines blocks of generic HTML that can be bound to specific

data sources and then rendered.

WinRT collection classes “Windows.Foundation.Collection

Types”

Used around WinRT to exchange different kinds of collection

data.

WinJS.Binding.List class “WinJS Binding Lists” An observable (bindable) collection type employed by WinJS

collection controls.

Feature – Chapter 7 Section Purpose
WinJS Repeater control “Quickstart #1: The WinJS Repeater

Control” and “Repeater Features

and Styling”

Conveniently renders template or other block of HTML for each

item in a data source; serves as a lightweight means to render a

noninteractive collection.

WinJS FlipView control “Quickstart #2: The FlipView Control

Sample,” “FlipView Features and

Styling,” and “A FlipView Using the

Pictures Library.”

Provides a one-at-a-time view of a collection.

WinJS Semantic Zoom control “The Semantic Zoom Control” Wraps to other collection controls (such as a ListView) and

provides the means to easily switch between them, giving the

user two different views of the same data source.

WinJS ListView control Most other sections in Chapter 7 Implements the most powerful and flexible means to render a

collection with support for grouping, interactivity, drag and

drop, variable layouts, and virtualization.

Feature – Chapter 8 Section Purpose

Variable app view sizing

including media queries

“Variable View Sizing and

Orientation”

Allows a user to arrange multiple apps together on the same

display.

Display rotations and

orientation locking

“Variable View Sizing and

Orientation”

Allows a user to rotate a tablet device for a different app

experience.

Multiple app views “Multiple Views” Enables an app to create multiple views that the user can

manage independently.

Projection API “Multiple Views” Enables an app to project a view onto a second display.

Snap points and rails (CSS

features)

“Pannable Sections and Styles” Controls the experience of pannable regions, including

continuous vs. sectional panning and control of panning

direction. Also includes continuous vs. step-wise zooming.

WinJS Hub control “The Hub Control and Hub App

Template”

Implements a common UI pattern through which an app

displays data from multiple heterogeneous sources.

CSS grid, flexbox,

multicolumn text, and regions

“Using the CSS Grid” and “Item

Layout”

Controls various aspects of page and element layout within the

scope of HTML and CSS.

Feature – Chapter 9 Section Purpose

WinJS app bar and nav bar “The App Bar and Nav Bar” Provides the implementation for top and bottom commanding

UI common to apps.

WinJS flyouts “Flyouts and Menus” Provides local and transient UI, typically used for popup

messages and secondary command options.

WinJS menus “Menus and Menu Commands” Implements menu UI.

App-modal message boxes “Message Dialogs” Used to display messages that block further interaction with

the app.

61

Feature – Chapter 10 Section Purpose

Local, temp, and roaming

state including folders and

settings containers

“App Data Locations,” “App Data

APIs,” and “Using App Data APIs for

State Management”

Provides the unrestricted locations in which apps save all data

whose lifetime is tied to the app, including session data, caches,

and roaming state. This is used to maintain continuity across

terminate and restart.

File and folder access APIs

(StorageFolder, StorageFile)

“Folders, Files, and Streams” Used to communicate with the local file system as well as with

storage providers that present themselves as part of the file

system even if they are non-local.

Stream APIs and blobs “Folders, Files, and Streams” Supply the low-level API for handing byte transfers, utilized in

many areas of WinRT, including cross-compatibility with

HTML5 blobs.

App settings pane (via

Settings charm)

“Settings Pane and UI” Provides the space in which an app offers configuration UI,

account management, options, its privacy policy, and so forth.

Feature – Chapter 11 Section Purpose

File Picker API “Using the File Picker and Access

Cache”

Allows the user to navigate to and select files and folders from

any location on the local file system, the network, and cloud

locations. The act of picking a file or folder grants usage

permission to the app.

Access Cache API “Using the File Picker and Access

Cache”

Preserves file or folder permissions across app sessions.

File metadata and thumbnails “StorageFile Properties and

Metadata”

Provides access to all information about a file or folder without

reading file data, including the use of thumbnails to display

files without loading content.

Media library management “Known Folders and the

StorageLibrary Object”

Capabilities related to the user’s Pictures, Videos, and Music

libraries.

Searching files and folders “Folders and Folder Queries” Taps into the system indexer through which an app can quickly

enumerate files and folders that match specific criteria.

File type association “File Activation and Association” Allows an app to register itself as able to handle one or more

file types. A user can select from such registered apps when

opening a file.

Access to removable storage “Removable Storage” Provides the ability to work with the contents of flash drives,

memory cards, and similar devices.

Feature – Chapter 12 Section Purpose

Touch input “Touch, Mouse, and Stylus Inputs,”

“Unified Pointer Events,” “Gesture

Events,” and “The Gesture

Recognizer”

Enables an app to work with touch screens to the degree it

wants, whether to treat touch identically with mouse and stylus

input or to respond specifically to touch gestures.

Mouse and styling input “Unified Pointer Events” Enables an app to work with the mouse or a stylus.

Keyboard input including the

on-screen keyboard

“Keyboard Input and the Soft

Keyboard”

Provides keystroke information to the app, including how the

on-screen keyboard is configured for and responds to different

input controls.

Inking APIs “Inking” Provides the ability to capture full information about touch

input (e.g., stokes, pressure, etc.), which can be used to re-

render that input at a later time or implement your own

recognition engine.

GPS device access “Geolocation” and “Geofencing” Gives apps access to GPS information including the ability to

set up a region with entry and exit events.

APIs for sensor input from the

accelerometer, compass,

inclinometer, gyrometer,

orientation sensor, and light

sensor.

“Sensors” Provides readings from various sensors on devices that are so

equipped.

62

Feature – Chapter 13 Section Purpose

Display of graphical

information

“Graphics Elements” Displays raster images (img), vector images (svg), and

dynamically drawn images (canvas), along with PDFs.

Video playback (video

element)

“Video Playback and Deferred

Loading”

Provides the ability to render video in an app, including the

application of effects.

Locking screen orientation

and disabling the lock screen

“Disabling Screen Savers and the

Lock Screen”

Ensures that video playback is not interrupted by orientation

changes or inactivity timeouts.

Audio playback (audio

element)

“Audio Playback and Mixing” and

“Playlists”

Provides the ability to play audio in an app, including

background audio.

System controls for audio and

video

“The Media Transport Control UI” Allows an app to provide textual and graphical information for

the system-managed UI that’s connected to hardware/software

playback features.

Text to Speech API “Text to Speech” Supplies the ability to use a synthesized voice to convert text to

audio.

Media manipulation including

transcoding

“Loading and Manipulating media” Provides the ability to convert between different media formats

and to support custom formats.

Dynamic media generation

(video and audio)

“Media Stream Sources” Enables app code to generate media information on the fly, to

manipulate media as it’s played or otherwise rendered, and to

support custom formats.

Using the webcam and

microphones

“Media Capture” Provides the ability to record video and audio, either through a

system-provided UI or an app UI.

PlayTo “Streaming Media and PlayTo” Enables media playback to DLNA devices.

Digital Rights Management “Streaming Media and PlayTo” Enables an app to control permissions for media rendering.

Feature – Chapter 14 Section Purpose

The WinJS animations library “The WinJS Animations Library” Provides a predefined set of CSS animations and transitions

that reflect the Windows personality.

Low-level animations “CSS Animations and Transitions”

and “Rolling Your Own”

Supports custom animations through standard CSS capabilities

or rendering frames using interval timers.

Feature – Chapter 15 Section Purpose

Share contract “Share” Connects two apps together through the Share control so that

a source provides data that a target can then share however it

wants without leaving the context of the source app.

Associating an app with a URI

scheme

“Launching Apps with URI Scheme

Associations”

Allows an app to register itself as able to handle one or more

URI schemes types. A user can select from such registered apps

when a URI is activated.

In-app search “Search” and “The

WinJS.UI.SearchBox Control”

Provides the means to easily implement rich in-app searching

capabilities.

Search charm interaction

(Search contract)

“The Search Charm UI” and “The

Search Contract”

In lieu of handing search directly in an app, allows for search

interactions through the Search charm.

System indexer and queries

against file content and app-

provided content

“Indexing and Searching Content” Allows apps to perform very fast metadata and content queries

against app data as well as arbitrary app content.

Contact Cards UI “Contacts” and “Contact Cards” Invokes a system-provided UI that displays contact information

aggregated in the People app, relieving other apps from

having to manage and protect that data.

Contact Picker API “Using the Contact Pickers” Allows an app to obtain contact data from any number of

course as defined by provider apps; in this case the app

invoking the picker is responsible for protecting the contact

information.

Appointments APIs “Appointments” Enables an app to create and manage entries on the user’s

calendar through bits of UI supplied by the default calendar

app.

63

Feature – Chapter 16 Section Purpose

Live tiles “Basic Tile Updates” and “Cycling,

Scheduled, and Expiring Updates”

Sends information to the app’s tile on the Start screen.

Secondary tiles “Secondary Tiles” Allows an app to create additional tiles on the Start screen with

user consent. Secondary tiles can be live.

Badges “Badge Updates” Provides the means to display a small number or glyph on a

Start screen tile.

Periodic tile updates from a

service

“Periodic Updates” Links a tile on the Start screen to up to five URIs that provide

tile updates even while the app isn’t running.

Toast notifications “Toast Notifications” Provides the means to display popup messages on the user’s

display, on top of other apps as well as the lock screen, where

activating the toast activates the app.

Push notifications “Push Notifications and the

Windows Push Notification Service”

Enables services to push tile updates, badge updates, and toast

notifications to a specific user’s device without needing to

involve the app.

Raw notifications “Raw Notifications (Service)” and

“Receiving Notifications (App)”

Delivers a custom payload to an app via push notifications,

which the running app or a background task can process

however it wants.

Background tasks “Background Tasks and Lock Screen

Apps”

Configures small pieces of code (with quotas on CPU time

another resources) that can run in response to various triggers

and conditions.

Lock screen apps “Background Tasks and Lock Screen

Apps”

Enables apps to identify themselves as lock-screen-capable to

the system so that the user can select them through PC

Settings to display information on the lock screen and have

greater background privileges.

Feature – Chapter 17 Section Purpose

Discovery of peripheral

devices

“Enumerating and Watching

Devices”

Allows an app to determine what devices of desired types are

attached to the system, and to watch when such devices are

connected and disconnected.

Image scanning “Image Scanners” Enables apps to work with image scanners.

Point of Service device APIs “Barcode and Magnetic Stripe

Readers”

Enables apps to receive information from barcode scanners and

magnetic stripe readers, typically used for point of service

systems.

Accessing virtual smartcards “Smartcards” Enables an app to provision a virtual smartcard.

Verifying a user’s physical

presence

“Fingerprint (Biometric) Readers” Determines whether the machine is capable of reading

fingerprints and can request verification of the physical

presence of the logged-in user.

Call control via Bluetooth

devices

“Bluetooth Call Control” Informs an app of events that happen with Bluetooth earpieces

and headsets as they affect calls.

Document Printing APIs “Printing Made Easy” Provides for printing 2D documents. 3D printing is supported

through the Windows platform but not through JavaScript.

Device access via USB, HID,

Bluetooth, and Wi-Fi Direct

“Protocol APIs” Allows apps to communicate with a wide variety of devices

through different communication transports.

NFC APIs “Near Field Communication and the

Proximity API”

Enables connections between devices via taps as well as peer

discovery over Wi-Fi direct.

Feature – Chapter 18 Section Purpose

Mixed-language apps “Choosing a Mixed Language

Approach” and most of the chapter

Allows an app to use C#, Visual Basic, or C++ to implement

different functions, providing more flexibility in

implementation strategies and access to additional APIs.

Web workers “JavaScript Workers” Provides the means to execute JavaScript code off the UI

thread.

Creating custom async APIs “Implementing Asynchronous

Methods”

Provides the means to create custom APIs in C#,VB, or C++ like

those in WinRT that execute off the UI thread.

64

Feature – Chapter 19 Section Purpose

Supporting screen readers “Screen Readers and Aria

Attributes”

Helps an app fulfill accessibility requirements by properly

labeling its markup for screen readers.

Support high contrast “Handling Contrast Variations” Helps an app fulfill accessibility requirements by handling high

contrast modes.

Globalization APIs “Globalization” Enables creation of a culture-neutral app that can handle

locale-based variations such as dates, times, and sorting.

Localizing apps with

additional language resources

“Preparing for Localization” and

“Creating Localized Resources”

Enables creation of multilingual apps for a large number of

world markets.

Feature – Chapter 20 Section Purpose

Side-loading apps “Sidebar: Side Loading” Enables developers and enterprises to install apps without

going through the Windows Store.

Paid apps and trial versions “Paid Apps and Trial Versions” and

“Trial Versions and App Purchase”

Sets an app price in the Windows Store with or without a free

trial period.

Monetization through ads “Ad-Supported Apps” Supports monetization through display of ads within the app.

In-app purchases (durables

and consumables)

“In-App Purchases” and “Listing and

Purchasing In-App Products”

Configures and manages monetization of an app through

feature enablement and other item purchases such as in-app

currency.

Large catalogs “Handling Large Catalogs” Provides the ability to dynamically configure in-app purchases

without having to define the ahead of time.

Verification of purchase “Receipts” Enables an app to make a strong determination that a purchase

was made and who specifically made it, used to implement

additional licensing schemes and control access to services.

Listing apps in the Store “Releasing Your App to the World” Defines the process through which an app is made available to

customers in markets around the world.

Linking websites to apps “Connecting Your Website and

Web-Mapped Search Results”

Defines a relationship between a website and an app such that

visitors to the website or search results that include that site

can point to the app.

Feature – Appendices Section Purpose

Extended Splash Screens Appendix B: “Extended Splash

Screens”

Provides a way for an app to customize its splash screen and

avoid being terminated if the user switches away while it

continues to load.

Custom ListView layouts Appendix B: “Custom Layouts for

the ListView Control”

Allows an app to extend the visual layout capabilities of the

WinJS ListView control.

Large and multipart uploads

with the background transfer

API

Appendix C: “Breaking Up Large

Files” and “Multipart Uploads”

Provides for specialized needs with background transfers.

Security (encryption,

certificates)

Appendix C: “Notes on Encryption,

Decryption, Data Protection, and

Certificates”

Supports apps that need to strongly secure data.

RSS, AtomPub, and XML

manipulation

Appendix C: “Syndication: RSS,

AtomPub, and XML APIs in WinRT”

Provides APIs to work with RSS feeds, to publish via AtomPub,

and to create and manage XML documents.

Sockets (including

websockets)

Appendix C: “Sockets” Gives apps the ability to communicate over a variety of socket

types.

Credential Picker UI Appendix C: “The Credential Picker

UI”

Provides the ability for an app to collect credentials from a user

including domain credentials, smartcard PINs, and other

sources that involve a variety of security protocols.

Providers for file pickers,

contact cards, contact picker,

and appointments

Appendix D (all sections) Enables apps to serve as providers for a variety of contracts;

applicable to apps that service storage services, manage

address books, and manage calendars.

65

Chapter 2

Quickstart

This is a book about developing apps. So, to quote Paul Bettany’s portrayal of Geoffrey Chaucer in

A Knight’s Tale, “without further gilding the lily, and with no more ado,” let’s create some!

A Really Quick Quickstart: The Blank App Template

We must begin, of course, by paying due homage to the quintessential “Hello World” app, which we

can achieve without actually writing any code at all. We simply need to create a new app from a project

template in Visual Studio:

1. Run Visual Studio Express for Windows. If this is your first time, you’ll be prompted to obtain a

developer license. Do this, because you can’t go any further without it!

2. Click New Project… in the Visual Studio window, or use the File > New Project menu command.

3. In the dialog that appears (Figure 2-1), make sure you select JavaScript under Templates on the

left side, and then select Blank App in the middle. Give it a name (HelloWorld will do), a folder,

and click OK.

FIGURE 2-1 Visual Studio’s New Project dialog using the light UI theme. (See the Tools > Options menu

command, and then change the theme in the Environment/General section). I use the light theme in this

book because it looks best against a white page background.

66

4. After Visual Studio churns for a bit to create the project, click the Start Debugging button (or

press F5, or select the Debug > Start Debugging menu command). Assuming your installation is

good, you should see something like Figure 2-2 on your screen.

FIGURE 2-2 The only vaguely interesting portion of the Hello World app’s display. The message is at least a

better invitation to write more code than the standard first-app greeting!

By default, Visual Studio starts the debugger in local machine mode, which runs the app full screen

on your present system. This has the unfortunate result of hiding the debugger unless you’re on a

multimonitor system, in which case you can run Visual Studio on one monitor and your Windows Store

app on the other. Very handy. See Running apps on the local machine for more on this.8

Visual Studio offers two other debugging modes available from the drop-down list on the toolbar

(Figure 2-3) or the Debug/[Appname] Properties menu command (Figure 2-4):

FIGURE 2-3 Visual Studio’s debugging options on the toolbar.

FIGURE 2-4 Visual Studio’s debugging options in the app properties dialog.

The Remote Machine option allows you to run the app on a separate device, which is absolutely

essential for working with Windows RT devices that can’t run desktop apps at all, such as the Microsoft

Surface and other ARM devices. Setting this up is a straightforward process, and it works on both

Ethernet and wireless networks: see Running apps on a remote machine, and I do recommend that you

get familiar with it. Also, when you don’t have a project loaded in Visual Studio, the Debug menu offers

8 For debugging the app and Visual Studio side by side on a single monitor, check out the utility called ModernMix from

Stardock that allows you to run Windows Store apps in separate windows on the desktop.

http://msdn.microsoft.com/library/windows/apps/hh441483.aspx
http://msdn.microsoft.com/library/windows/apps/hh441469.aspx
http://www.stardock.com/products/modernmix/

67

the Attach To Process command, which allows you to debug an already-running app. See How to start

a debugging session (JavaScript).

Tip If you ever load a Windows SDK sample into Visual Studio and Remote Machine is the only

debugging option that’s available, the build target is probably set to ARM (the rightmost drop-down):

Set the build target to Any CPU and you’ll see the other options. Note apps written in JavaScript, C#, or

Visual Basic that contain no C++ WinRT components (see Chapter 18, “WinRT Components”), should

always use the Any CPU target.

Another tip If you ever see a small on the tile of one of your app projects, or for some reason it just

won’t launch from the tile, your developer license is probably out of date. Just run Visual Studio or

Blend to renew it. If you have a similar problem on a Windows RT device, especially when using remote

debugging, you’ll need renew the license from the command line using PowerShell. See Installing

developer packages on Windows RT in the section “Obtaining or renewing your developer license” for

instructions.

The Simulator, for its part, duplicates your current environment inside a new login session and

allows you to control device orientation, set various screen resolutions and scaling factors, simulate

touch events, configure network characteristics, and control the data returned by geolocation APIs.

Figure 2-5 shows Hello World in the simulator with the additional controls labeled on the right. We’ll

see more of the simulator as we go along, though you may also want to peruse the Running apps in

the simulator topic.

FIGURE 2-5 Hello World running in the simulator, with added labels on the right for the simulator controls. Truly,

the “Blank App” template lives up to its name!

http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/bg126232.aspx
http://msdn.microsoft.com/library/windows/apps/bg126232.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx

68

Sidebar: How Does Visual Studio Run an App?

Under the covers, Visual Studio is actually deploying the app similar to what would happen if you

acquired it from the Store. The app will show up on the Start screen’s All Apps view, where you

can also uninstall it. Uninstalling will clear out appdata folders and other state, which is very

helpful when debugging.

There’s no magic involved: deployment can actually be done through the command line. To

see the details, use the Store/Create App Package in Visual Studio, select No for a Store upload,

and you’ll see a dialog in which you can save your package to a folder. In that folder you’ll then

find an appx package, a security certificate, and a batch file called Add-AppxDevPackage. That

batch file contains PowerShell scripts that will deploy the app along with its dependencies.

These same files are also what you can share with other developers who have a developer

license, allowing them to side-load your app without needing your full source project.

Blank App Project Structure

Although an app created with the Blank template doesn’t offer much in the visual department , it lets us

see the core structure of all projects you’ll use. That structure is found in Visual Studio’s Solution

Explorer (as shown in Figure 2-6).

In the project root folder:

 default.html The starting page for the app.

 <Appname>_TemporaryKey.pfx A temporary signature created on first run.

 package.appxmanifest The manifest. Opening this file will display Visual Studio’s manifest

editor (shown later in this chapter). Browse around in this UI for a few minutes to familiarize

yourself with what’s here: references to the various app images (see below), a checkmark on the

Internet (Client) capability, default.html selected as the start page, and all the places where you

control different aspects of your app. We’ll be seeing these throughout this book; for a

complete reference, see the App packages and deployment and Using the manifest designer

topics. And if you want to explore the manifest XML directly, right-click this file and select View

Code. This is occasionally necessary to configure uncommon options that aren’t represented in

the editor UI. The APIs for accessing package details are demonstrated in the App package

information sample.

The css folder contains a default.css file that’s empty except for a blank rule for the body element.

The images folder contains four placeholder branding images, and unless you want to look like a

real doofus developer, always customize these before sending your app to the Store (and to provide

scaled versions too, as we’ll see in Chapter 3, “App Anatomy and Performance Fundamentals”):

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx
http://msdn.microsoft.com/library/windows/apps/br230259.aspx
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa

69

 logo.scale-100.png A default 150x150 (100% scale) image for the Start screen.

 smalllogo.scale-100.png A 30x30 image for the zoomed-out Start screen and other places at

run time.

 splashscreen.scale-100.png A 620x300 image that will be shown while the app is loading.

 storelogo.scale-100.png A 50x50 image that will be shown for the app in the Windows

Store. This needs to be part of an app package but is not used within Windows at run time. For

this reason it’s easy to overlook—make a special note to customize it.

The js folder contains a simple default.js.

The References folder points to CSS and JavaScript source files for the WinJS library, which you can

open and examine anytime. (If you want to search within these files, you must open and search only

within the specific file. These are not included in solution-wide or project-wide searches.)

NuGet Packages If you right-click References you’ll see a menu command Manage NuGet

Packages…. This opens a dialog box through which you can bring many different libraries and SDKs

into your project, including jQuery, knockout.js, Bing Maps, and many more from both official and

community sources. For more information, see http://nuget.org/.

FIGURE 2-6 A Blank app project fully expanded in Solution Explorer.

As you would expect, there’s not much app-specific code for this type of project. For example, the

HTML has only a single paragraph element in the body, the one you can replace with “Hello World” if

you’re really not feeling complete without doing so. What’s more important at present are the

references to the WinJS components: a core stylesheet (ui-dark.css or ui-light.css), base.js, and ui.js:

http://nuget.org/

70

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Hello World</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.2.0/css/ui-dark.css" rel="stylesheet">

 <script src="//Microsoft.WinJS.2.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.2.0/js/ui.js"></script>

 <!-- HelloWorld references -->

 <link href="/css/default.css" rel="stylesheet">

 <script src="/js/default.js"></script>

</head>

<body>

 <p>Content goes here</p>

</body>

</html>

You will generally always have these references in every HTML file of your project (using an

appropriate version number, and perhaps using ui-light.css instead). The //’s in the WinJS paths

refer to shared libraries rather than files in your app package, whereas a single / refers to the root of

your package. Beyond that, everything else is standard HTML5, so feel free to play around with adding

some additional HTML of your own to see the effects.

Tip When referring to in-package resources, always use a leading / on URIs, which means “package

root.” This is especially important when using page controls (see Chapter 3) because those pages are

typically loaded into a document like default.html whose location is different from where the page

exists in the project structure.

Where JavaScript is concerned, default.js just contains the basic WinJS activation code centered on

the WinJS.Application.onactivated event along with a stub for an event called

WinJS.Application.oncheckpoint (from which I’ve omitted a lengthy comment block):

(function () {

 "use strict";

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

 }

71

 args.setPromise(WinJS.UI.processAll());

 }

 };

 app.oncheckpoint = function (args) {

 };

 app.start();

})();

We’ll come back to checkpoint in Chapter 3. For now, remember from Chapter 1, “The Life Story of

a Windows Store App,” that an app can be activated in many ways. These are indicated in the

args.detail.kind property whose value comes from the Windows.ApplicationModel.-

Activation.ActivationKind enumeration.

When an app is launched directly from its tile on the Start screen (or in the debugger as we’ve been

doing), the kind is just launch. As we’ll see later on, other values tell us when an app is activated to

service requests like the search or share contracts, file-type associations, file pickers, protocols, and

more. For the launch kind, another bit of information from the Windows.ApplicationModel.-

Activation.ApplicationExecutionState enumeration tells the app how it was last running. Again,

we’ll see more on this in Chapter 3, so the comments in the default code above should satisfy your

curiosity for the time being.

Now, what is that args.setPromise(WinJS.UI.processAll())for? As we’ll see many times,

WinJS.UI.processAll instantiates any WinJS controls that are declared in yourHTML—that is, any

element (commonly a div or span) that contains a data-win-control attribute whose value is the

name of a constructor function. The Blank app template doesn’t include any such controls, but because

just about every app based on this template will, it makes sense to include it by default.9 As for

args.setPromise, that’s employing something called a deferral that we’ll also defer to Chapter 3.

As short as it is, that little app.start(); at the bottom is also very important. It makes sure that

various events that are queued during startup get processed. We’ll again see the details in Chapter 3.

I’ll bet you’re looking forward to that chapter now!

Finally, you may be asking, “What on earth is all that ceremonial (function () { … })();

business about?” It’s just a convention in JavaScript called a self-executing anonymous function that

implements the module pattern. This keeps the global namespace from becoming polluted, thereby

propitiating the performance gods. The syntax defines an anonymous function that’s immediately

executed, which creates a function scope for everything inside it. So variables like app along with all the

function names are accessible throughout the module but don’t appear in the global namespace.10

9 There is a similar function WinJS.Binding.processAll that processes data-win-bind attributes (Chapter 6), and
WinJS.Resources.processAll that does resource lookup on data-win-res attributes (Chapter 19).

10 See Chapter 2 of Nicolas Zakas’s High Performance JavaScript (O’Reilly, 2010) for the performance implications of
scoping. More on modules can be found in Chapter 5 of JavaScript Patterns by Stoyan Stefanov (O’Reilly, 2010) and

Chapter 7 of Eloquent JavaScript by Marijn Haverbeke (No Starch Press, 2011).

72

You can still introduce variables into the global namespace, of course, and to keep it all organized,

WinJS offers a means to define your own namespaces and classes (see WinJS.Namespace.define and

WinJS.Class.define), again helping to minimize additions to the global namespace. We’ll learn more

of these in Chapter 5, “Controls and Control Styling,” and Appendix B, “WinJS Extras.”

Now that we’ve seen the basic structure of an app, let’s build something more functional and get a

taste of the WinRT APIs and a few other platform features.

Get familiar with Visual Studio If you’re new to Visual Studio, the tool can be somewhat daunting at

first because it supports many features, even in the Express edition. For a quick, roughly 10-minute

introduction, Video 2-1 in this chapter’s companion content to will show you the basic workflows and

other essentials.

QuickStart #1: Here My Am! and an Introduction to Blend for

Visual Studio

When my son was three years old, he never—despite the fact that he was born to two engineers

parents and two engineer grandfathers—peeked around corners or appeared in a room saying “Hello

world!” No, his particular phrase was “Here my am!” Using that variation of announcing oneself to the

universe, our next app can capture an image from a camera, locate your position on a map, and share

that information through the Windows Share charm. Does this sound complicated? Fortunately, the

WinRT APIs actually make it quite straightforward!

Sidebar: How Long Did It Take to Write This App?

This app took me about three hours to write. “Oh sure,” you’re thinking, “you’ve already written a

bunch of apps, so it was easy for you!” Well, yes and no. For one thing, I also wrote this part of

the chapter at the same time, and endeavored to make some reusable code, which took extra

time. More importantly, the app came together quickly because I knew how to use my tools—

especially Blend—and I knew where I could find code that already did most of what I wanted,

namely all the Windows SDK samples on http://code.msdn.microsoft.com/windowsapps/.

As we’ll be drawing from many of these most excellent samples in this book, I encourage you

to download the whole set—go to the URL above, and click the link for “Windows 8.1 app

samples”. On that page you can get a .zip file with all the JavaScript samples. Once you unzip

these, get into the habit of searching that folder for any API or feature you’re interested in (make

sure it’s being indexed by the Windows file system too) . For example, the code I use in this app

to implement camera capture and sharing data came directly from a couple of samples.

I also strongly encourage you to spend a half-day getting familiar with Visual Studio and

Blend for Visual Studio and running samples so that you know what tremendous resources are

available. Such small investments will pay huge productivity dividends even in the short term!

http://code.msdn.microsoft.com/windowsapps/

73

Design Wireframes
Before we start on the code, let’s first look at design wireframes for this app. Oooh…design? Yes!

Perhaps for the first time in the history of Windows, there’s a real design philosophy to apply to apps in

Windows 8. In the past, with desktop apps, it’s been more of an “anything goes” scene. There were

some UI guidelines, sure, but developers could generally get away with making up any user experience

that made sense to them, like burying essential checkbox options four levels deep in a series of modal

dialog boxes. Yes, this kind of stuff does make sense to developers; whether it makes sense to anyone

else is highly questionable!

If you’ve ever pretended or contemplated pretending to be a designer, now is the time to surrender

that hat to someone with real training or set development aside for a focused time to invest in that

training yourself. Simply said, design matters for Windows Store apps, and it will make the difference

between apps that really succeed and apps that merely exist in the Windows Store and are largely

ignored. And having a design in hand will just make it easier to implement because you won’t have to

make those decisions when you’re writing code. (If you still intend on filling designer shoes and

communing with apps like Adobe Illustrator, at least be sure to visit Designing UX for apps for the

philosophy and details of Windows Store app design, plus design resources.)

Note Traditional wireframes are great to show a static view of the app, but in the “fast and fluid”

environment of Windows, the dynamic aspects of an app—animations, transitions, and movement—

are also very important. Great app design includes consideration of not just where content is placed

but how and when it gets there in response to which user actions. Chapter 14, “Purposeful

Animations,” discusses the different built-in animations that you can use for this purpose.

When I had the idea for this app, I drew up simple wireframes, let a few designers laugh at me

behind my back (and offer helpful adjustments), and eventually landed on layouts for the various views

as shown in Figures 2-7 through 2-9. These reflect the guidelines of the “grid system” described on

Laying out an app page, which defines what’s called the layout silhouette that includes the size of

header fonts, their placement, and specific margins. These suggestions encourage a degree of

consistency between apps so that users’ eyes literally develop muscle memory for common elements of

the UI. That said, they are not hard and fast rules, just a starting point—designers can and do depart

from them when there’s reason to do so.

Generally speaking, layout is based on a basic 20 pixel unit, with 5 pixel sub-units. In the full

landscape view of Figure 2-7, you can see the recommended left margin of 120px, the recommended

top margin of 140px above the content region, and placement of the header’s baseline at 100px, which

for a 42pt font translates to a 44px top margin. For partial landscape views with width <= 1024px, the

left margin shrinks to 40px (not shown). In the portrait and narrow views of Figure 2-8 and 2-9, the

various margins and gaps get smaller but still align to the grid.

http://design.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh872191.aspx

74

What happened to snapped and filled views? In the first release of Windows 8, app design focused

on four view states known as landscape, portrait, filled, and snapped. With Windows 8.1, each view of

an app can be arbitrarily sized in the horizontal, so distinct names for these states are deprecated in

favor of simply handling different view sizes and aspect ratios—known as responsive design on the

web. For apps, the minimum design size is now 500x768 pixels, and an app can indicate in the manifest

whether it supports a narrower view down to a 320px minimum. The “Here My Am!” app as designed

in this section supports all sizes including narrow. Aspect ratios (width/height) of 1 and below

(meaning square to tall) use the vertically-oriented layouts; aspect ratios greater than 1 use a

horizontally-oriented layout.

To accommodate view sizes, you can use standard CSS3 orientation media queries to differentiate

aspect ratios; the view state media queries from Windows 8 don’t differentiate between the filled state

(a narrower landscape) and the 50% split view that will often have an aspect ratio less than 1.

Note, however, that the header font sizes, from which we derive the top header margins, were defined

in the WinJS 1.0 stylesheets in Windows 8 but were removed in WinJS 2.0 for Windows 8.1. To adjust

the font size for narrow views, then, default.css in Here My Am! has specific rules to set h1 and h2

element sizes.

FIGURE 2-7 Wireframe for wide aspect ratios (width/height > 1). The left margin is nominally 120px, changing to

40px for smaller (<1024px) widths. The “1fr” labels denote proportional parts of the CSS grid (see Chapter 8, “Layout

and Views”) that occupy whatever space remains after the fixed parts are laid out.

75

FIGURE 2-8 Wireframes for narrow (320–499px) and portrait (500px or higher) aspect ratios (width/height <= 1).

These views also happen to work nicely on a portrait-first Windows Phone.

Sidebar: Design for All Size Variations!

Just as I thought about all size variations for Here My Am!, I encourage you to do the same for

one simple reason: your app will be put into every state whether you design for it or not (with the

exception of the narrow 320–499px view if you don’t indicate it in your manifest). Users control

the views, not the app, so if you neglect to design for any given state, your app will probably

look hideous in that state. You can, as we’ll see in Chapter 8, lock the landscape/portrait

orientation for your app if you want, but that’s meant to enhance an app’s experience rather

than being an excuse for indolence. So in the end, unless you have a very specific reason not to,

every page in your app needs to anticipate all different sizes and dimensions.

This might sound like a burden, but these variations don’t affect function: they are simply

different views of the same information. Changing the view never changes the mode of the app.

Handling different views, therefore, is primarily a matter of which elements are visible and how

those elements are laid out on the page. It doesn’t have to be any more complicated than that,

and for apps written in HTML and JavaScript the work can mostly, if not entirely, be handled

through CSS media queries.

Enough said! Let’s just assume that we have a great design to work from and our designers are off

sipping cappuccino, satisfied with a job well done. Our job is now to execute on that great design.

76

Create the Markup
For the purposes of markup, layout, and styling, one of the most powerful tools you can add to your

arsenal is Blend for Visual Studio, which is included for free when you instal l Visual Studio Express.

Blend has full design support for HTML, CSS, and JavaScript. I emphasize that latter point because

Blend doesn’t just load markup and styles: it loads and executes your code, right in the “Artboard” (the

design surface), because that code so often affects the DOM, styling, and so forth. Then there’s

Interactive Mode…but I’m getting ahead of myself!

Blend and Visual Studio are very much two sides of a coin: they can share the same projects and

have commands to easily switch between them, depending on whether you’re focusing on design

(layout and styling in Blend) or development (coding and debugging in Visual Studio). To demonstrate

that, let’s actually start building Here My Am! in Blend. As we did before with Visual Studio, launch

Blend, select New Project…, and select the Blank App template. This will create the same project

structure as before. (Note: Video 2-2 shows all these steps together.)

Following the practice of writing pure markup in HTML—with no styling and no code, and even

leaving off a few classes we’ll need for styling—let’s drop the following markup into the body element

of default.html (replacing the one line of <p>Content goes here</p>):

<div id="mainContent">

 <header aria-label="Header content" role="banner">

 <h1 class="titlearea win-type-ellipsis">

 Here My Am!

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 <div id="photoSection" aria-label="Photo section">

 <h2 class="group-title" role="heading">Photo</h2>

 <img id="photo" src="/images/taphere.png"

 alt="Tap to capture image from camera" role="img" />

 </div>

 <div id="locationSection" aria-label="Location section">

 <h2 class="group-title" role="heading">Location</h2>

 <iframe id="map" src="ms-appx-web:///html/map.html" aria-label="Map"></iframe>

 </div>

 </section>

</div>

Here we see the five elements in the wireframe: a main header, two subheaders, a space for a photo

(for now an img element with a default “tap here” graphic), and an iframe that specifically houses a

page in which we’ll instantiate a Bing maps web control.11

11 If you’re following the steps in Blend yourself, the taphere.png image should be added to the project in the images

folder. Right-click that folder, select Add Existing Item, and then navigate to the complete sample’s images folder and
select taphere.png. That will copy it into your current project. Note, though, that we’ll do away with this later in this

chapter.

77

You’ll see that some elements have style classes assigned to them. Those that start with win- come

from the WinJS stylesheet (among others).12 You can browse these in Blend on the Style Rules tab,

shown in Figure 2-9. Other styles like titlearea, pagetitle, and group-title are meant for you to

define in your own stylesheet, thereby overriding the WinJS styles for particular elements.

FIGURE 2-9 In Blend, the Style Rules tab lets you look into the WinJS stylesheet and see what each particular style

contains. Take special notice of the search bar under the tabs where I’ve typed “win-“. This helps you avoid visually

scanning for a particular style—just start typing in the box, and let the computer do the work!

The page we’ll load into the iframe, map.html, is part of our app package that we’ll add in a

moment, but note how we reference it. The ms-appx-web:/// protocol indicates that the iframe and

its contents will run in the web context (introduced in Chapter 1), thereby allowing us to load the

remote script for the Bing maps control. The triple slash, for its part—or more accurately the third

slash—is shorthand for “the current app package” (a value that you can obtain from

document.location.host) For more details on this and other protocols, see URI schemes in the

documentation.

To indicate that a page should be loaded in the local context, the protocol is just ms-appx. It’s

important to remember that no script is shared between these contexts (including variables and

functions), relative paths stay in the same context, and communication between the two goes through

the HTML5 postMessage function, as we’ll see later. All of this prevents an arbitrary website from

driving your app and accessing WinRT APIs that might compromise user identity and security.

12 The two standard stylesheets are ui-dark.css and ui-light.css. Dark styles are recommended for apps that deal with
media, where a dark background helps bring out the graphical elements. We’ll use this stylesheet because we’re doing

photo capture. The light stylesheet is recommended for apps that work more with textual content.

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx

78

Note I’m using an iframe element in this first example because it’s probably familiar to most readers.

In Chapter 4, “Web Content and Services,” we’ll change the app to use an x-ms-webview element,

which is much more flexible than an iframe and is the recommended means to host web content.

I’ve also included various aria-* attributes on these elements (as the templates do) that support

accessibility. We’ll look at accessibility in detail in Chapter 19, “Apps for Everyone, Part 1,” but it’s an

important enough consideration that we should be conscious of it from the start: a majority of

Windows users make use of accessibility features in some way. And although some aspects of

accessibility are easy to add later on, adding aria-* attributes in markup is best done early.

In Chapter 19 we’ll also see how to separate strings (including ARIA labels) from our markup,

JavaScript, and even the manifest, and place them in a resource file for the purposes of localization.

This is something you might want to do from early on, so see the “Preparing for Localization” section in

that chapter for the details. Note, however, that resource lookup doesn’t work in Blend, so you might

want to hold off on the effort until you’ve done most of your styling.

Styling in Blend

At this point, and assuming you were paying enough attention to read the footno tes, Blend’s real-time

display of the app shows an obvious need for styling, just like raw markup should. See Figure 2-10.

FIGURE 2-10 The app in Blend without styling, showing a view that is much like the Visual Studio simulator. If the

taphere.png image doesn’t show after adding it, use the View/Refresh menu command.

79

The tabs along the upper left give you access to your Project files, Assets like all the controls you can

add to your UI, and a browser for all the Style Rules defined in the environment. On the lower left side,

the Live DOM tab lets you browse your element hierarchy and the Device tab lets you set orientation,

screen resolution, view sizes and positions, and minimum size. Clicking an element in the Live DOM will

highlight it in the designer, and clicking an element in the designer will highlight it in the Live DOM

section. Also note the search bar in the Live DOM, where you can enter any CSS selector to highlight

those elements that match that selector.

Over on the right side you see what will become a very good friend: the section for HTML Attributes

and CSS Properties. With properties, the list at the top shows all the sources for styles that are being

applied to the currently selected element and where, exactly, those styles are coming from (often a

headache with CSS). The location selected in this list, mind you, indicates where changes in the

properties pane below will be written, so be very conscious of your selection! That list also contains an

item called “Winning Styles,” which shows the styles that are actually being applied to the element, and

an item called “Computed Values,” which will show you the exact values applied in the layout engine,

such as the actual sizes of rows and columns in a CSS grid and how values like 1.5em translate into

pixels.

Now to get our gauche, unstylish page to look like the wireframe, we need to go through the

elements and create the necessary selectors and styles. First, I recommend creating a 1x1 grid in the

body element as this seems to help everything in the app size itself properly. So add display: -ms-

grid; -ms-grid-rows: 1fr; -ms-grid-columns: 1fr; to default.css for body.

CSS grids also make this app’s layout fairly simple: we’ll just use some of nested grids to place the

main sections and the subsections, following the general pattern of styling that works best in Blend:

 Set the insertion point of the style rule within Blend’s Style Rules tab by dragging the orange-

yellow line control. This determines exactly where any new rule you create will be written. In the

image below, new rules would be inserted in default.css at the beginning of the

landscape/max-width: 1024px media query:

80

 In the Live DOM pane (the lower left side in Blend, where you can again search for rules to

highlight elements that use them), right-click the element you want to style and select Create

Style Rule From Element Id or Create Style Rule From Element Class. This will create a new style

rule (at the insertion point indicated in Style Rules above) . Then in the CSS properties pane on

the right, find the rule that was created and add the necessary style properties.

Note If the menu items in the Live DOM pane are both disabled, go to the HTML

Attributes pane (upper right) and add an id, a class, or both, then return to the menu in the

Live DOM. If you do styling without having a distinct rule in place, you’ll create inline styles

in the HTML, although Blend makes it easy to copy those out and paste them into a rule.

 Repeat with every other element you want to style, which could include body, html, and so

forth, all of which appear in the Live DOM.

So for the mainContent div, we create a rule from the Id and set it up with display: -ms-grid; -

ms-grid-columns: 1fr; -ms-grid-rows: 140px 1fr 60px;. (See Figure 2-11.) This creates the

basic vertical areas for the wireframes. In general, you won’t want to put left or right margins directly in

this grid because the lower section will often have horizontally scrolling content that should bleed off

the left and right edges. In the case of Here My Am! we could use one grid, but instead we’ll add those

margins in a nested grid within the header and section elements.

FIGURE 2-11 Setting the grid properties for the mainContent div. Notice how the View Set Properties Only

checkbox (upper right) makes it easy to see what styles are set for the current rule. Also notice how the grid rows

and columns appear on the artboard, including sliders (circled) to manipulate rows and columns directly.

81

Showing this and the rest of the styling—going down into each level of the markup and creating

appropriate styles in the appropriate media queries—is best done in video. Video 2-2 (available with

this book’s companion content) shows this process starting with the creation of the project, styling the

different views, and switching to Visual Studio (right-click the project name in Blend and select Edit In

Visual Studio) to run the app in the simulator for verification. It also demonstrates the approximate

time it takes to style such an app once you’re familiar with the tools. (I also highly recommend

watching What’s New in Blend for HTML Developers from //build 2013, which goes much more in

depth with various styling processes.)

The result of all this in the simulator looks just like the wireframes—see Figures 2-12 through 2-14—

and all the styling is entirely contained within the appropriate media queries of default.css. Most

importantly, the way Blend shows us the results in real time is an enormous time-saver over fiddling

with the CSS and running the app over and over again, a painful process that I’m sure you’re familiar

with! (And the time savings are even greater with Interactive Mode; see Video 5-3 in the companion

content created for Chapter 5 and the //build 2013 talk linked above.)

FIGURE 2-12 Full landscape view.

http://channel9.msdn.com/Events/Build/2013/2-311

82

FIGURE 2-13 Partial landscape view (when sharing the screen with other apps).

FIGURE 2-14 Narrow aspect ratio views: 320px wide (left), 50% wide (middle), and full portrait (right). These images

are not to scale with one another. You can also see that the fixed placeholder image in the Photo section doesn’t

scale well to the 50% view; we’ll solve this later in this chapter in “Improving the Placeholder Image with a Canvas

Element.”

83

Adding the Code
Let’s complete the implementation now in Visual Studio. Again, right-click the project name in Blend’s

Project tab and select Edit In Visual Studio if you haven’t already. Note that if your project is already

loaded into Visual Studio when you switch to it, it will (by default) prompt you to reload changed files.

Say yes.13 At this point, we have the layout and styles for all the necessary views, and our code doesn’t

need to care about any of it except to make some refinements, as we’ll see.

What this means is that, for the most part, we can just write our app’s code against the markup and

not against the markup plus styling, which is, of course, a best practice with HTML/CSS in general. Here

are the features that we’ll now implement:

 A Bing maps control in the Location section showing the user’s current location. We’ll create

and display this map automatically.

 Use the WinRT APIs for camera capture to get a photograph in response to a tap on the Photo

img element.

 Provide the photograph and the location data to the Share charm when the user invokes it.

Figure 2-15 shows what the app will look like when we’re done, with the Share charm invoked and a

suitable target app like Twitter selected.

FIGURE 2-15 The completed Here My Am! app with the Share charm invoked (with my exact coordinates blurred

out, because they do a pretty accurate job of pinpointing my house).

13 On the flip side, note that Blend doesn’t automatically save files going in and out of Interactive Mode. Be aware, then, if

you make a change to the same file open in Visual Studio, switch to Blend, and reload the file, you will lose changes.

84

Creating a Map with the Current Location

For the map, we’re using a Bing maps web control instantiated through the map.html page that’s

loaded into an iframe on the main page (again, we’ll switch over to a webview element later on). As

we’re loading the map control script from a remote source, map.html must be running in the web

context. We could employ the Bing Maps SDK here instead, which provides script we can load into the

local context. For the time being, I want to use the remote script approach because it gives us an

opportunity to work with web content and the web context in general, something that I’m sure you’ll

want to understand for your own apps. We’ll switch to the local control in Chapter 10, “The Story of

State, Part 1.”

That said, let’s put map.html in an html folder. Right-click the project and select Add/New Folder

(entering html to name it). Then right-click that folder, select Add/New Item…, and then select HTML

Page. Once the new page appears, replace its contents with the following, and insert your own key for

Bing Maps obtained from https://www.bingmapsportal.com/ into the init function (highlighted):

<!DOCTYPE html>

<html>

 <head>

 <title>Map</title>

 <script type="text/javascript"

 src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script>

 <script type="text/javascript">

 //Global variables here

 var map = null;

 document.addEventListener("DOMContentLoaded", init);

 window.addEventListener("message", processMessage);

 //Function to turn a string in the syntax { functionName: ..., args: [...] }

 //into a call to the named function with those arguments. This constitutes a generic

 //dispatcher that allows code in an iframe to be called through postMessage.

 function processMessage(msg) {

 //Verify data and origin (in this case the local context page)

 if (!msg.data || msg.origin !== "ms-appx://" + document.location.host) {

 return;

 }

 var call = JSON.parse(msg.data);

 if (!call.functionName) {

 throw "Message does not contain a valid function name.";

 }

 var target = this[call.functionName];

 if (typeof target != 'function') {

 throw "The function name does not resolve to an actual function";

 }

http://msdn.microsoft.com/library/hh846481.aspx
https://www.bingmapsportal.com/

85

 return target.apply(this, call.args);

 }

 //Create the map (though the namespace won't be defined without connectivity)

 function init() {

 if (typeof Microsoft == "undefined") {

 return;

 }

 map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), {

 //NOTE: replace these credentials with your own obtained at

 //http://msdn.microsoft.com/en-us/library/ff428642.aspx

 credentials: "...",

 //zoom: 12,

 mapTypeId: Microsoft.Maps.MapTypeId.road

 });

 }

 function pinLocation(lat, long) {

 if (map === null) {

 throw "No map has been created";

 }

 var location = new Microsoft.Maps.Location(lat, long);

 var pushpin = new Microsoft.Maps.Pushpin(location, { });

 map.entities.push(pushpin);

 map.setView({ center: location, zoom: 12, });

 return;

 }

 function setZoom(zoom) {

 if (map === null) {

 throw "No map has been created";

 }

 map.setView({ zoom: zoom });

 }

 </script>

 </head>

 <body>

 <div id="mapDiv"></div>

 </body>

</html>

Note that the JavaScript code here could be moved into a separate file and referenced with a

relative path, no problem. I’ve chosen to leave it all together for simplicity.

At the top of the page you’ll see a remote script reference to the Bing Maps control. We can again

reference remote script here because the page is loaded in the web context within the iframe (ms-

appx-web:// in default.html). You can then see that the init function is called on DOMContentLoaded

and creates the map control. Then we have a couple of other methods, pinLocation and setZoom,

86

which can be called from the main app as needed.14

Of course, because this page is loaded in an iframe in the web context, we cannot simply call those

functions directly from the local context in which our app code runs. We instead use the HTML5

postMessage function, which raises a message event within the iframe. This is an important point: the

local and web contexts are kept separate so that arbitrary web content cannot drive an app or access

WinRT APIs (as required by Windows Store certification policy). The two contexts enforce a boundary

between an app and the web that can only be crossed with postMessage.

In the code above, you can see that we pick up such messages (the window.onmessage handler) and

pass them to the processMessage function, a little generic routine I wrote to turn a JSON string into a

local function call, complete with arguments.

To see how this works, let’s look at calling pinLocation from within default.js (our local context app

code). To make this call, we need some coordinates, which we can get from the WinRT Geolocation

APIs. We’ll do this within the app’s ready event (which fires after the app is fully running). This way the

user’s location is set on startup and saved in the lastPosition variable for later sharing:

//Drop this after the line: var activation = Windows.ApplicationModel.Activation;

var lastPosition = null;

var locator = new Windows.Devices.Geolocation.Geolocator();

//Add this after the app.onactivated handler

app.onready = function () {

 locator.getGeopositionAsync().done(function (geocoord) {

 var position = geocoord.coordinate.point.position;

 //Save for share

 lastPosition = { latitude: position.latitude, longitude: position.longitude };

 callFrameScript(document.frames["map"], "pinLocation",

 [position.latitude, position.longitude]);

 });

}

where callFrameScript is another little helper function to turn a target element, function name, and

arguments into an appropriate postMessage call:

function callFrameScript(frame, targetFunction, args) {

 var message = { functionName: targetFunction, args: args };

 frame.postMessage(JSON.stringify(message), "ms-appx-web://" + document.location.host);

}

A few points about all this code. First, in the second parameter to postMessage (both in default.js

and map.html) you see ms-appx:// or ms-appx-web:// combined with document.location.host.

14 Be mindful when using the Bing Maps control that every instance you create is a “billable transaction” that counts against
your daily limit depending on your license key. For this reason, avoid creating and destroying map controls across page

navigation, as I explain on my blog post, Minimizing billable transactions with Bing Maps.

http://kraigbrockschmidt.com/blog/?p=886

87

This essentially means “the current app from the [local or web] context,” which is the appropriate origin

of the message. We use the same value to check the origin when receiving a message: the code in

map.html verifies it’s coming from the app’s local context, whereas the code in default.js verifies that

it’s coming from the app’s web context. Always make sure to check the origin appropriately; see

Validate the origin of postMessage data in Developing secure apps.

Next, to obtain coordinates you can use either the WinRT or HTML5 geolocation APIs. The two are

almost equivalent, with the differences described in Chapter 12, “Input and Sensors,” in “Sidebar:

HTML5 Geolocation.” The API exists in WinRT because other supported languages (C# and C++) don’t

have access to HTML5 APIs. We’re focused on WinRT APIs in this book, so we’ll just use functions in the

Windows.Devices.Geolocation namespace.

Note that it’s necessary for the WinRT Geolocation.Geolocator object to stay in scope while an

async location request is happening; otherwise it will cancel the request when a user consent prompt

appears (which we’ll see shortly). This is why I’m creating it outside the app.onready handler.

Finally, the call to getGeopositionAsync has an interesting construct, wherein we make the call and

chain this function called done onto it, whose argument is another function. This is a very common

pattern that we’ll see while working with WinRT APIs, as any API that might take longer than 50ms to

complete runs asynchronously. This conscious decision was made so that the API surface area leads to

fast and fluid apps by default.

In JavaScript, async APIs return what’s called a promise object, which represents results to be

delivered at some time in the future. Every promise object has a done method whose first argument is

the function to be called upon completion, known as the completed handler (often an anonymous

function). done can also take two optional functions to wire up error and progress handlers as well.

We’ll see much more about promises as we progress through this book, such as the then function

that’s just like done and allows further chaining (Chapter 3), and how promises fit into async operations

more generally (Chapter 18). Also, put it deeply into your awareness that anytime you want to stop an

uncompleted async operation that’s represented by a promise, just call the promise’s cancel method.

It’s surprising how often developers forget this!

The argument passed to your completed handler contains the results of the getGeopositionAsync

call, which in our example above is a Windows.Geolocation.Geoposition object containing the last

reading. The coordinates from this reading are what we then pass to the pinLocation function within

the iframe, which in turn creates a pushpin on the map at those coordinates and then centers the map

view at that same location. (Later in the section “Receiving Messages from the iframe” we’ll make the

pushpin draggable and show how the app can pick up location changes from the map.)

Async result types When reading the docs for an async function, you’ll see that the return type is

listed like IAsyncOperation<Geoposition>; the name within < > indicates the actual data type of the

results, so refer to the docs on that class for its details. Note also that the IAsyncOperation and similar

interfaces that exist in WinRT never surface in JavaScript—they are projected as promises.

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx#validate_the_origin_of_postmessage_data
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx

88

What’s in an (async) name? Within the WinRT API, all async functions have Async in their names.

Because this isn’t common practice within the DOM API and other JavaScript toolkits, async functions

within WinJS don’t use that suffix. In other words, WinRT is designed to be language-neutral and

follows its own conventions; WinJS consciously follows typical JavaScript conventions.

Oh Wait, the Manifest!

Now you may have tried the code above and found that you get an “Access is denied” exception when

you try to call getGeopositionAsync. Why is this? Well, the exception says we neglected to set the

Location capability in the manifest. Without that capability set, calls that depend on the capability will

throw an exception.

If you were running in the debugger, that exception is kindly shown in a dialog box:

If you run the app outside of the debugger—from the tile on your Start screen—you’ll see that the

app just terminates without showing anything but the splash screen. This is the default behavior for an

unhandled exception. To prevent that behavior, add an error-handling function as the second

parameter to the async promise’s done method:

locator.getGeopositionAsync().done(function (geocoord) {

 //...

}, function(error) {

 console.log("Unable to get location: " + error.message);

});

The console.log function writes a string to the JavaScript Console window in Visual Studio, which is

obviously a good idea (you can also use WinJS.log for this purpose, which allows more customization,

as we’ll discuss in Chapter 3). Now run the app outside the debugger and you’ll see that the app runs,

because the exception is now considered “handled.” Back in the debugger, set a breakpoint on the

console.log line and you’ll hit that breakpoint after the exception appears and you press Continue.

(This is all we’ll do with the error for now; in Chapter 9, “Commanding UI,” we’ll add a better message

and a retry command.)

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx

89

If the exception dialog gets annoying, you can control which exceptions pop up like this through

the Debug > Exceptions dialog box in Visual Studio (shown in Figure 2-16), under JavaScript Runtime

Exceptions. If you uncheck the box under User-unhandled, you won’t get a dialog when that particular

exception occurs.

FIGURE 2-16 JavaScript run-time exceptions in the Debug/Exceptions dialog of Visual Studio.

When the Thrown box is checked for a specific exception (as it is by default for Access is denied to

help you catch capability omissions), Visual Studio will always display the “exception occurred” message

before your error handler is invoked. If you uncheck Thrown, your error handler will be called without

any message.

Back to the capability: to get the proper behavior for this app, open package.appxmanifest in your

project, select the Capabilities tab (in the editor UI), and check Location, as shown in Figure 2-17.

FIGURE 2-17 Setting the Location capability in Visual Studio’s manifest editor. (Note that Blend supports editing the

manifest only as XML.)

90

Now, even when we declare the capability, geolocation is still subject to user consent, as mentioned

in Chapter 1. When you first run the app with the capability set, then, you should see a popup like this,

which appears in the user’s chosen color scheme to indicate that it’s a message from the system:

If the user blocks access here, the error handler will be invoked with an error of “Canceled.” (This is

also what you get if the Geolocator object goes out of scope while the consent prompt is visible, even if

you click Allow, which is again why I create the object outside the app.onready handler.)

Keep in mind that this consent dialog will appear only once for any given app, even across

debugging sessions (unless you change the manifest or uninstall the app, in which cases the consent

history is reset). After that, the user can at any time change their consent in the Settings > Permissions

panel as shown in Figure 2-18, and we’ll learn how to deal with such changes in Chapter 9. For now, if

you want to test your app’s response to the consent dialog, go to the Start screen and uninstall the app

from its tile. You’ll then see the popup when you next run the app.

FIGURE 2-18 Any permissions that are subject to user consent can be changed at any time through the Settings

Charm > Permissions pane.

Sidebar: Writing Code in Debug Mode

Because of the dynamic nature of JavaScript, it’s impressive that the Visual Studio team figured

out how to make the IntelliSense feature work quite well in the Visual Studio editor. (If you’re

unfamiliar with IntelliSense, it’s the productivity service that provides auto-completion for code

91

as well as popping up API reference material directly inline; learn more at JavaScript IntelliSense).

That said, a helpful trick to make IntelliSense work even better is to write code while Visual

Studio is in debug mode. That is, set a breakpoint at an appropriate place in your code, and then

run the app in the debugger. When you hit that breakpoint, you can then start writing and

editing code, and because the script context is fully loaded, IntelliSense will be working against

instantiated variables and not just what it can derive from the source code. You can also use

Visual Studio’s Immediate Window to execute code directly to see the results. (You will need to

restart the app, however, to execute any new code you write.)

Capturing a Photo from the Camera

In a slightly twisted way, I hope the idea of adding camera capture within a so-called “quickstart”

chapter has raised serious doubts in your mind about this author’s sanity. Isn’t tha t going to take a

whole lot of code? Well, it used to, but no longer. The complexities of camera capture have been

encapsulated within the Windows.Media.Capture API to such an extent that we can add this feature

with only a few lines of code. It’s a good example of how a little dynamic code like JavaScript combined

with well-designed WinRT components—both those in the system and those you can write yourself—

are a powerful combination! (You can also write your own capture UI, as we’ll see in Chapter 13,

“Media,” which is presently necessary on Windows Phone as the API we’re using here isn’t available.)

To implement this feature, we first need to remember that the camera, like geolocation, is a privacy-

sensitive device and must also be declared in the manifest, as shown in Figure 2-19.

FIGURE 2-19 The camera capability in Visual Studio’s manifest editor.

http://msdn.microsoft.com/library/bb385682.aspx

92

On first use of the camera at run time, you’ll see another consent dialog as follows, where again the

user can later change their consent in Settings > Permissions (shown earlier in Figure 2-18):

Next we need to wire up the img element to pick up a tap gesture. For this we simply need to add

an event listener for click, which works for all forms of input (touch, mouse, and stylus), as we’ll see in

Chapter 12:

document.getElementById("photo").addEventListener("click", capturePhoto.bind(photo));

Here we’re providing capturePhoto as the event handler, and using the function object’s bind

method to make sure the this object inside capturePhoto is bound directly to the img element. The

result is that the event handler can be used for any number of elements because it doesn’t make any

references to the DOM itself:

//Place this under var lastPosition = null; (within the app.onactivated handler)

var lastCapture = null;

//Place this after callFrameScript

function capturePhoto() {

 //Due to the .bind() call in addEventListener, "this" will be the image element,

 //but we need a copy for the async completed handler below.

 var captureUI = new Windows.Media.Capture.CameraCaptureUI();

 var that = this;

 //Indicate that we want to capture a JPEG that's no bigger than our target element --

 //the UI will automatically show a crop box of this size.

 captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.jpeg;

 captureUI.photoSettings.croppedSizeInPixels =

 { width: that.clientWidth, height: that.clientHeight };

 //Note: this will fail if we're in any view where there's not enough space to display the UI.

 captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFile) {

 //Be sure to check validity of the item returned; could be null if the user canceled.

 if (capturedFile) {

 lastCapture = capturedFile; //Save for Share

 that.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true });

 }

 }, function (error) {

 console.log("Unable to invoke capture UI: " + error.message);

 });

}

93

We do need to make a local copy of this within the click handler, though, because once we get

inside the async completed handler (the anonymous function passed to captureFileAsync.done)

we’re in a new function scope and the this object will have changed. The convention for such a copy

of this is to call it that. Got that? (You can call it anything, of course.)

To invoke the camera UI, we only need create an instance of Windows.Media.Capture.-

CameraCaptureUI with new (a typical step to instantiate dynamic WinRT objects), configure it with the

desired format and size (among many possibilities; see Chapter 13), and then call captureFileAsync.

This will check the manifest capability and prompt the user for consent, if necessary (and unlike the

Geolocator, a CameraCaptureUI object can go out of scope without canceling the async operation).

This is an async call, so it returns a promise and we hook a .done on the end with our completed

handler, which in this case will receive a Windows.Storage.StorageFile object. Through this object

you can get to all the raw image data you want, but for our purpose we simply want to display it in the

img element. That’s easy as well! Data types from WinRT and those in the DOM API are made to

interoperate seamlessly, so a StorageFile can be treated like an HTML blob. This means you can hand

a WinRT StorageFile object to the HTML URL.createObjectURL method and get back an URI that

can be directly assigned to the img.src attribute. The captured photo appears!

Tip The {oneTimeOnly: true} parameter to URL.createObjectURL indicates that the URI is not

reusable and should be revoked via URL.revokeObjectURL when it’s no longer used, as when we

replace img.src with a new picture. Without this, we’d leak memory with each new picture unless you

explicitly call URL.revokeObjectURL. (If you’ve used URL.createObjectURL in the past, you’ll see that

the second parameter is now a property bag, which aligns with the most recent W3C spec.)

Note that captureFileAsync will call the completed handler if the UI was successfully invoked but

the user hit the back button and didn’t actually capture anything (this includes if you cancel the

promise to programmatically dismiss the UI). This is why we do the extra check on the validity of

capturedFile. An error handler on the promise will, for its part, pick up failures to invoke the UI in the

first place. This will happen if the current view of the app is too small (<500px) for the capture UI to be

usable, in which case error.message will say “A method was called at an unexpected time.” You can

check the app’s view size and take other action under such conditions, such as displaying a message to

make the view wider. Here we just fail silently; we could also just use the 500px minimum.

Note that a denial of consent will show a message in the capture UI directly, so it’s unnecessary to

display your own errors with this particular API:

94

When this happens, you can again go to Settings > Permissions and give consent to use the camera,

as shown in Figure 2-18 earlier.

Sharing the Fun!

Taking a goofy picture of oneself is fun, of course, but sharing the joy with the rest of the world is even

better. Up to this point, however, sharing information through different social media apps has meant

using the specific APIs of each service. Workable, but not scalable.

Windows 8 instead introduced the notion of the share contract, which is used to implement the

Share charm with as many apps as participate in the contract. Whenever you’re in an app and invoke

Share, Windows asks the app for its source data, which it provides in one or more formats. Windows

then generates a list of target apps (according to their manifests) that understand those formats, and

displays that list in the Share pane. When the user selects a target, that app is activated and given the

source data. In short, the contract is an abstraction that sits between the two, so the source and target

apps never need to know anything about each other.

This makes the whole experience all the richer when the user installs more share-capable apps, and

it doesn’t limit sharing to only well-known social media scenarios. What’s also beautiful in the overall

experience is that the user never leaves the original app to do sharing—the share target app shows up

in its own view as an overlay that only partially obscures the source app (refer back to Figure 2-15). This

way, the user remains in the context of the source app and returns there directly when the sharing is

completed. In addition, the source data is shared directly with the target app, so the user never needs

to save data to intermediate files for this purpose.

So instead of adding code to our app to share the photo and location to a particular target, like

Facebook or Twitter, we need only package the data appropriately when Windows asks for it. That

asking comes through the datarequested event sent to the Windows.ApplicationModel.-

DataTransfer.DataTransferManager object.15 First we just need to set up an appropriate listener—

place this code is in the activated event in default.js after setting up the click listener on the img

element:

var dataTransferManager =

 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

dataTransferManager.addEventListener("datarequested", provideData);

Note The notion of a current view as we see here is a way of saying, “get the singular instance of this

system object that’s related to the current window,” which supports the ability for an app to have

multiple windows/views (see Chapter 8). You use getForCurrentView instead of creating an instance

with new because you only ever need one instance of such objects for any given view.

getForCurrentView will instantiate the object if necessary, or return one that’s already available.

15 Because we’re always listening to datarequested while the app is running and add a listener only once, we don’t need to

worry about calling removeEventListener. For details, see “WinRT Events and removeEventListener” in Chapter 3.

95

For this event, the handler receives a Windows.ApplicationModel.DataTransfer.DataRequest

object in the event args (e.request), which in turn holds a DataPackage object (e.request.data). To

make data available for sharing, you populate this data package with the various formats you have

available, as we’ve saved in lastPosition and lastCapture. So in our case, we make sure we have

position and a photo and then fill in text and image properties (if you want to obtain a map from Bing

for sharing purposes, see Get a static map):

//Drop this in after capturePhoto

function provideData(e) {

 var request = e.request;

 var data = request.data;

 if (!lastPosition || !lastCapture) {

 //Nothing to share, so exit

 return;

 }

 data.properties.title = "Here My Am!";

 data.properties.description = "At ("

 + lastPosition.latitude + ", " + lastPosition.longitude + ")";

 //When sharing an image, include a thumbnail

 var streamReference =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(lastCapture);

 data.properties.thumbnail = streamReference;

 //It's recommended to always use both setBitmap and setStorageItems for

 // sharing a single image since the target app may only support one or the other.

 //Put the image file in an array and pass it to setStorageItems

 data.setStorageItems([lastCapture]);

 //The setBitmap method requires a RandomAccessStream.

 data.setBitmap(streamReference);

}

The latter part of this code is pretty standard stuff for sharing a file-based image (which we have in

lastCapture). I got most of this code, in fact, directly from the Share content source app sample,

which we’ll look at more closely in Chapter 15, “Contracts.” We’ll also talk more about files and streams

in Chapter 10.

With this last addition of code, and a suitable sharing target installed (such as the Share content

target app sample, as shown in Figure 2-20, or Twitter as shown in Figure 2-21), we now have a very

functional app—in all of 35 lines of HTML, 125 lines of CSS, and less than 100 lines of JavaScript!

http://msdn.microsoft.com/library/ff701724.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

96

FIGURE 2-20 Sharing (monkey-see, monkey-do!) to the Share target sample in the Windows SDK, which is highly

useful for debugging as it displays information about all the formats the source app has shared. (And if you still

think I’ve given you coordinates to my house, the ones shown here will send you some miles down the road where

you’ll make a fine acquaintance with the Tahoe National Forest.)

FIGURE 2-21 Sharing to Twitter. The fact that Twitter’s brand color is nearly identical to the Windows SDK is sheer

coincidence. The header color of the sharing pane always reflects the target app’s specific color.

97

Extra Credit: Improving the App

The Here My Am! app as we’ve built it so far is nicely functional and establishes core flow of the app,

and you can find this version in the HereMyAm2a folder of the companion content. However, there are

some functional deficiencies that we could improve:

 Because geolocation isn’t always as accurate as we’d like, the pushpin location on the map

won’t always be where we want it. To correct this, we can make the pin draggable and report

its updated position to the app via postMessage from the iframe to the app. This will also

complete the interaction story between local and web contexts.

 The placeholder image that reads “Tap to capture photo” works well in some views, but looks

terrible in others (such as the 50% view as seen in Figure 2-14). We can correct this, and

simplify localization and accessibility concerns later on, by drawing the text on a canvas

element and using it as the placeholder.

 Auto-cropping the captured image to the size of the photo display area takes control away

from users who might like to crop the image themselves. Furthermore, as we change views in

the app, the image just gets scaled to the new size of the photo area without any concern for

preserving aspect ratio. By keeping that aspect ratio in place, we can then allow the user to

crop however they want and adapt well across different view sizes.

 By default, captured images are stored in the app’s temporary app data folder. It’d be better

to move those images to local app data, or even to the Pictures library, so we could later add

the ability to load a previously captured image (as we’ll do in Chapter 9 when we implement

an app bar command for this purpose).

 Originally we used URL.createObjectURL directly on an image’s StorageFile. Because

many images are somewhat larger than most displays, this can use more memory than is

necessary. It’s better, for consumption scenarios, to use a thumbnail instead.

The sections that follow explore all these details and together produce the HereMyAm2b app in the

companion content.

Note For the sake of simplicity, we’ll not separate strings (like the text for the canvas element) into a

resource file as you typically want to do for localization. This gives us the opportunity in Chapter 19 to

explore where such strings appear throughout an app and how to extract them. If you’re starting your

own project now, however, you might want to read the section “World Readiness and Globalization” in

Chapter 19 right away so you can properly structure your resources from the get-go.

Sidebar: Debug or Release?

Because JavaScript code is interpreted at run time instead of being compiled, it l acks conditional

compilation directives like #ifdef that are commonly used in languages like C++ to provide

separate code for Debug and Release builds. Fortunately, it’s not difficult to edit your project file

98

to detect the Visual Studio build target and then selectively copy a debug or release specific file

into the resulting package. This helps you isolate target-specific variables and methods and avoid

littering the rest of your code with a bunch of if statements. I explain the details of doing this on

my blog, A reliable way to differentiate Debug and Release builds for JavaScript apps.

A similar question is whether you can write generic JavaScript code that could be used in a

Windows Store app or a web application. A reasonable way to detect the run-time environment

is to check for the existence of the MSApp object and one of its member functions. See my

StackOverflow answer on Conditional statement to check for Win8 or iOS.

Receiving Messages from the iframe
Just as app code in the local context can use postMessage to send information to an iframe in the

web context, the iframe can use postMessage to send information to the app. In our case, we want to

know when the location of the pushpin has changed so that we can update lastPosition.

First, here’s a simple utility function I added to map.html to encapsulate the appropriate

postMessage calls to the app from the iframe:

function notifyParent(event, args) {

 //Add event name to the arguments object and stringify as the message

 args["event"] = event;

 window.parent.postMessage(JSON.stringify(args), "ms-appx://" + document.location.host);

}

This function basically takes an event name, adds it to an object containing parameters, stringifies

the whole thing, and then posts it back to the parent.

To make a pushpin draggable, we simply add the draggable: true option when we create it in the

pinLocation function (in map.html):

var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true });

When a pushpin is dragged, it raises a dragend event. We can wire up a handler for this in

pinLocation just after the pushpin is created, which then calls notifyParent with a suitable event:

Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) {

 var location = e.entity.getLocation();

 notifyParent("locationChanged",

 { latitude: location.latitude, longitude: location.longitude });

});

Back in default.js (the app), we add a listener for incoming messages inside app.onactivated:

window.addEventListener("message", processFrameEvent);

where the processFrameEvent handler looks at the event in the message and acts accordingly:

function processFrameEvent (message) {

 //Verify data and origin (in this case the web context page)

 if (!message.data || message.origin !== "ms-appx-web://" + document.location.host) {

http://kraigbrockschmidt.com/blog/?p=1285
http://stackoverflow.com/questions/19409787/conditional-statement-to-check-for-win8-or-ios

99

 return;

 }

 if (!message.data) {

 return;

 }

 var eventObj = JSON.parse(message.data);

 switch (eventObj.event) {

 case "locationChanged":

 lastPosition = { latitude: eventObj.latitude, longitude: eventObj.longitude };

 break;

 default:

 break;

 }

};

Clearly, this is more code than we’d need to handle a single message or event from an iframe, but I

wanted to give you something that could be applied more generically in your own apps. In any case,

these additions now allow you to drag the pin to update the location on the map and thus also the

location shared through the Share charm.

Improving the Placeholder Image with a Canvas Element
Although our default placeholder image, /images/taphere.png, works well in a number of views, it gets

inappropriately squashed or stretched in others. We could create multiple images to handle these

cases, but that will bloat our app package and make our lives more complicated when we look at

variations for pixel density (Chapter 3) along with contrast settings and localization (Chapter 19). To

make a long story short, handling different pixel densities can introduce up to four variants of an

image, contrast concerns can introduce four more variants, and localization introduces as many variants

as the languages you support. So if, for example, we had three basic variants of this image and

multiplied that with four pixel densities, four contrasts, and ten languages, we’d end up with 48 images

per language or 480 across all languages! That’s too much to maintain, for one, and that many images

will dramatically bloat the size of your app package (although the Windows Store manages resource

packaging such that users download only what they need).

Fortunately, there’s an easy way to solve this problem across all variations, which is to just draw the

text we need (for which we can adjust contrast and use a localized string later on) on a canvas element

and then use the HTML blob API to display that canvas in an img element. Here’s a routine that does all

of that, which we call within app.onready (to make sure document layout has happened):

function setPlaceholderImage() {

 //Ignore if we have an image (shouldn't be called under such conditions)

 if (lastCapture != null) {

 return;

 }

100

 var photo = document.getElementById("photo");

 var canvas = document.createElement("canvas");

 canvas.width = photo.clientWidth;

 canvas.height = photo.clientHeight;

 var ctx = canvas.getContext("2d");

 ctx.fillStyle = "#7f7f7f";

 ctx.fillRect(0, 0, canvas.width, canvas.height);

 ctx.fillStyle = "#ffffff";

 //Use 75% height of the photoSection heading for the font

 var fontSize = .75 *

 document.getElementById("photoSection").querySelector("h2").clientHeight;

 ctx.font = "normal " + fontSize + "px 'Arial'";

 ctx.textAlign = "center";

 ctx.fillText("Tap to capture photo", canvas.width / 2, canvas.height / 2);

 var img = photo.querySelector("img");

 //The blob should be released when the img.src is replaced

 img.src = URL.createObjectURL(canvas.msToBlob(), { oneTimeOnly: true });

}u

Here we’re simply creating a canvas element that’s the same width and height as the photo display

area, but we don’t attach it to the DOM (no need). We draw our text on it with a size that’s

proportional to the photo section heading. Then we obtain a blob for the canvas using its msToBlob

method, hand it to our friend URL.createObjectURL, and assign the result to the img.src. Voila!

Because the canvas element will be discarded once this function is done (that variable goes out of

scope) and because we make a oneTimeOnly blob from it, we can call this function anytime the photo

section is resized, which we can detect with the window.onresize event. We need to use this same

event to handle image scaling, so let’s see how all that works next.

Handling Variable Image Sizes
If you’ve been building and playing with the app as we’ve described it so far, you might have noticed a

few problems with the photo area besides the placeholder image. For one, if the resolution of the

camera is not sufficient to provide a perfectly sized image as indicated by our cropping size, the

captured image will be scaled to fit the photo area without concern for preserving the aspect ratio (see

Figure 2-22, left side). Similarly, if we change views (or display resolution) after any image is captured,

the photo area gets resized and the image is again scaled to fit, without always producing the best

results (see Figure 2-22, right side).

101

FIGURE 2-22 Poor image scaling with a low-resolution picture from the camera where the captured image isn’t

inherently large enough for the display area (left), and even worse results in the 50% view when the display area’s

aspect ratio changes significantly.

To correct this, we’ll need to dynamically determine the largest image dimension we can use within

the current display area and then scale the image to that size while preserving the aspect ratio and

keeping the image centered in the display. For centering purposes, the easiest solution I’ve found to

this is to create a surrounding div with a CSS grid wherein we can use row and column centering. So in

default.html:

<div id="photo" class="graphic">

</div>

and in default.css:

#photo {

 display: -ms-grid;

 -ms-grid-columns: 1fr;

 -ms-grid-rows: 1fr;

}

#photoImg {

 -ms-grid-column-align: center;

 -ms-grid-row-align: center;

}

The graphic style class on the div always scales to 100% width and height of its grid cell, so the

one row and column within it will also occupy that full space. By adding the centering alignment to the

photoImg child element, we know that the image will be centered regardless of its size.

To scale the image in this grid cell, then, we either set the image element’s width style to 100% if its

aspect ratio is greater than that of the display area, or set its height style to 100% if the opposite is

true. For example, on a 1366x768 display, the size of the display area in landscape view is 583x528 for

an aspect ratio of 1.1, and let’s say we get an 800x600 image back from camera capture with an aspect

102

ratio of 1.33. In this case the image is scaled to 100% of the display area width, making the displayed

image 583x437 with blank areas on the top and bottom. Conversely, in 50% view the display area on

the same screen is 612x249 with a ratio of 2.46, so we scale the 800x600 image to 100% height, which

comes out to 332x249 with blank areas on the left and right.

The size of the display area is readily obtained through the clientWidth and clientHeight

properties of the surrounding div we added to the HTML. The actual size of the captured image is then

readily available through its StorageFile object’s properties.getImagePropertiesAsync method.

Putting all this together, here’s a function that sets the appropriate style on the img element given its

parent div and the captured file:

function scaleImageToFit(imgElement, parentDiv, file) {

 file.properties.getImagePropertiesAsync().done(function (props) {

 var scaleToWidth =

 (props.width / props.height > parentDiv.clientWidth / parentDiv.clientHeight);

 imgElement.style.width = scaleToWidth ? "100%" : "";

 imgElement.style.height = scaleToWidth ? "" : "100%";

 }, function (e) {

 console.log("getImageProperties error: " + e.message);

 });

}

With this in place, we can simply call this in our existing capturePhoto function immediately after

we assign a new image to the element:

img.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true });

scaleImageToFit(img, photoDiv, capturedFile);

To handle view changes and anything else that will resize the display area, we can add a resize

handler within app.onactivated:

window.addEventListener("resize", scalePhoto);

where the scalePhoto handler can call scaleImageToFit if we have a captured image or the

setPlaceholderImage function we created in the previous section otherwise:

function scalePhoto() {

 var photoImg = document.getElementById("photoImg");

 //Make sure we have an img element

 if (photoImg == null) {

 return;

 }

 //If we have an image, scale it, otherwise regenerate the placeholder

 if (lastCapture != null) {

 scaleImageToFit(photoImg, document.getElementById("photo"), lastCapture);

 } else {

 setPlaceholderImage();

 }

}

103

With such accommodations for scaling, we can also remove the line from capturePhoto that set

captureUI.photoSettings.croppedSizeInPixels, thereby allowing us to crop the captured image

however we like. Figure 2-23 shows these improved results.

FIGURE 2-23 Proper image scaling after making the improvements.

Moving the Captured Image to AppData (or the Pictures

Library)
If you take a look in Here My Am! TempState folder within its appdata, you’ll see all the pictures you’ve

taken with the camera capture UI. If you set a breakpoint in the debugger and look at capturedFile,

you’ll see that it has an ugly file path like C:\Users\kraigb\AppData\Local\Packages\ ProgrammingWin-

JS-CH2-HereMyAm2b_5xchamk3agtd6\TempState\picture001.png. Egads. Not the friendliest of

locations, and definitely not one that we’d want a typical consumer to ever see!

Because we’ll want to allow the user to reload previous pictures later on (see Chapter 10) , it’s a good

idea to move these images into a more reliable location. Otherwise they could disappear at any time if

the user runs the Disk Cleanup tool.

Tip For quick access to the appdata folders for your installed apps, type %localappdata%/packages

into the path field of Windows Explorer or in the Run dialog (Windows+R key). Easier still, just make a

shortcut on your desktop, Start screen, or task bar.

For the purposes of this exercise, we’ll move each captured image into a HereMyAm folder within

our local appdata and also rename the file in the process to add a timestamp. In doing so, we can also

briefly see how to use an ms-appdata:///local/ URI to directly refer to those images within the

img.src attribute. (This protocol is described in URI schemes along with its roaming and temp variants,

the ms-appx protocol for in-package contents, and the ms-resource protocol for resources, as

described in Chapter 19.) I say “briefly” here because in the next section we’ll change this code to use a

thumbnail instead of the full image file.

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx

104

To move the file, we can use its built-in StorageFile.copyAsync method, which requires a target

StorageFolder object and a new name, and then delete the temp file with its deleteAsync method.

The target folder is obtained from Windows.Storage.ApplicationData.current.localFolder.

The only real trick to all of this is that we have to chain together multiple async operations. We’ll

discuss this in more detail in Chapter 3, but the way you do this is to have each completed handler in

the chain return the promise from the next async operation in the sequence, and to use then for each

step except for the last, when we use done. The advantage to this is that we can throw any exceptions

along the way and they’ll be picked up in the error handler given to done. Here’s how it looks in a

modified capturePhoto function:

var img = photoDiv.querySelector("img");

var capturedFile;

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (capturedFileTemp) {

 if (!capturedFileTemp) { throw ("no file captured"); }

 capturedFile = capturedFileTemp;

 //Open the HereMyAm folder, creating it if necessary

 var local = Windows.Storage.ApplicationData.current.localFolder;

 return local.createFolderAsync("HereMyAm",

 Windows.Storage.CreationCollisionOption.openIfExists);

 //Note: the results from the returned promise are fed into the

 //completed handler given to the next then in the chain.

 })

 .then(function (myFolder) {

 //Again, check validity of the result

 if (!myFolder) { throw ("could not create local appdata folder"); }

 //Append file creation time to the filename (should avoid collisions,

 //but need to convert colons)

 var newName = " Capture - " +

 capturedFile.dateCreated.toString().replace(/:/g, "-") + capturedFile.fileType;

 //Make the copy

 return capturedFile.copyAsync(myFolder, newName);

 })

 .then(function (newFile) {

 if (!newFile) { throw ("could not copy file"); }

 lastCapture = newFile; //Save for Share

 img.src = "ms-appdata:///local/HereMyAm/" + newFile.name;

 //newFile.name includes extension

 scaleImageToFit(img, photoDiv, newFile);

 //Delete the temporary file

 return capturedFile.deleteAsync();

 })

 //No completed handler needed for the last operation

105

 .done(null, function (error) {

 console.log("Unable to invoke capture UI:" + error.message);

 });

This might look a little complicated to you at this point, but trust me, you’ll quickly become

accustomed to this structure when dealing with multiple async operations. If you can look past all the

syntactical ceremony here and simply follow the words Async and then, you can see that the sequence

of operations is simply this:

 Capture an image from the camera capture UI, resulting in a temp file, then…

 Create or open the HereMyAm folder in local appdata, resulting in a folder object, then…

 Copy the captured file to that folder, resulting in a new file, then…

 Delete the temp file, which has no results, and we’re done.

To help you follow the chain, I’ve use different colors in the code above to highlight each set of

async calls and their associated then methods and results, along with a final call to done. What works

very well about this chaining structure—which is much cleaner than trying to nest operations within

each completed handler—is that any exceptions that occur, whether from WinRT or a direct throw, are

shunted to the one error handler at the end, so we don’t need separa te error handlers for every

operation (although you can if you want).

Finally, by changing two lines of this code and—very importantly—declaring the Pictures library

capability in the manifest, you can move the files to the Pictures library instead. Just change the line to

obtain localFolder to this instead:

var local = Windows.Storage.KnownFolders.picturesLibrary;

and use URL.createObjectUrl with the img element instead of the ms-appdata URI:

img.src = URL.createObjectURL(newFile, {oneTimeOnly: true});

as there isn’t a URI scheme for the pictures library. Of course, the line above works just fine for a file in

local appdata, but I wanted to give you an introduction to the ms-appdata:// protocol. Again, we’ll be

removing this line in the next section, so in the example code you’ll only see it in comments.

Using a Thumbnail Instead of the Full Image

As we’ll learn in Chapter 11, “The Story of State, Part 2,” most image consumption scenarios never need

to load an entire image file into memory. Images from digital cameras, for example, are often much

larger than most displays, so the image will almost always be scaled down even when shown full screen.

Unless you’re showing the zoomed-in image or providing editing features, then, it’s more memory

efficient to use thumbnails for image display rather than just passing a StorageFile straight to

URL.createObjectURL. This is especially true when loading many images into a collection control.

106

To obtain a thumbnail, use either StorageFile.getThumbnailAsync or StorageFile.getScaled-

ImageAsThumbnailAsync, where the former always relies on the thumbnail cache whereas the latter

will use the full image as a fallback. For the purposes of Here My Am!, we’ll want to use the latter. First

we need to remove the img.src assignment inside capturePhoto, then have the scaleImageToFit

function load up the thumbnail:

function scaleImageToFit(imgElement, parentDiv, file) {

 file.properties.getImagePropertiesAsync().done(function (props) {

 var requestedSize;

 var scaleToWidth =

 (props.width / props.height > parentDiv.clientWidth / parentDiv.clientHeight);

 if (scaleToWidth) {

 imgElement.style.width = "100%";

 imgElement.style.height = "";

 requestedSize = parentDiv.clientWidth;

 } else {

 imgElement.style.width = "";

 imgElement.style.height = "100%";

 requestedSize = parentDiv.clientHeight;

 }

 //Using a thumbnail is always more memory efficient unless you really need all the

 //pixels in the image file.

 //Align the thumbnail request to known caching sizes (for non-square aspects).

 if (requestedSize > 532) { requestedSize = 1026; }

 else { if (requestedSize > 342) { requestedSize = 532; }

 else { requestedSize = 342; }}

 file.getScaledImageAsThumbnailAsync(

 Windows.Storage.FileProperties.ThumbnailMode.singleItem, requestedSize)

 .done(function (thumb) {

 imgElement.src = URL.createObjectURL(thumb, { oneTimeOnly: true });

 });

 }

}

As we’ll see in Chapter 11, the ThumbnailMode.singleItem argument to getScaledImageAs-

ThumbnailAsync is the best mode for loading a larger image, and the second argument specifies the

requested size, which works best when aligned to known cache sizes (190, 266, 342, 532, and 1026 for

non-square aspects). The resulting thumbnail of this operation is conveniently something you can

again pass directly to URL.createObjectURL, but ensures that we load only as much image data as we

need for our UI.

With that, we’ve completed our improvements to Here My Am!, which you can again find in the

HereMyAm2b example with this chapter’s companion content. And I think you can guess that this is

only the beginning: we’ll be adding many more features to this app as we progress through this book!

107

The Other Templates: Projects and Items

In this chapter we’ve worked with only the Blank App template so that we could understand the basics

of writing a Windows Store app without any other distractions. In Chapter 3, we’ll look more deeply at

the anatomy of apps through a few of the other templates, yet we won’t cover them all. To close this

chapter, then, here’s a short introduction to these handy tools to get you started on your own projects.

Navigation App Template
“A project for a Windows Store app that has predefined controls for navigation.”

(Blend/Visual Studio description)

The Navigation template builds on the Blank template by adding support for “page” navigation,

where the pages in question are more sections of content than distinct pages like we know on the

Web. As discussed in Chapter 1, Windows Store apps written in JavaScript are best implemented by

having a single HTML page container into which other pages are dynamically loaded. This allows for

smooth transitions (as well as animations) between those pages and preserves the script context. Many

web apps, in fact, use this single-page approach.

The Navigation template, and the others that remain, employ a Page Navigator control that

facilitates loading (and unloading) pages in this way. You need only create a relatively simple structure

to describe each page and its behavior. We’ll see this in—you guessed it—Chapter 3.

In this model, default.html is little more than a simple container, with everything else in the app

coming through subsidiary pages. The Navigation template creates only one subsidiary page, yet it

establishes the framework for how to work with multiple pages. Additional pages are easily added to a

project through a page item template (right click a folder in your project in Visual Studio and select

Add > New Item > Page Control).

Grid App Template
“A three-page project for a Windows Store app that navigates among grouped items arranged in a grid.

Dedicated pages display group and item details.” (Blend/Visual Studio description)

Building on the Navigation template, the Grid template provides the basis for apps that will navigate

collections of data across multiple pages. The home page shows grouped items within the collection,

from which you can then navigate into the details of an item or into the details of a group and its items

(from which you can then go into individual item details as well).

In addition to the navigation, the Grid template also shows how to manage collections of data

through the WinJS.Binding.List class, a topic we’ll explore much further in Chapter 7, “Collection

Controls.” It also provides the structure for an app bar and shows how to simplify the app’s behavior in

narrow views.

108

The name of the template, by the way, derives from the particular grid layout used to display the

collection, not from the CSS grid.

Hub App Template
“A three-page project for a Windows Store app that implements the hub navigation pattern by using a

hub control on the first page and provides two dedicated pages for displaying group and item details.”

(Blend/Visual Studio description)

Functionally similar to a Grid Template app, the Hub template uses the WinJS Hub control for a

home page with heterogeneous content (that is, where multiple collections could be involved). From

there the app navigates to group and item pages. We’ll learn about the Hub control in Chapter 8.

Split Template
“A two-page project for a Windows Store app that navigates among grouped items. The first page allows

group selection while the second displays an item list alongside details for the selected item.”

(Blend/Visual Studio description)

This last template also builds on the Navigation template and works over a collection of data. Its

home page displays a list of groups, rather than grouped items as with the Grid template. Tapping a

group navigates to a group detail page that is split into two sides (hence the template name). The left

side contains a vertical list of items; the right side shows details for the currently selected item.

Like the Grid template, the Split template provides an app bar structure and handles different views

intelligently. That is, because vertically oriented views don’t lend well to splitting the display

horizontally, the template shows how to switch to a page navigation model within those views to

accomplish the same ends.

Item Templates

In addition to the project templates described above, there are a number of item templates that you

can use to add new files of particular types to a project, or add groups of files for specific features.

Once a project is created, right-click the folder in which you want to create the item in question (or the

project file to create something at the root), and select Add > New item. This will present you with a

dialog of available item templates, as shown in Figure 2-24 for features specific to Store apps. We’ll

encounter more of these throughout this book.

109

FIGURE 2-24 Available item templates for a Windows Store app written in JavaScript.

What We’ve Just Learned

 How to create a new Windows Store app from the Blank app template.

 How to run an app inside the local debugger and within the simulator, as well as the role of

remote machine debugging.

 The features of the simulator that include the ability to simulate touch, set views, and change

resolutions and pixel densities.

 The basic project structure for Windows Store apps, including WinJS references.

 The core activation structure for an app through the WinJS.Application.onactivated event.

 The role and utility of design wireframes in app development, including the importance of

designing for all views, where the work is really a matter of element visibility and layout.

 The power of Blend for Visual Studio to quickly and efficiently add styling to an app’s markup.

Blend also makes a great CSS debugging tool.

 How to safely use web content (such as Bing maps) within a web context iframe and

communicate between that page and the local context app by using the postMessage method.

 How to use the WinRT APIs, especially async methods involving promises such as geolocation

and camera capture. Async operations return a promise to which you provide a completed

handler (and optional error and progress handlers) to the promise’s then or done method.

110

 Manifest capabilities determine whether an app can use certain WinRT APIs. Exceptions will

result if an app attempts to use an API without declaring the associated capability.

 How to share data through the Share contract by responding to the datarequested event.

 How to handle sequential async operations through chained promises.

 How to move files on the file system and work with basic appdata folders.

 The kinds of apps supported through the other app templates: Navigation, Grid, Hub, and Split.

111

Chapter 3

App Anatomy and Performance

Fundamentals

During the early stages of writing this book (the first edition, at least), I was working closely with a

contractor to build a house for my family. Although I wasn’t on site every day managing the effort, I

was certainly involved in nearly all decision-making throughout the home’s many phases, and I

occasionally participated in the construction itself.

In the Sierra Nevada foothills of California, where I live, the frame of a house is built with the

plentiful local wood, and all the plumbing and wiring has to be in the walls before installing insulation

and wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The

builders spent a lot of time adding little blocks of wood here and there to make it much easier for them

to do the finish work later on (like hanging cabinets), and lots of time getting the wiring and plumbing

put together properly. All of this disappeared from sight once the wallboard went up and the finish

work was in place.

But then, imagine what a house would be like without such careful attention to structural details.

Imagine having some light switches that just don’t work or control the wrong fixtures. Imagine if the

plumbing leaks inside the walls. Imagine if cabinets and trim start falling off the walls a week or two

after moving into the house. Even if the house manages to pass final inspection, such flaws would make

it almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of the

designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically

pleasing, yet thoroughly uncomfortable to actually live in.

Apps are very much the same story—I’ve marveled, in fact, just how many similarities exist between

the two endeavors! An app might be visually beautiful, even stunning, but once you start using it day

to day (or even minute to minute), a lack of attention to the fundamentals will become painfully

apparent. As a result, your customers will probably start looking for somewhere else to live, meaning

someone else’s app! Another similarity is that taking care of core problems early on is always less

expensive and time-consuming than addressing them after the fact, as anyone who has remodeled a

house will know! This is especially true of performance issues in apps—trying to refactor an app at the

end of a project to improve the user experience is like adding plumbing and wiring to a house after all

the interior surfaces (walls, floors, windows, and ceilings) walls have been covered and painted.

This chapter, then, is about those fundamentals: the core foundational structure of an app upon

which you can build something that looks beautiful and really works well. This takes us first into the

subject of app activation (how apps get running and get running quickly) and then app lifecycle

transitions (how they are suspended, resumed, and terminated). We’ll then look at page navigation

112

within an app, working with promises, async debugging, and making use of various profiling tools. One

subject that we won’t talk about here are background tasks; we’ll see those in Chapter 16, “Alive with

Activity,” because there are limits to their use and they are best discussed in the context of the lock

screen.

Generally speaking, these anatomical concerns apply strictly to the app itself and its existence on a

client device. Chapter 4, “Web Content and Services,” expands this story to include how apps reach out

beyond the device to consume web-based content and employ web APIs and other services. In that

context we’ll look at additional characteristics of the hosted environment that we first encountered in

Chapter 2, “Quickstart,” such as the local and web contexts, basic network connect ivity, and

authentication. We’ll pick up a few other platform fundamentals, like input, in later chapters.

Let me offer you advance warning that this chapter and the next are more intricate than most others

because they specifically deal with the software equivalents of framing, plumbing, and wiring. With my

family’s house, I can completely attest that installing the lovely light fixtures my wife picked out

seemed, in those moments, much more satisfying than the framing work I’d done months earlier. But

now, actually living in the house, I have a deep appreciation for all the nonglamorous work that went

into it. It’s a place I want to be, a place in which my family and I are delighted, in fact, to spend the

majority of our lives. And is that not how you want your customers to feel about your apps? Absolutely!

Knowing the delight that a well-architected app can bring to your customers, let’s dive in and find our

own delight in exploring the intricacies!

App Activation

One of the most important things to understand about any app is how it goes from being a package

on disk to something that’s up and running and interacting with users. Such activation can happen a

variety of ways: through tiles on the Start screen or the desktop task bar, toast notifications, and various

contracts, including Search, Share, and file type and URI scheme associations. Windows might also pre-

launch the user’s most frequently used apps (not visibly, of course), after updates and system restarts. In

all these activation cases, you’ll be writing plenty of code to initialize your data structures, acquire

content, reload previously saved state, and do whatever else is necessary to establish a great experience

for the human beings on the other side of the screen.

Tip Pay special attention to what I call the first experience of your app, which starts with your app’s

page in the Store, continues through download and installation (meaning: pay attention to the size of

your package), and finished up through first launch and initialization that brings the user to your app’s

home page. When a user taps an Install button in the Store, he or she clearly wants to try your app, so

streamlining the path to interactivity is well worth the effort.

113

Branding Your App 101: The Splash Screen and Other Visuals
With activation, we first need to take a step back even before the app host gets loaded, to the very

moment a user taps your tile on the Start screen or when your app is launched some other way (except

for pre-launching). At that moment, before any app-specific code is loaded or run, Windows displays

your app’s splash screen image against your chosen background color, both of which you specify in

your manifest.

The splash screen shows for at least 0.75 seconds (so that it’s never just a flash even if the app loads

quickly) and accomplishes two things. First, it guarantees that something shows up when an app is

activated, even if no app code loads successfully. Second, it gives users an interesting branded

experience for the app—that is, your image—which is better than a generic hourglass. (So don’t, as one

popular app I know does, put a generic hour class in your splash screen image!) Indeed, your splash

screen and your app tile are the two most important ways to uniquely brand your app. Make sure you

and your graphic artist(s) give full attention to these. (For further guidance, see Guidelines and checklist

for splash screens.)

The default splash screen occupies the whole view where the app is being launched (in whatever

view state), so it’s a much more directly engaging experience for your users. During this time, an

instance of the app host gets launched to load, parse, and render your HTML/CSS, and load, parse, and

execute your JavaScript, firing events along the way, as we’ll see in the next section. When the app’s

first page is ready, the system removes the splash screen.16

Additional settings and graphics in the manifest also affect your branding and overall presence in

the system, as shown in the tables on the next page. Be especially aware that the Visual Studio and

Blend templates provide some default and thoroughly unattractive placeholder graphics. Take a

solemn vow right now that you truly, truly, cross-your-heart will not upload an app to the Windows

Store with these defaults graphics still in place! (The Windows Store will reject your app if you forget,

delaying certification.)

In the second table, you can see that it lists multiple sizes for various images specified in the

manifest to accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and even a few

at 80% (don’t neglect the latter: they are typically used for most desktop monitors and can be used

when you turn on Show More Tiles on the Start screen’s settings pane). Although you can just provide a

single 100% scale image for each of these, it’s almost guaranteed that stretching that graphics for

higher pixel densities will look bad. Why not make your app look its best? Take the time to create each

individual graphic consciously.

Manifest Editor Tab Text Item or Setting Use

16 This system-provided splash screen is composed of only your splash screen image and your background color and does

not allow any customization. Through an extended splash screen (see Appendix B) you can control the entire display.

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/hh465338.aspx

114

Application Display Name Appears in the “all apps” view on the Start screen, search results, the

Settings charm, and in the Store.

Visual Assets Tile > Short name Optional: if provided, is used for the name on the tile in place of the

Display Name, as Display Name may be too long for a square tile.

 Tile > Show name Specifies which tiles should show the app name (the small 70x70 tile

will never show the name). If none of the items are checked, the name

never appears.

 Tile > Default size Indicates whether to show the square or wide tile on the Start screen

after installation.

 Tile > Foreground text Color of name text shown on the tile if applicable (see Show name).

Options are Light and Dark. There must be a 1.5 contrast ratio

between this and the background color. Refer to The Paciello Group’s

Contrast Analyzer for more.

 Tile > Background color Color used for transparent areas of any tile images, the default

background for secondary tiles, notification backgrounds, buttons in

app dialogs, borders when the app is a provider for file picker and

contact picker contracts, headers in settings panes, and the app’s

page in the Store. Also provides the splash screen background color

unless that is set separately.

 Splash Screen >

Background color

Color that will fill the majority of the splash screen; if not set, the App

UI Background color is used.

Visual Assets Tab

Image

Use

Image Sizes

80% 100% 140% 180%

Square 70x70 logo A small square tile image for the Start screen. If

provided, the user has the option to display this

after installation; it cannot be specified as the

default. (Note also that live tiles are not supported

on this size.)

56x56 70x70 98x98 126x126

Square 150x150 logo Square tile image for the Start screen. 120z120 150x150 210x210 270x270

Wide 310x150 logo Optional wide tile image. If provided, this is shown

as the default unless overridden by the Default

option below. The user can use the square tile if

desired.

248x120 310x150 434x210 558x270

Square 310x310 logo Optional double-size/large square tile image. If

provided, the user has the option to display this

after installation; it cannot be specified as the

default.

248x248 310x310 434x434 558x558

Square 30x30 logo Tile used in zoomed-out and “all apps” views of

the Start screen, and in the Search and Share

panes if the app supports those contracts as

targets. Also used on the app tile if you elect to

show a logo instead of the app name in the lower

left corner of the tile. Note that there are also four

“Target size” icons that are specifically used in the

desktop file explorer when file type associations

exist for the app. We’ll cover this in Chapter 15,

“Contracts.”

24x24 30x30 42x42 54x54

http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser

115

Store logo Tile/logo image used for the app on its product

description page in the Windows Store. This image

appears only in the Windows Store and is not used

by the app or system at run time.

n/a 50x50 70x70 90x90

Badge logo Shown next to a badge notification to identify the

app on the lock screen (uncommon, as this

requires additional capabilities to be declared; see

Chapter 16).

n/a 24x24 33x33 43x43

Splash screen When the app is launched, this image is shown in

the center of the screen against the Splash Screen

> Background color (or Tile > Background color if

the other isn’t specified). The image can utilize

transparency if desired.

n/a 620x300 868x420 1116x540

The Visual Assets tab in the editor shows you which scale images you have in your package, as

shown in Figure 3-1. To see all visual elements at once, select All Image Assets in the left-hand list.

FIGURE 3-1 Visual Studio’s Visual Assets tab of the manifest editor. It automatically detects whether a scaled asset

exists for the base filename (such as images\tile.png).

In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes (generally

when the DPI is less than 130 and the resolution is less than 2560 x 1440) and should be provided with

other scaled images. When you upload your app to the Windows Store, you’ll also need to provide

some additional graphics. See the App images topic in the docs under “Promotional images” for full

http://msdn.microsoft.com/library/windows/apps/hh846296.aspx

116

details.

The combination of small, square, wide, and large square tiles allows the user to arrange the start

screen however they like. For example:

Of course, it’s not required that your app supports anything other than the 150x150 square tile; all

others are optional. In that case Windows will scale your 150x150 tile down to the 70x70 small size to

give users at least that option.

When saving scaled image files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the

filenames, before the file extension, as in splashscreen.scale-140.png (and be sure to remove any file

that doesn’t have a suffix). This allows you, both in the manifest and elsewhere in the app, to refer to an

image with just the base name, such as splashscreen.png, and Windows will automatically load the

appropriate variant for the current scale. Otherwise it looks for one without the suffix. No code needed!

This is demonstrated in the HereMyAm3a example, where I’ve added all the various branded graphics

(with some additional text in each graphic to show the scale). With all of these graphics, you’ll see the

different scales show up in the manifest editor, as shown in Figure 3-1 above.

To test these different graphics, use the set resolution/scaling button in the Visual Studio

simulator—refer to Figure 2-5 in Chapter 2—or the Device tab in Blend, to choose different pixel

densities on a 10.6” screen (1366 x 768 =100%, 1920 x 1080 = 140%, and 2560 x 1440 = 180%), or the

7” or 7.5” screens (both use 140%). You’ll also see the 80% scale used on the other display choices,

including the 23” and 27” settings. In all cases, the setting affects which images are used on the Start

screen and the splash screen, but note that you might need to exit and restart the simulator to see the

new scaling take effect.

One thing you might notice is that full-color photographic images don’t scale down very well to the

smallest sizes (store logo and small logo). This is one reason why Windows Store apps often use simple

logos, which also keeps them smaller when compressed. This is an excellent consideration to keep your

package size smaller when you make more versions for different contrasts and languages. We’ll see

more on this in Chapter 19, “Apps for Everyone, Part 1” and Chapter 20, “Apps for Everyone, Part 2.”

117

Package bloat? As mentioned already in Chapters 1 and 2, the multiplicity of raster images that you

need to create to accommodate scales, contrasts, and languages will certainly increase the size of the

package you upload to the Store. (There are 104 possible variants per language of the manifest image

assets alone!) Fortunately, the default packaging model for Windows 8.1 structures your resources into

separate packs that are downloaded only as a user needs them, as we’ll discuss in Chapters 19 and 20.

In short, although the package you upload will contain all possible resources for all markets where

your app will be available, most if not all users will be downloading a much smaller subset. That said,

it’s also good to consider the differences between file formats like JPEG, GIF, and PNG to get the most

out of your pixels. For a good discussion, see PNG vs. GIF vs. JPEG on StackOverflow.

Tip Three other branding-related resources you might be interested in are the Branding your

Windows Store app topic in the documentation (covering design aspects) the CSS styling and branding

your app sample (covering CSS variations and dynamically changing the active stylesheet), and the

very useful Applying app theme color (theme roller) sample (which lets you configure a color theme,

showing its effect on controls, and which generates the necessary CSS).

Activation Event Sequence
As the app host is built on the same parsing and rendering engines as Internet Explorer, the general

sequence of activation events is more or less what a web application sees in a browser. Actually, it’s

more rather than less! Here’s what happens so far as Windows is concerned when an app is launched

(refer to the ActivationEvents example in the companion code to see this event sequence as well as the

related WinJS events that we’ll discuss a little later):

1. Windows displays the default splash screen using information from the app manifest

(except for pre-launching).

2. Windows launches the app host, identifying the app’s installation folder and the name of

the app’s Start Page (an HTML file) as indicated in the Application tab of the manifest

editor.17

3. The app host loads that page’s HTML, which in turn loads referenced stylesheets and script

(deferring script loading if indicated in the markup with the defer attribute). Here it’s

important that all files are properly encoded for best startup performance. (See the sidebar

on the next page.)

4. document.DOMContentLoaded fires. You can use this to do early initialization specifically

related to the DOM, if desired. This is also the place to perform one-time initialization work

that should not be done if the app is activated on multiple occasions during its lifetime.

5. window.onload fires. This generally means that document layout is complete and elements

will reflect their actual dimensions. (Note: In Windows 8 this event occurs at the end of this

17 To avoid confusion with the Windows Start screen, I’ll often refer to this as the app’s home page unless I’m specifically

referring to the entry in the manifest.

http://stackoverflow.com/questions/2336522/png-vs-gif-vs-jpeg-when-best-to-use/7752936#7752936
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx#load_only_what_you_need

118

list instead.)

6. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you’ll

do all your startup work, instantiate WinJS and custom controls, initialize state, and so on.

Once the activated event handler returns, the default splash screen is dismissed unless the app has

requested a deferral, as discussed later in the “Activation Deferrals and setPromise” section.With the

latter four events, your app’s handling of these very much determ ines how quickly it comes up and

becomes interactive. It almost goes without saying that you should strive to optimize that process, a

subject we’ll return to a little later in “Optimizing Startup Time.”

What’s also different between an app and a website is that an app can again be activated for many

different purposes, such as contracts and associations, even while it’s already running. As we’ll see in

later chapters, the specific page that gets loaded (step 3) can vary by contract, and if a particular pa ge

is already running it will receive only the Windows.UI.WebUI.WebUIApplication.onactivated event

and not the others.

For the time being, though, let’s concentrate on how we work with this core launch process, and

because you’ll generally do your initialization work within the activated event, let’s examine that

structure more closely.

Sidebar: File Encoding for Best Startup Performance

To optimize bytecode generation when parsing HTML, CSS, and JavaScript, which speeds app

launch time, the Windows Store requires that all .html, .css, and .js files are saved with Unicode

UTF-8 encoding. This is the default for all files created in Visual Studio or Blend. If you’re

importing assets from other sources including third-party libraries, check this encoding: in Visual

Studio’s File Save As dialog (Blend doesn’t have a Save As feature), select Save with Encoding and

set that to Unicode (UTF-8 with signature) – Codepage 65001. The Windows App Certification Kit

will issue warnings if it encounters files without this encoding.

Along these same lines, minification of JavaScript isn’t particularly important for Windows

Store apps. Because an app package is downloaded from the Windows Store as a unit and often

contains other assets that are much larger than your code files, minification won’t make much

difference there. Once the package is installed, bytecode generation means that the package’s

JavaScript has already been processed and optimized, so minification won’t have any additional

performance impact. If your intent is to obfuscate your code (because it is just there in source

form in the installation folder), see “Protecting Your Code” in Chapter 18, “WinRT Components.”

119

Activation Code Paths
As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code in

js/default.js (a few comments have been removed):

(function () {

 "use strict";

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll());

 }

 };

 app.oncheckpoint = function (args) {

 };

 app.start();

})();

Let’s go through this piece by piece to review what we already learned and complete our

understanding of this core code structure:

 (function () { … })(); surrounding everything is again the JavaScript module pattern.

 "use strict" instructs the JavaScript interpreter to apply Strict Mode, a feature of ECMAScript

5. This checks for sloppy programming practices like using implicitly declared variables, so it’s a

good idea to leave it in place.

 var app = WinJS.Application; and var activation =

Windows.ApplicationModel.Activation; both create substantially shortened aliases for

commonly used namespaces. This is a common practice to simplify multiple references to the

same part of WinJS or WinRT, and it also provides a small performance gain.

 app.onactivated = function (args) {…} assigns a handler for the WinJS.UI.onactivated

event, which is a wrapper for Windows.UI.WebUI.WebUIApplication.onactivated (but will

be fired after window.onload). In this handler:

 args.detail.kind identifies the type of activation.

http://msdn.microsoft.com/library/br230269.aspx

120

 args.detail.previousExecutionState identifies the state of the app prior to this

activation, which determines whether to reload session state.

 WinJS.UI.processAll instantiates WinJS controls—that is, elements that contain a data-

win-control attribute, as we’ll cover in Chapter 5, “Controls and Control Styling.”

 args.setPromise instructs Windows to wait until WinJS.UI.processAll is complete

before removing the splash screen. (See “Activation Deferrals and setPromise” later in this

chapter.)

 app.oncheckpoint, which is assigned an empty function, is something we’ll cover in the “App

Lifecycle Transition Events” section later in this chapter.

 app.start() (WinJS.Application.start()) initiates processing of events that WinJS queues

during startup.

Notice how we’re not directly handling any of the events that Windows or the app host is firing, like

DOMContentLoaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we just ignoring

those events? Not at all: one of the convenient services that WinJS offers through

WinJS.UI.Application is a simplified structure for activation and other app lifetime events. Its use is

entirely optional but very helpful.

With its start method, for example, a couple of things are happening. First, the WinJS.-

Application object listens for a variety of events that come from different sources (the DOM, WinRT,

etc.) and coalesces them into a single object with which you register your handlers. Second, when

WinJS.Application receives activation events, it doesn’t just pass them on to the app’s handlers

immediately, because your handlers might not, in fact, have been set up yet. So it queues those events

until the app says it’s really ready by calling start. At that point WinJS goes through the queue and

fires those events. That’s all there is to it.

As the template code shows, apps typically do most of their initialization work within the WinJS

activated event, where there are a number of potential code paths depending on the values in

args.details (an IActivatedEventArgs object). If you look at the documentation for activated,

you’ll see that the exact contents of args.details depends on specific activation kind. All activations,

however, share some common properties:

args.details

Property

Type (in Windows.Application-

Model.Activation)

Description

kind ActivationKind The reason for the activation. The possibilities are

launch (most common); restrictedLaunch

(specifically for app to app launching); search,

shareTarget, file, protocol, fileOpenPicker,

fileSavePicker, contactPicker, and

cachedFileUpdater (for servicing contracts); and

device, printTask, settings, and cameraSettings

(generally used with device apps). For each supported

activation kind, the app will have an appropriate

initialization path.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx

121

previousExecutionState ApplicationExecutionState The state of the app prior to this activation. Values are

notRunning, running, suspended, terminated, and

closedByUser. Handling the terminated case is most

common because that’s the one where you want to

restore previously saved session state (see “App

Lifecycle Transition Events”).

splashScreen SplashScreen Contains an ondismissed event for when the system

splash screen is dismissed along with an

imageLocation property (Windows.Foundation.-

Rect) with coordinates where the splash screen image

was displayed. For use of this, see “Extended Splash

Screens” in Appendix B, “WinJS Extras.”

Additional properties provide relevant data for the activation. For example, launch provides the

tileId and arguments from secondary tiles (see Chapter 16). The search kind (the next most

commonly used) provides queryText and language, the protocol kind provides a uri, and so on.

We’ll see how to use many of these in their proper contexts, and sometimes they apply to altogether

different pages than default.html. What’s contained in the templates (and what we’ve already used for

an app like Here My Am!) is primarily to handle normal startup from the app tile or when launched

within Visual Studio’s debugger.

WinJS.Application Events
WinJS.Application isn’t concerned only with activation—its purpose is to centralize events from

several different sources and turn them into events of its own. Again, this enables the app to listen to

events from a single source (either assigning handlers via addEventListener(<event>) or on<event>

properties; both are supported). Here’s the full rundown on those events and when they’re fired (if

queued, the event is fired within your call to WinJS.Application.start):

 loaded Queued for DOMContentLoaded in both local and web contexts.18 This is fired before

activated.

 activated Queued in the local context for Windows.UI.WebUI.WebUIApplication.-

onactivated (which fires after window.onload). In the web context, where WinRT is not

applicable, this is instead queued for DOMContentLoaded (where the launch kind will be launch

and previousExecutionState is set to notRunning).

 ready Queued after loaded and activated. This is the last one in the activation sequence.

 error Fired if there’s an exception in dispatching another event. (If the error is not handled

here, it’s passed onto window.onerror.)

 checkpoint Fired when the app should save the session state it needs to restart from a

previous state of terminated. It’s fired in response to both the document’s beforeunload

18 There is also WinJS.Utilities.ready through which you can specifically set a callback for DOMContentLoaded. This is

used within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed after DOMContentLoaded.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx

122

event as well as Windows.UI.WebUI.WebUIApplication.onsuspending.

 unload Also fired for beforeunload after the checkpoint event is fired.

 settings Fired in response to Windows.UI.ApplicationSettings.SettingsPane.-

oncommandsrequested. (See Chapter 10, “The Story of State, Part 1.”)

I think you’ll generally find WinJS.Application to be a useful tool in your apps, and it also

provides a few more features as documented on the WinJS.Application page. For example, it

provides local, temp, roaming, and sessionState properties, which are helpful for managing state.

We saw a little of local already in Chapter 2; we’ll see more later on in Chapter 10.

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into

the queue that will get dispatched, after any existing queue is clear, to whatever listeners you’ve set up

on the WinJS.Application object. Events are simply identified with a string, so you can queue an

event with any name you like, and call WinJS.Application.addEventListener with that same name

anywhere else in the app. This makes it easy to centralize custom events that you might invoke both

during startup and at other points during execution without creating a separate global function for

that purpose. It’s also a powerful means through which separately defined, independent components

can raise events that get aggregated into a single handler. (For an example of using queueEvent, see

scenario 2 of the App model sample.)

As for stop, this is provided to help with unit testing so that you can simulate different activation

sequences without having to relaunch the app and somehow recreate a set of specific conditions when

it restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears

the sessionState object, but the app continues to run. You can then call queueEvent to populate the

queue with whatever events you like and then call start again to process that queue. This process can

be repeated as many times as needed.

Activation Deferrals and setPromise

As noted earlier under “Activation Event Sequence,” once you return from your handler for

WebUIApplication.onactivated (or WinJS.Application.onactivated), Windows assumes that

your home page is ready and that it can dismiss the default splash screen. The same is true for

WebUIApplication.onsuspending (and by extension, WinJS.Application.oncheckpoint): Windows

assumes that it can suspend the app once the handler returns. More generally, WinJS.Application

assumes that it can process the next event in the queue once you return from the current event.

This gets tricky if your handler needs to perform one or more async operations, like an HTTP

request, whose responses are essential for your home page. Because those operations are running on

other threads, you’ll end up returning from your handler while the operations are still pending, which

could cause your home page to show before its ready or the app to be suspended before it’s finished

saving state. Not quite what you want to have happen! (You can, of course, make other secondary

requests, in which case it’s fine for them to complete after the home page is up—always avoid blocking

the home page for nonessentials.)

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

123

For this reason, you need a way to tell Windows and WinJS to defer their default behaviors until

your most critical async work is complete. The mechanism that provides for this is in WinRT called a

deferral, and the setPromise method that we’ve seen in WinJS ties into this.

On the WinRT level, the args given to WebUIApplication.onactivated contains a little method

called getDeferral (technically Windows.UI.WebUI.ActivatedOperation.getDeferral). This

function returns a deferral object that contains a complete method. By calling getDeferral, you tell

Windows to leave the system splash screen up until you call complete (subject to a 15-second timeout

as described in “Optimizing Startup Time” below). The code looks like this:

//In the activated handler

var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral();

someOperationAsync().done(function () {

 //After initialization is complete

 activatedDeferral.complete();

}

This same mechanism is employed elsewhere in WinRT. You’ll find that the args for

WebUIApplication.onsuspending also has a getDeferral method, so you can defer suspension until

an async operation completed. So does the DataTransferManager.ondatarequested event that we

saw in Chapter 2 for working with the Share charm. You’ll also encounter deferrals when working with

the Search charm, printing, background tasks, Play To, and state management, as we’ll see in later

chapters. In short, wherever there’s a potential need to do async work within an event handler, you’ll

find getDeferral.

Within WinJS now, whenever WinJS provides a wrapper for a WinRT event, as with WinJS.-

Application.onactivated, it also wraps the deferral mechanism into a single setPromise method

that you’ll find on the args object passed to the relevant event handler. Because you need deferrals

when performing async operations in these event handlers, and because async operations in JavaScript

are always represented with promises, it makes sense for WinJS to provide a generic means to link the

deferral to the fulfillment of a promise. That’s exactly what setPromise does.

WinJS, in fact, automatically requests a deferral whether you need it or not. If you provide a promise

to setPromise, WinJS will attach a completed handler to it and call the deferral’s complete at the

appropriate time. Otherwise WinJS will call complete when your event handler returns.

You’ll find setPromise on the args passed to the WinJS.Application loaded, activated, ready,

checkpoint, and unload events. Again, setPromise both defers Windows’ default behaviors for WinRT

events and tells WinJS.Application to defer processing the next event in its queue. This allows you,

for example, to delay the activated event until an async operation within loaded is complete.

Now we can see the purpose of setPromise within the activation code we saw earlier:

var app = WinJS.Application;

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datatransfermanager.datarequested.aspx

124

 //...

 args.setPromise(WinJS.UI.processAll());

 }

};

WinJS.UI.processAll starts an async operation to instantiate WinJS controls. It returns a promise

that is fulfilled when all those controls are ready. Clearly, if we have WinJS controls on our home page,

we don’t want to dismiss the default splash screen until processAll is done. So we defer that dismissal

by passing that promise to setPromise.

Oftentimes you’ll want to do more initialization work of your own when processAll is complete. In

this case, simply call then with your own completed handler, like so:

args.setPromise(WinJS.UI.processAll().then(function () {

 //Do more initialization work

}));

Here, be sure to use then and not done because the latter returns undefined rather than a promise,

which means that no deferral will happen. See “Error Handling Within Promises: then vs. done” later on.

Because setPromise just waits for a single promise to complete, how do you handle multiple async

operations? Just pick the one you think will take the longest? No—there are a couple of ways to do

this. First, if you need to control the sequencing of those operations, you can chain them together as

we already saw in Chapter 2 and as we’ll discuss further in this chapter under “Async Operations: Be

True to Your Promises.” Just be sure that the end result of the chain is a promise that becomes the

argument to setPromise—again, use then and not done!

Second, if the sequence isn’t important but you need all of them to complete, you can combine

those promises by using WinJS.Promise.join, passing the result to setPromise. If you need only one

of the operations to complete, you can use WinJS.Promise.any instead. Again, see “Be True to Your

Promises” later on.

The other means is to register more than one handler with WinJS.Application.onactivated; each

handler will get its own event args and its own setPromise function, and WinJS will combine those

returned promises together with WinJS.Promise.join.

Optimizing Startup Time

Ideally, an app launches and its home page comes up within one second of activation, with an

acceptable upper bound being three seconds. Anything longer begins to challenge most user’s

patience threshold, especially if they’re already pressed for time and swilling caffeine-laden beverages!

In fact, the Windows App Certification Toolkit, which we’ll meet at the end of this chapter, will give you

a warning if your app takes more than a few seconds to get going.

Windows is much more generous here, however. It allows an app to hang out on the default start

screen for as long as the user is willing to stare at it. Apparently that willingness peaks out at about 15

seconds, at which point most users will pretty much assume that the app has hung and return to the

125

Start screen to launch some other app that won’t waste the afternoon. For this reason, if an app doesn’t

get its home page up in that time—that is, return from the activated event and complete any

deferral—and the user switches away, then boom!: Windows will terminate the app. (This saves the user

from having to do the sordid deed in Task Manager.)

Of course, some apps, especially on first run after acquisition, might really need more time to get

started. To accommodate this, there is an implementation strategy called an extended splash screen

wherein you make you home page look just like the default start screen and then place additional

controls on it to keep the user informed of progress so that she knows the app isn’t hung. Once you’re

on the extended splash screen, the 15-second limit no longer applies. For more info, see Appendix B.

For most startup scenarios, though, it’s best to focus your efforts on minimizing time to interactivity.

This means prioritizing work that’s necessary for the primary workflows of the home page and

deferring everything else until the home page it up. This includes deferring configuration of app bars,

nav bars, settings panels, and secondary app pages, as well as acquiring and processing content for

those secondary pages. But even before that, let’s take a step back to understand what’s going on

behind the default splash screen to begin with, because there are things you can do to help that

process along as well.

When the user taps your tile, Windows first creates a new app host process and points it to the start

page specified in your manifest. The app host then loads and parses that file. In doing so, it must also

load and parse the CSS and JavaScript files it refers to. This process will fire various events, as we’ve

seen, at which point it enters your activation code.

Up to that point, one thing that really matters is the structure of your HTML markup. As much as

possible, avoid inline styles and scripts because these cause the HTML parser to switch from an HTML

parsing context into a CSS or JavaScript parsing context, which is relatively expensive. In other words,

the separation of concerns between markup, styling, and script is both a good development practice

and a good performance practice! Also make sure to place any static markup in the HTML file rather

than creating it from JavaScript: it’s faster to have the app host’s inner engine parse HTML than to

make DOM API calls from code for the same purpose. And even if you must create elements

dynamically, once you use more than four DOM API calls it’s faster to build an HTML string and assign

it to an innerHTML or similar property (so that the inner engine does the work).

Similarly, minimize the amount of CSS that has to be loaded for your start page to appear; CSS that’s

needed for secondary pages can be loaded with those pages (see “Page Controls and Navigation” later

in this chapter).

Loading JavaScript files can also be deferred, both for secondary pages but also on the start page.

That is, you can use the defer="defer" attribute on <script> tags to delay loading specific .js files

until after the first parsing pass, or you can dynamically inject <script> tags or call eval at a later time

in your activation path or after your initial activation is complete.

Review all the resources that your markup references as well, and place any critical ones directly into

the app package where you can reference them with ms-appx:/// URIs. Any remote resources will, of

126

course, require a round trip to the network with possible connectivity failures. Where making HTTP

requests is unavoidable, suggest your most critical URIs to the Windows.Networking.-

BackgroundTransfer.ContentPrefetcher object (see “Prefetching Content” in Chapter 4). If the

prefetcher determines that those URIs are among the top requests, it will actively cache requests to

those URIs such that requests from your code will draw directly from that cache. This won’t help the

app the first time it’s run, but it can help with subsequent activations.

Consider whether you can also cache such content directly in your app package. That way you have

something to work with immediately, even if there’s no connectivity when the app is fi rst run. This

would mean building a refresh/sync strategy into your data model, but it’s certainly doable.

Once you hit your activation code, a new set of considerations come into play. The key thing to

consider here is this: so long as you’re on the default or an extended splash screen, go ahead and block

the UI thread for high-priority work. A splash screen, by definition, is noninteractive, so any UI thread

work that deals with interactivity is a much lower priority than work that’s necessary to initialize

controls, retrieve and process data, and otherwise get ready for interactivity. (Page content animations,

similarly, should be disabled while the splash screen is up.)

Most important, though, is making sure that your critical non-UI work runs at a higher priority than

UI rendering processes, especially while the splash screen is still active. For this you use the WinJS

scheduler API, which we’ll return to later in “Managing the UI Thread with the WinJS Scheduler.” For

now, know that you can schedule work to happen at a higher priority than layout and rendering and

also at other lower priorities. This way you can kick off a number of HTTP requests, for example, but

give your most important ones a high priority while giving your secondary ones a much lower priority

so that they happen after layout and rendering. With this API you can also reprioritize work at any time:

for example, if the user immediately navigates to a secondary page as soon as the app comes up, you

can set that request (or more specifically, the function that processes its results) to high priority.

For a deeper dive on these matters of startup performance, I recommend two talks from //build

2013: Create Fast and Fluid Interfaces with HTML and JavaScript (Paul Gildea) and Web Runtime

Performance (Tobin Titus). Also refer to Reducing your app’s loading time in the documentation.

WinRT Events and removeEventListener

Before going further, we need to take a slight detour into a special consideration for events that

originate from WinRT, such as dismissed. You may have noticed that I’m highlighting these with a

different text color than other events.

As we’ve already been doing in this book, typical practice within JavaScript, especially for websites, is

to call addEventListener to specify event handlers or to simply assign an event handler to an

on<event> property of some object. Oftentimes these handlers are just declared as inline anonymous

functions:

var myNumber = 1;

http://channel9.msdn.com/Events/Build/2013/3-156
http://channel9.msdn.com/Events/Build/2013/3-068
http://channel9.msdn.com/Events/Build/2013/3-068
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx

127

element.addEventListener(<event>, function (e) { myNumber++; });

Because of JavaScript’s particular scoping rules, the scope of that anonymous function ends up

being the same as its surrounding code, which allows the code within that function to refer to local

variables like myNumber as used here.

To ensure that such variables are available to that anonymous function when it’s later invoked as an

event handler, the JavaScript engine creates a closure: a data structure that describes the local variables

available to that function. Usually the closure requires only a small bit of memory, but depending on

the code inside that event handler, the closure could encompass the entire global namespace—a rather

large allocation! Every such active closure increases the memory footprint or working set of the app, so

it’s a good practice to keep closures at a minimum. For example, declaring a separate named

function—which has its own scope—rather than using an anonymous function, will reduce the size of

any necessary closure.

More important than minimizing closures is making sure that the event listeners themselves—and

their associated closures—are properly cleaned up and their memory allocations released. Typically, this

is not even something you need to think about. When objects such as HTML elements are destroyed or

removed from the DOM, their associated listeners are automatically removed and closures are released.

However, in a Windows Store app written in HTML and JavaScript, events can also come from WinRT

objects. Because of the nature of the projection layer that makes WinRT available in JavaScript, WinRT

ends up holding references to JavaScript event handlers (known also as delegates) and the JavaScript

closures hold references to those WinRT objects. As a result of these cross-references, the associated

closures aren’t released unless you do so explicitly with removeEventListener (or assignment of null

to an on<event> property).

This is not a problem, mind you, if the app is always listening to a particular event. For example, the

suspending and resuming events are two that an app typically listens to for its entire lifetime, so any

related allocations will be cleaned up when the app is terminated. It’s also not much of a concern if you

add a listener only once, as with the splash screen dismissed event. (In that case, however, it’s good to

remove the listener explicitly, because there’s no reason to keep any closures in memory once the

splash screen is gone.)

Do pay attention, however, when an app listens to a WinRT object event only temporarily and

neglects to explicitly call removeEventListener, and when the app might call addEventListener for

the same event multiple times (in which case you can end up duplicating closures). With page controls,

which are used to load HTML fragments into a page (as discussed later in this chapter under “Page

Controls and Navigation”), it’s common to call addEventListener or assign a handler to an on<event>

property on some WinRT object within the page’s ready method. When you do this, be sure to match

that call with removeEventListener (or assign null to on<event>) in the page’s unload method to

release the closures.

Note Events from WinJS objects don’t need this attention because the library already handles removal

of event listeners. The same is true for listeners you might add for window and document events that

persist for the lifetime of the app.

128

Throughout this book, the WinRT events with which you need to be concerned are highlighted with

a special color, as in datarequested (except where the text is also a hyperlink). This is your cue to

check whether an explicit call to removeEventListener or on<event>=null is necessary. Again, if

you’ll always be listening to the event, removing the listener isn’t needed, but if you add a listener

when loading a page control, or anywhere else where you might add that listener again, be sure to

make that extra call. Be especially aware that the samples in the Windows SDK don’t necessary pay

attention to this detail, so don’t duplicate the oversight.

In the chapters that follow, I will remind you of what we’ve just discussed on our first meaningful

encounter with a WinRT event. Keep your eyes open for the WinRT color coding in any case. We’ll also

come back to the subject of debugging and profiling toward the end of this chapter, where we’ll learn

about tools that can help uncover memory leaks.

App Lifecycle Transition Events and Session State

Now that we’ve seen how an app gets activated into a running state, our next concern is with what can

happen to it while it’s running. To an app—and the app’s publisher—a perfect world might be one in

which consumers ran that app and stayed in that app forever (making many in-app purchases, no

doubt!). Well, the hard reality is that this just isn’t reality. No matter how much you’d love it to be

otherwise, yours is not the only app that the user will ever run. After all, what would be the point of

features like sharing or split-screen views if you couldn’t have multiple apps running together? For

better or for worse, users will be switching between apps, changing view states, and possibly closing

your app, none of which the app can control. But what you can do is give energy to the “better” side of

the equation by making sure your app behaves well under all these circumstances.

The first consideration is focus, which applies to controls in your app as well as to the app itself (the

window object). Here you can simply use the standard HTML blur and focus events. For example, an

action game or one with a timer would typically pause itself on window.onblur and perhaps restart

again on window.onfocus.

A similar but different condition is visibility. An app can be visible but not have the focus, as when

it’s sharing the screen with others. In such cases an app would continue things like animations or

updating a feed, which it would stop when visibility is lost (that is, when the app is actually in the

background). For this, use the visibilitychange event in the DOM API, and then examine the

visibilityState property of the window or document object, as well as the document.hidden

property. (The event works for visibility of individual elements as well.) A change in visibility is also a

good time to save user data like documents or game progress.

For view state changes, an app can detect these in several ways. As shown in the Here My Am!

example, an app typically uses media queries (in declarative CSS or in code through media query

listeners) to reconfigure layout and visibility of elements, which is really all that view states should

affect. (Again, view state changes never change the mode of the app.) At any time, an app can also

retrieve its view state through Windows.UI.ViewManagement.ApplicationView.orientation

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/library/windows/apps/hh453385.aspx

129

(returning an ApplicationViewOrientation value of either portrait or landscape), the size of the

app window, and other details from ApplicationView like isFullScreen; details in Chapter 8, “Layout

and Views.”19

When your app is closed (the user swipes top to bottom and holds, or just presses Alt+F4), it’s

important to note that the app is first moved off-screen (hidden), then suspended, and then closed, so

the typical DOM events like body.unload aren’t much use. A user might also kill your app in Task

Manager, but this won’t generate any events in your code either. Remember also that apps should not

close themselves nor offer a means for the user to do so (this violates Store certification requirements),

but they can use MSApp.terminateApp to close due to unrecoverable conditions like corrupted state.

Suspend, Resume, and Terminate

Beyond focus, visibility, and view states, there are three other critical moments in an app’s lifetime:

 Suspending When an app is not visible in any view state, it will be suspended after five

seconds (according to the wall clock) to conserve battery power. This means it remains wholly in

memory but won’t be scheduled for CPU time and thus won’t have network or disk activity

(except when using specifically allowed background tasks, discussed in Chapter 16). When this

happens, the app receives the Windows.UI.WebUI.WebUIApplication.onsuspending event,

which is also exposed through WinJS.Application.oncheckpoint. Apps must return from this

event within the five-second period, or Windows will assume the app is hung and terminate it

(period!). During this time, apps save transient session state and should also release any

exclusive resources acquired as well, like file streams or device access. (See How to suspend an

app.) If you need to do async work in the suspending handler, WinRT provides a deferral object

as with activation and WinJS provides the setPromise equivalent. Using the deferral will not,

however, extend the suspension deadline.

 Resuming If the user switches back to a suspended app, it receives the

Windows.UI.WebUI.WebUIApplication.onresuming event. This is not surfaced through

WinJS.Application, mind you, because WinJS has no value to add, but it’s easy enough to use

WinJS.Application.queueEvent for this purpose. We’ll talk more about this event in coming

chapters, as it’s used to refresh any data that might have changed while the app was suspended.

For example, if the app is connected to an online service, it would refresh that content i f

enough time has passed while the app was suspended, as well as check connectivity status

(Chapter 4). In addition, if you’re tracking sensor input of any kind (like compass, geolocation, or

orientation, see Chapter 12, “Input and Sensors”), resuming is a good time to get a fresh

reading. You’ll also want to check license status for your app and in-app purchases if you’re

using trials and/or expirations (see Chapter 20). There are also times when you might want to

refresh your layout (as we’ll see in Chapter 8), because it’s possible for your app to resume

19 The Windows 8 view states from ApplicationView.value—namely fullscreen-landscape, fullscreen-portrait,

filled, and snapped—are deprecated in Windows 8.1 in favor of just checking orientation and window size.

http://msdn.microsoft.com/library/windows/apps/hh465138.aspx
http://msdn.microsoft.com/library/windows/apps/hh465138.aspx

130

directly into a different view state than when it was suspended, or resume to a different screen

resolution as when the device has been connected to an external monitor. The same goes for

enabling/disabling clipboard-related commands (Chapter 9, “Commanding UI”), refreshing any

tile updates and push notification channels (see Chapter 16), and checking any saved state that

might have been modified by background tasks or roaming (Chapter 10).

 Terminating When suspended, an app might be terminated if there’s a need for more

memory. There is no event for this, because by definition the app is already suspended and no

code can run. Nevertheless, this is important for the app lifecycle because it affects

previousExecutionState when the app restarts.

Before we go further, it’s essential to know that you can simulate these conditions in the Visual

Studio debugger by using the toolbar drop-down shown in Figure 3-2. These commands will trigger

the necessary events as well as set up the previousExecutionState value for the next launch of the

app. (Be very grateful for these controls—there was a time when we didn’t have them, and it was

painful to debug these conditions!)

FIGURE 3-2 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate.

We’ve briefly listed those previous states before, but let’s see how they relate to the events that get

fired and the previousExecutionState value that shows up when the app is next launched. This can

get a little tricky, so the transitions are illustrated in Figure 3-3 and the table below describes how the

previousExecutionState values are determined.

Value of previousExecutionState Scenarios

notrunning First run after install from Store.

First run after reboot or log off.

App is launched within 10 seconds of being closed by user (about the time it

takes to hide, suspend, and cleanly terminate the app; if the user relaunches

quickly, Windows has to immediately terminate it without finishing the suspend

operation).

App was terminated in Task Manager while running or closed itself with

MSApp.terminateApp.

running App is currently running and then invoked in a way other than its app tile, such

as Search, Share, secondary tiles, toast notifications, and all other contracts.

When an app is running and the user taps the app tile, Windows just switches to

the already-running app and without triggering activation events (though focus

and visibilitychange will both be raised).

suspended App is suspended and then invoked in a way other than the app tile (as above

for running). In addition to focus/visibility events, the app will also receive the

resuming event.

terminated App was previously suspended and then terminated by Windows due to

131

resource pressure. Note that this does not apply to MSApp.terminateApp

because an app would have to be running to call that function.

closedByUser App was closed by an uninterrupted close gesture (swipe down+hold or Alt+F4).

An “interrupted” close is when the user switches back to the app within 10

seconds, in which case the previous state will be notrunning instead.

FIGURE 3-3 Process lifecycle events and previousExecutionState values.

The big question for the app, of course, is not so much what determines the value of

previousExecutionState as what it should actually do with this value during activation. Fortunately,

that story is a bit simpler and one that we’ve already seen in the template code:

 If the activation kind is launch and the previous state is notrunning or closedByUser, the app

should start up with its default UI and apply any persistent state or settings. With

closedByUser, there might be scenarios where the app should perform additional actions (such

as updating cached data) after the user explicitly closed the app and left it closed for a while.

 If the activation kind is launch and the previous state is terminated, the app should start up in

the same session state as when it was last suspended.

 For launch and other activation kinds that include additional arguments or parameters (as with

secondary tiles, toast notifications, and contracts), it should initialize itself to serve that purpose

by using the additional parameters. The app might already be running, so it won’t necessarily

initialize its default state again.

In the first two requirements above, persistent state refers to state that always applies to an instance

of the app, such as user accounts, UI configurations, and similar settings. Session state, on the other

hand, is the transient state of a particular instance and includes things like unsubmitted form data,

page navigation history, scroll position, and so forth.

132

We’ll see the full details of managing state in Chapter 10. What’s important to understand at present

is the relationship between the lifecycle events and session state, in particular. When Windows

terminates a suspended app, the app is still running in the user’s mind. Thus, when the user activates the

app again for normal use (activation kind is launch, rather than through a contract), he or she expects

that app to be right where it was before. This means that by the time an app gets suspended , it needs

to have saved whatever state is necessary to make this possible. It then rehydrates the app from that

state when previousExecutionState is terminated. This creates continuity across the suspend-

terminate-restart boundary.

For more on app design where this is concerned, see Guidelines for app suspend and resume. Be

clear that if the user directly closes the app with Alt+F4 or the swipe-down+hold gesture, the

suspending and checkpoint events will also be raised, so the app still saves session state. However,

the app won’t be asked to reload session state when it’s restarted because previousExecutionState

will be notRunning or closedByUser.

It works out best, actually, to save session state as it changes during the app’s lifetime, thereby

minimizing the work needed within the suspending event (where you have only five seconds). Mind

you, this session state does not include persistent state that an app would always reload or reapply in

its activation path. The only concern here is maintaining the illusion that the app was always running.

You always save session state to your appdata folders or settings containers, which are provided by

the Windows.Storage.ApplicationData API. Again, we’ll see all the details in Chapter 10. What I

want to point out here are a few helpers that WinJS provides for all this.

First is the WinJS.Application.checkpoint event, which is raised when suspending fires.

checkpoint provides a single convenient place to save both session state and any other persistent data

you might have, if you haven’t already done so. If you need to do any async work in this handler, be

sure to pass the promise for that operation to eventArgs.setPromise. This ties into the WinRT

deferral mechanism as with activation (and see “Suspending Deferrals” below).

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty

object to which you can add whatever properties you like, including other objects. A typical strategy is

to just use sessionState directly as a container for session variables. Within the checkpoint event,

WinJS automatically serializes the contents of this object (using JSON.stringify) into a file within your

local appdata folder (meaning that all variables in sessionState must have a string representation).

Note that because WinJS ensures that its own handler for checkpoint is always called after your app

gets the event, you can be assured that WinJS will save whatever you write into sessionState at any

time before your checkpoint handler returns.

Then, when the app is activated with the previous state of terminated, WinJS automatically

rehydrates the sessionState object so that everything you put there is once again available. If you use

this object for storing variables, you need only to avoid setting those values back to their defaults when

reloading your state.

Finally, if you don’t want to use the sessionState object or you have state that won’t work with it,

http://msdn.microsoft.com/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.aspx

133

the WinJS.Application object makes it easy to write your own files without having to use async

WinRT APIs. Specifically, it provides (as shown in the documentation) local, temp, and roaming objects

that each have methods called readText, writeText, exists, and remove. These objects each work

within their respective appdata folders and provide a simplified API for file I/O, as shown in scenario 1

of the App model sample.

Suspending Deferrals and Deadlines

As noted earlier, the suspending event has a deferral mechanism, like activation, to accommodate

async operations in your handler. That is, Windows will normally suspend your app as soon as you

return from the suspending event (regardless of whether five seconds have elapsed), unless you

request a deferral.

The event args for suspending contains an instance of Windows.UI.WebUI.WebUIApplication.-

SuspendingOperation. Its getDeferral method returns a deferral object with a complete method,

which you call when your async operations are finished. WinJS wraps this with the setPromise method

on the event args object passed to a checkpoint handler. To this you pass whatever promise you have

for your async work and WinJS automatically adds a completed handler that calls the deferral’s

complete method.

Well, hey! All this sounds pretty good—is this perhaps a sneaky way to circumvent the restriction on

running Windows Store apps in the background? Will my app keep running indefinitely if I request a

deferral by never calling complete?

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration! Deferral

or not, five seconds is the most you’ll ever get. Still, you might want to take full advantage of that time,

perhaps to first perform critical async operations (like flushing a cache) and then to attempt other

noncritical operations (like a sync to a server) that might greatly improve the user experience. For such

purposes, the suspendingOperation object also contains a deadline property, a Date value

indicating the time in the future when Windows will forcibly suspend you regardless of any deferral.

Once the first operation is complete, you can check if you have time to start another, and so on.

Note The suspendingOperation object is not surfaced through the WinJS checkpoint event; if you

want to work with the deadline property, you must use a handler for the WinRT suspending event.

A basic demonstration of using the suspending deferral can be found in the App activated, resume,

and suspend sample. This also shows activation through a custom URI scheme, a subject that we’ll be

covering later in Chapter 15. An example of handling state, in addition to the updates we’ll make to

Here My Am! in the next section, can be found in scenario 3 of the App model sample.

Basic Session State in Here My Am!
To demonstrate some basic handling of session state, I’ve made a few changes to Here My Am! as

given in the HereMyAm3b example in the companion content. Here we have two pieces of information

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

134

we care about: the variables lastCapture (a StorageFile with the image) and lastPosition (a set of

coordinates). We want to make sure we save these when we get suspended so that we can properly

apply those values when the app gets launched with the previous state of terminated.

With lastPosition, we can just move this into the sessionState object (prepending

app.sessionState.). If this value exists on startup, we can skip making the call to

getGeopositionAsync because we already have a location:

//If we don't have a position in sessionState, try to initialize

if (!app.sessionState.lastPosition) {

 locator.getGeopositionAsync().done(function (geocoord) {

 var position = geocoord.coordinate.point.position;

 //Save for share

 app.sessionState.lastPosition = {

 latitude: position.latitude, longitude: position..longitude };

 updatePosition();

 }, function (error) {

 console.log("Unable to get location.");

 });

}

With this change I’ve also moved the bit of code to update the map location into a separate

function that ensures a location exists in sessionState:

function updatePosition() {

 if (!app.sessionState.lastPosition) {

 return;

 }

 callFrameScript(document.frames["map"], "pinLocation",

 [app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]);

}

Note also that because app.sessionState is initialized to an empty object by default, { },

lastPosition will be undefined until the geolocation call succeeds. This also works to our advantage

when rehydrating the app. Here’s what the previousExecutionState conditions look like for this:

if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 //Normal startup: initialize lastPosition through geolocation API

} else {

 //WinJS reloads the sessionState object here. So try to pin the map with the saved location

 updatePosition();

}

Because the contents of sessionState are automatically saved in WinJS.Application.-

oncheckpoint and automatically reloaded when the app is restarted with the previous state of

terminated, our previous location will exist in sessionState and updatePosition just works.

135

You can test all this by running the HereMyAm3b app, taking a suitable picture and making sure

you have a location. Then use the Suspend and Shutdown option on the Visual Studio toolbar to

terminate the app. Set a breakpoint on the updatePosition call above, and then restart the app in the

debugger. You’ll see that sessionState.lastPosition is initialized at that point.

With the last captured picture, we don’t need to save the StorageFile, just the URI: we copied the

file into our local appdata (so it persists across sessions already) and can just use the ms-appdata://

URI scheme to refer to it. When we capture an image, we just save that URI into

sessionState.imageURI (the property name is arbitrary) at the end of the promise chain inside

capturePhoto:

app.sessionState.imageURI = "ms-appdata:///local/HereMyAm/" + newFile.name;

Again, because imageURI is saved within sessionState, this value will be available when the app is

restarted after being terminated. We also need to re-initialize lastCapture with a StorageFile so

that the image is available through the Share contract. For this we can use Windows.Storage.-

StorageFile.getFileFromApplicationUriAsync. Here, then, is the code within the

previousExecutionState == terminated case during activation:

//WinJS reloads the sessionState object here: initialize from the saved image URI and location.

if (app.sessionState.imageURI) {

 var uri = new Windows.Foundation.Uri(app.sessionState.imageURI);

 Windows.Storage.StorageFile.getFileFromApplicationUriAsync(uri).done(function (file) {

 lastCapture = file;

 var img = document.getElementById("photoImg");

 scaleImageToFit(img, document.getElementById("photo"), file);

 });

}

updatePosition();

As always, the code to set img.src with a thumbnail happens inside scaleImageToFit. This call is

also inside the completed handler here because we want the image to appear only if we can also access

its StorageFile again for sharing. Otherwise the two features of the app would be out of sync.

In all of this, note again that we don’t need to explicitly reload these variables within the

terminated case because WinJS reloads sessionState automatically. If we managed our state more

directly, such as storing some variables in roaming settings within the checkpoint event, we would

reload and apply those values at this time.

Note Using ms-appdata:/// and getFileFromApplicationUriAsync (or its sibling

getFileFromPathAsync) works because the file exists in a location that we can access

programmatically by default. It also works for libraries for which we declare a capability in the manifest.

If, however, we obtain a StorageFile from the file picker, we need to save that in the

Windows.Storage.AccessCache to preserve access permissions across sessions. We’ll revisit the access

cache in Chapter 11, “The Story of State, Part 2.”

136

Page Controls and Navigation

Now we come to an aspect of Windows Store apps that very much separates them from typical web

applications but makes them very similar to AJAX-based sites.

To compare, many web applications do page-to-page navigation with <a href> hyperlinks or by

setting document.location from JavaScript. This is all well and good: oftentimes there’s little or no

state to pass between pages, and even then there are well-established mechanisms for doing so, such

as HTML5 sessionStorage and localStorage (which work just fine in Store apps, by the way).

This type of navigation presents a few problems for Store apps, however. For one, navigating to a

new page means a wholly new script context—all the JavaScript variables from your previous page will

be lost. Sure, you can pass state between those pages, but managing this across an entire app likely

hurts performance and can quickly become your least favorite programming activity. It’s better and

easier, in other words, for client apps to maintain a consistent in-memory state across pages and also

have each individual page be able to load what script it uniquely needs, as needed.

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when

navigating a hyperlink. Users of web applications are accustomed to waiting a bit for a browser to

acquire a new page (I’ve found many things to do with an extra 15 seconds!), but this isn’t an

appropriate user experience for a fast and fluid Windows Store app. Furthermore, such a transition

doesn’t allow animation of various elements on and off the screen, which can help provide a sense of

continuity between pages if that fits with your design.

So, although you can use direct links, Store apps typically implement “pages” by dynamically

replacing sections of the DOM within the context of a single page like default.html, akin to how

“single-page” web applications work. By doing so, the script context is always preserved and individual

elements or groups of elements can be transitioned however you like. In some cases, it even makes

sense to simply show and hide pages so that you can switch back and forth quickly. Let’s look at the

strategies and tools for accomplishing these goals.

WinJS Tools for Pages and Page Navigation
Windows itself, and the app host, provides no mechanism for dealing with pages—from the system’s

perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers

who created WinJS and the templates in Visual Studio and Blend worried about this a lot! As a result,

they’ve provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context

of a single container page:

 WinJS.UI.Fragments contains a low-level “fragment-loading” API, the use of which is

necessary only when you want close control over the process (such as which parts of the HTML

fragment get which parent). We won’t cover it in this book; see the documentation and the

Loading HTML fragments sample.

http://msdn.microsoft.com/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07

137

 WinJS.UI.Pages is a higher-level API intended for general use and is employed by the

templates. Think of this as a generic wrapper around the fragment loader that lets you easily

define a “page control”—simply an arbitrary unit of HTML, CSS, and JS—that you can easily pull

into the context of another page as you do other controls.20 They are, in fact, implemented like

other controls in WinJS (as we’ll see in Chapter 5), so you can declare them in markup,

instantiate them with WinJS.UI.process[All], use as many of them within a single host page

as you like, and even nest them.

These APIs provide only the means to load and unload individual “pages”—they pull HTML in from

other files (along with referenced CSS and JS) and attach the contents to an element in the DOM. That’s

it. As such they can be used for any number of purposes, such as a custom control model, depending

on how you like to structure your code. See scenario 1 of the HTML Page controls sample.

Page controls and fragments are not gospel To be clear, there’s absolutely no requirement that you

use the WinJS mechanisms described here in a Windows Store app. These are simply convenient tools

for common coding patterns. In the end, it’s just about making the right elements and content appear

in the DOM for your user experience, and you can implement that however you like.

Assuming that you’ll want to save yourself loads of trouble and use WinJS for page-to-page

navigation, you’ll need two other pieces. The first is something to manage a navigation stack, and the

second is something to hook navigation events to the loading mechanism of WinJS.UI.Pages.

For the first piece, you can turn to WinJS.Navigation, which supplies, through about 150 lines of

CS101-level code, a basic navigation stack. This is all it does. The stack itself is just a list of URIs on top

of which WinJS.Navigation exposes location, history, canGoBack, and canGoForward properties,

along with one called state in which you can store any app-defined object you need. The stack

(maintained in history) is manipulated through the forward, back, and navigate methods, and the

WinJS.Navigation object raises a few events—beforenavigate, navigating, and navigated—to

anyone who wants to listen (through addEventListener).21

Tip In the WinJS.Navigation.history.current object there’s an initialPlaceholder flag that

answers the question, "Can WinJS.Navigation.navigate go to a new page without adding an entry

in the history?" If you set this flag to true, subsequent navigations won’t be stored in the nav stack. Be

sure to set it back to false to reenable the stack.

What this means is that WinJS.Navigation by itself doesn’t really do anything unless some other

piece of code is listening to those events. That is, for the second piece of the naviga tion puzzle we need

a linkage between WinJS.Navigation and WinJS.UI.Pages, such that a navigation event causes the

20 If you are at all familiar with user controls in XAML, this is the same idea.
21 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args.preventDefault (args

being the event object), return true, or call args.setPromise where the promise is fulfilled with true.

http://msdn.microsoft.com/library/windows/apps/hh770584.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://msdn.microsoft.com/library/windows/apps/br229778.aspx

138

target page contents to be added to the DOM and the current page contents to be removed.

The basic process is as follows, and it’s also shown in Figure 3-4:

1. Create a new div with the appropriate size (typically the whole app window).

2. Call WinJS.UI.Pages.render to load the target HTML into that element (along with any

script that the page uniquely references). This is an async function that returns a promise.

We’ll take a look at what render does later on.

3. When that loading (that is, rendering) is complete, attach the new element from step 1 to

the DOM.

4. Remove the previous page’s root element from the DOM. If you do this before yielding the

UI thread, you won’t ever see both pages on-screen together.

FIGURE 3-4 Performing page navigation in the context of a single host (typically default.html) by replacing

appending the content from page2.html and removing that from page1.html. Typically, each page occupies the

whole display area, but page controls can just as easily be used for smaller areas.

As with page navigation in general, you’re again free to do whatever you want here, and in the early

developer previews of Windows 8 that’s all that you could do! But as developers built the first apps for

the Windows Store, we discovered that most people ended up writing just about the same boilerplate

code over and over. Seeing this pattern, two standard pieces of code have emerged. One is the WinJS

back button control, WinJS.UI.BackButton, which listens for navigation events to enable itself when

appropriate. The other is a piece is called the PageControlNavigator and is magnanimously supplied

by the Visual Studio templates. Hooray!

139

Because the PageControlNavigator is just a piece of template-supplied code and not part of

WinJS, it’s entirely under your control: you can tweak, hack, or lobotomize it however you want.22 In

any case, because it’s likely that you’ll often use the PageControlNavigator (and the back button) in

your own apps, let’s look at how it all works in the context of the Navigation App template.

Note Additional samples that demonstrate basic page controls and navigation, along with handling

session state, can be found in the following SDK samples: App activate and suspend using WinJS (using

the session state object in a page control), App activated, resume and suspend (described earlier;

shows using the suspending deferral and restarting after termination), and Navigation and navigation

history (showing page navigation along with tracking and manipulating the navigation history). In fact,

just about every sample uses page controls to switch between different scenarios, so you have no

shortage of examples to draw from!

The Navigation App Template, PageControl Structure, and

PageControlNavigator
Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic

use of page controls. (The more complex templates build navigation out further.) If you crea te a new

project with this template in Visual Studio or Blend, here’s what you’ll get:

 default.html Contains a single container div with a PageControlNavigator control pointing

to pages/home/home.html as the app’s home page.

 js/default.js Contains basic activation and state checkpoint code for the app.

 css/default.css Contains global styles.

 pages/home Contains a page control for the “home page” contents, composed of

home.html, home.js, and home.css. Every page control typically has its own markup, script,

and style files. Note that CSS styles for page controls are cumulative as you navigate from page

to page. See “Page-Specific Styling” later in this chapter.

 js/navigator.js Contains the implementation of the PageControlNavigator class.

To build upon this structure, you can add additional pages to the app with the page control item

template in Visual Studio. For each page I recommend first creating a specific folder under pages,

similar to home in the default project structure. Then right-click that folder, select Add > New Item, and

select Page Control. This will create suitably named .html, .js. and .css files in that folder.

Now let’s look at the body of default.html (omitting the standard header and a commented-out

AppBar control):

22 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML <a href> hyperlinks and hook
them into WinJS.Navigation.navigate. This can be a useful tool, especially if you’re importing code from a web app or

otherwise want to create page links in declarative markup.

http://code.msdn.microsoft.com/windowsapps/App-activation-events-and-d39c53d5
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx

140

<body>

 <div id="contenthost" data-win-control="Application.PageControlNavigator"

 data-win-options="{home: '/pages/home/home.html'}"></div>

</body>

All we have here is a single container div named contenthost (it can be whatever you want), in

which we declare the Application.PageControlNavigator as a custom WinJS control. (This is the

purpose of data-win-control and data-win-options, as we’ll see in Chapter 5.) With this we specify

a single option to identify the first page control it should load (/pages/home/home.html). The

PageControlNavigator will be instantiated within our activated handler’s call to

WinJS.UI.processAll.

Within home.html we have the basic markup for a page control. Below is what the Navigation App

template provides as a home page by default, and it’s pretty much what you get whenever you add a

new page control from the item template (with different filenames, of course):

<!DOCTYPE html>

<html>

<head>

 <!--... typical HTML header and WinJS references omitted -->

 <link href="/css/default.css" rel="stylesheet">

 <link href="/pages/home/home.css" rel="stylesheet">

 <script src="/pages/home/home.js"></script>

</head>

<body>

 <!-- The content that will be loaded and displayed. -->

 <div class="fragment homepage">

 <header aria-label="Header content" role="banner">

 <button data-win-control="WinJS.UI.BackButton"></button>

 <h1 class="titlearea win-type-ellipsis">

 Welcome to NavApp!

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 <p>Content goes here.</p>

 </section>

 </div>

</body>

</html>

The div with fragment and homepage CSS classes, along with the header, creates a page with a

standard silhouette and a WinJS.UI.BackButton control that automatically wires up keyboard, mouse,

and touch events and again keeps itself hidden when there’s nothing to navigate back to. (Isn’t that

considerate of it!) All you need to do is customize the text within the h1 element and the contents

within section, or just replace the whole smash with the markup you want. (By the way, even though

the WinJS files are referenced in each page control, they aren’t actually reloaded; they exist here to

allow you to edit a standalone page control in Blend.)

141

Tip The leading / on what looks like relative paths to CSS and JavaScript files actually creates an

absolute reference from the package root. If you omit that /, there are many times—especially with

path controls—when the relative path is not what you’d expect, and the app doesn’t work. In general,

unless you really know you want a relative path, use the leading /.

The definition of the actual page control is in pages/home/home.js; by default, the templates just

provide the bare minimum:

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {

 // This function is called whenever a user navigates to this page. It

 // populates the page elements with the app's data.

 ready: function (element, options) {

 // TODO: Initialize the page here.

 }

 });

})();

The most important part is WinJS.UI.Pages.define, which associates a project-based URI (the

page control identifier, always starting with a /, meaning the project root), with an object containing

the page control’s methods. Note that the nature of define allows you to define different members of

the page in multiple places: multiple calls to WinJS.UI.Pages.define with the same URI will add

members to an existing definition and replace those that already exist.

Tip Be mindful that if you have a typo in the URI that creates a mismatch between the URI in define

and the actual path to the page, the page won’t load but there won’t be an exception or other visible

error. You’ll be left wondering what’s going wrong! So, if your page isn’t loading like you think it

should, carefully examine the URI and the file paths to make sure they match exactly.

For a page created with the Page Control item template, you get a couple more methods in the

structure (some comments omitted; in this example page2 was created in the pages/page2 folder):

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/page2/page2.html", {

 ready: function (element, options) {

 },

 unload: function () {

 // TODO: Respond to navigations away from this page.

 }

 updateLayout: function (element) {

 // TODO: Respond to changes in layout.

 },

 });

})();

142

A page control is essentially just an object with some standard methods. You can instantiate the

control from JavaScript with new by first obtaining its constructor function from WinJS.UI.Pages.-

get(<page_uri>) and then calling that constructor with the parent element and an object containing

its options. This operation already encapsulated within WinJS.UI.Pages.render, as we’ll see shortly.

Although a basic structure for the ready method is provided by the templates, WinJS.UI.Pages

and the PageControlNavigator will make use of the following if they are available, which are

technically the members of an interface called WinJS.UI.IPageControlMembers:

PageControl Method When Called
init Called before elements from the page control have been created.

processed Called after WinJS.UI.processAll is complete (that is, controls in the page have been instantiated,

which is done automatically), but before page content itself has been added to the DOM. Once you

return from this method—or a promise you return is fulfilled—WinJS animates the new page into

view with WinJS.UI.Animation.enterPage, so all initialization of properties and data-binding

should occur within this method; it’s also a good place to load string resources.

ready Called after the page have been added to the DOM (and before the unload of the previous page;

note that in WinJS 1.0 this was called after the previous page’s unload).

error Called if an error occurs in loading or rendering the page.

unload Called when navigation has left the page. By default, WinJS automatically disposes of controls on a

page when that page is unloaded; see “Sidebar: The Ubiquitous dispose Method” in Chapter 5.

updateLayout Called in response to the window.onresize event, which signals changes between various view

states.

Note that WinJS.UI.Pages calls the first four methods; the unload and updateLayout methods, on

the other hand, are used only by the PageControlNavigator.

Of all of these, the ready method is the most common one to implement. It’s where you’ll do

further initialization of controls (e.g., populate lists), wire up other page-specific event handlers, and so

on. Any processing that you want to do before the page content is added to the DOM should happen

in processed, and note that if you return a promise from processed, WinJS will wait until that promise

is fulfilled before starting the enterpage animation.

The unload method is also where you’ll want to remove event l isteners for WinRT objects, as

described earlier in this chapter in “WinRT Events and removeEventListener.” The updateLayout

method is important when you need to adapt your page layout to a new view, as we’ve been doing in

the Here My Am! app.

As for the PageControlNavigator itself, which I’ll just refer to as the “navigator,” the code in

js/navigator.js shows how it’s defined and how it wires up navigation events in its constructor:

(function () {

 "use strict";

 // [some bits omitted]

 var nav = WinJS.Navigation;

 WinJS.Namespace.define("Application", {

 PageControlNavigator: WinJS.Class.define(

http://msdn.microsoft.com/library/windows/apps/jj126146.aspx
http://msdn.microsoft.com/library/windows/apps/br212672.aspx

143

 // Define the constructor function for the PageControlNavigator.

 function PageControlNavigator (element, options) {

 this.element = element || document.createElement("div");

 this.element.appendChild(this._createPageElement());

 this.home = options.home;

 // ...

 // Adding event listeners; addRemovableEventListener is a helper function

 addRemovableEventListener(nav, 'navigating',

 this._navigating.bind(this), false);

 addRemovableEventListener(nav, 'navigated',

 this._navigated.bind(this), false);

 // ...

 }, {

 // ...

First we see the definition of the Application namespace as a container for the PageControl-

Navigator class (see “Sidebar: WinJS.Namespace.define and WinJS.Class.define” later). Its constructor

receives the element that contains it (the contenthost div in default.html), or it creates a new one if

none is given. The constructor also receives an options object that is the result of parsing the data-

win-options string of that element. The navigator then appends the page control’s contents to this

root element, adds listeners for the WinJS.Navigation.onnavigated event, among others.23

The navigator then waits for someone to call WinJS.Navigation.navigate, which happens in the

activated handler of js/default.js, to navigate to either the home page or the last page viewed if

previous session state was reloaded:

if (app.sessionState.history) {

 nav.history = app.sessionState.history;

}

args.setPromise(WinJS.UI.processAll().then(function () {

 if (nav.location) {

 nav.history.current.initialPlaceholder = true; // Don’t add first page to nav stack

 return nav.navigate(nav.location, nav.state);

 } else {

 return nav.navigate(Application.navigator.home);

 }

}));

Notice how this code is using the WinJS sessionState object exactly as described earlier in this

chapter, taking advantage again of sessionState being automatically reloaded when appropriate.

When a navigation happens, the navigator’s _navigating handler is invoked, which in turn calls

WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child

23 If the use of .bind(this) is unfamiliar to you, please see my blog post, The purpose of this<event>.bind(this).

http://kraigbrockschmidt.com/blog/?p=32

144

elements to the navigator control:

_navigating: function (args) {

 var newElement = this._createPageElement();

 var parentedComplete;

 var parented = new WinJS.Promise(function (c) { parentedComplete = c; });

 this._lastNavigationPromise.cancel();

 this._lastNavigationPromise = WinJS.Promise.timeout().then(function () {

 return WinJS.UI.Pages.render(args.detail.location, newElement,

 args.detail.state, parented);

 }).then(function parentElement(control) {

 var oldElement = this.pageElement;

 if (oldElement.winControl && oldElement.winControl.unload) {

 oldElement.winControl.unload();

 }

 WinJS.Utilities.disposeSubTree(this._element);

 this._element.appendChild(newElement);

 this._element.removeChild(oldElement);

 oldElement.innerText = "";

 parentedComplete();

 }.bind(this));

 args.detail.setPromise(this._lastNavigationPromise);

},

If you look past all the business with promises that you see here (which essentially makes sure the

rendering and parenting process is both asynchronous and yields the UI thread), you can see how the

navigator is handling the core process shown earlier in Figure 3-4. It first creates a new page element.

Then it calls the previous page’s unload event, after which it asynchronously loads the new page’s

content. Once that’s complete, the new page’s content is added to the DOM and the old page’s

contents are removed. Note that the navigator uses the WinJS disposal helper, WinJS.Utilities.-

disposeSubTree to make sure that we fully clean up the old page. This disposal pattern invokes the

navigator’s dispose method (also in navigator.js), which makes sure to release any resources held by

the page and any controls within it, including event listeners. (More on this in Chapter 5.)

Tip In a page control’s JavaScript code you can use this.element.querySelector rather than

document.querySelector if you want to look only in the page control’s contents and have no need to

traverse the entire DOM. Because this.element is just a node, however, it does not have other

traversal methods like getElementById (which, by the way, operates off an optimized lookup table

and actually doesn’t traverse anything).

And that, my friends, is how it works! In addition to the HTML Page controls sample, and to show a

concrete example of doing this in a real app, the code in the HereMyAm3c sample has been converted

to use this model for its single home page. To make this conversion, I started with a new project by

using the Navigation App template to get the page navigation structures set up. Then I copied or

imported the relevant code and resources from HereMyAm3b, primarily into pages/home/home.html,

http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4

145

home.js, and home.css. And remember how I said that you could open a page control directly in Blend

(which is why pages have WinJS references)? As an exercise, open the HereMyAm3c project in Blend.

You’ll first see that everything shows up in default.html, but you can also open home.html by itself and

edit just that page.

Note To give an example of calling removeEventListener for the WinRT datarequested event, I

make this call in the unload method of pages/home/home.js.

Be aware that WinJS calls WinJS.UI.processAll in the process of loading a page control (before

calling the processed method), so we don’t need to concern ourselves with that detail when using

WinJS controls in a page. On the other hand, reloading state when previousExecutionState ==

terminated needs some attention. Because this is picked up in the WinJS.Application.onactivated

event before any page controls are loaded and before the PageControlNavigator is even instantiated,

we need to remember that condition so that the home page’s ready method can later initialize itself

accordingly from app.sessionState values. For this I simply write another flag into

app.sessionState called initFromState (true if previousExecutionState is terminated, false

otherwise.) The page initialization code, now in the page’s ready method, checks this flag to determine

whether to reload session state.

The other small change I made to HereMyAm3c is to use the updateLayout method in the page

control rather than attaching my own handler to window.onresize. With this I also needed to add a

height: 100%; style to the #mainContent rule in home.css. In previous iterations of this example, the

mainContent element was a direct child of the body element and it inherited the full screen height

automatically. Now, however, it’s a child of the contentHost, so the height doesn’t automatically pass

through and we need to set it to 100% explicitly.

Sidebar: WinJS.Namespace.define and WinJS.Class.define

WinJS.Namespace.define provides a shortcut for the JavaScript namespace pattern. This helps

to minimize pollution of the global namespace as each app-defined namespace is just a single

object in the global namespace but can provide access to any number of other objects, functions,

and so on. This is used extensively in WinJS and is recommended for apps as well, where you

define everything you need in a module—that is, within a (function() { ... })() block—and

then export selective variables or functions through a namespace. In short, use a namespace

anytime you’re tempted to add any global objects or functions!

Here’s the syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name>

is a string (dots are OK) and <members> is any object contained in { }’s. Also, WinJS.Namespace.-

defineWithParent(<parent>, <name>, <members>) defines one within the <parent>

namespace.

If you call WinJS.Namespace.define for the same <name> multiple times, the <members> are

http://msdn.microsoft.com/library/windows/apps/br212667.aspx

146

combined. Where collisions are concerned, the most recently added members win. For example:

WinJS.Namespace.define("MyNamespace", { x: 10, y: 10 });

WinJS.Namespace.define("MyNamespace", { x: 20, z: 10 });

//MyNamespace == { x: 20, y: 10, z: 10}

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor

so that objects can be instantiated with new.

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>,

<staticMembers>) where <constructor> is a function, <instanceMembers> is an object with

the class’s properties and methods, and <staticMembers> is an object with properties and

methods that can be directly accessed via <className>.<member> (without using new).

Variants: WinJS.Class.derive(<baseClass>, ...) creates a subclass (... is the same arg

list as with define) using prototypal inheritance, and WinJS.Class.mix(<constructor>,

[<classes>]) defines a class that combines the instance (but not static) members of one or

more other <classes> and initializes the object with <constructor>.

Finally, note that because class definitions just generate an object, WinJS.Class.define is

typically used inside a module with the resulting object exported to the rest of the app as a

namespace member. Then you can use new <namespace>.<class> anywhere in the app.

For more details on classes in WinJS, see Appendix B.

Sidebar: Helping Out IntelliSense

If you start poking around in the WinJS source code—for example, to see how WinJS.UI.Pages

is implemented—you’ll encounter certain structures within code comments, often starting with a

triple slash, ///. These are used by Visual Studio and Blend to provide rich IntelliSense within the

code editors. You’ll see, for example, /// <reference path…/> comments, which create a

relationship between your current script file and other scripts to resolve externally defined

functions and variables. This is explained on the JavaScript IntelliSense page in the

documentation. For your own code, especially with namespaces and classes that you will use

from other parts of your app, use these comment structures to describe your interfaces to

IntelliSense. For details, see Extending JavaScript IntelliSense, and again look around the WinJS

JavaScript files for many examples.

The Navigation Process and Navigation Styles
Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the PageControl-

Navigator all relate, it’s straightforward to see how to navigate between multiple pages within the

context of a single HTML container (e.g., default.html). With the PageControlNavigator instantiated

and a page control defined via WinJS.UI.Pages, simply call WinJS.Navigation.navigate with the

URI of that page control (its identifier). This loads that page’s contents into a child element inside the

http://msdn.microsoft.com/library/windows/apps/br229813.aspx
http://msdn.microsoft.com/library/bb385682.aspx
http://msdn.microsoft.com/library/hh874692.aspx

147

PageControlNavigator, unloading any previous page. That becomes page visible, thereby

“navigating” to it so far as the user is concerned. You can also use (like the WinJS BackButton does) the

other methods of WinJS.Navigation to move forward and back in the nav stack, which results in page

contents being added and removed. The WinJS.Navigation.canGoBack and canGoForward

properties allow you to enable/disable navigation controls as needed. Just remember that all the while,

you’ll still be in the overall context of your host page where you created the PageControlNavigator

control.

As an example, create a new project using the Grid App template and look at these particular areas:

 pages/groupedItems/groupedItems is the home or “hub” page. It contains a ListView control

(see Chapter 6, “Data Binding, Templates, and Collections”) with a bunch of default items.

 Tapping a group header in the list navigates to section page (pages/groupDetail). This is done

in pages/groupedItems/groupedItems.html, where an inline onclick handler event navigates

to pages/groupDetail/groupDetail.html with an argument identifying the specific group to

display. That argument comes into the ready function of pages/groupDetail/groupDetail.js.

 Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked

handler for the items, the _itemInvoked function in pages/groupedItems/groupedItem.js, calls

WinJS.Navigation.navigate("/pages/itemDetail/itemDetail.html") with an argument

identifying the specific item to display. As with groups, that argument comes into the ready

function of pages/itemDetail/itemDetail.js.

 Tapping an item in the section page also goes to the details page through the same

mechanism—see the _itemInvoked function in pages/groupDetail/groupDetail.js.

 The back buttons on all pages wire themselves into WinJS.Navigation.back for keyboard,

mouse, and touch events.

The Split App template works similarly, where each list item on pages/items is wired to navigate to

pages/split when invoked. Same with the Hub App template that has a hub page using the

WinJS.UI.Hub control that we’ll meet in Chapter 8.

The Grid App and Hub App templates also serve as examples of what‘s called the Hub-Section-Item

navigation style (it’s most explicitly so in the Hub App). Here the app’s home page is the hub where the

user can explore the full extent of the app. Tapping a group header navigates to a section, the second

level of organization where only items from that group are displayed. Tapping an item (in the hub or in

the section) navigates to a details page for that item. You can, of course, implement this navigation

style however you like; the Grid App template uses page controls, WinJS.Navigation, and the

PageControlNavigator. (Semantic zoom, as we’ll see in Chapter 7, “Collection Controls,” is also

supported as a navigation tool to switch between hubs and sections.)

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here,

navigation happens to any given page at any time through a navigation bar (swiped in along with the

app bar, as we’ll see in Chapter 9). When using page controls and PageControlNavigator, navigation

148

commands or buttons can just invoke WinJS.Naviation.navigate for this purpose. Note that in this

style, there typically is no back button: users are expected to always swipe in the navigation bar from

the top and go directly to the desired page.

These styles, along with many other UI aspects of navigation, can be found on Navigation design for

Windows Store apps. This is an essential topic for designers.

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages

Some apps might require either a login or acceptance of a license agreement to do anything,

and thus it’s appropriate that such pages are the first to appear in an app after the splash screen.

In these cases, if the user does not accept a license or doesn’t provide a login, the app should

display a message describing the necessity of doing so, but it should always leave it to the user

to close the app if desired. Do not close the app automatically. (This is a Store certification

requirement.)

Typically, such pages appear only the first time the app is run. If the user provides a valid

login, or if you obtain an access token through the Web Authentication Broker (see Chapter 4),

those credentials/token can be saved for later use via the Windows.Security.Credentials.-

PasswordVault API. If the user accepts a EULA, that fact should be saved in appdata and

reloaded anytime the app needs to check. These settings (login and acceptance of a license)

should then always be accessible through the app’s Settings charm. Legal notices, by the way, as

well as license agreements, should always be accessible through Settings as well. See Guidelines

and checklist for login controls.

Optimizing Page Switching: Show-and-Hide

Even with page controls, there is still a lot going on when navigating from page to page: one set of

elements is removed from the DOM, and another is added in. Depending on the pages involved, this

can be an expensive operation. For example, if you have a page that displays a list of hundreds or

thousands of items, where tapping any item goes to a details page (as with the Grid App template),

hitting the back button from a detail page will require complete reconstruction of the list (or at least its

visible parts if the list is virtualized, which could still take a long time).

Showing progress indicators can help alleviate the user’s anxiety, of course, but users are notoriously

impatient and will likely want to quickly switch between a list of items and item details. (You’ve

probably already encountered apps that seem to show progress indicators all the time for just about

everything—how do they make you feel?) Indeed, the recommendation is that switching between fully

interactive pages takes a quarter second or less, if possible, and no more than half a second. In some

cases, completely swapping out chunks of the DOM with page controls will just become too time-

consuming. (You could use a split master-detail view, of course, but that means splitting the available

screen real estate.)

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx

149

A good alternative is to actually keep the list/master page fully loaded the whole time. Instead of

navigating to the item details page in the way we’ve seen, simply render that details page (using

WinJS.UI.Pages.render directly) into another div that occupies the whole screen and overlays the

list (similar to what we do with an extended splash screen), and then make that div visible without

removing the list page from the DOM. When you dismiss the details page, just hide its div. This way

you get the same effect as navigating between pages but the whole process is much quicker. You can

also apply WinJS animations like enterContent and exitContent to make the transition more fluid.

If necessary, you can clear out the details div by just setting its innerHTML to "". However, if each

details page has the same structure for every item, you can leave it entirely intact. When you “navigate”

to the next details page, you would go through and refresh each element’s data and properties for the

new item before making that page visible. This could be significantly faster than rebuilding the details

page all over again.

Note that because the PageControlNavigator implementation in navigator.js is provided by the

templates and becomes part of your app, you can modify it however you like to handle these kinds of

optimizations in a more structured manner that’s transparent to the rest of your code.

Page-Specific Styling
When creating an app that uses page controls, you’ll end up with each page having its own .css file in

which you place page-specific styles. What’s very important to understand here, though, is that while

each page’s HTML elements are dynamically added to and removed from the DOM, any and all CSS

that is loaded for page controls is cumulative to the app as a whole. That is, styles behave like script and

are preserved across page “navigations.” This can be a source of confusion and frustration, so it’s

essential to understand what’s happening here and how to work with it.

Let's say the app's root page is default.html and its global styles are in css/default.css. It then has

several page controls defined in pages/page1 (page1.html. page1.js, page1.css), pages/page2

(page2.html. page2.js, page2.css), and pages/page1 (page3.html. page3.js, page3.css). Let's also say that

page1 is the “home” page that’s loaded at startup. This means that the styles in default.css and

page1.css have been loaded when the app first appears.

Now the user navigates to page2. This causes the contents of page1.html to be dumped from the

DOM, but its styles remain in the stylesheet. So when page2 is loaded, page2.css gets added to the

overall stylesheet as well, and any styles in page2.css that have identical selectors to page1.css will

overwrite those in page1.css. And when the user navigates to page3 the same thing happens again: the

styles in page3.css are added in and overwrite any that already exist. But so far we haven’t seen any

unexpected effect of this.

Now, say the user navigates back to page1. Because the apphost's rendering engine has already

loaded page1.css into the stylesheet, page1.css won't be loaded again. This means that any styles that

were overwritten by other pages' stylesheets will not be reset to those in page1.css—basically you get

whichever ones were loaded most recently. As a result, you can see some mix of the styles in page2.css

http://msdn.microsoft.com/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/library/windows/apps/hh701585.aspx

150

and page3.css being applied to elements in page1.24

There are two ways to handle CSS files to avoid these problems. The first way is to take steps to

avoid colliding selectors: use unique selectors for each page or can scope your styles to each page

specifically. For the latter, wrap each page’s contents in a top-level div with a unique class (as in <div

class="page1">) so that you can scope every rule in page1.css with the page name. For example:

.page1 p {

 font-weight: bold;

}

Such a strategy can also be used to define stylesheets that are shared between pages, as with

implementing style themes. If you scope the theme styles with a theme class, you can include that class

in the top-level div to apply the theme.

A similar case arises if you want to use the ui-light.css and ui-dark.css WinJS stylesheets in different

pages of the same app. Here, whichever one is loaded second will define the global styles such that

subsequent pages that refer to ui-light.css might appear with the dark styles.

Fortunately, WinJS already scopes those styles that differ between the two files: those in ui-light.css

are scoped with a CSS class win-ui-light and those in ui-dark.css are scoped with win-ui-dark. This

means you can just refer to whichever stylesheet you use most often in your .html files and then add

either win-ui-light or win-ui-dark to those elements that you need to style differently. When you

add either class, note that the style will apply to that element and all its children. For a simple

demonstration of an app with one dark page (as the default) and one light page, see the PageStyling

example in the companion content.

The other way of avoiding collisions is to specifically unload and reload CSS files by modifying

<link> tags in the page header. You can either remove one <link> tag and add a different one,

toggle the disabled attribute for a tag between true and false, or change the href attribute of an

existing link. These methods are demonstrated for styling an iframe in the CSS styling and branding

your app sample, which swaps out and enables/disables both WinJS and app-specific stylesheets.

Another demonstration for switching between the WinJS stylesheets is in scenario 1 of the HTML

NavBar control sample that we’ll see more of in Chapter 9 (js/1-CreateNavBar.js):

function switchStyle() {

 var linkEl = document.querySelector('link');

 if (linkEl.getAttribute('href') === "//Microsoft.WinJS.2.0 /css/ui-light.css") {

 linkEl.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-dark.css");

 } else {

 linkEl.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-light.css");

 }

}

24 The same thing happens with .js files, by the way, which are not reloaded if they've been loaded already. To avoid
collisions in JavaScript, you either have to be careful to not duplicate variable names or to use namespaces to isolate

them from one another.

http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a

151

The downside of this approach is that every switch means reloading and reparsing the CSS files and

a corresponding re-rendering of the page. This isn’t much of an issue during page navigation, but

given the size of the WinJS files I recommend using it only for your own page-specific stylesheets and

using the win-ui-light and win-ui-dark classes to toggle the WinJS styles.

Async Operations: Be True to Your Promises

Even though we’ve just got our first apps going, we’ve already seen a lot to do with async operations

and promises. We’ve seen their basic usage, and in the “Moving the Captured Image to AppData (or

the Pictures Library)” section of Chapter 2, we saw how to combine multiple async operations into a

sequential chain. At other times you might want to combine multiple parallel async operations into a

single promise. Indeed, as you progress through this book you’ll find that async APIs, and thus

promises, seem to pop up as often as dandelions in a lawn (without being a noxious weed, of course)!

Indeed, the implementation of the PageControlNavigator._navigating method that we saw earlier

has a few characteristics that are worth exploring.

To reiterate a very important point, promises are simply how async operations in WinRT are

projected into JavaScript, which matches how WinJS and other JavaScript libraries typically handle

asynchronous work. And because you’ll be using all sorts of async APIs in your development work,

you’re going to be using promises quite frequently and will want to understand them deeply.

Note There are a number of different specifications for promises. The one presently used in WinJS and

the WinRT API is known as Common JS/Promises A. Promises in jQuery also follow this convention and

are thus interoperable with WinJS promises.

The subject of promises gets rather involved, however, so instead of burdening you with the details

in the main flow of this chapter, you’ll find a full treatment of promises in Appendix A, “Demystifying

Promises.” Here I want to focus on the most essential aspects of promises and async operations that

we’ll encounter throughout the rest of this book, and we’ll take a quick look at the features of the

WinJS.Promise class. Examples of the concepts can be found in the WinJS Promise sample.

Using Promises
The first thing to understand about a promise is that it’s really nothing more than a code construct or a

calling convention. As such, promises have no inherent relationship to async operations—they just so

happen to be very useful in that regard! A promise is simply an object that represents a value that

might be available at some point in the future (or might be available already). It’s just l ike we use the

term in human relationships. If I say to you, “I promise to deliver a dozen donuts,” it doesn’t matter

when and how I get them (or even whether I have them already in hand), it only matters that I deliver

them at some point in the future.

A promise, then, implies a relationship between two people or, to be more generic, two agents, as I

http://wiki.commonjs.org/wiki/Promises/A
http://code.msdn.microsoft.com/windowsapps/Promise-e1571015

152

call them. There is the originator who makes the promise—that is, the one who has some goods to

deliver—and the consumer or recipient of that promise, who will also be the later recipient of the

goods. In this relationship, the originator creates a promise in response to some request from the

consumer (typically an API call). The consumer can then do whatever it wants with both the promise

itself and whatever goods the promise delivers. This includes sharing the promise with other interested

consumers—the promise will deliver its goods to each of them.

The way a consumer listens for delivery is by subscribing a completed handler through the promise’s

then or done methods. (We’ll discuss the differences later.) The promise invokes this handler when it

has obtained its results. In the meantime, the consumer can do other work, which is exactly why

promises are used with async operations. It’s like the difference between waiting in line at a restaurant’s

drive-through for a potentially very long time (the synchronous model) and calling out for pizza

delivery (the asynchronous model): the latter gives you the freedom to do other things.

Of course, if the promised value is already available, there’s no need to wait: it will be delivered

synchronously to the completed handler as soon as then/done is called.

Similarly, problems can arise that make it impossible to fulfill the promise. In this case the promise

will invoke any error handlers given to then/done as the second argument. Those handlers receive an

error object containing name and message properties with more details, and after this point the

promise is in what’s called the error state. This means that any subsequent calls to then/done will

immediately (and synchronously) invoke any given error handlers.

A consumer can also cancel a promise if it decides it no longer needs the results. A promise has a

cancel method for this purpose, and calling it both halts any underlying async operation represented

by the promise (however complex it might be) and puts the promise into the error state.

Some promises—which is to say, some async operations—also support the ability to report

intermediate results to any progress handlers given to then/done as the third argument. Check the

documentation for the particular API in question.25

Finally, two static methods on the WinJS.Promise object might come in handy when using

promises:

 is determines whether an arbitrary value is a promise, returning a Boolean. It basically makes

sure it’s an object with a function named “then”; it does not test for “done”.

 theneach takes an array of promises and subscribes completed, error, and progress handlers to

each promise by calling its then method. Any of the handlers can be null. The return value of

theneach is itself a promise that’s fulfilled when all the promises in the array are fulfilled. We

call this a join, as described in the next section.

25 If you want to impress your friends while reading the WinRT API documentation, know that if an async function shows it
returns IAsync[Action | Operation]WithProgress (for whatever result type), it will invoke progress handlers. If it lists

only IAsync[Action | Operation], progress is not supported.

http://msdn.microsoft.com/library/windows/apps/br211667.aspx
http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/library/windows/apps/br229727.aspx

153

Tip If you’re new to the concept of static methods, these refer to functions that exist on an object class

that you call directly through the fully-qualified name, such as WinJS.Promise.theneach. These are

distinct from instance methods, which must be called through a specific instance of the class. For

example, if you have a WinJS.Promise object in the variable p, you cancel that particular instance with

p.cancel().

Joining Parallel Promises

Because promises are often used to wrap asynchronous operations, it’s certainly possible that you can

have multiple operations going on in parallel. In these cases you might want to know either when one

promise in a group is fulfilled or when all the promises in the group are fulfilled. The static functions

WinJS.Promise.any and WinJS.Promise.join provide for this. Here’s how they compare:

Function any join

Arguments An array of promises An array of promises

Fulfilled when One of the promises is fulfilled (a logical OR) All of the promises are fulfilled (a logical AND)

Fulfilled result This is a little odd. It’s an object whose key

property identifies the promise that was

fulfilled and whose value property is an

object containing that promise’s state. Within

that state is a _value property that contains

the actual result of that promise.

This isn’t clearly documented but can be

understood from the source code or simple

tests from the consumer side. If the promises in

the join all complete, the completed handler

receives an array of results from the individual

promises (even if those results are null or

undefined). If there’s an error in the join, the

error object passed to the error handler is an

array that contains the individual errors.

Progress behavior None Reports progress to any subscribed handlers

where the intermediate results are an array of

results from those individual promises that

have been fulfilled so far.

Behavior after fulfillment All the operations for the remaining promises

continue to run, calling whatever handlers

might have been subscribed individually.

None—all promises have been fulfilled.

Behavior upon cancellation Canceling the promise from any cancels all

promises in the array, even if the first has

already been fulfilled.

Cancels all other promises that are still

pending.

Behavior upon errors Invokes the subscribed error handler for every

error in the individual promises. This one error

handler, in other words, can monitor

conditions of the underlying promises.

Invokes the subscribed error handler with an

array of error objects from any failed promises,

but the remainder continue to run. In other

words, this reports cumulative errors in the way

that progress reports cumulative completions.

Appendix A, by the way, has a small code snippet that shows how to use join and the array’s

reduce method to execute parallel operations but have their results delivered in a specific sequence.

Sequential Promises: Nesting and Chaining

In Chapter 2, when we added code to Here My Am! to copy the captured image to another folder, we

got our first taste of using chained promises to run sequential async operations. To review, what makes

this work is that any promise’s then method returns another promise that’s fulfilled when the given

http://msdn.microsoft.com/library/windows/apps/br229660.aspx
http://msdn.microsoft.com/library/windows/apps/br211774.aspx

154

completed handler returns. (That returned promise also enters the error state if the first promise has an

error.) That completed handler, for its part, returns the promise from the next async operation in the

chain, the results of which are delivered to the next completed handler down the line.

Though it may look odd at first, chaining is the most common pattern for dealing with sequential

async operations because it works better than the more obvious approach of nesting. Nesting means to

call the next async API within the completed handler of the previous one, fulfilling each with done. For

example (extraneous code removed for simplicity):

//Nested async operations, using done with each promise

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFileTemp) {

 //...

 local.createFolderAsync("HereMyAm", ...)

 .done(function (myFolder) {

 //...

 capturedFile.copyAsync(myFolder, newName)

 .done(function (newFile) {

 })

 })

 });

The one advantage to this approach is that each completed handler will have access to all the

variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough

intervening code between the async calls that the overall structure becomes visually messy. More

significantly, error handling becomes much more difficult. When promises are nested, error handling

must be done at each level with distinct handlers; if you throw an exception at the innermost level, for

instance, it won’t be picked up by any of the outer error handlers. Each promise thus needs its own

error handler, making real spaghetti of the basic code structure:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
 .done(function (capturedFileTemp) {
 //...
 local.createFolderAsync("HereMyAm", ...)
 .done(function (myFolder) {
 //...
 capturedFile.copyAsync(myFolder, newName)
 .done(function (newFile) {
 },
 function (error) {
 })
 },
 function (error) {
 });
 },

 function (error) {

 });

I don’t know about you, but I really get lost in all the }’s and)’s (unless I try hard to remember my

LISP class in college), and it’s hard to see which error function applies to which async call. And just

imagine throwing a few progress handlers in as well!

155

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp

variables outside the chain for any variables that need to be shared amongst the various completed

handlers. Each completed handler in the chain again returns the promise for the next operation, and

each link is a call to then except for a final call to done to terminate the chain. This allows you to indent

all the async calls only once, and it has the effect of propagating errors down the chain, as any

intermediate promise that’s in the error state will be passed through to the end of the chain very

quickly. This allows you to have only a single error handler at the end:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (capturedFileTemp) {

 //...

 return local.createFolderAsync("HereMyAm", ...);

 })

 .then(function (myFolder) {

 //...

 return capturedFile.copyAsync(myFolder, newName);

 })

 .done(function (newFile) {

 },

 function (error) {

 })

To my eyes (and my aging brain), this is a much cleaner code structure—and it’s therefore easier to

debug and maintain. If you like, you can even end the chain with done(null, errorHandler), as we

did in Chapter 2:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 //...

 .then(function (newFile) {

 })

 .done(null, function (error) {

 })

})

Remember, though, that if you need to pass a promise for the whole chain elsewhere, as to a

setPromise method, you’ll use then throughout.

Error Handling in Promise Chains: then vs. done

This brings us to why we have both then and done and to why done is used at the end of a chain as

well as for single async operations. To begin with, then returns another promise, thereby allowing

chaining, whereas done returns undefined, so it always occurs at the end of a chain. Second, if an

exception occurs within one async operation’s then method and there’s no error handler at that level,

the error gets stored in the promise returned by then (that is, the returned promise is in the error

state). In contrast, if done sees an exception and there’s no error handler, it throws that exception to the

app’s event loop. This will bypass any local (synchronous) try/catch block, though you can pick them

up in either in WinJS.Application.onerror or window.onerror handlers. (The latter will get the

error if the former doesn’t handle it.) If you don’t have an app-level handler, the app will be terminated

156

and an error report sent to the Windows Store dashboard. For that reason we recommend that you

implement an app-level error handler using one of the events above.

In practical terms, then, this means that if you end a chain of promises with a then and not done, all

exceptions in that chain will get swallowed and you’ll never know there was a problem! This can place

an app in an indeterminate state and cause much larger problems later on. So, unless you’re going to

pass the last promise in a chain to another piece of code that will itself call done (as you do, for

example, when using a setPromise deferral or if you’re writing a library from which you return

promises), always use done at the end of a chain even for a single async operation.26

Promise error events If you look carefully at the WinJS.Promise documentation, you’ll see that it has

an error event along with addEventListener, removeEventListener, and dispatchEvent methods.

This is primarily used within WinJS itself and is fired on exceptions (but not cancellation). Promises from

async WinRT APIs, however, do not fire this event, so apps typically use error handlers passed to

then/done for this purpose.

Managing the UI Thread with the WinJS Scheduler

JavaScript, as you are probably well aware, is a single-threaded execution environment, where any and

all of your code apart from web workers and background tasks run on what we call the UI thread. The

internal working of asynchronous APIs, like those of WinRT, happen on other threads as well, and the

internal engines of the app host are also very much optimized for parallel processing.27 But regardless

of how much work you offload to other threads, there’s one very important characteristic to always

keep in mind:

The results from all non-UI threads eventually get passed back to the app on the main UI

thread through callback functions such as the completed handler given to a promise.

Think about this very clearly: if you make a whole bunch of async WinRT cal ls within a short amount

of time, such as to make HTTP requests or retrieve information from files, those tasks will execute on

separate threads but each one will pass their results back to the UI thread when the task is complete.

What this means is that the UI thread can become quite overloaded with such incoming traffic!

Furthermore, what you do (or what WinJS does on your behalf) in response to the completion of each

operation—such as adding elements to the DOM or innocently changing a simple layout-affecting

style—can trigger more work on the UI thread, all of which competes for CPU time. As a result, your UI

can become sluggish and unresponsive, the very opposite of “fast and fluid”!

26 Some samples in the Windows SDK might still use then instead of done, especially for single async operations. This came

from the fact that done didn’t yet exist at one point and not all samples have been updated.

27 In Windows 8 and Internet Explorer 10, most parsing, JavaScript execution, layout, and rendering on a single thread.
Rewriting these processes to happen in parallel is one of the major performance improvements for Windows 8.1 and

Internet Explorer 11, from which apps also benefit.

157

This is something we certainly saw with JavaScript apps on Windows 8, and developers created a

number of strategies to cope with it such as starting async operations in timed batches to manage their

rate of callbacks to the UI thread, and batching together work that triggers a layout pass so as to

combine multiple changes in each pass.

Still, after plenty of performance analysis, the WinJS and app host teams at Microsoft found that

what was really needed is a way to asynchronously prioritize different tasks on the UI thread itself. This

meant creating some low-level scheduling APIs in the app host such as MSApp.executeAtPriority.

But don’t use such methods directly—use the WinJS.Utilities.Scheduler API instead. The reason

for this is that WinJS very carefully manages its own tasks through the Scheduler, so by using it

yourself you ensure that all the combined work is properly coordinated. This API also provides a simpler

interface to the whole process, especially where promises are concerned.

Let’s first understand what the different priorities are, then we’ll see how to schedule and manage

work at those priorities. Keep in mind, though, that using the scheduler is not at all required—it’s there

to help you tune the performance of your app, not to make your life difficult!

Scheduler Priorities

The relative priorities for the WinJS Scheduler are expressed in the Scheduler.Priority

enumeration, which I list here in descending order: max, high, aboveNormal, normal (the default for

app code), belowNormal, idle, and min. Here’s the general guidance on how to use these:

Priority Best Usage

max, high Use sparingly for truly high priority work as these priorities take priority over layout

passes in the rendering engine. If you overuse these priorities, the app can actually

become less responsive!

aboveNormal, normal, belowNormal Use these to indicate the relative importance between most of your tasks.

idle, min Use for long-running and/or maintenance tasks where there isn’t a UI dependency.

Although you need not use the scheduler in your own code, a little analysis of your use of async

operations will likely reveal places where setting priorities might make a big difference. Earlier i n

“Optimizing Startup Time,” for example, we talked about how you want to prioritize non-UI work while

your splash screen is visible, because the splash screen is noninteractive by definition. If you’re doing

some initial HTTP requests, for example, set the most critical ones for your home page to max or high,

and set secondary requests to belowNormal. This will help those first requests get processed ahead of

UI rendering, whereas your handling of the secondary requests will then happen after your home page

has come up. This way you won’t make the user wait for completion of those secondary tasks before

the app becomes interactive. Other requests that you want to start, perhaps to cache data for a

secondary leaderboard page, can be set to belowNormal or idle. Of course, if the user navigates to a

secondary page, you’ll want to change its task priorities to aboveNormal or high.

WinJS, for its part, makes extensive use of priorities. For example, it will batch edits to a data-binding

source at high priority while scheduling cleanup tasks at idle priority. In a complex control like the

ListView, fetching new items that are necessary to render the visible part of a ListView control is done at

http://msdn.microsoft.com/library/windows/apps/dn301978.aspx
http://msdn.microsoft.com/library/windows/apps/dn301907.aspx

158

max, rendering of the visible items is done at aboveNormal, pre-loading the next page of items forward

is set to normal (anticipating that the user will pan ahead), and pre-loading of the previous page (to

anticipate a reverse pan) is set to belowNormal.

Scheduling and Managing Tasks
Now that we know about scheduling priorities, the way to asynchronously execute code on the UI

thread at a particular priority is by calling the Scheduler.schedule method (whose default priority is

normal). This method allows you to provide an optional object to use as this inside the function along

with a name to use for logging and diagnostics.28

As a simple example, scenario 1 of the HTML Scheduler sample schedules a bunch of functions at

different priorities in a somewhat random order (js/schedulesjobscenario.js):

window.output("\nScheduling Jobs...");

var S = WinJS.Utilities.Scheduler;

S.schedule(function () { window.output("Running job at aboveNormal priority"); },

 S.Priority.aboveNormal);

window.output("Scheduled job at aboveNormal priority");

S.schedule(function () { window.output("Running job at idle priority"); },

 S.Priority.idle, this);

window.output("Scheduled job at idle priority");

S.schedule(function () { window.output("Running job at belowNormal priority"); },

 S.Priority.belowNormal);

window.output("Scheduled job at belowNormal priority");

S.schedule(function () { window.output("Running job at normal priority"); }, S.Priority.normal);

window.output("Scheduled job at normal priority");

S.schedule(function () { window.output("Running job at high priority"); }, S.Priority.high);

window.output("Scheduled job at high priority");

window.output("Finished Scheduling Jobs\n");

The output then shows that the “jobs,” as they’re called, which execute in the expected order:

Scheduling Jobs...

Scheduled job at aboveNormalPriority

Scheduled job at idlePriority

Scheduled job at belowNormalPriority

Scheduled job at normalPriority

Scheduled job at highPriority

Finished Scheduling Jobs

Running job at high priority

28 The Scheduler.execHigh method is also a shortcut for directly calling MSApp.execAtPriority with Priority.high. This

method does not accommodate any added arguments.

http://msdn.microsoft.com/library/windows/apps/dn301941.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2
http://msdn.microsoft.com/library/windows/apps/dn301933.aspx

159

Running job at aboveNormal priority

Running job at normal priority

Running job at belowNormal priority

Running job at idle priority

No surprises here, I hope!

When you call schedule, what you get back is an object with the Scheduler.IJob interface, which

defines the following methods and properties:

Properties Description
id (read-only) A unique id assigned by the scheduler.

name (read-write) The app-provided name assigned to the job, if any. The name argument to schedule

will be stored here.

priority (read-write) The priority assigned through schedule; setting this property will change the priority.

completed (read-only) A Boolean indicating whether the job has completed (that is, the function given to

schedule has returned and all its dependent async operations are complete).

owner (read-write) An owner token that can be used to group jobs. This is undefined by default.

Methods Description
pause Halts further execution of the job.

resume Resumes a previously paused job (no effect if the job isn’t paused).

cancel Removes the job from the scheduler.

In practice, if you’ve scheduled a job at a low priority but navigate to a page that really needs that

job to complete before the page is rendered, you simply bump up its priority property (and then

drain the scheduler as we’ll see in a moment). Similarly, if you scheduled some work on a page that you

don’t need to continue when navigating away, then call the job’s cancel method within the page’s

unload method. Or perhaps you have an index page from which you typically navigate into a details

page, and then back again. In this case you can pause any jobs on the index page when navigating to

the details, then resume them when you return to the index. See scenarios 2 and 3 of the sample for

some demonstrations.

Scenario 2 also shows the utility of the owner property (the code is thoroughly mundane so I’ll leave

you to examine it). An owner token is something created through Scheduler.createOwnerToken and

then assigned to a job’s owner (which replaces any previous owner). An owner token is simply an object

with a single method called cancelAll that calls the cancel method of whatever jobs are assigned to

it, nothing more. It’s a simple mechanism—the owner token really does nothing more than maintain an

array of jobs—but clearly allows you to group related jobs together and cancel them with a single call.

This way you don’t need to maintain your own lists and iterate through them for this purpose. (To do

the same for pause and resume you can, of course, just duplicate the pattern in your own code.)

The other important feature of the Scheduler is the requestDrain method. This ensures that all jobs

scheduled at a given priority or higher are executed before the UI thread yields. You typically use this

to guarantee that high priority jobs are completed before a layout pass. requestDrain returns a

promise that is fulfilled when the jobs are drained, at which time you can drain lower priority tasks or

schedule new ones.

http://msdn.microsoft.com/library/windows/apps/dn255156.aspx
http://msdn.microsoft.com/library/windows/apps/dn301931.aspx
http://msdn.microsoft.com/library/windows/apps/dn255179.aspx
http://msdn.microsoft.com/library/windows/apps/dn301934.aspx

160

A simple demonstration is shown in scenario 5 of the sample. It has two buttons that schedule the

same set of varying jobs and then call requestDrain with either high or belowNormal priority. When

the returned promise completes, it outputs a message to that effect (js/drainingscenario.js):

S.requestDrain(priority).done(function () {

 window.output("Done draining");

});

Comparing the output of these two side by side (high on the left, belowNormal on the right), as

below, you can see that the promise is fulfilled at different points depending on the priority:

Draining scheduler to high priority

Running job2 at high priority

Done draining

Running job1 at normal priority

Running job5 at normal priority

Running job4 at belowNormal priority

Running job3 at idle priority

Draining scheduler to belowNormal priority

Running job2 at high priority

Running job1 at normal priority

Running job5 at normal priority

Running job4 at belowNormal priority

Done draining

Running job3 at idle priority

The other method that exists on the Scheduler is retrieveState, a diagnostic aid that returns a

descriptive string for current jobs and drain requests. Adding a call to this in scenario 5 of the sample

just after the call to requestDrain will return the following string:

Jobs:

 id: 28, priority: high

 id: 27, priority: normal

 id: 31, priority: normal

 id: 30, priority: belowNormal

 id: 29, priority: idle

Drain requests:

 *priority: high, name: Drain Request 0

Setting Priority in Promise Chains

Let’s say you have a set of async data-retrieval methods that you want to execute in a sequence as

follows, processing their results at each step:

getCriticalDataAsync().then(function (results1) {

 var secondaryPages = processCriticalData(results1);

 return getSecondaryDataAsync(secondaryPages);

}).then(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 return getBackgroundCacheDataAsync(itemsToCache);

}).done(function (results3) {

 populateCache(results3);

});

By default, all of this would run at the current priority against everything else happening on the UI

thread. But you probably want the call to processCriticalData to run at a high priority,

http://msdn.microsoft.com/library/windows/apps/dn301935.aspx

161

processSecondaryData to run at normal, and populateCache to run at idle. With schedule by itself,

you’d have to do everything the hard way:

var S = WinJS.Utilities.Scheduler;

getCriticalDataAsync().done(function (results1) {

 S.schedule(function () {

 var secondaryPages = processCriticalData(results1);

 S.schedule(function () {

 getSecondaryDataAsync(secondaryPages).done(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 S.schedule(function () {

 getBackgroundCacheDataAsync(itemsToCache).done(function (results3) {

 populateCache(results3);

 });

 }, S.Priority.idle);

 });

 }, S.Priority.normal);

 }, S.Priority.high);

});

Urg. Blech. Ick. It’s more fun going to the dentist than writing code like this! To simplify matters, you

could encapsulate the process of setting a new priority within another promise that you can then insert

into the chain. The best way to do this is to dynamically generate a completed handler that would take

the results from the previous step in the chain, schedule a new priority, and return a promise that

delivers those same results (see Appendix A for the use of new WinJS.Promise):

function schedulePromise(priority) {

 //This returned function is a completed handler.

 return function completedHandler (results) {

 //The completed handler returns another promise that's fulfilled

 //with the same results it received...

 return new WinJS.Promise(function initializer (c) {

 //But the delivery of those results are scheduled according to a priority.

 WinJS.Utilities.Scheduler.schedule(function () {

 c(results);

 }, priority);

 });

 }

}

Fortunately we don’t have to write this code ourselves. The WinJS.Utilities.Scheduler already

has five pre-made completed handlers like this that also automatically cancel a job if there is an error.

These are called schedulePromiseHigh, schedulePromiseAboveNormal, schedulePromiseNormal,

schedulePromiseBelowNormal, or schedulePromiseIdle.

Because these APIs are pre-made completed handlers rather than methods you call directly, simply

insert the appropriate name at those points in a promise chain where you want to change the priority,

as highlighted below:

var S = WinJS.Utilities.Scheduler;

http://msdn.microsoft.com/library/windows/apps/dn301938.aspx
http://msdn.microsoft.com/library/windows/apps/dn301936.aspx
http://msdn.microsoft.com/library/windows/apps/dn301940.aspx
http://msdn.microsoft.com/library/windows/apps/dn301937.aspx
http://msdn.microsoft.com/library/windows/apps/dn301939.aspx

162

getCriticalDataAsync().then(S.schedulePromiseHigh).then(function (results1) {

 var secondaryPages = processCriticalData(results1);

 return getSecondaryDataAsync(secondaryPages);

}).then(S.schedulePromise.normal).then(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 return getBackgroundCacheDataAsync(itemsToCache);

}).then(S.schedulePromiseIdle).done(function (results3) {

 populateCache(results3);

});

Long-Running Tasks

All the jobs that we’ve seen so far are short-running in that we schedule a worker function at a certain

priority and it just completes its work when it’s called. However, some tasks might take much longer to

complete, in which case you don’t want to block higher priority work on your UI thread. To help with

this, the scheduler has a built-in interval timer of sorts for tasks that are scheduled at aboveNormal

priority or lower, so a task can check whether it should cooperatively yield and have itself rescheduled

for its next bit of work. Let me stress that word cooperatively: nothing forces a task to yield, but because

all of this is affecting the UI performance of your app and your app alone, if you don’t play nicely you’ll

just be hurting yourself!

The mechanism for this is provided through a job info object that’s passed as an argument to the

worker function itself. To make sure we’re clear on how this fits in, let’s first look at everything a worker

has available within its scope, which is best explained with a few comments within the basic code

structure:

var job = WinJS.Utilities.Scheduler.schedule(function worker(jobInfo) {

 //jobInfo.job is the same as the job returned from schedule.

 //Scheduler.currentPriority will match the second argument to schedule.

 //this will be the third argument passed to schedule.

}, S.Priority.idle, this);

The members of the jobInfo object are defined by Scheduler.IJobInfo:

Properties Description
job (read-only) The same job object as returned from schedule.

shouldYield (read-only) A Boolean flag that is typically false when the worker is first called and then changes

to true if the worker should yield the UI thread and reschedule its work.

Methods Description
setWork Provides the worker for the rescheduled task.

setPromise Provides a promise that the scheduler will wait upon before rescheduling the task, where the

worker to reschedule is the fulfillment value of the promise.

Scenario 4 of the HTML Scheduler sample shows how to work with these. When you press the

Execute a Yielding Task button, it schedules a function called worker at idle priority that just spins

within itself until you press the Complete Yielding Task button, which sets the taskCompleted flag

below to true (js/yieldingscenario.js, with the 2s interval changed to 200ms):

http://msdn.microsoft.com/library/windows/apps/dn255148.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2

163

S.schedule(function worker(jobInfo) {

 while (!taskCompleted) {

 if (jobInfo.shouldYield) {

 // not finished, run this function again

 window.output("Yielding and putting idle job back on scheduler.");

 jobInfo.setWork(worker);

 break;

 }

 else {

 window.output("Running idle yielding job...");

 var start = performance.now();

 while (performance.now() < (start + 200)) {

 // do nothing;

 }

 }

 }

 if (taskCompleted) {

 window.output("Completed yielding task.");

 taskCompleted = false;

 }

}, S.Priority.idle);

Provided that the task is active, it does 200ms of work and then checks if shouldYield has changed

to true. If so, the worker calls setWork to reschedule itself (or another function if it wants). You can

trigger this while the idle worker is running by pressing the Add Higher Priority Tasks to Queue button

in the sample. You’ll then see how those tasks are run before the next call to the worker. In addition,

you can poke around elsewhere in the UI to observe that the idle task is not blocking the UI thread.

Note here that the worker function checks shouldYield first thing to immediately yield if necessary.

However, it’s perfectly fine to do a little work first and then check. Again, this is all about cooperating

within your own app code, so such self-throttling is your choice.

As for setPromise, this is slightly tricky. Calling setPromise tells the scheduler to wait until that

promise is fulfilled before rescheduling the task, where the next worker function for the task is provided

directly through the promise’s fulfillment value. (As such, IJobInfo.setPromise doesn’t pertain to

handling async operations like other setPromise methods in WinJS that are tied in with WinRT

deferrals. If you called IJobInfo.setPromise with a promise from some random async API, the

scheduler would attempt to use the fulfillment value of that operation—which could be anything—as a

function and thus likely throw an exception.)

In short, whereas setWork says “go ahead and reschedule with this worker,” setPromise says “hold

off rescheduling until I deliver the worker sometime later.” This is primarily useful to create a work

queue composed of multiple jobs with an ongoing task to process that queue. To illustrate, consider

the following code for such an arrangement:

var workQueue = [];

function addToQueue(worker) {

 workQueue.push(worker);

164

}

S.schedule(function processQueue(jobInfo) {

 while (work.length) {

 if (jobInfo.shouldYield) {

 jobInfo.setWork(processQueue);

 return;

 }

 work.shift()(); //Pull the first from the FIFO queue and call it.

 }

}}, S.Priority.belowNormal);

Assuming that there are some jobs in the queue when you first call schedule, the processQueue task

will cooperatively empty that queue. And if new jobs are added to the queue in the meantime,

processQueue will continue to be rescheduled.

The problem, however, is that the processQueue worker will finish and exit as soon as the queue is

empty, meaning that any jobs you add to the queue later on won’t be processed. To fix this you could

just have processQueue repeatedly call setWork on itself again and again even when the queue is

empty, but that would be wasteful. Instead, you can use setPromise to have the scheduler wait until

there is more work in the queue. Here’s how that would work:

var workQueue = [];

var haveWork = function () { }; //This function is just a placeholder

function addToQueue(worker) {

 workQueue.push(worker);

 haveWork();

}

S.schedule(function processQueue(jobInfo) {

 while (work.length) {

 if (jobInfo.shouldYield) {

 jobInfo.setWork(processQueue);

 return;

 }

 work.shift()(); //Pull the first from the FIFO queue and call it.

 }

 //If we reach here the queue is empty, but we don't want to exit the worker.

 //Instead of calling setWork without work to do, create a promise that's fulfilled

 //when addToQueue is called again, which we do by replacing the haveWork function

 //with one that calls the promise's completed handler.

 jobInfo.setPromise(new WinJS.Promise(function (completeDispatcher) {

 haveWork = function () { completeDispatcher(processQueue) };

 }))

});

With this code, say we populate workQueue with a number of jobs and then make the call to

schedule. Up to this point and so long as the queue doesn’t become empty, we stay inside the while

loop of processQueue. Any call to the empty haveWork function so far is just a no-op.

165

If the queue becomes empty, however, we’ll exit the while loop but we don’t want processQueue to

exit. Instead, we want to tell the scheduler to wait until more work is added to the queue. This is why

we have that placeholder function for haveWork, because we can now replace it with a function that

will complete the promise with processQueue, thereby triggering a rescheduling of that worker

function.

Note that an alternate way to accomplish the same goal is to use this assignment for haveWork:

haveWork = completeDispatcher.bind(null, processQueue);

This accomplishes the same result as an anonymous function and avoids creating a closure.

Debugging and Profiling

As we’ve been exploring the core anatomy of an app in this chapter along with performance, now’s a

good time to talk about debugging and profiling. This means, as I like to put it, becoming a doctor of

internal medicine for your app and learning to diagnose how well that anatomy is working.

Tip Debug logging, which is local to and only relevant on your development machine, is a very

different concern from telemetry logging, with which you monitor and record user activity. See

“Instrumenting Your App for Telemetry and Analytics” in Chapter 20.

Debug or release? Because JavaScript is not a compiled language, it lacks conditional compilation

directives like #ifdef in C#/C++. There are, however, a few ways to more or less make this

determination at run time (with some caveats). See “Sidebar: Debug or Release?” in Chapter 2.

Debug Output and Logging
It’s sometimes heartbreaking to developers that window.prompt and window.alert are not available

to Windows Store apps as quickie debugging aids. Fortunately, you have two other good options for

that purpose. One is Windows.UI.Popups.MessageDialog, which is actually what you use for real user

prompts in general (see Chapter 9). The other is console.log, as we’ve used in our code already, which

sends text to Visual Studio’s output pane. These messages can a lso be logged as Windows events, as

we’ll see shortly.

For readers who are seriously into logging, beyond the kind you do with chainsaws, there are two

other options: a more flexible method in WinJS called WinJS.log, and the logging APIs in

Windows.Foundation.Diagnostics.

WinJS.log is a curious beast because although it’s ostensibly part of the WinJS namespace, it’s

actually not implemented within WinJS itself! At the same time, it ’s used all over the place in the library

for errors and other reporting. For instance:

WinJS.log && WinJS.log(safeSerialize(e), "winjs", "error");

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx

166

This kind of JavaScript syntax, by the way, means “check whether WinJS.log exists and, if so, call it.”

The && is a shortcut for an if statement: the JavaScript engine will not execute the part after the && if

the first part is null, undefined, or false. It’s a very convenient bit of concise syntax.

Anyway, the purpose of WinJS.log is to allow you to implement your own logging function and

have it pick up WinJS’s logging as well as any you add to your own code. What’s more, you can turn

the logging on and off at any time, something that’s not possible with console.log unless, well, you

write a wrapper like WinJS.log!

Your WinJS.log function, as described in the documentation, should accept three parameters:

1. The message to log (a string).

2. A string with a tag or tags to categorize the message. WinJS always uses “winjs” and sometimes

adds an additional tag like “binding”, in which case the second parameter is “winjs binding”. I

typically use “app” in my own code.

3. A string describing the type of the message. WinJS will use “error”, “info”, “warn”, and “perf”.

Conveniently, WinJS offers a basic implementation of this which you set up by calling

WinJS.Utilities.startLog(). This assigns a function to WinJS.log that uses WinJS.Utilities.-

formatLog to produce decent-looking output to the console. What’s very useful is that you can pass a

list of tags (in a single string) to startLog and only those messages with those tags will show up.

Multiple calls to startLog will aggregate those tags. Then you can call WinJS.Utilities.stopLog to

turn everything off and start again if desired (stopLog is not made to remove individual tags). As a

simple example, see the HereMyAm3d example in the companion content.

Tip Although logging will be ignored for released apps that customers will acquire from the Store, it’s

a good idea to comment out your one call to startLog before submitting a package to the Store and

thus avoid making any unnecessary calls at run time.

WinJS.log is highly useful for generating textual logs, but if you want to go much deeper you’ll

want to use the WinRT APIs in Windows.Foundation.Diagnostics, namely the LoggingSession and

FileLoggingSession classes. These work with in-memory and continuous file-based logging,

respectively, and generate binary “Event Trace Log” (ETL) data that can be further analyzed with the

Windows Performance Analyzer (wpa.exe) and the Trace Reporter (tracerpt.exe) tools in the Windows

SDK. This is a subject well beyond the scope of this book (and this author’s experience), so refer to the

Windows Performance Analyzer documentation for more, along with the LoggingSession sample and

FileLoggingSession sample.

Error Reports and the Event Viewer

Similar to window.alert, another DOM API function to which you might be accustomed is

window.close. You can still use this as a development tool, but in released apps Windows interprets

this call as a crash and generates an error report in response. This report will appear in the Store

http://msdn.microsoft.com/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701626.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.diagnostics.aspx
http://msdn.microsoft.com/library/hh448170.aspx
http://code.msdn.microsoft.com/windowsapps/LoggingSession-Sample-ccd52336/view/SourceCode
http://code.msdn.microsoft.com/windowsapps/FileLoggingSession-Sample-2bc103d9

167

dashboard for your app, with a message telling you to not use it! Generally, Store apps should not

provide their own close affordances.

There might be situations, however, when a released app absolutely needs to close itself in response

to unrecoverable conditions. Although you can use window.close for this, it’s better to use

MSApp.terminateApp because it allows you to also include information as to the exact nature of the

error. These details show up in the Store dashboard, making it easier to diagnose the problem.

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.29

This is where error reports, console logging, and unhandled exceptions (which again terminate the app

without warning) can be recorded. To enable this, start Event Viewer, navigate to Application And

Services Logs on the left side (after waiting for a minute while the tool initializes itself), and then

expand Microsoft > Windows > AppHost. Then left-click to select Admin (this is important), right-click

Admin, and select View > Show Analytic And Debug Logs. This turns on full output, including tracing

for errors and exceptions, as shown in Figure 3-5. Then right-click AppTracing (also under AppHost)

and select Enable Log. This will trace any calls to console.log as well as other diagnostic information

coming from the app host.

FIGURE 3-5 App host events, such as unhandled exceptions, load errors, and logging can be found in Event Viewer.

We already introduced Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16. For

each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and User-

29 If you can’t find Event Viewer, press the Windows key to go to the Start screen and then invoke the Settings charm. Select

Tiles, and turn on Show Administrative Tools. You’ll then see a tile for Event Viewer on your Start screen.

168

unhandled. Checking Thrown will display a dialog box in the debugger (see Figure 3-6) whenever an

exception is thrown, regardless of whether it’s handled and before reaching any of your error handlers.

FIGURE 3-6 Visual Studio’s exception dialog. As the dialog indicates, it’s safe to press Continue if you have an error

handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle

the Thrown checkbox for this exception type in the Exceptions dialog.

If you have error handlers in place, you can safely click the Continue button in the dialog of Figure

3-6 and you’ll eventually see the exception surface in those error handlers. (Otherwise the app will

terminate; see below.) If you click Break instead, you can find the exception details in the debugger’s

Locals pane, as shown in Figure 3-7.

FIGURE 3-7 Information in Visual Studio’s Locals pane when you break on an exception.

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog

whenever an exception is thrown to the event loop, indicating that it wasn’t handled by an app-

provided error function (“user” code from the system’s perspective).

You typically turn on Thrown for only those exceptions you care about; turning them all on can

make it very difficult to step through your app! But it’s especially helpful if you’re debugging an app

and end up at the debugger line in the following bit of WinJS code, just before the app is terminated:

var terminateAppHandler = function (data, e) {

 debugger;

 MSApp.terminateApp(data);

};

169

If you turn on Thrown for all JavaScript exceptions, you’ll then see exactly where the exception

occurred. You can also just check Thrown for only those exceptions you expect to catch.

Do leave User-unhandled checked for everything else. In fact, unless you have a specific reason not

to, make sure that User-unhandled is checked next to the topmost JavaScript Runtime Exceptions item

because this includes all exceptions not otherwise listed. This way you can catch (and fix) exceptions

that might abruptly terminate the app, which is something your customers should never experience.

WinJS.validation Speaking of exceptions, if you set WinJS.validation to true in your app, you’ll

instruct WinJS to perform a few extra checks on arguments and internal state, and throw exceptions if

something is amiss. Just search on “validation” in the WinJS source files for where it’s used.

Async Debugging
Working with asynchronous APIs presents a challenge where debugging is concerned. Although we

have a means to sequence async operations with promise chains (or nested calls, for that matter), each

step in the sequence involves an async call, so you can’t just step through as you would with

synchronous code. If you try this, you’ll step through lots of promise code (in WinJS or the JavaScript

projection layer for WinRT) rather than your completed handlers, which isn’t particularly helpful.

What you’ll need to do instead is set a breakpoint on the first line of each completed handler and

on the first line of each error function. As each breakpoint is hit, you can step through that handler.

When you reach the next async call in a completed handler, click the Continue button in Visual Studio

so that the async operation can run. After that you’ll hit the breakpoint in the next completed handler

or the breakpoint in the error handler.

When you stop at a breakpoint, or when you hit an exception within an async process, take a look at

the debugger’s Call Stack pane (typically in the lower right of Visual Studio), as shown here:

The Call Stack shows you the sequence of functions that lead up to the point where the debugger

stopped, at which point you can double-click any of the lines and examine that function’s context. With

async calls, this can get really messy with all the generic handlers and other chaining that happens

within WinJS and the JavaScript projection layer. Fortunately—very fortunately!—Visual Studio spares

http://msdn.microsoft.com/library/windows/apps/br230472.aspx

170

you from all that. It condenses such code into the gray [Async Call] and [External Code] markers,

leaving only a clear call chain for your app’s code. In this example I set a breakpoint in the completed

handler for geolocation in HereMyAm3d. That completed handler is an anonymous function, as the

first line of the Call Stack indicates, but the next reference to the app code clearly shows that the real

context is the ready method within home.js, which itself is part of a longer chain that originated in

default.js. Double-clicking any one of the app code references will open that code in Visual Studio and

update the Locals pane to that context.

The real utility of this comes when an exception occurs somewhere other than within you own

handlers, because you can then easily trace the causality chain that led to that point.

The other feature for async debugging is the Tasks pane, as shown below. You turn this on through

the Debug > Windows >Tasks menu command. You’ll see a full list of active and completed async

operations that are part of the current call stack.

Performance and Memory Analysis

Alongside its excellent debugging tools, Visual Studio also offers additional aids to help evaluate the

performance of an app, analyze its memory usage, and otherwise discover and diagnose problems that

affect the user experience and the app’s effect on the system. To close this chapter, I wanted to give

you a brief overview of what’s available along with pointers to where you can learn more—because this

subject could fill a book in itself! (In lieu of that, a general pointer is to filter the //build 2013 videos by

the “performance” tag, which turns up a healthy set.)

For starters, the Writing efficient JavaScript topic is well worth a read (as are its siblings under Best

practices using JavaScript), because it explains various things you should and should not do in your

code to help the JavaScript engine run best. One thing you shouldn’t worry about is the performance of

querySelector and getElementById, both of which are highly optimized because they’re used so

often. Keep this in mind, because I know for myself that any function that starts with “query” just

sounds like it’s going to do a lot of work, but that’s not true here.

Next, when thinking about performance, start by setting specific goals for your user experience,

such as “the app should become interactive within 1.5 seconds” and “navigating between the gallery

and details pages happens in 0.5 seconds or less.” In fact, such goals should really be part of the app’s

design that you discuss with your designers, because they’re just as essential to the overall user

http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://msdn.microsoft.com/library/windows/apps/hh781219.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx

171

experience as static considerations like layout. In the end, performance is not about numbers but about

creating a great user experience.

Establishing goals also helps you stay focused on what matters. You can measure all kinds of

different performance metrics for an app, but if they aren’t serving your real goals, you end up with a

classic case of what Tom DeMarco, in his book Why Does Software Cost So Much? (Dorset House, 1995),

calls “measurement dysfunction”: lots of data with meaningless results or results that lead to undesired

action.30

Along the same lines, when running analysis tools, it’s important that you exercise the app like a user

would. That way you get results that are meaningful to the real user experience—that is, the human

experience!—rather than results that would be meaningful to a robot. In the end, all the performance

analysis in the world won’t be worth anything unless is translates into two things: better ratings and

reviews in the Windows Store, and greater app revenue.

With your goals in mind, run analysis tools on a regular basis and evaluate the results against your

goals. Then adjust your code, run the tools again, and evaluate. In other words, running performance

tools to evaluate your performance goals is just another part of making sure you’re creating the app

according to its design—the static and dynamic parts alike.

Remember also to run performance analysis on a variety of hardware, especially lower-end devices

such as ARM tablets that are much more sensitive to performance issues than is your souped-up dev

machine. In fact, slower devices are the ones you should be most concerned about, because their users

will probably be the first to notice any issues and ding your app ratings accordingly. And yes, you can

run the performance tools on a remote machine in the same way you can do remote debugging (but

not in the simulator). Also be aware that analysis tools always run outside of the debugger for obvious

reasons, because stopping at breakpoints and so forth would produce bad performance data!

I very much encourage you, then, to spend a few hours exercising the available tools and getting

familiar with the information they provide. Make them a regular part of your coding/testing cycle so

that you can catch performance and memory issues early on, when it’s easier and less costly to fix

them. Doing so will also catch what we call “regressions,” where a later change to the code causes

performance problems that you fixed a long time ago to rear their ugly heads once again. As the

character Alistor Moody of the Harry Potter books says, “Constant vigilance!”

30 DeMarco tells an amusing story of metrics at their worst: “Consider the case of the Soviet nail factory that was measured

on the basis of the number of nails produced. The factory managers hit upon the idea of converting their entire factory to

production of only the smallest nails, tiny brads. Some commissar, realizing this as a case of dysfunction, came up with a

remedy. He instituted measurement of tonnage of nails produced, rather than numbers. The factory immediately
switched over to producing only railroad spikes. The image I propose to mark the dysfunction end of the spectrum is a

Soviet carpenter, looking perplexed, with a useless brad in one hand and an equally useless railroad spike in the other.”

172

Tip Two topics in the documentation also contain loads of detailed information in these areas:

Performance best practices for Windows Store apps using JavaScript and General best practices for

performance.

So, on to the tools. These are found on the Debug > Performance And Diagnostics… menu, which

brings up the hub shown below with tools that are appropriate to your project’s language:

Get Visual Studio updates New tools are often released with updates to Visual Studio, so be sure to

install them and read the accompanying blogs or release notes to understand what’s new.

By default, Visual Studio will set the target to be the currently loaded project. However, you can run

the tools on any app by using the options on the Change Target drop-down:

As the drop-down indicates, the Installed App option will launch an app anew, whereas the Running

App option attaches to one that’s already been launched. Both are essent ial for profiling apps on

http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx

173

devices where your full project is not present; the latter is also useful if your app is already running and

you want to analyze specific user interactions for a set of conditions that you’ve already set up. This

way you won’t collect a bunch of extra data that you don’t need.

Note that you can run these tools on any installed app, not just your own, which means you can

gather data from other apps that have the level of performance you’d like to achieve for yours.

The Performance and Diagnostic Hub as a whole is designed to be extensible with third-party tools,

giving you a one-stop shop for enabling multiple tools simultaneously. The ones shown above are

those built into Visual Studio, and be sure to install new Visual Studio updates because that’s often how

new tools are released.

Here’s a quick overview of what the current tools accomplish:

Tool Description

HTML UI Responsiveness Provides a graph of Visual Throughput (frames per second) for the rendering engine over time,

helping to identify places where your UI is not as responsive as you’d like. It also provides a

millisecond breakdown of CPU utilization in various subsystems: loading, scripting, garbage

collection, styling, rendering, and image decoding, with various important lifecycle events

indicated along the way. This data is also shown on a time line where you can select any part to

see the breakdown in more detail. All this is helpful for finding areas where the interactions

between subsystems is adding lots of overhead, where there’s excessive fragmentation, or

where work being done in a particular subsystem is causing a drop in visual throughput. A

walkthrough is on HTML UI Responsiveness tool in Visual Studio 2013 (MSDN blogs). Also see

Analyze UI responsiveness.

Energy Consumption Launches the app and collects data about power usage (in milliwatts) over time, split up by

CPU, display, and network. This is very important to writing power-efficient apps for tablet

devices. It can also help you determine whether it’s more power efficient to use the local CPU

or a network server for certain tasks, as network I/O can take as much and even more power

than a burst of CPU activity. For more, see Energy Consumption tool in Visual Studio 2013.

JavaScript Memory Launches the app and provides a dynamic graph of memory usage over time as well as the

ability to take heap snapshots, allowing you to see memory spikes that occur in response to

user activity, and whether that memory is being properly freed. Refer to JavaScript memory

anaylsis for Windows Store apps in Visual Studio 2012 (MSDN blogs) and Analyzing memory

usage in Windows Store apps.

JavaScript Function Timing

(also called the JavaScript

Profiler)

Displays data on when and where function calls are being made in JavaScript and how much

time is spent in what part of your code. A walkthrough can be found on How to profile a

JavaScript App for performance problems (MSDN blogs). Also see Analyizing JavaScript

Performance in Windows Store apps, which covers both local and remote machines.

CPU Sampling Similar to the JavaScript Function Timing tool but works for managed (C#/Visual Basic) and

native (C++) code. This is useful only if you’re writing a multi-language app with both

JavaScript and one of the other languages.

For a video demonstration of most of these, watch the Visual Studio 2013 Performance and

Diagnostics Hub video on Channel 9 and Diagnosing Issues in JavaScript Windows Store Apps with

Visual Studio 2013 from the //build 2013 conference, both by Andrew Hall, the real expert on these

matters. Note that everything you see in these video (with the exception of the console app profiler) is

http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/16/html-ui-responsiveness-tool-in-visual-studio-2013.aspx
http://msdn.microsoft.com/library/windows/apps/dn194502.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/10/energy-consumption-tool-in-visual-studio-2013.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Events/Build/2013/3-312
http://channel9.msdn.com/Events/Build/2013/3-312

174

available in the Visual Studio Express edition that we’ve been using, and if you want to skip the part

about XAML UI responsiveness in the first video, you can jump ahead to about 13:30 where he talks

about the JavaScript tools.

Tip In the first video, the responsiveness problems for the demo apps written both in XAML/C# and

HTML/JavaScript primarily come from loading full image files just to generate thumbnails for gallery

views. As the video mentions, you can avoid this entirely and achieve much better performance by

using Windows.Storage.StorageFile.getThumbnailAsync. This API draws on thumbnail caches and

other mechanisms to avoid the memory overhead and CPU cost of loading full image files. We’ll see

more of this in Chapter 11.

It’s important, of course, with all these tools to clearly correlate certain events in the app with the

various measurements. This is the purpose of the performance.mark function, which exists in the

global JavaScript namespace.31 Events written with this function appear as User Marks in the timelines

generated by the different tools, as shown in Figure 3-8. In looking at the figure, note that the

resolution of marks on the Memory Analyzer timeline on the scale of seconds, so use marks to indicate

only significant user interaction events rather than every function entry and exit. (With other tools,

however, the resolution is much finer, so you can use performance.mark more frequently.)

FIGURE 3-8 Output of the JavaScript Memory analyzer annotated with different marks. The red dashed line is also

added in this figure to show the ongoing memory footprint; it is not part of the tool’s output.

As one example of using these tools, let’s run the Here My Am! app through the memory analyzer

to see if we have any problems. We’ll use the HereMyAm3d example in the companion code where I’ve

31 This function is part of a larger group of methods on the performance object that reflect developing standards. For more

details, see Timing and Performance APIs. performance.mark specifically replaces msWriteProfilerMark.

http://msdn.microsoft.com/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh767418.aspx

175

added some performance.mark calls for events like startup, capturing a new photo, rendering that

photo, and exercising the Share charm. Figure 3-8 shows the results. For good measure—logging,

actually!—I’ve also converted console.log calls to WinJS.log, where I’ve used a tag of “app” in each

call and in the call to WinJS.Utilities.startLog (see default.js).

Referring to Figure 3-8, here’s what I did after starting up the app in the memory analyzer. Once the

home page was up (first mark), I repositioned the map and its pushpin (second mark), and you can see

that this increased memory usage a little within the Bing maps control. Next I invoked the camera

capture UI (third mark), which clearly increased memory use as expected. After taking a picture and

displaying it in the app (fourth mark), you can see that the allocations from the camera capture UI have

been released, and that we land at a baseline footprint that now includes a rendered image. I then do

into the capture UI two more times, and in each case you can see the memory increase during the

capture, but it comes back to our baseline each time we return to the main app. There might be some

small differences in memory usage here depending on the size of the image, but clearly we’re cleaning

up the image when it get replaced. Finally I invoked the Share charm (last mark), and we can see that

this causes no additional memory usage in the source app, which is expected because all the work is

being done in the target. As a result, I feel confident that the app is managing its memory well. If, on

the other hand, that baseline kept increasing over time, then I’d know I have a leak somewhere.

Tip There’s no rule anywhere that says you have to profile your full app project. When you’re trying to

compare different implementation strategies, it can be much easier to create a simple test project and

run the profiling tools on it so that you can obtain very focused comparisons for different approaches.

Doing so will speed up your investigations and avoid disturbing your main project in the process.

The Windows App Certification Toolkit

The other tool you should run on a regular basis is the Windows App Certification Toolkit (WACK),

which is actually one of the first tools that’s automatically run on your app when you submit it to the

Windows Store. If this toolkit reports failures on your local machine, you can be certain that you’ll fail

certification very early in the process.

Running the toolkit can be done as part of building an app package for upload, but until then,

launch it from your Start screen (it’s called Windows App Cert Kit). When it comes up, select Validate

Windows Store App, which (after a disk-chewing delay) presents you with a list of installed apps,

including those that you’ve been running from Visual Studio. It takes some time to generate that list if

you have lots of apps installed, so you might use the opportunity to take a little stretching break. Then

select the app you want to test, and take the opportunity to grab a snack, take a short walk, play a few

songs on the guitar, or otherwise entertain yourself while the WACK gives your app a good whacking.

Eventually it’ll have an XML report ready for you. After saving it (you have to tell it where), you can

view the results. Note that for developer projects it will almost always report a failure on bytecode

generation, saying “This package was deployed for development or authoring mode. Uninstall the

package and reinstall it normally.” To fix this, uninstall it from the Start menu, select a Release target in

Visual Studio, and then use the Build > Deploy Solution menu command. But you can just ignore this

176

particular error for now. Any other failure will be more important to address early on—such as crashes,

hangs, and launch/suspend problems—rather than waiting until you’re ready to submit to the Store.

Note Visual Studio also has a code analysis tool on the Build > Run Code Analysis On Solution menu,

which examines source code for common defects and other violation of best practices. However, this

tool does not presently work with JavaScript.

What We’ve Just Learned

 How apps are activated (brought into memory) and the events that occur along the way.

 The structure of app activation code, including activation kinds, previous execution states, and

the WinJS.UI.Application object.

 Using deferrals when needing to perform async operations behind the splash screen, and

optimizing startup time.

 How to handle important events that occur during an app’s lifetime, such as focus events,

visibility changes, view state changes, and suspend/resume/terminate.

 The basics of saving and restoring state to restart after being terminated, and the WinJS utilities

for implementing this.

 How to implement page-to-page navigation within a single page context by using page

controls, WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend

templates, such as the Navigation App template.

 Details of promises that are commonly used with, but not limited to, async operations.

 How to join parallel promises as well as execute a sequential async operations with chained

promises.

 How exceptions are handled within chained promises and the differences between then and

done.

 How to create promises for different purposes.

 Using the APIs in WinJS.Utilities.Scheduler for prioritizing work on the UI thread,

including the helpers for prioritizing different parts of a promise chain.

 Methods for getting debug output and error reports for an app, within the debugger and the

Windows Event Viewer.

 How to debug asynchronous code and how Visual Studio makes it easy to see the causality

chain.

 The different performance and memory analysis tools available in Visual Studio.

177

Chapter 4

Web Content and Services

The classic aphorism, “No man is an island,” is a way of saying that all human beings are interconnected

within a greater social, emotional, and spiritual reality. And what we see as greatness in a person is very

much a matter of how deeply he or she has realized this truth.

The same is apparently also true for apps. The data collected by organizations such as Distmo shows

that connected apps—those that reach beyond themselves and their host device rather than thinking

of themselves as isolated phenomena—generally rate higher and earn more revenue in various app

stores. In other words, just as the greatest of human beings are those who have fully realized their

connection to an expansive reality, so also are great apps.

This means that we cannot simply take connectivity for granted or give it mere lip service. What

makes that connectivity truly valuable is not doing the obvious, like displaying some part of a web

page in an app, downloading some RSS feed, or showing a few updates from the user’s social network.

Greatness needs to do more than that—it needs to bring online connectedness to life in creative and

productive ways that also make full use of the local device and its powerful resources. These are

“hybrid” apps at their best.

Beyond social networks, consider what can be obtained from thousands of web APIs that are

accessible through simple HTTP requests, as listed on sites like http://www.programmableweb.com/. As

of this writing, that site lists over 11000 separate APIs, a number that continues to grow monthly. This

means not only that there are over 11000 individual sources of interesting data that an app might

employ, but that there are literally billions of combinations of those APIs. In addition to traditional RSS

mashups (combining news feeds), a vast unexplored territory of API mashups exists, which means

bringing disparate data together in meaningful ways. The Programmable Web, in fact, tracks web

applications of this sort, but as of this writing there were several thousand fewer such mashups than

there were APIs! It’s like we’ve taken only the first few steps on the shores of a new continent, and the

opportunities are many.32

I think it’s pretty clear why connected apps are better apps: as a group, they simply deliver a more

compelling and valuable user experience than those that limit themselves to the scope of a client

device. Thus, it’s worth taking the time early in any app project to make connectivity and web content a

central part of your design. This is why we’re discussing the subject now, even before considerations

32 Increasing numbers of entrepreneurs are also realizing that services and web APIs in themselves can be a profitable

business. Companies like Mashape and Mashery also exist to facilitate such monetization by managing scalable access
plans for developers on behalf of the service providers. You can also consider creating a marketable Windows Runtime

Component that encapsulates your REST API within class-oriented structures.

http://www.programmableweb.com/
http://www.mashape.com/
http://www.mashery.com/

178

like controls and other UI elements!

Of course, the real creative effort to find new ways to use online content is both your challenge and

your opportunity. What we can cover in this chapter are simply the tools that you have at your disposal

for that creativity.

We’ll begin with the essential topic of network connectivity, because there’s not much that can be

done without it! Then we’ll explore the options for directly hosting dynamic web content within an

app’s own UI, as is suitable for many scenarios. Then we’ll look at the APIs for HTTP requests, followed

by those for background transfers that can continue when an app is suspended or not running at all.

We’ll then wrap up with the very important subject of authentication, which includes working with the

user’s Microsoft account, user profile, and Live Connect services.

One part of networking that we won’t cover here is setting up service connections for live tiles and

push notifications, which are covered in Chapter 16, “Alive with Activity.” The subject of roaming app

state is something we’ll pick up in Chapter 10, “The Story of State, Part 1,” and navigating to and

choosing files from network shares has context with the file pickers that we’ll see in Chapter 11, “The

Story of State, Part 2.”

And there is yet more to say on some web-related and networking-related subjects, such as sockets,

but I didn’t want those details to intrude on the flow of this chapter. You can find those matters in

Appendix C, “Additional Networking Topics.”

Sidebar: Debugging Network Traffic with Fiddler

Watching the traffic between your machine and the Internet can be invaluable when trying to

debug networking operations. For this, check out the freeware tool from Telerik called Fiddler

(http://fiddler2.com/get-fiddler). In addition to inspecting traffic, you can also set breakpoints on

various events and fiddle with (that is, modify) incoming and outgoing data.

Sidebar: Windows Azure Mobile Services

No discussion of apps and services is complete without giving mention to the highly useful

features of Windows Azure Mobile Services, especially as you can start using them for free and

start paying only when your apps become successful and demand more bandwidth.

 Data: easy access to cloud-based table storage (SQL Server) without the need to use HTTP

requests or other low-level mechanisms. The client-side libraries provide very

straightforward APIs for create, insert, update, and delete operations, along with queries.

On the server side, you can attach node.js scripts to these operations, allowing you to

validate and adjust the data as well as trigger other processes if desired.

 Authentication: you can authenticate users with Mobile Services using a Microsoft account

http://fiddler2.com/get-fiddler
http://www.windowsazure.com/en-us/develop/mobile/

179

or other identity providers. This supplies a unique user id to Mobile Services as you’ll often

want with data storage. You can also use server-side node.js scripts to perform other

authorization tasks.

 Push Notifications: a streamlined back-end for working with the Windows Notification

Service to support live tiles, badges, toasts, and raw notifications in your app.

 Services: sending email, scheduling backend jobs, and uploading images.

To get started, visit the Mobile Services Tutorials and Resources page. We’ll also see some of

these features in Chapter 16 when we work with live tiles and notifications. And don’t forget all

the other features of Windows Azure that can serve all your cloud needs, which have either free

trials or limited free plans to get you started.

Network Information and Connectivity

At the time I was writing on the subject of live tiles for the first edition of this book (see Chapter 16)

and talking about all the connections that Windows Store apps can have to the Internet, my home and

many thousands of others in Northern California were completely disconnected due to a fiber optic

breakdown. The outage lasted for what seemed like an eternity by present standards: 36 hours!

Although I wasn’t personally at a loss for how to keep myself busy, there was a time when I opened one

of my laptops, found that our service was still down, and wondered for a moment just what the

computer was really good for! Clearly I’ve grown, as I suspect you have too, to take constant

connectivity completely for granted.

As developers of great apps, however, we cannot afford to be so complacent. It’s always important

to handle errors when trying to make connections and draw from online resources, because any

number of problems can arise within the span of a single operation. But it goes much deeper than that.

It’s our job to make our apps as useful as they can be when connectivity is lost, perhaps just because

our customers got on an airplane and switched on airplane mode. That is, don’t give customers a

reason to wonder about the usefulness of their device in such situations! A great app will prove its

worth through a great user experience even if it lacks connectivity.

Indeed, be sure to test your apps early and often, both with and without network connectivity, to

catch little oversights in your code. In Here My Am!, for example, my first versions of the script in

html/map.html didn’t bother to check whether the remote script for Bing Maps had actually been

downloaded; as a result, the app terminated abruptly when there was no connectivity. Now it at least

checks whether the Microsoft namespace (for the Microsoft.Maps.Map constructor) is valid. So keep

these considerations in the back of your mind throughout your development process.

Be mindful that connectivity can vary throughout an app session, where an app can often be

suspended and resumed, or suspended for a long time. With mobile devices especially, one might

move between any number of networks without necessarily knowing it. Windows, in fact, tries to make

http://www.windowsazure.com/develop/mobile/resources

180

the transition between networks as transparent as possible, except where it’s important to inform the

user that there may be costs associated with the current provider. It’s a good idea, for instance, for an

app to be aware of data transfer costs on metered networks and prevent “bill shock” from not-always-

generous mobile broadband providers. Just as there are certain things an app can’t do when the device

is offline, the characteristics of the current network might also cause it to defer or avoid certain

operations as well.

Anyway, let’s see how to retrieve and work with connectivity details, starting with the different types

of networks represented in the manifest, followed by obtaining network information, dealing with

metered networks, and providing for an offline experience. And unless noted otherwise, the classes and

other APIs that we’ll encounter are in the Windows.Networking namespace.

Note Network connectivity, by its nature, is an intricate subject, as you’ll see in in the sections that

follow. But don’t feel compelled to think about all these up front! If you want to take connectivity

entirely for granted for a while and get right into playing with web content and making HTTP requests,

feel free to skip ahead to the “Hosting Content” and “HTTP Requests” sections. You can certainly come

back here later.

Network Types in the Manifest
Nearly every sample we’ll be working with in this book has the Internet (Client) capability declared in its

manifest, thanks to Visual Studio turning that on by default. This wasn’t always the case: early app

builders within Microsoft would occasionally scratch their heads wondering just why something really

obvious—like making a simple HTTP request to a blog—failed outright. Without this capability, there

just isn’t any Internet!

Still, Internet (Client) isn’t the only player in the capabilities game. Some networking apps will also

want to act as a server to receive unsolicited incoming traffic from the Internet, and not just make

requests to other servers. In those cases—such as file sharing, media servers, VoIP, chat,

multiplayer/multicast games, and other bi-directional scenarios involving incoming network traffic, as

with sockets—the app must declare the Internet (Client & Server) capability, as shown in Figure 4-1. This

lets such traffic through the inbound firewall, though critical ports are always blocked.

There is also network traffic that occurs on a private home or business network, where the Internet

isn’t involved at all, as with line-of-business apps, talking to network-attached storage, and local

network games. For this there is the Private Networks (Client & Server) capability, also shown in Figure

4-1, which is good for file or media sharing, line-of-business apps, HTTP client apps, multiplayer games

on a LAN, and so on. What makes any given IP address part of this private network depends on many

factors, all of which are described on How to configure network isolation capabilities. For example, IPv4

addresses in the ranges of 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255, and 192.168.0.0–

192.168.255.255 are considered private. Users can flag a network as trusted, and the presence of a

domain controller makes the network private as well. Whatever the case, if a device’s network endpoint

falls into this category, the behavior of apps on that device is governed by this capability rather than

those related to the Internet.

http://msdn.microsoft.com/library/windows/apps/windows.networking.aspx
http://msdn.microsoft.com/library/windows/apps/Hh770532.aspx

181

Note The Private Networks capability isn’t necessary when you’ll be using the File Picker (see Chapter

11) to allow users to browse local networks. It’s necessary only if you’re needing to make direct

programmatic connections to such resources.

FIGURE 4-1 Additional network capabilities in the manifest.

Sidebar: Localhost Loopback

Regardless of the capabilities declared in the manifest, local loopback—that is, using

http://localhost URIs—is blocked for apps distributed through the Windows Store. Exceptions are

made for side-loaded enterprise apps, and for machines on which a developer license has been

installed, as described in “Sidebar: Using the Localhost” in the “Background Transfer” sect ion of

this chapter (we’ll need to use it with a sample there). The developer exception exists only to

simplify debugging apps and services together on the same machine during development. You

can disable this allowance in Visual Studio through the Project > Property Pages dialog under

Debugging > Allow Local Network Loopback, which helps you test your app as a consumer

would experience it.

Network Information (the Network Object Roster)

Regardless of the network involved, everything you want to know about that network is available

through the Connectivity.NetworkInformation object. Besides a single networkstatuschanged

event that we’ll discuss in “Connectivity Events” a little later, the interface of this object is made up of

methods to retrieve more specific details in other objects.

Below is the roster of the methods in NetworkInformation and the contents of the objects

obtained through them. You can exercise the most common of these APIs through the indicated

scenarios of the Network information sample:

 getInternetConnectionProfile (Scenario 1) Returns a single ConnectionProfile object

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx

182

for the currently active Internet connection. If there is more than one connection, this method

returns the preferred profile that’s most likely to be used for Internet traffic.

 getConnectionProfiles (Scenario 3) Returns a vector of ConnectionProfile objects, one

for each connection, among which will be the active Internet connection as returned by

getInternetConnectionProfile. Also included are any wireless connections you’ve made in

the past for which you indicated Connect Automatically. (In this way the sample will show you

some details of where you’ve been recently!) See the next section for more on

ConnectionProfile.

 findConnectionProfilesAsync (Scenario 6) Given a ConnectionProfileFilter object,

returns a vector of ConnectionProfile objects that match the filter criteria. This helps you find

available networks that are suitable for specific app scenarios such as finding a Wi-Fi connection

or one with a specific cost policy.

 getHostNames Returns a vector (see note below) of HostName objects, one for each

connection, that provides various name strings (displayName, canonicalName, and rawName),

the name’s type (from HostNameType, with values of domainName, ipv4, ipv6, and bluetooth),

and an ipinformation property (of type IPInformation) containing prefixLength and

networkAdapter properties for IPV4 and IPV6 hosts. (The latter is a NetworkAdapter object

with various low-level details.) The HostName class is used in various networking APIs to identify

a server or some other endpoint.

 getLanIdentifiers (Scenario 4) Returns a vector of LanIdentifier objects, each of which

contains an infrastructureId (LanIdentifierData containing a type and value), a

networkAdapterId (a GUID), and a portId (LanIdentifierData).

 getProxyConfigurationAsync Returns a ProxyConfiguration object for a given URI and the

current user. The properties of this object are canConnectDirectly (a Boolean) and proxyUris

(a vector of Windows.Foundation.Uri objects for the configuration).

 getSortedEndpointPairs Sorts an array of EndpointPair objects according to

HostNameSortOptions. An EndpointPair contains a host and service name for local and

remote endpoints, typically obtained when you set up specific connections like sockets. The two

sort options are none and optimizeForLongConnections, which vary connection behaviors

based on whether the app is making short or long duration connection. See the documentation

for EndpointPair and HostNameSortOptions for more details.

What is a vector? A vector is a WinRT type that’s often used for managing a list or collection. It has

methods like append, removeAt, and clear through which you can manage the list. Other methods

like getAt and getMany allow retrieval of items, and a vector supports the [] operator like an array.

For more details, see “Windows.Foundation.Collections Types” in Chapter 6, ”Data Binding, Templates,

and Collections.” In its simplest use, you can treat a vector like a JavaScript array through the []

operator.

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofilefilter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnametype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.ipinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkadapter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.lanidentifier.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.proxyconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx

183

The ConnectionProfile Object
Of all the information available through the NetworkInformation object, the most important for apps

is found in ConnectionProfile, most frequently that returned by getInternetConnectionProfile

because that’s the one through which an app’s Internet traffic will flow. The profile is what contains all

the information you need to make decisions about how you’re using the network, especially for cost

awareness. It’s also what you’ll typically check when there’s a change in network status. Scenarios 1 and

3 of the Network information sample retrieve and display most of these details.

Each profile has a profileName property (a string), such as “Ethernet” or the SSID of your wireless

access point, a serviceProviderGuid property (the network operator ID), plus a getNetworkNames

method that returns a vector of friendly names for the endpoint. The networkAdapter property

contains a NetworkAdapter object for low-level details, should you want them, and the

networkSecuritySettings property contains a NetworkSecuritySettings object describing

authentication and encryption types.

More generally interesting is the getNetworkConnectivityLevel method, which returns a value

from the NetworkConnectivityLevel enumeration: none (no connectivity), localAccess (the level

you hate to see when you’re trying to get a good connection!), constrainedInternetAccess (captive

portal connectivity, typically requiring further credentials as is often encountered in hotels, airports,

etc.), and internetAccess (the state you’re almost always trying to achieve). The connectivity level is

often a factor in your app logic and something you typically watch with network status changes.

Related to this is the getDomainConnectivityLevel that provides a DomainConnectivityLevel value

of none (no domain controller), unauthenticated (user has not been authenticated by the domain

controller), and authenticated.

To check if a connection is on Wi-Fi, check the isWlanConnectionProfile flag and, if it’s true, you

can look at the wlanConnectionProfileDetails property for more details, such as the SSID. If you’re

on a mobile connection, on the other hand, the isWwanConnectionProfile flag will be true, in which

case the wwlanConnectionProfileDetails property tells you about the type of data service and

registration state of the connection. And if for either of these you want to display the connection’s

strength, the getSignalBars method will give you back a value from 0 to 5.

The ups and downs of a connection’s lifetime is retrieved through getConnectivityIntervals-

Async, which produces you a vector of ConnectivityInterval objects. Each one describes when this

network was connected and how long it remained so.

To track the inbound and outbound traffic on a connection, the getNetworkUsageAsync and

method returns a NetworkUsage object that contains bytesReceived, bytesSent, and

connectionDuration properties for a given time period and NetworkUsageStates (roaming or

shared). Similarly, the getConnectionCost and getDataPlanStatus provide the information an app

needs to be aware of how much network traffic is happening and how much it might cost the user.

We’ll come back to this in “Cost Awareness” shortly, including how to see per-app usage in Task

Manager.

http://msdn.microsoft.com/library/windows/apps/br207249.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networksecuritysettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getdomainconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.domainconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.wlanconnectionprofiledetails.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.wwanconnectionprofiledetails.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getsignalbars.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getconnectivityintervalsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getconnectivityintervalsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectivityinterval.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getnetworkusageasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkusage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkusagestates.aspx

184

Connectivity Events
It is very common for a running app to want to know when connectivity changes. This way it can take

appropriate steps to disable or enable certain functionality, alert the user, synchronize data after being

offline, and so on. For this, apps need only watch the onnetworkstatuschanged event of the

NetworkInformation object, which is fired whenever there’s a significant change within the hierarchy

of objects we’ve just seen (and be mindful that this event comes from a WinRT object, so remove your

listeners properly). For example, the event will be fired if the connectivity level of a profile changes or

the network is disconnected. It fires when new networks are found, in which case you might want to

switch from one to another (for instance, from a metered network to a nonmetered one). It will also be

fired if the Internet profile itself changes, as when a device roams between different networks, or whe n

a metered data plan is approaching or has exceeded its limit, at which point the user will start worrying

about every megabyte of traffic.

In short, you’ll generally want to listen for this event to refresh any internal state of your app that’s

dependent on network characteristics and set whatever flags you use to configure the app’s

networking behavior. This is especially important for transitioning between online and offline and

between unlimited and metered networks; Windows, for its part, also watches this event to adjust its

own behavior, as with the Background Transfer APIs.

Note Windows Store apps written in JavaScript can also use the basic window.nagivator.ononline

and window.navigator.onoffline events to track connectivity. The window.navigator.onLine

property is also true or false accordingly. These events, however, will not alert you to changes in

connection profiles, cost, or other aspects that aren’t related to the basic availability of an Internet

connection. For this reason it’s generally better to use the WinRT APIs.

You can play with networkstatuschanged in scenario 5 of the Network information sample. As you

connect and disconnect networks or make other changes, the sample will update its details output for

the current Internet profile if one is available (code condensed from js/network-status-change.js):

var networkInfo = Windows.Networking.Connectivity.NetworkInformation;

// Remember to removeEventListener for this event from WinRT as needed

networkInfo.addEventListener("networkstatuschanged", onNetworkStatusChange);

function onNetworkStatusChange(sender) {

 internetProfileInfo = "Network Status Changed: \n\r";

 var internetProfile = networkInfo.getInternetConnectionProfile();

 if (internetProfile === null) {

 // Error message

 } else {

 internetProfileInfo += getConnectionProfileInfo(internetProfile) + "\n\r";

 // display info

 }

 internetProfileInfo = "";

}

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201

185

Of course, listening for this event is useful only if the app is actually running. But what if it isn’t? In

that case an app needs to register a background task for what’s known as the networkStateChange

trigger, typically applying the internetAvailable or internetNotAvailable conditions as needed.

We’ll talk more about background tasks in Chapter 16; for now, refer to the Network status

background sample for a demonstration. The sample itself simply retrieves the Internet profile name

and network adapter id in response to this trigger; a real app would clearly take more meaningful

action, such as activating background transfers for data synchronization when connectivity is restored.

The basic structure is there in the sample nonetheless.

It’s also very important to remember that network status might have changed while the app was

suspended. Apps that watch the networkstatuschanged event should also refresh their connectivity-

related state within their resuming handler.

As a final note, check out the Troubleshooting and debugging network connections topic, which has

a little more guidance on responding to network changes as well as network errors.

Cost Awareness
If you ever crossed between roaming territories with a smartphone that’s set to automatically download

email, you probably learned the hard way to disable syncing in such circumstances. I once drove from

Washington State into Canada without realizing that I would suddenly be paying $15/megabyte for the

privilege of downloading large email attachments. Of course, since I’m a law-abiding citizen I did not

look at my phone while driving (wink-wink!) to notice the roaming network. Well, a few weeks later and

$100 poorer I knew what “bill shock” was all about!

The point here is that if users conclude that your app is responsible for similar behavior, regardless

of whether it’s actually true, the kinds of rating and reviews you’ll receive in the Windows Store won’t

be good! If your app might transfer any significant data , it’s vital to pay attention to changes in the cost

of the connection profiles you’re using, typically the Internet profile. Always check these details on

startup, within your networkstatuschanged event handler, and within your resuming handler.

Tip A powerful way to deal with cost awareness is through what’s called a filter on which the

Windows.Web.Http.HttpClient API is built. This allows you to keep the app logic much cleaner by

handling all cost decisions on the lower level of the filter. To see this in action, refer to scenario 11 of

the HttpClient sample.

You—and all of your customers, I might add—can track your app’s network usage in the App

History tab of Task Manager, as shown below. Make sure you’ve expanded the view by tapping More

Details on the bottom left if you don’t see this view. You can see that it shows Network and Metered

Network usage along with the traffic due to tile updates:

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://msdn.microsoft.com/library/windows/apps/hh770534.aspx
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664

186

Programmatically, as noted before, the profile supplies usage information through its

getConnectionCost and getDataPlanStatus methods. These return ConnectionCost and

DataPlanStatus objects, respectively, which have the following properties:

ConnectionCost Properties Description

networkCostType A NetworkCostType value, one of unknown, unrestricted (no extra charges), fixed

(unrestricted up to a limit), and variable (charged on a per-byte basis).

roaming A Boolean indicating whether the connection is to a network outside of your provider’s

normal coverage area, meaning that extra costs are likely involved. An app should be

very conservative with network activity when this is true and ask the user for consent

for larger data transfers.

approachingDataLimit A Boolean that indicates that data usage on a fixed type network (see networkCostType)

is getting close to the limit of the data plan.

overDataLimit A Boolean indicating that a fixed data plan’s limit has been exceeded and overage

charges are definitely in effect. When this is true, an app should again be very

conservative with network activity, as when roaming is true.

DataPlanStatus Properties Description
dataPlanLimitInMegabytes The maximum data transfer allowed for the connection in each billing cycle.

dataPlanUsage A DataPlanUsage object with an all-important megabytesUsed property and a

lastSyncTime (UTC) indicating when megabytesUsed was last updated.

maxTransferSizeInMegabytes The maximum recommended size of a single network operation. This property reflects

not so much the capacities of the metered network itself (as its documentation

suggests), but rather an appropriate upper limit to transfers on that network.

nextBillingCycle The UTC date and time when the next billing cycle on the plan kicks in and resets

dataPlanUsage to zero.
InboundBitsPerSecond and

outboundBitsPerSecond

Indicate the nominal transfer speed of the connection.

With all these properties you can make intelligent decisions about your app’s network activity, warn

the user about possible overage charges, and ask for the user’s consent when approp riate. Clearly,

when the networkCostType is unrestricted, you can really do whatever you want. On the other

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectioncost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkcosttype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanusage.aspx

187

hand, when the type is variable and the user is paying for every byte, especially when roaming is

true, you’ll want to inform the user of that status and provide settings through which the user can limit

the app’s network activity, if not halt that activity entirely. After all, the user might decide that certain

kinds of data are worth having. For example, they should be able to set the quality of a s treaming

movie, indicate whether to download email messages or just headers, indicate whether to download

images, specify whether caching of online data should occur, turn off background streaming audio, and

so on.

Such settings, by the way, might include tile, badge, and other notification activities that you might

have established, as those can generate network traffic. If you’re also using background transfers, you

can set the cost policies for downloads and uploads as well.

An app can, of course, ask the user’s permission for any given network operation. It’s up to you and

your designers to decide when to ask and how often. The Windows Store policy once required that you

ask the user for any transfer exceeding one megabyte when roaming and overDataLimit are both

true and when performing any transfer over maxTransferSizeInMegabytes. This is no longer

required, but it’s still a good starting point—your customers will clearly appreciate careful

consideration, especially if your app is making a number of smaller transfers that might add up to

multiple megabytes. At the same time, you don’t want to be annoying with consent prompts, so be

sure to give the user a way to temporarily disable warnings or ask at reasonable intervals. In short, put

yourself in your customer’s shoes and design an experience that empowers their ability to control the

app’s behavior.

On a fixed type network, where data is unrestricted up to dataPlanLimitInMegabytes, we find

cases where a number of the other properties become interesting. For example, if overDataLimit is

already true, you can ask the user to confirm additional network traffic or just defer certain operations

until the nextBillingCycle. Or, if approachingDataLimit is true (or even when it’s not), you can

determine whether a given operation might exceed that limit. This is where the connection profile’s

getNetworkUsageAsync method comes in handy to obtain a NetworkUsage object for a given period

(see How to retrieve connection usage data for a specific time period). Call getNetworkUsageAsync

with the time period between DataPlanUsage.lastSyncTime and DateTime.now(). Then add that

value to DataPlanUsage.megabytesUsed and subtract the result from DataPlanUsage.dataPlan-

LimitInMegabytes. This tells you how much more data you can transfer before incurring extra costs,

thereby providing the basis for asking the user, “Downloading this file will exceed your data plan limit

and dock your wallet. Is that OK or would you rather save your money for something else?”

For simplicity’s sake, you can think of cost awareness in terms of three behaviors: normal,

conservative, and opt-in, which are described on Managing connections on metered networks and,

more broadly, on Developing connected apps. Both topics provide additional guidance on making the

kinds of decisions described here already. In the end, saving the user from bill shock—and designing a

great user experience around network costs—is definitely an essential investment.

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx
http://msdn.microsoft.com/library/windows/apps/hh750310.aspx
http://msdn.microsoft.com/library/windows/apps/hh465399.aspx

188

Sidebar: Simulating Metered Networks

You may be thinking, “OK, so I get the need for my app to behave properly with metered

networks, but how do I test such conditions?” You can, of course, use a real metered network

through a mobile provider, such as the Internet Sharing feature on my phone. However, I do

have a data limit and I certainly don’t want to test the effect of my app on real roaming fees!

Fortunately, you can also simulate the behavior of metered networks with the Visual Studio

simulator and, to some extent, directly in Windows with any Wi-Fi connection.

In the simulator, click the Change Network Properties button on the lower right side of the

simulator’s frame (it’s the command above Help—refer back to Figure 2-5 in Chapter 2,

“Quickstart”). This brings up the following dialog:

In this dialog you can create a profile with whatever name and options you’d like. The

variations for cost type, data limit status, and roaming allow you to test all conditions that your

app might encounter. As such, this is your first choice for working with cost awareness.

To simulate a metered network with a Wi-Fi connection, go to PC Settings > Network >

Connections and then tap your current connection under Wi-Fi (as shown below left). On the

next page, turn on Set As A Metered Connection under Data Usage (below right):

Although this option will not set up DataUsage properties and all that a real metered network

might provide, it will return a networkCostType of fixed, which allows you to see how your app

responds. You can also use the Show My Estimated Data Use in the Networks List option to

watch how much traffic your app generates during its normal operation, and you can reset the

counter so that you can take some accurate readings:

189

Running Offline
The other user experience that is likely to earn your app a better reputation is how it behaves when

there is no connectivity or when there’s a change in connectivity. Ask yourself the following questions:

 What happens if your app starts without connectivity, both from tiles (primary and secondary)

and through contracts such as search, share, and the file picker?

 What happens if your app runs the first time without connectivity?

 What happens if connectivity is lost while the app is running?

 What happens when connectivity comes back?

As described above in the “Connectivity Awareness” section, use the networkstatuschanged event

to handle these situations while running and your resuming handler to check if connection status

changed while the app was suspended. If you have a background task for to the networkStateChange

trigger, it would primarily save state that your resuming handler would then check.

It’s perfectly understood that some apps just can’t run without connectivity, in which case it’s

appropriate to inform the user of that situation when the app is launched or when connectivity is lost

while the app is running. In other situations, an app might be partially usable, in which case you should

inform the user more on a case-by-case basis, allowing them to use unaffected parts of the app. Better

still is to cache data that might make the app even more useful when connectivity is lost. Such data

might even be built into the app package so that it’s always available on first launch.

Consider the case of an ebook reader app that would generally acquire new titles from an online

catalog. For offline use it would do well to cache copies of the user’s titles locally, rather than rely solely

on having a good Internet connection (subject to data transfer limits and appropriate user consent, of

course). The app’s publisher might also include a number of popular free titles directly in the app

package such that a user could install the app while waiting to board a plane and have at least those

books ready to go when the app is first launched at 10,000 feet (and you don’t like paying for in-flight

WiFi). Other apps might include some set of preinstalled data at first and then add to that data over

time (perhaps through in-app purchases) when unrestricted networks are available. By following

network costs closely, such an app might defer downloading a large data set until either the user

confirms the action or a different connection is available.

190

Tip Caching a set of default data in your app package has several benefits. First, it allows for a good

first-run experience when there’s no connectivity, because at least some data will appear, even if it’s

only as current as the last app update in the Store. Second, you can use such cached data to bring the

app up very quickly even when there’s connectivity, rather than waiting for an HTTP request to

respond. Third, you can store the data in your package in its most optimized form so that you don’t

need to process it as you might an XML or JSON response from a service. What can also work very well

is implementing a data model (classes that hide the details of your data management) within your app

data that is initially populated from your in-package data and then transparently refreshed and

updated with data from HTTP requests. This way the most current data is always used on subsequent

runs and is always available offline.

How and when to cache data from online resources is probably one of the fine arts of software

development. When do you download it? How much do you acquire? Where do you store it? What

might you include as default data in the app package? Should you place an upper limit on the cache?

Do you allow changes to cached data that would need to be synchronized with a service when

connectivity is restored? These are all good questions ask, and certainly there are others to ask as well.

Let me at least offer a few thoughts and suggestions.

First, you can use any network transport to acquire data to cache, such as the various HTTP request

APIs we’ll discuss later, the background transfer API, as well as the HTML5 AppCache mechanism.

Separately, other content acquired from remote resources, such as images and even script

(downloaded within x-ms-webview or iframe elements), are also cached automatically like typical

temporary Internet files. Note that this caching mechanism and AppCache are subject to the storage

limits defined by Internet Explorer (whose subsystems are shared with the app host). You can also

exercise some control over caching through the HttpClient API.

How much data you cache depends, certainly, on the type of connection you have and the relative

importance of the data. On an unrestricted network, feel free to acquire everything you feel the user

might want offline, but it would be a good idea to provide settings to control that behavior, such as

overall cache size or the amount of data to acquire per day. I mention the latter because even though

my own Internet connection appears to the system as unrestricted, I’m charged more as my usage

reaches certain tiers (on the order of gigabytes). As a user, I would appreciate having a say in matters

that involve significant network traffic.

Even so, if caching specific data will greatly enhance the user experience, separate that option to

give the user control over the decision. For example, an ebook reader might automatically download a

whole title while the reader is perhaps just browsing the first few pages. Of course, this would also

mean consuming more storage space. Letting users control this behavior as a setting, or even on a per-

book basis, lets them decide what’s best. For smaller data, on the other hand—say, in the range of

several hundred kilobytes—if you know from analytics that a user who views one set of data is highly

likely to view another, automatically acquiring and caching those additional data sets could be the

right design.

http://msdn.microsoft.com/library/ie/hh673545.aspx

191

The best places to store cached data are your app data folders, specifically the LocalFolder and

TemporaryFolder. Don’t use the RoamingFolder to cache data acquired from online sources: besides

running the risk of exceeding the roaming quota (see Chapter 10), it’s also quite pointless. Because the

system would have to roam such data over the network anyway, it’s better to just have the app re-

acquire it when it needs to.

Whether you use the LocalFolder or TemporaryFolder depends on how essential the data is to the

operation of the app. If the app cannot run without the cache, use local app data. If the cache is just an

optimization such that the user could reclaim that space with the Disk Cleanup tool, store the cache in

the TemporaryFolder and rebuild it again later on.

In all of this, also consider that what you’re caching really might be user data that you’d want to

store outside of your app data folders. That is, be sure to think through the distinction between app

data and user data! We’ll think about this more in Chapters 10 and 11.

Finally, you might again have the kind of app that allows offline activity (like processing email)

where you will have been caching the results of that activity for later synchronization with an online

resource. When connectivity is restored, then, check if the network cost is suitable before starting your

sync process.

Hosting Content: the WebView and iframe Elements

One of the most basic uses of online content is to load and render an arbitrary piece of HTML (plus CSS

and JavaScript) into a discrete element within an app’s overall layout. The app’s layout is itself, of

course, defined using HTML, CSS, and JavaScript, where the JavaScript code especially has full access to

both the DOM and WinRT APIs. For security considerations, however, such a privilege cannot be

extended to arbitrary content—it’s given only to content that is part of the app’s package and has thus

gone through the process of Store certification. For everything else, then, we need ways to render

content within a more sandboxed environment.

There are two ways to do this, as we’ll see in this section. One is through the HTML iframe element,

which is very restricted in that it can display only in-package pages (ms-appx[-web]:/// URIs) and

secure online content (https://). The other more general-purpose choice is the x-ms-webview

element, which I’ll just refer to as the webview for convenience. It works with ms-appx-web, http[s],

and ms-appdata URIs, and it provides a number of other highly useful features such as using your own

link resolver. The caveats with the webview is that it does not at present support IndexedDB,

geolocation, clipboard access, or the HTML5 AppCache, which the iframe does. If you require these

capabilities, you’ll need to use an iframe through an https URI. At the same time, the webview also

has integrated SmartScreen filtering support to protect your app from phishing attacks. Such choices!

In earlier chapters we’ve already encountered the ms-appx-web URI scheme and made mention of

the local and web contexts. We’ll start this section by exploring these contexts and other security

considerations in more detail, because they apply directly to iframe and webview elements alike.

192

Wrapping a web experience iframe and x-ms-webview elements enable you to easily present a

website in an app frame, and this is perfectly allowable. Ideally, you want to do a little more than just

show a website in a webview. As an app, your content should look like an app, navigate like an app,

work well with touch, use the app bar, support contracts like Search and Share, have a live tile, and

draw on other system capabilities. There is a project called the Web app template that helps

accomplish some of these basics through configuration data, but think of it as a starting point. The

best kind of hybrid app will make the best of both the web and the native platform.

Local and Web Contexts (and iframe Elements)

As described in Chapter 1, “The Life Story of a Windows Store App,” apps written with HTML, CSS, and

JavaScript are not directly executable like their compiled counterparts written in C#, Visual Basic, or

C++. In our app packages, there are no EXEs, just .html, .css, and .js files that are, plain and simple,

nothing but text. So something has to turn all this text that defines an app into something that’s

actually running in memory. That something is again the app host, wwahost.exe, which creates what we

call the hosted environment for Store apps.

Let’s review what we’ve already learned in Chapters 1 and 2 about the characteristics of the hosted

environment:

 The app host (and the apps in it) use brokered access to sensitive resources, controlled both by

declared capabilities in the manifest and run-time user consent.

 Though the app host provides an environment very similar to that of Internet Explorer (10+),

there are a number of changes to the DOM API, documented on HTML and DOM API changes

list and HTML, CSS, and JavaScript features and differences. A related topic is Windows Store

apps using JavaScript versus traditional web apps.

 HTML content in the app package can be loaded into the local or web context, depending on

the hosting element. iframe elements can use the ms-appx:/// scheme to refer to in-package

pages loaded in the local context or ms-appx-web:/// to specify the web context. (The third /

again means “in the app package”; the Here My Am! app uses this to load its map.html f ile into

a web context iframe.) Remote https content in an iframe and all content in a webview

always runs in the web context.

 Any content within a web context can refer to in-package resources (such as images and other

media) with ms-appx-web URIs. For example, a page loaded into a webview from an http

source can refer to an app’s in-package logo. (Such a page, of course, would not work in a

browser!)

 The local context has access to the WinRT API, among other things, but cannot load remote

script (referenced via http://); the web context is allowed to load and execute remote script

but cannot access WinRT.

http://wat.codeplex.com/
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx

193

 ActiveX control plug-ins are generally not allowed in either context and will fail to load in both

iframe and webview elements. The few exceptions are noted on Migrating a web app.

 In the local context, strings assigned to innerHTML, outerHTML, adjacentHTML, and other

properties where script injection can occur, as well as strings given to document.write and

similar methods, are filtered to remove script. This does not happen in the web context.

 Every iframe and webview element—in either context—has its own JavaScript global

namespace that’s entirely separate from that of the parent page. Neither can access the other.

 The HTML5 postMessage function can be used to communicate between an iframe and its

containing parent across contexts; with a webview such communication happens with the

invokeScriptAsync method and window.external.notify. These capabilities can be useful

to execute remote script within the web context and pass the results to the local context; script

acquired in the web context should not be itself passed to the local context and executed there.

(Again, Windows Store policy disallows this, and apps submitted to the Store are analyzed for

such practices.)

 Further specifics can be found on Features and restrictions by context, including which parts of

WinJS don’t rely on WinRT and can thus be used in the web context. (WinJS, by the way, is not

supported for use on web pages outside of an app, just the web context within an app.)

An app’s home page—the one you point to in the manifest in the Application > Start Page field—

always runs in the local context, and any page to which you navigate directly (via <a href> or

document.location) must also be in the local context. When using page controls to load HTML

fragments into your home page, those fragments are of course rendered into the local context.

Next, a local context page can contain any number of webview and iframe elements. For the

webview, because it always loads its content in the web context and cannot refer to ms-appx URIs, it

pretty much acts like an embedded web browser where navigation is concerned.

Each iframe element, on the other hand, can load in-package content in either local or web

context. (By the way, programmatic read-only access to your package contents is obtained via

Windows.ApplicationModel.Package.Current.InstalledLocation.) Referring to a remote location

(https) will always place the iframe in the web context.

Here are some examples of different URIs and how they get loaded in an iframe:

<!-- iframe in local context with source in the app package -->

<!-- these forms are allowed only from inside the local context -->

<iframe src="/frame-local.html"></iframe>

<iframe src="ms-appx:///frame-local.html"></iframe>

<!-- iframe in web context with source in the app package -->

<iframe src="ms-appx-web:///frame-web.html"></iframe>

<!-- iframe with an external source automatically assigns web context -->

<iframe src="https://my.secure.server.com"></iframe>

http://msdn.microsoft.com/library/windows/apps/hh465143.aspx
http://msdn.microsoft.com/library/windows/apps/hh465373.aspx

194

Also, if you use an tag with target pointing to an iframe, the

scheme in href determines the context. And once in the web context, an iframe can host only other

web context iframes such as the last two above; the first two elements would not be allowed.

Tip Some web pages contain frame-busting code that prevents the page from being loaded into an

iframe, in which case the page will be opened in the default browser and not the app. In this case, use

a webview if you can; otherwise you’ll need to work with the site owner to create an alternate page

that will work for you.

Although Windows Store apps typically don’t use <a href> or document.location for page

navigation, similar rules apply if you do happen to use them. The whole scene here, though, can begin

to resemble overcooked spaghetti, so I’ve simplified the exact behavior for these variations and for

iframes in the following table:

Target Result in Local Context Page Result in Web Context Page
<iframe src="ms-appx:///"> iframe in local context Not allowed

<iframe src="ms-appx-web:///"> iframe in web context iframe in web context

<iframe src="https:// "> iframe in web context iframe in web context

<iframe name="myFrame">

iframe in local or web context

depending on [uri]

iframe in web context; [uri]

cannot begin with ms-appx.

 Links to page in local context Not allowed unless explicitly

specified (see below)

 Not allowed Links to page in web context

 with any other protocol including

http[s]

Opens default browser with [uri] Opens default browser with [uri]

The last two items in the table really mean that a Windows Store app cannot navigate from its top-

level page (in the local context) directly to a web context page of any kind (local or remote) and remai n

within the app—the app host will launch the default browser instead. That’s just life in the app host!

Such content must be placed in an iframe or a webview. Similarly, navigating from a web context page

to a local context page is not allowed by default but can be enabled, as we’ll see shortly.

In the meantime, let’s see a few simpler iframe examples. Again, in the Here My Am! app we’ve

already seen how to load an in-package HTML page in the web context and communicate with the

parent page through postMessage (We’ll change this to a webview in a later section.) Very similar and

more isolated examples can also be found in scenarios 2 and 4 of the Integrating content and controls

from web services sample.

Scenario 3 of that same sample demonstrates how calls to WinRT APIs are allowed in the local

context but blocked in the web context. It loads the same page, callWinRT.html, into a separate iframe

in each context, which also means the same JavaScript is loaded (and isolated) in both. When running

this scenario you can see that WinRT calls will fail in the web context.

A good tip to pick up from this sample is that you can use the document.location.protocol

property to check which context you’re running in, as done in js/callWinRT.js:

var isWebContext = (document.location.protocol === "ms-appx-web:");

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

195

Checking against the string “ms-appx:” will, of course, tell you if you’re running in the local context.

Scenarios 5 and 6 of the sample are very interesting because they help us explore matters around

inserting HTML into the DOM and navigating from the web to the local context. Each of these subjects,

however, needs a little more context of their own (forgive the pun!), as discussed in the next two

sections.

Tip To prevent selection of content in an iframe, style the iframe with –ms-user-select: none or

set its style.msUserSelect property to "none" in JavaScript. This does not, however, work for the

webview control; its internal content would need to be styled instead.

Dynamic Content

As we’ve seen, the ms-appx and ms-appx-web schema allow an app to navigate iframe and webview

elements to pages that exist inside the app package. This begs a question: can an app point to content

on the local file system that exists outside its package, such as a dynamically created file in an appdata

folder? Can, perchance, an app use the file:// protocol to navigate to and/or access that content?

Well, as much as I’d love to tell you that this just works, the answer is somewhat mixed. First, the

file protocol—along with custom protocols—are wholly blocked by design for various security

reasons, even for your appdata folders to which you otherwise have full access. Fortunately, there is a

substitute, ms-appdata:///, that fulfills part of the need (the third /again allows you to omit the

specific package name). Within the local context of an app, ms-appdata is a shortcut to your appdata

folder wherein exist local, roaming, and temp folders. So, if you created a picture called image65.png in

your appdata local folder, you can refer to it by using ms-appdata:///local/image65.png. Similar

forms work with roaming and temp and work wherever a URI can be used, including within a CSS style

like background.

Within iframes, ms-appdata can be used only for resources, namely with the src attribute of img,

video, and audio elements. It cannot be used to load HTML pages, CSS stylesheets, or JavaScript, nor

can it be used for navigation purposes (iframe, hyperlinks, etc.). This is because it wasn’t feasible to

create a sub-sandbox environment for such pages, without which it would be possible for a page

loaded with ms-appdata to access everything in your app. Fortunately, you can navigate a webview to

app data content, as we’ll see shortly, thereby allowing you to generate and display HTML pages

dynamically without having to write your own rendering engine (whew!).

You can also load bits of HTML, as we’ve seen with page controls, and insert that markup into the

DOM through innerHTML, outerHTML, adjacentHTML and related properties, as well as

document.write and DOMParser.parseFromString. But remember that automatic filtering is applied

in the local context to prevent injection of script and other risky markup (and if you try, the app host

will throw exceptions, as will WinJS.Utilities.setInnerHTML, setOuterHTML, and insertAdjacent-

HTML). This is not a concern in the web context, of course.

This brings us to whether you can generate and execute script on the fly in the local context at all.

http://msdn.microsoft.com/library/windows/apps/hh779846.aspx

196

The answer is again qualified. Yes, you can take a JavaScript string and pass it to the eval or

execScript functions, even inject script through properties like innerHTML. But be mindful that

requirement 3.9 of the App certification requirements (as of this writing) disallows dynamically

downloading code or data that changes how the app interacts with the WinRT API. This is admittedly a

bit of a gray area—downloading data to configure a game level, for instance, doesn’t quite fall into this

category. Nevertheless, this requirement is taken seriously, so be careful about making assumptions.

That said, there are situations where you, the developer, really know what you’re doing and enjoy

juggling chainsaws and flaming swords (or maybe you’re just trying to use a third-party library; see the

sidebar below). Acknowledging that, Microsoft provides a mechanism to consciously circumvent script

filtering: MSApp.execUnsafeLocalFunction. For all the details regarding this, refer to Developing

secure apps, which covers this along with a few other obscure topics that I’m not including here (like

the numerous variations of the sandbox attribute for iframes, which is also demonstrated in the

JavaScript iframe sandbox attribute sample).

And curiously enough, WinJS actually makes it easier for you to juggle chainsaws and flaming

swords! WinJS.Utilities.setInnerHTMLUnsafe, setOuterHTMLUnsafe, and insertAdjacentHTML-

Unsafe are wrappers for calling DOM methods that would otherwise strip out risky content.

Alternately, if you want to sanitize HTML before attempting to inject it into an element (and thereby

avoid exceptions), you can use the toStaticHTML method, as demonstrated in scenario 5 of the

Integrating content and controls from web services sample.

Sidebar: Third-Party Libraries and the Hosted Environment

In general, Windows Store apps can employ libraries like jQuery, Angular, Prototype, Dojo, and

so forth, as noted in Chapter 1. However, there are some limitations and caveats.

First, because local context pages in an app cannot load script from remote sources, apps

typically need to include such libraries in their packages unless they’re only being used from the

web context. WinJS, mind you, doesn’t need bundling because it’s provided by the Windows

Store, but such “framework packages” are not enabled for third parties.

Second, DOM API changes and app container restrictions might affect the library. For

example, using window.alert won’t work. One library also cannot load another library from a

remote source in the local context. Crucially, anything in the library that assumes a higher level of

trust than the app container provides (such as open file system access) will have issues.

The most common problem comes up when libraries inject elements or script into the DOM

(as through innerHTML), a widespread practice for web applications that is not automatically

allowed within the app container. You can get around this on the app level by wrapping code

within MSApp.execUnsafeLocalFunction, but that doesn’t solve injections coming from deeper

inside the library. In these cases you really need to work with the library author.

In short, you’re free to use third-party libraries so long as you’re aware that they might have

been written with assumptions that don’t always apply within the app container. Over time, of

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://code.msdn.microsoft.com/windowsapps/JavaScript-iframe-sandbox-0f077ece
http://msdn.microsoft.com/library/windows/apps/hh466094.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

197

course, fully Windows-compatible versions of such libraries, like jQuery 2.0, will emerge. Note

also that for any libraries that include binary components, those must be targeted to Windows

8.1 for use with a Windows 8.1 app.

App Content URIs
When drawing on a variety of web content, it’s important to understand the degree to which you trust

that content. That is, there’s a huge difference between web content that you control and that which

you do not, because by bringing that content into the app, the app essentially takes responsibility for it.

This means that you want to be careful about what privileges you extend to that web content. In an

iframe, those privileges include cross-context navigation, geolocation, IndexedDB, HTML5 AppCache,

clipboard access, and navigating to web content with an https URI. In a webview, it means the ability

for remote content to raise an event to the app.33

If you ask nicely, in other words, Windows will let you enable such privileges to web pages that the

app knows about. All it takes is an affidavit signed by you and sixteen witnesses, and…OK, I’m only

joking! You simply need to add what are called application content URI rules to your manifest in the

Content Uri tab. Each rule—composed of an exact https URI or one with wildcards (*)—says that

content from some URI is known and trusted by your app and can thus act on the app’s behalf . You

can also exclude URIs, which is typically done to exclude specific pages that would otherwise be

allowed by another rule.

For instance, the very simple ContentUri example in this chapter’s companion content has an

iframe pointing to https://www.bing.com/maps/ (Bing allows an https:// connection), and this URI is

included in the in the content URI rules. This allows the app to host the remote content as partially

shown belowNow click or tap the geolocation crosshair circle on the upper left of the map next to

World. Because the rules say we trust this content (and trust that it won’t try to trick the user), a

geolocation request invokes a consent dialog (as shown below) just as if the request came from the

app. (Note: When run inside the debugger, the ContentUri example will probably show exceptions on

startup. If so, press Continue within Visual Studio; this doesn’t affect the app running outside the

debugger.)

Such brokered capabilities require a content URI rule because web content loaded into an iframe

can easily provide the means to navigate to other arbitrary pages that could potentially be malicious.

33 At whatever point the webview supports IndexedDB or AppCache, these features will likely require such permissions.

http://blogs.msdn.com/b/windowsappdev/archive/2013/04/01/windows-store-app-support-in-jquery-version-2-0.aspx
https://www.bing.com/maps/

198

Lacking a content URI rule for that target page, the iframe will not navigate there at all.

In some app designs you might have occasion to navigate from a web context page in the app to a

local context page. For example, you might host a page on a server where it can keep other server-side

content fully secure (that is, not bring it onto the client). You can host the page in an iframe, of course,

but if for some reason you need to directly navigate to it, you’ll probably need to navigate back to a

local context page. You can enable this by calling the super-secret function MSApp.add-

PublicLocalApplicationUri from code in a local page (and it actually is well-documented) for each

specific URI you need. Scenario 6 of the Integrating content and controls from web services sample

gives an example of this. First it has an iframe in the web context (html/addPublicLocalUri.html):

<iframe src="ms-appx-web:///navigateToLocal.html"></iframe>

That page then has an <a href> to navigate to a local context page that calls a WinRT API for good

measure; see navigateToLocal.html in the project root:

Navigate to ms-appx:///callWinRT.html

To allow this to work, we then have to call addPublicLocalApplicationUri from a local context

page and specify the trusted target (js/addPublicLocalUri.js):

MSApp.addPublicLocalApplicationUri("callWinRT.html");

Typically it’s a good practice to include the ms-appx:/// prefix in the call for clarity:

MSApp.addPublicLocalApplicationUri("ms-appx:///callWinRT.html");

Be aware that this method is very powerful without giving the appearance of such. Because the web

context can host any remote page, be especially careful when the URI contains query parameters. For

example, you don’t want to allow a website to navigate to something like ms-appx:///delete.html?

file=superimportant.doc and just accept those parameters blindly! In short, always consider such

URI parameters (and any information in headers) to be untrusted content.

The <x-ms-webview> Element
Whenever you want to display some arbitrary HTML page within the context of your app—specifically

pages that exists outside of your app package—then the x-ms-webview element is your best friend.34

This is a native HTML element that’s recognized by the rendering engine and basically works like the

core of a web browser (without the surrounding business of navigation, favorites, and so forth).

Anything loaded into a webview runs in the web context, so it can be used for arbitrary URIs except

those using the ms-appx schema. It also supports ms-appdata URIs and rendering string literals, which

34 The inclusion of the webview element is one of the significant improvements for Windows 8.1. In Windows 8, apps

written in HTML, CSS, and JavaScript have only iframe elements at their disposal. However, iframes don’t work with web

pages that contain frame-busting code, can’t load local (appdata) pages, and have some subtle security issues. For this
reason, Windows 8.1 has the native x-ms-webview HTML element for most uses and limits iframe to in-package ms-

appx[-web] and https URIs exclusively.

http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/dn301831.aspx

199

means you can easily display HTML/CSS/JavaScript that you generate dynamically as well a s content

that’s downloaded and stored locally. This includes the ability to do your own link resolution, as when

images are stored in a database rather than as separate files. Webview content again always runs in the

web context (without WinRT access), there aren’t restrictions as to what you can do with script and such

so far as Store certification is concerned. And the webview even supports additional features like

rendering its contents to a stream from which you can create a bitmap. So let’s see how al l that works!

What’s with the crazy name? You’re probably wondering why the webview has this oddball x-ms-

webview tag. This is to avoid any future conflict with emerging standards, at which point a vendor-

prefixed implementation could become ms-webview.

Because the webview is an HTML element like any other, you can style it with CSS however you

want, animate the element around, and so forth. Its JavaScript object also has the full set of properties,

methods, and events that are shared with other HTML elements, along with a few unique ones of its

own. Note, however, that the webview does not have or support any child content of its own, so

properties like innerHTML and childNodes are empty and have no effect if you set them.

The simplest use case for the webview (and I call it this because it’s tiresome to type out the funky

element name every time) is to just point it to a URI through its src attribute. One example is in

scenario 1 of the Integrating content and controls from web services sample (html/webContent.html),

with the results shown in Figure 4-2:

<x-ms-webview id="webContentHolder"

src="http://www.microsoft.com/presspass/press/NewsArchive.mspx?cmbContentType=PressRelease">

</x-ms-webview>

The sample lets you choose different links, which are then rendered in the webview by again simply

setting its src attribute.

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

200

FIGURE 4-2 Displaying a webview, which is an HTML element like any others within an app layout. The webview

runs within the web context and allows navigation within its own content.

Clicking links inside a webview will navigate to those pages. In many cases with live web pages,

you’ll see JavaScript exceptions if you’re running the app in the debugger. Such exceptions will not

terminate the app as a whole, so they can be safely ignored or left unhandled. Outside of the

debugger, in fact, a user will never see these—the webview ignores them.

As we see in this example, setting the src attribute is one way to load content into the webview. The

webview object also supports four other methods:

 navigate Navigates the webview to a supported URI (http[s], ms-appx-web, and ms-

appdata). That page can contain references to other URIs except for ms-appx.

 navigateWithHttpRequestMethod Navigates to a supported URI with the ability to set the

HTTP verb and headers.

 navigateToString Renders an HTML string literal into the webview. References can again

refer to supported URIs except for ms-appx.

 navigateToLocalStreamUri Navigates to a page in local appdata using an app-provided

object to resolve relative URIs and possibly decrypt the page content.

Examples of the most of these can be found in the HTML Webview control sample. Scenario 1 shows

navigate, starting with an empty webview and then calling navigate with a URI string

(js/1_NavToUrl.js):

var webviewControl = document.getElementById("webview");

webviewControl.navigate("http://go.microsoft.com/fwlink/?LinkId=294155");

Navigating through navigateWithHttpRequestMessage is a little more involved. Though not

included in the sample, relevant code can be found on the App Builders Blog in Blending Apps and

Sites with the HTML x-ms-webview:

//The site to which we navigate

var siteUrl = new Windows.Foundation.Uri("http://www.msn.com");

//Specify the type of request (get)

var httpRequestMessage = new

Windows.Web.Http.HttpRequestMessage(Windows.Web.Http.HttpMethod.get, siteUrl);

// Append headers to request the server to check against the cache

httpRequestMessage.headers.append("Cache-Control", "no-cache");

httpRequestMessage.headers.append("Pragma", "no-cache");

// Navigate the WebView with the request info

webview.navigateWithHttpRequestMessage(httpRequestMessage);

Scenario 2 of the SDK sample shows navigateToString by loading an in-package HTML file into a

string variable, which is like calling navigate with the same ms-appx-web URI. Of course, if you have

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://blogs.windows.com/windows/b/appbuilder/archive/2013/10/01/blending-apps-and-sites-with-the-html-x-ms-webview.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/10/01/blending-apps-and-sites-with-the-html-x-ms-webview.aspx

201

the content in an HTML file already, just use navigate! It’s more common, then, to use

navigateToString with dynamically-generated content. For example, let’s say I create a string as

follows, which you’ll notice includes a reference to an in-package stylesheet. You can find this in

scenario 1 of the WebviewExtras example in this chapter’s companion content (js/scenario1.js):

var baseURI = "http://www.kraigbrockschmidt.com/images/";

var content = "<!doctype HTML><head><style>";

//Refer to an in-package stylesheet (or one in ms-appdata:/// or http[s]://)

content +=

 "<head><link rel='stylesheet' href='ms-appx-web:///css/localstyles.css' /></head>";

content += "<html><body><h1>Dynamically-created page</h1>";

content += "<p>This document contains its own styles as well as a remote image references.</p>"

content += "" + space;

content += "" + space;

content += "" + space;

content += "" + space;

content += ""

content += "</body></html>";

With this we can then just load this string directly:

var webview = document.getElementById("webview");

webview.navigateToString(content);

We could just as easily write this text to a file in our appdata and use navigate with an ms-appdata

URI (this is what’s shown in js/scenario1.js):

var local = Windows.Storage.ApplicationData.current.localFolder;

local.createFolderAsync("pages",

 Windows.Storage.CreationCollisionOption.openIfExists).then(function (folder) {

 return folder.createFileAsync("dynamicPage.html",

 Windows.Storage.CreationCollisionOption.replaceExisting);

}).then(function (file) {

 return Windows.Storage.FileIO.writeTextAsync(file, content);

}).then(function () {

 var webview = document.getElementById("webview");

 webview.navigate("ms-appdata:///local/pages/dynamicPage.html");

}).done(null, function (e) {

 WinJS.log && WinJS.log("failed to create dynamicPage.html, err = " + e.message, "app");

});

In both of these examples, the output (styled with the in-package stylesheet) is the following

shameless display of my current written works:

202

Take careful note of the fact that I create this dynamic page in a subfolder within local appdata. The

webview specifically disallows navigation to pages in a root local, roaming, or temp appdata folder to

protect the security of other appdata files and folders. That is, because the webview runs in the web

context and can contain any untrusted content you might have downloaded from the web, and

because the webview allows that content to exec script and so forth, you don’t want to risk exposing

potentially sensitive information elsewhere within your appdata. By forcing you to place appdata

content in a subfolder, you would have to consciously store other appdata in that same folder to allow

the webview to access it. It’s a small barrier, in other words, to give you pause to think clearly about

exactly what you’re doing!

In the example I also include a link to an in-package image (not shown), just to show that you can

use ms-appx-web URIs for this purpose:

content += "";

Scenario 3 of the SDK’s HTML WebView control sample (js/scenario3.js) also shows an example of

using ms-appdata URIs, in this case copying an in-package file to local appdata and navigating to that.

Another likely scenario is that you’ll download content from an online service via an HTTP request,

store that in an appdata file, and navigate to it. In such cases you’re just building the necessary file

structure in a folder and navigating to the appropriate page. So, for example, you might make an HTTP

request to a service to obtain multimedia content in a single compressed file. You can then expand that

file into your appdata and, assuming that the root HTML page has relative references to other files, the

webview can load and render it.

But what if you want to download a single file in a private format (like an ebook) or perhaps acquire

a potentially encrypted HTML page along with a single database file for media resources? This is the

purpose of navigateToLocalStream, which lets you inject your own content handlers and link

resolvers into the rendering process. This method takes two arguments:

 A content URI that’s created by calling the webview’s buildLocalStreamUri method with an

app-defined content identifier and the relative reference to resolve.

 A resolver object that implements an interface called IUriToStreamResolver, whose single

method UriToStreamAsync takes a relative URI and produces a WinRT IInputStream through

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://msdn.microsoft.com/library/windows/apps/windows.web.iuritostreamresolver.aspx

203

which the rendering engine can then load the media.

Scenario 4 of the HTML WebView control sample demonstrates this with resolver objects

implemented via WinRT components in C# and C++. (See Chapter 18, “WinRT Components,” for how

these are structured.) Here’s how one is invoked:

var contentUri = document.getElementById("webview").buildLocalStreamUri("NavigateToStream",

 "simple_example.html");

var uriResolver = new SDK.WebViewSampleCS.StreamUriResolver();

document.getElementById("webview").navigateToLocalStreamUri(contentUri, uriResolver);

In this code, contentUri will be an ms-local-stream URI, such as ms-local-stream://microsoft.

sdksamples.controlswebview.js_4e61766967617465546f53747265616d/simple_example.html. Because

this starts with ms-local-stream, the webview will immediately call the resolver object’s

UriToStreamAsync to generate a stream for this page as a whole. So if you had a URI to an encrypted

file, the resolver object could perform the necessary decryption to get the first stream of straight HTML

for the webview, perhaps applying DRM in the process.

As the webview renders that HTML and encounters other relative URIs, it will call upon the resolver

object for each one of those in turn, allowing that resolver to stream media from a database or perform

any other necessary steps in the process.

The details of doing all this are beyond the scope of this chapter, so do refer again to the HTML

WebView control sample.

Webview Navigation Events

The idea of navigating to a URI is one that certainly conjures up thoughts of a general purpose web

browser and, in fact, the web view can serve reasonably well in such a capacity because it both

maintains an internal navigation history and fires events when navigation happens.

Although the contents of the navigation history are not exposed, two properties and methods give

you enough to implement forward/back UI buttons to control the webview:

 canGoBack and canGoForward Boolean properties that indicate the current position of the

web view within its navigation history.

 goBack and goForward Methods that navigate the webview backwards or forwards in its

history.

When you navigate the webview in any way, it will fire the following events:

 MSWebViewNavigationStarting Navigation has started.

 MSWebViewContentLoading The HTML content stream has been provided to the webview

(e.g., a file is loaded or a resolver object has provided the stream).

 MSWebViewDOMContentLoaded The webview’s DOM has been constructed.

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa

204

 MSWebViewNavigationCompleted The webview’s content has been fully loaded, including any

referenced resources.

If a problem occurs along the way, the webview will raise an MSWebViewUnviewableContent-

Identified event instead. It’s also worth mentioning that the standard change event will also fire

when navigation happens, but this also happens when setting other properties, so it’s not as useful for

navigation purposes.

Scenario 1 of the HTML WebView control sample, which we saw earlier for navigate, essentially

gives you a simple web browser by wiring these methods and events to a couple of buttons. Note that

any popups from websites you visit will open in the browser alongside the app.

Tip You’ll find when working with the webview in JavaScript that the object does not provide

equivalent on* properties for these events. This omission was a conscious choice to avoid potential

naming conflicts with emerging standards. At present, then, you must use addEventListener to wire

up these events.

In addition to the navigating/loading events for the webview’s main content, it also passes along

similar events for iframe elements within that content: MSWebViewFrameNavigationStarting,

MSWebViewFrameContentLoading, MSWebViewFrameDOMContentLoaded, and MSWebViewFrame-

NavigationCompleted, each of which clearly has the same meaning as the related webview events but

also include the URI to which the frame is navigated in eventArgs.uri.

Calling Functions and Receiving Events from Webview Content

The other event that can come from the webview is MSWebViewScriptNotify. This is how JavaScript

code in the webview can raise a custom event to its host, similar to how we’ve used postMessage from

an iframe in the Here My Am! app to notify the app of a location change. On the flip side of the

equation, the webview’s invokeScriptAsync method provides a means for the app to call a function

within the webview.

Invoking script in a webview is demonstrated in scenario 5 of the HTML WebView control sample,

where the following content of html/script_example.html (condensed here) is loaded into the webview:

<!DOCTYPE html><html><head>

 <title>Script Example</title>

 <script type="text/javascript">

 function changeText(text) {

 document.getElementById("myDiv").innerText = text;

 }

 </script>

</head><body>

 <div id="myDiv">Call the changeText function to change this text</div>

</body></html>

The app calls changeText as follows:

document.getElementById("webview").invokeScriptAsync("changeText",

205

 document.getElementById("textInput").value).start();

The second parameter to invokeScriptAsync method is always a string (or will be converted to a

string). If you want to pass multiple arguments, use JSON.stringify on an object with suitably named

properties and JSON.parse it on the other end.

Take note! Notice the all-important start() tacked onto the end of the invokeScriptAsync call.

This is necessary to actually run the async calling operation. Without it, you’ll be left wondering just

why exactly the call didn’t happen! We’ll talk more of this in a moment with another example,

including how we get a return value from the function.

Receiving an event from a webview is demonstrated in scenario 6 of the sample. An event is raised

using the window.external.notify method, whose single argument is again a string. In the sample,

the html/scriptnotify_example.html page contains this bit of JavaScript:

window.external.notify("The current time is " + new Date());

which is picked up in the app as follows, where the event arg’s value property contains the arguments

from window.external.notify:

document.getElementById("webview").addEventListener("MSWebViewScriptNotify", scriptNotify);

function scriptNotify(e) {

 var outputArea = document.getElementById("outputArea");

 outputArea.value += ("ScriptNotify event received with data:\n" + e.value + "\n\n");

 outputArea.scrollTop = outputArea.scrollHeight;

}

Requirement MSWebViewScriptNotify will be raised only from webviews loaded with ms-appx-web,

ms-local-stream, and https content, where https also requires a content URI rule in your manifest,

otherwise that event will be blocked. ms-appdata is also allowed if you have a URI resolver involved.

Note that a webview loaded through navigateToString does not have this requirement.

As another demonstration of this call/event mechanism with webview, I’ve made some changes to

Here My Am! in the HereMyAm4 example in this chapter’s companion content. First, I’ve replaced the

iframe we’ve been using to load the map page with x-ms-webview. Then I replaced the postMessage

interactions to set a location and pick up the movement of a pin with invokeScriptAsync and

MSWebViewScriptNotify. The code structure is essentially the same, and it’s still useful to have some

generic helper functions with all this (though we don’t need to worry about setting the right origin

strings as we do with postMessage).

One piece of code we can wholly eliminate is the handler in html/map.html that converted the

contents of a message event into a function call. Such code is unnecessary as invokeScriptAsync goes

straight to the function; just note again that the arguments are passed as a single string so the invoked

function (like our pinLocation in html/map.html) needs to account for that.

206

The piece of code we want to look at specifically is the new callWebviewScript helper, which

replaces the previous callFrameScript function. Here’s the core code:

var op = webview.invokeScriptAsync(targetFunction, args);

op.oncomplete = function (args) { /* args.target.result contains script return value */ };

op.onerror = function (e) { /* ... */ };

//Don't forget this, or the script function won't be called!

op.start();

What might strike you as odd as you look at this code is that the return value of invokeScript-

Async is not a promise, but rather a DOM object that has complete and error events (and can have

multiple subscribers to those, of course). In addition, the operation does not actually start until you call

this object’s start method. What gives? Well, remember that the webview is not part of WinRT: it’s a

native HTML element supported by the app host. So it behaves like other HTML elements and APIs (like

XMLHttpRequest) rather than WinRT objects. Ah sweet inconsistencies of life!

The reason why start must be called separately, then, is so you can attach completed and error

handlers to the object before the operation gets started, otherwise they won’t be called.

Fortunately, it’s not too difficult to wrap such an operation within a promise. Just place the same

code structure above within the initialization function passed to new WinJS.Promise, and call the

complete and error dispatchers within the operation’s complete and error events (refer to Appendix

A, “Demystifying Promises,” on using WinJS.Promise). Notice here that the return value from the script

function is in args.target.result, so we use that value to complete the promise:

return new WinJS.Promise(function (completeDispatch, errorDispatch) {

 var op = webview.invokeScriptAsync(targetFunction, args);

 op.oncomplete = function (args) {;

 //Return value from the invoked function (always a string) is in args.target.result

 completeDispatch(args.target.result);

 };

 op.onerror = function (e) {

 errorDispatch(e);

 };

 op.start();

});

This works because the promise initializer is attaching completed/error handlers before calling

start, where those handlers invoke the appropriate dispatchers. Thus, if you call then or done on the

promise after it’s already finished, it will call your completed/error handlers right away. You won’t miss

out on anything!

For errors that occur outside this operation (such having an invalid targetFunction), be sure to

create an error object with WinJS.ErrorFromName and return a promise in the error state by using

WinJS.Promise.wrapError. You can see the complete code in HereMyAm4 (pages/home/home.js).

207

Capturing Webview Content

The other very useful feature of the webview that really sets it apart is the ability to capture its content,

something that you simply cannot do with an iframe. There are three ways this can happen.

First is the src attribute. Once MSWebViewNavigationCompleted has fired, src will contain a URI to

the content as the webview sees it. For web content, this will be an http[s] URI, which can be opened

in a browser. Local content (loaded from strings or app data files) will start with ms-local-web, which

can be rendered into another webview using navigateToLocalStream. Be aware that while navigation

is happening prior to MSWebViewNavigationCompleted, the state of the src property is indeterminate;

use the uri property in those handlers instead.

Second is the webview’s captureSelectedContentToDataPackageAsync method, which reflects

whatever selection the user has made in the webview directly. The fact that a data package is part of

this API suggests its primary use: the Share contract. From a user’s perspective, any web content you’re

displaying in the app is really part of the app. So if they make a selection there and invoke the Share

charm, they’ll expect that their selected data is what gets shared, and this method lets you obtain the

HTML for that selection. Of course, you can use this anytime you want the selected content—the Share

charm is just one of the potential scenarios.

As with invokeScriptAsync, the return value from captureSelectedContentToDataPackage-

Async is again a DOM-ish object with a start method (don’t forget to call this!) along with complete

and error events. If you want to wrap this in a promise, you can use the same structure as shown in

the last section for invokeScriptAsync. In this case, the result you care about within your complete

handler, within its args.target.result, is a Windows.ApplicationModel.DataTransfer.-

DataPackage object, the same as what we encountered in Chapter 2 with the Share charm. Calling its

getView method will produce a DataPackageView whose availableFormats object tells you what it

contains. You can then use the appropriate get* methods like getHtmlFormatAsync to retrieve the

selection data itself. Note that if there is no selection, args.target.result will be null, so you’ll need

to guard against that. Here, then, is code from scenario 2 of the WebviewExtras example in this

chapter’s companion content that copies the selection from one webview into another, showing also

how to wrap the operation in a promise (js/scenario2.js):

function captureSelection() {

 var source = document.getElementById("webviewSource");

 //Wrap the capture method in a promise

 var promise = new WinJS.Promise(function (cd, ed) {

 var op = source.captureSelectedContentToDataPackageAsync();

 op.oncomplete = function (args) { cd(args.target.result); };

 op.onerror = function (e) { ed(e); };

 op.start();

 });

 //Navigate the output webview to the selection, or show an error

 var output = document.getElementById("webviewOutput");

 promise.then(function (dataPackage) {

http://msdn.microsoft.com/library/windows/apps/dn301836.aspx
http://msdn.microsoft.com/library/windows/apps/br205873.aspx
http://msdn.microsoft.com/library/windows/apps/br205873.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.getview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.gethtmlformatasync.aspx

208

 if (dataPackage == null) { throw "No selection"; }

 var view = dataPackage.getView();

 return view.getHtmlFormatAsync();

 }).done(function (text) {

 output.navigateToString(text);

 }, function (e) {

 output.navigateToString("Error: " + e.message);

 });

}

The output of this example is shown in Figure 4-3. On the left is a webview-hosted page (my blog),

and on the right is the captured selection. Note that the captured selection is an HTML clipboard

format that includes the extra information at the top before the HTML from the webview. If you need

to extract just the straight HTML, you’ll need to strip off this prefix text up to <!DOCTYPE html>.

Generally speaking, captureSelectedContentToDataPackageAsync will produce the formats

AnsiText, Text, HTML Format, Rich Text Format, and msSourceUrl, but not a bitmap. For this you need to

use the third method, capturePreviewToBlobAsync, which again has a start method and

complete/error events. The results of this capture (in args.target.result within the complete

handler) is a blob object for whatever content is contained within the webview’s display area.

FIGURE 4-3 Example output from the WebviewExtras example, showing that the captured selection from a webview

includes information about the selection as well as the HTML itself.

You can do a variety of things with this blob. If you want to display it in an img element, you can use

URL.createObjectURL on this blob directly. This means you can easily load some chunk of HTML in an

offscreen webview (make sure the display style is not “none”) and then capture a blob and display the

results in an img. Besides preventing interactivity, you can also animate that image much more

efficiently than a full webview, applying 3D CSS transforms, for instance. Scenario 3 of my

WebviewExtras example demonstrates this.

For other purposes, like the Share charm, you can call this blob’s msDetachStream method, which

conveniently produces exactly what you need to provide to a data package’s setBitmap method. This

is demonstrated in scenario 7 of the SDK’s HTML Webview control sample and more completely (and

accurately) in scenario 4 of the Webview Extras example. For more about the Share contract in general,

see Chapter 15, "Contracts."

http://msdn.microsoft.com/library/windows/apps/dn301835.aspx

209

HTTP Requests

Rendering web content directly into your layout with the webview element, as we saw in the previous

section, is fabulous provided that, well, you want such content directly in your layout! In many cases

you instead want to retrieve data from the web via HTTP requests. Then you can further manipulate,

combine, and process it either for display in other controls or to simply drive the app’s experience.

You’ll also have many situations where you need to send information to the web via HTTP requests as

well, where one-way elements like the webview aren’t of much use.

Windows gives you a number of ways to exchange data with the web. In this section we’ll look at

the APIs for HTTP requests, which generally require that the app is running. One exception is that

Windows lets you indicate web content that it might automatically cache, such that requests you make

the next time the app starts (or resumes) can be fulfilled without having to hit the web at all. This takes

advantage of the fact that the app host caches web content just like a browser to reduce network

traffic and improve performance. This pre-caching capability simply takes advantage of that but is

subject to some conditions and is not guaranteed for every requested URI.

Another exception is what we’ll talk about in the next section, “Background Transfers.” Windows can

do background uploads and downloads on your behalf, which continue to work even when the app is

suspended or terminated. So, if your scenarios involve data transfers that might test the user’s patience

for staring at lovely but oh-so-tiresome progress indicators, and which tempt them to switch to

another app, use the background transfer API instead of doing it yourself through HTTP requests.

HTTP requests, of course, are the foundation of the RESTful web and many web APIs through which

you can get to an enormous amount of interesting data, including web pages and RSS feeds, of course.

And because other protocols like SOAP are essentially built on HTTP requests, we’ll be focused on the

latter here. There are separate WinRT APIs for RSS and AtomPub as well, details for which you can find

in Appendix C.

Right! So I said that there are a number of ways to do HTTP requests. Here they are:

 XMLHttpRequest This intrinsic JavaScript object works just fine in Windows Store apps, which

is very helpful for third-party libraries. Results from this async function come through its

readystatechanged event.

 WinJS.xhr This wrapper provides a promise structure around XMLHttpRequest, as we did in

the last section with the webview’s async methods. WinJS.xhr provides quite a bit of flexibility

in setting headers and so forth, and by returning a promise it makes it easy to chain WinJS.xhr

calls with other async operations like WinRT file I/O. You can see a simple example in scenario 1

of the HTML Webview control sample we worked with earlier.

 HttpClient The most powerful, high-performance, and flexible API for HTTP requests is

found in WinRT in the Windows.Web.Http namespace and is recommended for new code. Its

primary advantages are that it performs better, works with the same cache as the browser,

http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa

210

serves a wider spectrum of HTTP scenarios, and allows for cookie management, filtering, and

flexible transports. You can also create multiple HttpClient instances with different

configurations and use them simultaneously.

We’ll be focusing here primarily on HttpClient here. For the sake of contrast, however, let’s take a

quick look at WinJS.xhr in case you encounter it in other code.

Note If you have some experience with the .NET framework, be aware that the HttpClient API in

Windows.Web.Http is different from .NET’s System.Net.Http.HttpClient API.

Downloadable posters Microsoft’s networking team has made some API posters for the HttpClient,

Background Transfer, and Sockets APIs, which make handy at-a-glance references.

Using WinJS.xhr
Making a WinJS.xhr call is quite easy, as demonstrated in the SimpleXhr1 example for this chapter.

Here we use WinJS.xhr to retrieve the RSS feed from the Windows App Builder blog, noting that the

default HTTP verb is GET, so we don’t have to specify it explicitly:

WinJS.xhr({ url: "http://blogs.msdn.com/b/windowsappdev/rss.aspx" })

 .done(processPosts, processError, showProgress);

That is, give WinJS.xhr a URI and it gives back a promise that delivers its results to your completed

handler (in this case processPosts) and will even call a progress handler if provided. With the former,

the result contains a responseXML property, which is a DomParser object. With the latter, the event

object contains the current XML in its response property, which we can easily use to display a

download count:

function showProgress(e) {

 var bytes = Math.floor(e.response.length / 1024);

 document.getElementById("status").innerText = "Downloaded " + bytes + " KB";

}

The rest of the app just chews on the response text looking for item elements and displaying the

title, pubDate, and link fields. With a little styling (see default.css), and utilizing the WinJS

typography style classes of win-type-x-large (for title), win-type-medium (for pubDate), and win-

type-small (for link), we get a quick app that looks like Figure 4-4. You can look at the code to see

the details.35

35 Again, WinRT has a specific API for dealing with RSS feeds in Windows.Web.Syndication, as described in Appendix C.

You can use this if you want a more structured means of dealing with such data sources. As it is, JavaScript has intrinsic

APIs to work with XML, so it’s really your choice. In a case like this, the syndication API along with Windows.Web.AtomPub
and Windows.Data.Xml are very much needed by Windows Store apps written in other languages that don’t have the

same built-in features as JavaScript.

http://www.microsoft.com/en-us/download/details.aspx?id=40018
http://www.microsoft.com/en-us/download/details.aspx?id=40018

211

FIGURE 4-4 The output of the SimpleXhr1 and SimpleXhr2 apps.

In SimpleXhr1 too, I made sure to provide an error handler to the WinJS.xhr promise so that I

could at least display a simple message.

For a fuller demonstration of XMLHttpRequest/WinJS.xhr and related matters, refer to the XHR,

handling navigation errors, and URL schemes sample and the tutorial called How to create a mashup in

the docs. Additional notes on XMLHttpRequest and WinJS.xhr can be found in Appendix C.

Using Windows.Web.Http.HttpClient
Let’s now see the same app implemented with Windows.Web.Http.HttpClient, which you’ll find in

SimpleXhr2 in the companion content. For our purposes, the HttpClient.getStringAsync method is

sufficient:

var htc = new Windows.Web.Http.HttpClient();

htc.getStringAsync(new Windows.Foundation.Uri("http://blogs.msdn.com/b/windowsappdev/rss.aspx"))

 .done(processPosts, processError, showProgress);

This function delivers the response body text to our completed handler (processPosts), so we just

need to create a DOMParser object to talk to the XML document. After that we have the same thing as

we received from WinJS.xhr:

var parser = new window.DOMParser();

var xml = parser.parseFromString(bodyText, "text/xml");

The HttpClient object provides a number of other methods to initiate various HTTP interactions

with a web resource, as illustrated in Figure 4-5.

http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.getstringasync.aspx

212

FIGURE 4-5 The methods in the HttpClient object and their associated HTTP traffic. Note how all traffic is routed

through an app-supplied filter (or a default), which allows fine-grained control on a level underneath the API.

In all cases, the URI is represented by a Windows.Foundation.Uri object, as we saw in the earlier

code snippet. All of the specific get* methods fire off an HTTP GET and deliver results in a particular

form: a string, a buffer, and an input stream. All of these methods (as well as sendRequestAsync)

support progress, and the progress handler receives an instance of Windows.Web.Http.HttpProgress

that contains various properties like bytesReceived.

Working with strings are easy enough, but what are these buffer and input streams? These are

specific WinRT constructs that can then be fed into other APIs such as file I/O (see Windows.Storage.

Streams and Windows.Storage.StorageFile), encryption/decryption (see Windows.Security. -

Cryptography), and also the HTML blob APIs. For example, an IInputStream can be given to

MSApp.createStreamFromInputStream, which results in an HTML MSStream object. This can then be

given to URL.createObjectURL, the result of which can be assigned directly to an img.src attribute.

This is how you can easily fire off an HTTP request for an image resource and show the results in your

layout without having to create an intermediate file in your appdata. For more details, see “Q&A on

Files, Streams, Buffers, and Blobs” in Chapter 10.

The getAsync method creates a generic HTTP GET request. Its message argument is an

HttpRequestMessage object, where you can construct whatever type of request you need, setting the

requestUri, headers, transportInformation,36 and other arbitrary properties that you want to

communicate to the filter and possibly the server. The completed handler for getAsync will receive an

36 This read-only property works with certificates for SSL connections and contains the results of SSL negotiations; see

HttpTransportInformation. To set a client certificate, there’s a property on the HttpBaseProtocolFilter.

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httprequestmessage.aspx

213

HttpResponseMessage object, as we’ll see in a moment.

Handle exceptions! It’s very important with HTTP requests that you handle exceptions, that is,

provide an error handler for methods like getAsync. Unhandled exceptions arising from HTTP requests

has been found to be one of the leading causes of abrupt app termination!

For other HTTP operations, you can see in Figure 4-5 that we have putAsync, postAsync, and

deleteAsync, along with the wholly generic sendRequestAsync. With the latter, its message argument

is again an HttpRequestMessage as used with getAsync, only here you can also set the HTTP method

that will be used (this is an HttpMethod object that also allows for additional options). deleteAsync,

for its part, works completely from the URI parameters.

In the cases of put and post, the arguments to the methods are the URI and content, which is an

object that provides the relevant data through methods and properties of the IHttpContent interface

(see the lower left of Figure 4-5). It’s not expected that you create such objects from scratch (though

you can)—WinRT provides built-in implementations called HttpBufferContent, HttpStringContent,

HttpStreamContent, HttpMultipartContent, HttpMultipartFormDataContent, and

HttpFormUrlEncodedContent.

What you then get back from getAsync, sendRequestAsync, and the delete, put, and post methods

is an HttpResponseMessage object. Here you’ll find all that bits you would expect:

 statusCode, reasonPhrase, and some helper methods for handling errors—namely,

ensureSuccessStatusCode (to throw an exception if a certain code is not received) and

isSuccessStatusCode (to check for the range of 200–299).

 A collection of headers (of type HttpResponseHeaderCollection, which then leads to many

other secondary classes).

 The original requestMessage (an HttpRequestMessage).

 The source, a value from HttpResponseMessageSource that tells you whether the data was

received over the network or loaded from the cache.

 The response content, an object with the IHttpContent interface as before. Through this you

can obtain the response data as a string, buffer, input stream, and an in-memory array

(bufferAllAsync).

It’s clear, then, that the HttpClient object really gives you complete control over whatever kind of

HTTP requests you need to make to a service, including additional capabilities like cache control and

cookie management as described in the following two sections. It’s also clear that HttpClient is still

somewhat of a low-level API. For any given web service that you’ll be working with, then, I very much

recommend creating a layer or library that encapsulates requests to that API and the process of

converting responses into the data that the rest of the app wants to work wi th. This way you can also

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmethod.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.ihttpcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpbuffercontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstringcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstreamcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartformdatacontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpformurlencodedcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.headers.httpresponseheadercollection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httprequestmessage.aspx

214

isolate the rest of the app from the details of your backend, allowing that backend to change as

necessary without breaking the app. It’s also helpful if you want to incorporate additional features of

the Windows.Web.Http API, such as filtering, cache control, and cookie management.

I’d love to talk about cookies first (it’s always nice to eat dessert before the main meal!) but it’s all

part of filtering. Filtering is a mechanism through which you can control how the HttpClient manages

its requests and responses. A filter is either an instance of the default HttpBaseProtocolFilter class

(in the Windows.Web.Http.Filters namespace) configured for your needs or an instance of a derived

class. You pass this filter object to the HttpClient constructor, which will use HttpBaseProtocol-

Filter as a default if none is supplied. To do things like cache control, though, you create an instance

of HttpBaseProtocolFilter directly, set properties, and then create the HttpClient with it.

Tip It’s perfectly allowable and encouraged, even, to create multiple instances of HttpClient when

you need different filters and configurations for different services. There is no penalty in doing so, and

it can greatly simplify your programming model.

The filter is essentially a black box that takes an HTTP request and produces an HTTP response—

refer to Figure 4-5 again for its place in the whole process. Within the filter you can handle details like

credentials, proxies, certificates, and redirects, as well as implement retry mechanisms, caching, logging,

and so forth. This keeps all those details in a central place underneath the HttpClient APIs such that

you don’t have to bother with them in the code surrounding HttpClient calls.

With cache control, a filter contains a cacheControl property that can be set to an instance of the

HttpCacheControl class. This object has two properties, readBehavior and writeBehavior, which

determine how caching is applied to requests going through this filter. For reading, readBehavior is

set to a value from the HttpCacheReadBehavior enumeration: default (works like a web browser),

mostRecent (does an if-modified-since exchange with the server), and onlyFromCache (for offline use).

For writing, writeBehavior can be a value from HttpCacheWriteBehavior, which supports default

and noCache.

Managing cookies happens on the level of the filter as well. By default—through the

HttpBaseProtocolFilter—the HttpClient automatically reads incoming set-cookie headers, saves

the resulting cookies as needed, and then adds cookies to outgoing headers as appropriate. To acce ss

these cookies, create the HttpClient with an instance of HttpBaseProtocolFilter. Then you can

access the filter’s cookieManager property (that sounds like a nice job!). This property is an instance of

HttpCookieManager and has three methods: getCookies, setCookie, and deleteCookie. These allow

you to examine specific cookies to be sent for a request or to delete specific cookies for privacy

concerns.

Cookie behavior in general follows the same patterns as the browser. A cookie will persist across app

sessions depending on the normal cookie rules: the cookie must be marked as persistent, is subject to

the normal per-app limitations, and so on. Also note that cookies are isolated between apps for normal

security reasons, even if those apps are using the same online resource.

http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpbaseprotocolfilter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpcachereadbehavior.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpcachewritebehavior.aspx

215

For additional thoughts on HttpClient, refer to Updating Your JavaScript Apps to Use the New

Windows Web HTTP API on the Windows App Builder blog. Demonstrations of the API, including

filtering, can then be found in the HttpClient sample in the Windows SDK. Here’s a quick run-down of

what its scenarios demonstrate:

 Scenarios 1–3 GET requests for text (with cache control), stream, and an XML list.

 Scenarios 4–7 POST requests for text, stream, multipart MIME form, and a stream with

progress.

 Scenarios 8–10 Getting, setting, and deleting cookies.

 Scenario 11 A metered connection filter that implements cost awareness on the level of the

filter.

 Scenario 12 A retry filter that automatically handles 503 errors with Reply-After headers.

To run this sample you must first set up a localhost server along with a data file and an upload

target page. To do this, make sure you have Internet Information Services installed on your machine, as

described below in “Sidebar: Using the Localhost.” Then, from an administrator command prompt,

navigate to the sample’s Server folder and run the command powershell –file setupserver.ps1. This

will install the necessary server-side files for the sample on the localhost (c:\inetpub\wwwroot).

Sidebar: Using the Localhost

The localhost is a server process that runs on your local machine, making it possible to debug

both sides of client-server interactions. For this you can use a server like Apache or you can use

the solution that’s built into Windows and integrated with the Visual Studio tools: Internet

Information Services (IIS).

To turn on IIS in Windows, go to Control Panel > Programs and Features > Turn Windows

Features On or Off. Check the Internet Information Services box at the top level, as shown below,

to install the core features:

http://blogs.windows.com/windows/b/appbuilder/archive/2013/09/06/updating-your-javascript-apps-to-use-the-new-windows-web-http-api.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/09/06/updating-your-javascript-apps-to-use-the-new-windows-web-http-api.aspx
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664

216

Once IIS is installed, the local site addressed by http://localhost/ is found in the folder

c:\inetpub\wwwroot. That’s where you drop any server-side page you need to work with.

With that page running on the local machine, you can hook it into whatever tools you have

available for server-side debugging. Here it’s good to know that access to localhost URIs—also

known as local loopback—is normally blocked for Windows Store apps unless you’re on a

machine with a developer license, which you are if you’re been running Visual Studio or Blend.

This won’t be true for your customer’s machines, though! In fact, the Windows Store will reject

apps that attempt to do so.37

To install other server-side features on IIS, like PHP or Visual Studio Express for Web (which

allows you to debug web pages), use Microsoft’s Web platform installer. We’ll make use of these

when we work with live tiles in Chapter 16.

Suspend and Resume with Online Content

Now that we’ve seen the methods for making HTTP requests to any URI, you really have the doors of

the web wide open to you. As many web APIs provide REST interfaces, interacting with them is just a

matter of putting together the proper HTTP requests as defined by the API documentation. I must

leave such details up to you because processing that data within your app has little to do with the

Windows platform (except for creating UI with collection controls, but that’s for a later chapter).

Instead, what concerns us here are the implications of suspend and resume. In particular, an app

cannot predict how long it will stay suspended before being resumed or before being terminated and

restarted.

In the first case, an app that gets resumed will have all its previous data still in memory. It very much

needs to decide, then, whether that data has become stale since the app was suspended and whether

sessions with other servers have exceeded their timeout periods. You can also think of it this way: after

what period of time will users not remember nor care what was happening the last time they saw your

app? If it’s a week or longer, it might be reasonable to resume or restart in a default state. Then again,

if you pick up right back where they were, users gain increasing confidence that they can leave apps

running for a long time and not lose anything. Or you can compromise and give the user options to

choose from. You’ll have to think through your scenarios, of course, but if there’s any doubt, resume

where the app left off.

To check elapsed time, save a timestamp on suspend (from new Date().getTime()), get another

timestamp in the resuming event, take the difference, and compare that against your desired refresh

period. A Stock app, for example, might have a very short period. With the Windows App Builder blog,

on the other hand, new posts don’t show up more than once per day, so a much longer period on the

37 Visual Studio enables local loopback by default for a project. To change it, right-click the project in Solution Explorer,
select Properties, select Configuration Properties > Debugging on the left side of the dialog, and set Allow Local Network

Loopback to No. For more on the subject of loopback, see How to enable loopback and troubleshoot network isolation.

http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/library/windows/apps/Hh780593.aspx

217

order of hours is sufficient to keep up-to-date and to catch new posts within a reasonable timeframe.

This is implemented in SimpleXhr2 by first placing the getStringAsync call into a separate function

called downloadPosts, which is called on startup. Then we register for the resuming event with WinRT:

Windows.UI.WebUI.WebUIApplication.onresuming = function () {

 app.queueEvent({ type: "resuming" });

}

Remember how I said in Chapter 3, “App Anatomy and Performance Fundamentals,” we could use

WinJS.Application.queueEvent to raise our own events to the app object? Here’s a great example.

WinJS.Application doesn’t automatically wrap the resuming event because it has nothing to add to

that process. But the code above accomplishes exactly the same thing, allowing us to register an event

listener right alongside other events like checkpoint:

app.oncheckpoint = function (args) {

 //Save in sessionState in case we want to use it with caching

 app.sessionState.suspendTime = new Date().getTime();

};

app.addEventListener("resuming", function (args) {

 //This is a typical shortcut to either get a variable value or a default

 var suspendTime = app.sessionState.suspendTime || 0;

 //Determine how much time has elapsed in seconds

 var elapsed = ((new Date().getTime()) - suspendTime) / 1000;

 //Refresh the feed if > 1 hour (or use a small number for testing)

 if (elapsed > 3600) {

 downloadPosts();

 }

});

To test this code, run it in Visual Studio’s debugger and set breakpoints within these events. Then

click the suspend button in the toolbar, and you should enter the checkpoint handler. Wait a few

seconds and click the resume button (play icon), and you should be in the resuming handler. You can

then step through the code and see that the elapsed variable will have the number of seconds that

have passed, and if you modify that value (or change 3600 to a smaller number), you can see it call

downloadPosts again to perform a refresh.

What about launching from the previously terminated state? Well, if you didn’t cache any data from

before, you’ll need to refresh it again anyway. If you do cache some of it, your saved state (including

the timestamp) helps you decide whether to use the cache or simply load data anew. You can also take

a hybrid approach of drawing on your own cache as much as you can and then updating it with

whatever new data comes from the service.

What helps in this context is that you can ask Windows to prefetch the responses for various URIs,

such that when you make the request it is fulfilled from that prefetch cache. And that’s our next topic.

218

Prefetching Content
HTTP requests made through the XMLHttpRequest, WinJX.xhr, and HttpClient APIs all interoperate

with the internet cache, such that repeated requests for the same remote resource, whether from an

app or Internet Explorer, can be fulfilled from the cache. (HttpClient also gives you control over how

the cache is used.) Caching works great for offline scenarios and improving performance generally.38

One of the first things that many connected apps do upon launch is to make HTTP requests for their

home page content. If such a request has not been made previously, however, or if the response data

has changed since the last request, the user will have to wait for that data to arrive. This clearly affects

the app’s startup performance. What would really help, then, is having a way to get that content into

the internet cache before the app makes the request directly.

Apps can do this by asking Windows to prefetch online content (any kind of data) into the cache,

which will take place even when the app itself isn’t running. Of course, Windows won’t jus t fulfill such

requests indiscriminately, so it applies these limits:

 Prefetching happens only when power and network conditions are met (Windows won’t

prefetch on metered networks or when battery power is low).

 Prefetching is prioritized for apps that the user runs most often.

 Prefetching is prioritized for content that apps actually request later on. That is, if an app makes

a prefetch request but seldom asks for it, the likelihood of the prefetch decreases.

 Windows limits the overall number of requests to 40.

 Resources are cached only for the length of time indicated in the response headers.

In other words, apps don’t have control over whether their prefetching requests are fulfilled—

Windows optimizes the process so that users see increased performance for the apps they use and the

content they access most frequently. Apps simply continue to make HTTP requests, and if prefetching

has taken place those requests will just be fulfilled right away without hitting the network.

There are two ways to make prefetching requests. The first is to insert Windows.Foundation.Uri

objects into the Windows.Networking.BackgroundTransfer.ContentPrefetcher.contentUris

collection. This collection is a vector (see Chapter 6), so you use methods like append to add the URIs

and removeAt to delete them. Note that you can modify this list both from the running app and from a

background task. The latter especially lets you periodically refresh the list without having the user run

the app.

Here’s a quick example from scenario 1 of the ContentPrefetcher sample (js/S1-direct-content-

38 For readers familiar with .NET languages, note that the .NET System.Net.HttpClient API does not benefit from the

cache or precaching.

http://msdn.microsoft.com/library/windows/apps/windows.foundation.uri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.contenturis.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx
http://code.msdn.microsoft.com/windowsapps/ContentPrefetcher-Sample-5822048a

219

uris.js, with some error handling omitted):

uri = new Windows.Foundation.Uri(uriToAdd);

Windows.Networking.BackgroundTransfer.ContentPrefetcher.contentUris.append(uri);

The second means is to give the prefetcher the URI of an XML file (local or remote) that contains

your list. You store this in the ContentPrefetcher.indirectContentUri property, as shown in

scenario 2 of the sample (js/S2-indirect-content-uri.js).

uri = new Windows.Foundation.Uri("http://example.com/prefetchlist.xml");

Windows.Networking.BackgroundTransfer.ContentPrefetcher.indirectContentUri = uri;

This allows your service to maintain a dynamic list of URIs (like those of a news feed) such that your

prefetching stays very current. The XML in this case should be structured as follows, with as many URIs

as are needed (the exact schema is on the indirectContentUri page linked above):

<?xml version="1.0" encoding="utf-8"?>

<prefetchUris>

 <uri>http://example.com/2013-02-28-headlines.json</uri>

 <uri>http://example.com/2013-02-28-img1295.jpg</uri>

 <uri>http://example.com/2013-02-28-img1296.jpg</uri>

 <uri>http://example.com/2013-02-28-ad_config.xml</uri>

</prefetchUris>

Note Prefetch requests will include X-MS-RequestType: Prefetch in the headers if services need to

differentiate the request from others. Existing cookies will also be included in the request, but beyond

that there are no provisions for authentication.

Lastly, the ContentPrefetcher.lastSuccessfulPrefetchTime property tells you just how fresh

the content really is. Scenario 3 of the sample retrieves this timestamp (js/S3-last-prefetch-time.js):

var lastPrefetchTime =

 Windows.Networking.BackgroundTransfer.ContentPrefetcher.lastSuccessfulPrefetchTime;

You can use this to decide whether you still want to make a direct request, in which case you’ll need

to use the HttpCacheReadBehavior.mostRecent flag with the HttpClient object’s CacheControl to

make sure you have the latest data. Note that you must use HttpClient rather than WinJS.xhr to

exercise this degree of control.

Background Transfer

A common use of HTTP requests is to transfer potentially large files to and from an online repository.

For even moderately sized files, however, this presents a challenge: very few users typically want to

stare at their screen to watch file transfer progress, so it’s highly l ikely that they’ll switch to another app

to do something far more interesting while the transfer is taking place. In doing so, the app that’s

doing the transfer will be suspended and possibly even terminated. This does not bode well for trying

to complete such operations using a mechanism like HttpClient!

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.indirectcontenturi.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.lastsuccessfulprefetchtime.aspx

220

One solution would be to provide a background task for this purpose, which was a common request

with early previews of Windows 8. However, there’s little need to run app code for this common

purpose, so WinRT provides a specific API, Windows.Networking.BackgroundTransfer (which

includes the prefetcher, as we just saw at the end of the previous section). This API supports up to 500

scheduled transfers systemwide and typically runs five transfers in parallel. It offers built-in cost

awareness and resiliency to changes in connectivity (switching seamlessly to the user’s preferred

network), relieving apps from such concerns. Transfers continue when an app is suspended and will be

paused if the app is terminated (including if the user terminates the app with a gesture or Alt+F4),

except for uploads (HTTP POST) which cannot be paused. When the app is resumed or launched again,

it can then check the status of background transfers it previously initiated and take further action as

necessary—processing downloaded information, noting successful uploads in its UI (issuing toasts and

tile updates is built into the API), and enumerating pending transfers, which will restart any that were

paused or otherwise interrupted.

In short, use the background transfer API whenever you expect the operation to exceed your

customer’s tolerance for waiting. This clearly depends on the network’s connection speed and whether

you think the user will switch away from your app while such a transfer is taking place. For example, if

you initiate a transfer operation but the user can continue to be productive (or entertained) in your app

while that’s happening, using HTTP requests directly might be a possibility, though you’ll still be

responsible for cost awareness and handling connectivity. If, on the other hand, the user cannot do

anything more until the transfer is complete, you might choose to use background transfer for perhaps

any data larger than 500K or some other amount based on the current network speed.

In any case, when you’re ready to employ background transfer in your app, the

BackgroundDownloader and BackgroundUploader objects will become your fast friends. Both objects

have methods and properties through which you can enumerate pending transfers as well as perform

general configuration of credentials, HTTP request headers, transfer method, cost policy (for metered

networks), and grouping. Each individual operation is then represented by a DownloadOperation or

UploadOperation object, through which you can control the operation (pause, cancel, etc.) and

retrieve status. With each operation you can also set priority, credentials, cost policy, and so forth,

overriding the general settings in the BackgroundDownloader and BackgroundUploader classes. Both

operation classes also have a constructor to which you can pass a StorageFile that contains a request

body, in case the service you’re working with requires something like form data for the transfer.

Note In both download and upload cases, the connection request will be aborted if a new TCP/SSL

connection is not established within five minutes. Once there’s a connection, any other HTTP request

involved with the transfer will time out after two minutes. Background transfer will retry an operation

up to three times if there’s connectivity and will defer retries if there’s no connectivity.

One of the primary reasons why we have the background transfer API is to allow Windows to

automatically manage transfers according to systemwide considerations. Changes in network cost, for

example, can cause some transfers to be paused until the device returns to an unlimited network. To

save battery power, long-running transfers can be slowed (throttled) or paused altogether, as when the

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx

221

system goes into standby. In the latter case, apps can keep the process going by requesting an

unconstrained transfer. This way a user can let a very large download run all day, if desired, rather than

coming back some hours later only to find that the transfer was paused. (Note that a user consent

prompt appears if the device is on battery power.)

To see the background transfer API in action, let’s start by looking at the Background transfer

sample. Note that this sample depends on having the localhost set up on your machine as we did with

the HttpClient sample earlier. Refer back to “Sidebar: Using the localhost” for instructions, and be sure

to run powershell –file setupserver.ps1 in the sample’s Server folder to set up the necessary files.

Basic Downloads
Scenario 1 (js/downloadFile.js) of the Background transfer sample lets you download any file from the

localhost server and save it to the Pictures library. By default the URI entry field is set to a specific

localhost URI and the control is disabled. This is because the sample doesn’t perform any validation on

the URI, a process that you should always perform in your own app. If you’d like to ente r other URIs in

the sample, of course, just remove disabled="disabled" from the serverAddressField element in

html/downloadFile.html.

By default, scenario 1 here makes a request to http://localhost/BackgroundTransferSample/

download.aspx, which serves up a stream of 5 million ‘a’ characters. The sample saves this content in a

text file, so you won’t see any image showing up on the display, but you will see progress. Change the

URI to an image file39 and you’ll see that image appear on the display. (You can a lso copy an image file

to c:\inetpub\wwwroot and point to it there.) Note that you can kick off multiple transfers to observe

how they are all managed simultaneously; the cancel, pause, and resume buttons help with this.

Three flavors of download are supported in the WinRT API and reflected in the sample:

 A normal download at normal priority. Such a transfer continues to run when the app is

suspended, but if it’s a long transfer it could be slowed (throttled) or paused depending on

system conditions like battery life and network type. The system supports up to five parallel

transfers at normal priority.

 A normal download at high priority. Typically an app will set its most important download at a

higher priority than others it starts at the same time. A high-priority transfer will start even if

there are already five normal-priority downloads running. If you schedule multiple high-priority

transfers, up to six of them will run in parallel (one plus replacing all of the five normal -priority

downloads) until the high-priority queue is cleared, then normal-priority transfers are resumed.

 An unconstrained download at either priority. As noted before, an unconstrained download will

continue to run (subject to user consent) even in modes like connected standby. You use this

feature in scenarios where you know the user would want a transfer to continue possibly for a

39 Might I suggest http://kraigbrockschmidt.com/images/photos/kraigbrockschmidt-dot-com-122-10-S.jpg?

http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://kraigbrockschmidt.com/images/photos/kraigbrockschmidt-dot-com-122-10-S.jpg

222

long period of time and not have it interrupted or paused.

Starting a download happens as follows. First create a StorageFile to receive the data (though this

is not required, as we’ll see later in this section). Then create a DownloadOperation object for the

transfer using BackgroundDownloader.createDownload, to which you pass the URI of the data, the

StorageFile in which to store it, and an optional StorageFile containing a request body to send to

the server when starting the transfer (more on this later). In the operation object you can then set its

priority, method, costPolicy, and transferGroup properties to override the defaults supplied by

the BackgroundDownloader. The priority is a BackgroundTransferPriority value (default or high),

and method is a string that identifies the type transfer being used (normally GET for HTTP or RETR for

FTP). We’ll come back to the other two properties later in the “Setting Cost Policy” and “Grouping

Transfers” sections.

Once the operation is configured as needed, the last step is to call its startAsync method, which

returns a promise to which you attach your completed, error, and progress handlers via then or done.

Here’s code from js/downloadFile.js:40

// Asynchronously create the file in the pictures folder (capability declaration required).

Windows.Storage.KnownFolders.picturesLibrary.createFileAsync(fileName,

 Windows.Storage.CreationCollisionOption.generateUniqueName)

 .done(function (newFile) {

 // Assume uriString is the text URI of the file to download

 var uri = Windows.Foundation.Uri(uriString);

 var downloader = new Windows.Networking.BackgroundTransfer.BackgroundDownloader();

 // Create a new download operation.

 var download = downloader.createDownload(uri, newFile);

 // Start the download

 var promise = download.startAsync().done(complete, error, progress);

 }

While the operation underway, the following properties provide additional information on the

transfer:

 requestedUri and resultFile The same as those passed to createDownload.

 guid A unique identifier assigned to the operation.

 progress A BackgroundDownloadProgress structure with bytesReceived,

totalBytesToReceive, hasResponseChanged (a Boolean, see the getResponseInformation

method below), hasRestarted (a Boolean set to true if the download had to be restarted), and

status (a BackgroundTransferStatus value: idle, running, pausedByApplication,

pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed).

40 The code in the sample has more structure than shown here. It defines its own DownloadOperation class that

unfortunately has the same name as the WinRT class, so I’m electing to omit mention of it.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.downloadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferpriority.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx

223

A few methods of DownloadOperation can also be used with the transfer:

 pause and resume Control the download in progress. We’ll talk more of these in the “Suspend,

Resume, and Restart with Background Transfers” section below.

 getResponseInformation Returns a ResponseInformation object with properties named

headers (a collection of response headers from the server), actualUri, isResumable, and

statusCode (from the server). Repeated calls to this method will return the same information

until the hasResponseChanged property is set to true.

 getResultStreamAt Returns an IInputStream for the content downloaded so far or the

whole of the data once the operation is complete.

In scenario 1 of the sample, the progress function—which is given to the promise returned by

startAsync—uses getResponseInformation and getResultStreamAt to show a partially

downloaded image:

var currentProgress = download.progress;

// ...

// Get Content-Type response header.

var contentType = download.getResponseInformation().headers.lookup("Content-Type");

// Check the stream is an image.

if (contentType.indexOf("image/") === 0) {

 // Get the stream starting from byte 0.

 imageStream = download.getResultStreamAt(0);

 // Convert the stream to a WinRT type

 var msStream = MSApp.createStreamFromInputStream(contentType, imageStream);

 var imageUrl = URL.createObjectURL(msStream);

 // Pass the stream URL to the HTML image tag.

 id("imageHolder").src = imageUrl;

 // Close the stream once the image is displayed.

 id("imageHolder").onload = function () {

 if (imageStream) {

 imageStream.close();

 imageStream = null;

 }

 };

}

All of this works because the background transfer API is saving the downloaded data into a

temporary file and providing a stream on top of that, hence a function like URL.createObjectURL

does the same job as if we provided it with a StorageFile object directly. Once the

DownloadOperation object goes out of scope and is garbage collected, however, that temporary file

will be deleted.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.responseinformation.aspx

224

The existence of this temporary file is also why, as I noted earlier, it’s not actually necessary to

provide a StorageFile object in which to place the downloaded data. That is, you can pass null as

the second argument to createDownload and work with the data through DownloadOperation.-

getResultStreamAt. This is entirely appropriate if the ultimate destination of the data in your app isn’t

a separate file.

As mentioned earlier, there is a variation of createDownload that takes a second StorageFile

argument whose contents provide the body of the HTTP GET or FTP RETR request that will be sent to the

server URI before the download is started. This accommodates some websites that require you to fill out

a form to start the download. Similarly, createDownloadAsync supplies the request body through an

IInputStream instead of a file, if that’s better suited to your needs.

Sidebar: Where Is Cancel?

You might have already noticed that neither DownloadOperation nor UploadOperation have

cancellation methods. So how is this accomplished? You cancel the transfer by canceling the

startAsync operation, which means calling the cancel method of the promise returned by

startAsync. Thus, you need to hold on to the promises for each transfer you initiate if you want

to possibly cancel them later on.

Requesting an Unconstrained Download

To request an unconstrained download, you use pretty much the same code as in the previous section

except for one additional step. With the DownloadOperation from BackgroundDownloader.create-

Download, don’t call startAsync right away. Instead, place that operation object (and others, if

desired) into an array, then pass that array to BackgroundDownloader.requestUnconstrained-

DownloadsAsync. This async function will complete with an UnconstrainedTransferRequestResult

object, whose single isContrained member will tell you whether the request was granted. Here’s the

code from the sample for that case (js/downloadFile.js):

Windows.Networking.BackgroundTransfer.BackgroundDownloader

 .requestUnconstrainedDownloadsAsync(requestOperations)

.done(function (result) {

 printLog("Request for unconstrained downloads has been " +

 (result.isUnconstrained ? "granted" : "denied") + "
");

 promise = download.startAsync().then(complete, error, progress);

}, error);

As you can see, you still call startAsync after making the request, which the sample here does

regardless of the request result. In your own app, however, you can make other decisions, such as

setting a higher priority for the download even if the request was denied.

http://msdn.microsoft.com/library/windows/apps/hh943065.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.createdownloadasync.aspx

225

Basic Uploads
Scenario 2 (js/uploadFile.js) of the Background transfer sample exercises the background upload

capability, specifically sending some file (chosen through the file picker) to a URI that can receive it. By

default the URI points to http://localhost/BackgroundTransferSample/upload.aspx, a page installed with

the PowerShell script that sets up the server. As with scenario 1, the URI entry control is disabled

because the sample performs no validation, as you would again always want to do if you accepted any

URI from an untrusted source (user input in this case). For testing purposes, of course, you can remove

disabled="disabled" from the serverAddressField element in html/uploadFile.html and enter other

URIs that will exercise your own upload services. This is especially handy if you run the server part of

the sample in Visual Studio Express for Web where the URI will need a localhost port number as

assigned by the debugger.

In addition to a button to start an upload and to cancel it, the sample provides another button to

start a multipart upload. For more on breaking up large files and multipart uploads, see Appendix C.

In code, an upload happens very much like a download. Assuming you have a StorageFile with

the contents to upload, create an UploadOperation object for the transfer with

BackgroundUploader.createUpload. If, on the other hand, you have data in a stream

(IInputStream), create the operation object with BackgroundUploader.createUploadFrom-

StreamAsync instead. This can also be used to break up a large file into discrete chunks, if the server

can accommodate it; see “Breaking Up Large Files” in Appendix C.

With the operation object in hand, you can customize a few properties of the transfer, overriding

the defaults provided by the BackgroundUploader. These are the same as for downloads: priority,

method (HTTP POST or PUT, or FTP STOR), costPolicy, and transferGroup. For the latter two, again

see “Setting Cost Policy” and “Grouping Transfers” below.

Once you’re ready, the operation’s startAsync starts the upload:41

// Assume uri is a Windows.Foundation.Uri object and file is the StorageFile to upload

var uploader = new Windows.Networking.BackgroundTransfer.BackgroundUploader();

var upload = uploader.createUpload(uri, file);

promise = upload.startAsync().then(complete, error, progress);

While the operation is underway, the following properties provide additional information on the

transfer:

 requestedUri and sourceFile The same as those passed to createUpload (an operation

created with createUploadFromStreamAsync supports only requestedUri).

 guid A unique identifier assigned to the operation.

 progress A BackgroundUploadProgress structure with bytesReceived,

41 As with downloads, the code in the sample has more structure than shown here and again defines its own

UploadOperation class with the same name as the one in WinRT, so I’m omitting mention of it.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/hh701127.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploadprogress.aspx

226

totalBytesToReceive, bytesSent, totalBytesToSend, hasResponseChanged (a Boolean, see

the getResponseInformation method below), hasRestarted (a Boolean set to true if the

upload had to be restarted), and status (a BackgroundTransferStatus value, again with

values of idle, running, pausedByApplication, pausedCostedNetwork, pausedNoNetwork,

canceled, error, and completed).

Unlike a download, an UploadOperation does not have pause or resume methods but does have

the same getResponseInformation and getResultStreamAt methods. In the upload case, the

response from the server is less interesting because it doesn’t contain the transferred data, just headers,

status, and whatever body contents the upload page cares to return. If that page returns some

interesting HTML, though, you might use the results as part of your app’s output for the upload.

As noted before, to cancel an UploadOperation, call the cancel method of the promise returned

from startAsync. You can also see that the BackgroundUploader also has a requestUnconstrained-

UploadsAsync method like that of the downloader, to which you can pass an array of Upload-

Operation objects for the request. Again, the result of the request tells you whether or not the request

was granted, allowing you to decide what you might want to change before calling each operation’s

startAsync.

Completion and Error Notifications
With long transfer operations, users typically want to know when those transfers are complete or if an

error occurred along the way. However, those transfers might finish or fail while the app is suspended,

so the app itself cannot directly issue such notifications. For this purpose, the app can instead supply

toast notifications and tile updates to the BackgroundDownloader and BackgroundUploader classes.

Notice that you’re not setting notifications on individual operation objects, which means that the

content of these notifications should describe all active transfers as a whole. If you have only a single

transfer, then of course your language can reflect that, but otherwise you’ll want to be more generic

with messages like “Your new photo gallery of 108 images has finished uploading.”

The downloader and uploader objects each have four different notification objects you can set:

 successToastNotification and failureToastNotification Instances of the

Windows.UI.Notifications.ToastNotification class.

 successTileNotification and failureTileNotification Instances of the

Windows.UI.Notification.TileNotification class.

For details on using these classes, including all the different templates you can use, refer to Chapter

16. Basically you create these instances as if you intend to issue notifications directly from the app, but

hand them off to the downloader and uploader objects so that they can do it on your behalf.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tilenotification.aspx

227

Providing Headers and Credentials
Within the BackgroundDownloader and BackgroundUploader you have the ability to set values for

individual HTTP headers by using their setRequestHeader methods. Both take a header name and a

value, and you call them multiple times if you have more than one header to set.

Similarly, both the downloader and uploader objects have two properties for credentials:

serverCredential and proxyCredential, depending on the needs of your server URI. Both

properties are Windows.Security.Credentials.PasswordCredential objects. As the purpose in a

background transfer operation is to provide credentials to the server, you’d typically create a

PasswordCredential as follows:

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password);

where the resource in this case is just a string that identifies the resource to which the credentials

applies. This is used to manage credentials in the credential locker, as we’ll see in the “Authentication,

the Microsoft Account, and the User Profile” section later. For now, just creating a credential in this way

is all you need to authenticate with your server when doing a transfer.

Note At present, setting the serverCredential property doesn’t work with URIs that specify an FTP

server. To work around this, include the credentials directly in the URI with the form ftp://<user>:

<password>@server.com/file.ext (for example, ftp://admin:password1@server.com/file.bin).

Setting Cost Policy
As mentioned earlier in the “Cost Awareness” section, the Windows Store policy requires that apps are

careful about performing large data transfers on metered networks. The Background Transfer API takes

this into account, based on values from the BackgroundTransferCostPolicy enumeration:

 default Allow transfers on costed networks.

 unrestrictedOnly Do not allow transfers on costed networks.

 always Always download regardless of network cost.

To apply a policy to subsequent transfers, set the value of BackgroundDownloader.costPolicy

and/or BackgroundUploader.costPolicy. The policy for individual operations can be set through the

DownloadOperation.costPolicy and UploadOperation.costPolicy properties.

Basically, you would change the policy if you’ve prompted the user accordingly or allow them to set

behavior through your settings. For example, if you have a setting to disallow downloads or uploads on

a metered network, you’d set the general costPolicy to unrestrictedOnly. If you know you’re on a

network where roaming charges would apply and the user has consented to a transfer, you’d want to

change the costPolicy of that individual operation to always. Otherwise the API would not perform

the transfer because doing so on a roaming network is disallowed by default.

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx

228

When a transfer is blocked by policy, the operation’s progress.status property will contain

BackgroundTransferStatus.pausedCostedNetwork.

Grouping Transfers
Grouping multiple transfers together lets you enumerate and control related transfers. For example, a

photo app that organizes pictures into albums or album pages can present a UI through which the user

can pause, resume, or cancel the transfer of an entire album, rather than working on the level of

individual files. The grouping features of the background transfer API makes the implementation of this

kind of experience much easier, as the app doesn’t need to maintain its own grouping structures.

Note Grouping has no bearing on the individual transfers themselves, nor is grouping information

communicated to servers. Grouping is simply a client-side management mechanism.

Grouping is set through the transferGroup property that’s found in the BackgroundDownloader,

BackgroundUploader, DownloadOperation, and UploadOperation objects. This property is a

BackgroundTransferGroup object created through the static BackgroundTransferGroup.-

createGroup method using whatever name you want to use for that group. Note that the

transferGroup property can be set only through BackgroundDownloader and BackgroundUploader;

you would assign this prior to creating a series of individual operations in that group. Each individual

operation object will then have that same transferGroup as a read-only property.

In addition to its assigned name, a transferGroup object has a transferBehavior property, which

is a value from the BackgroundTransferBehavior enumeration. This allows you to control whether

the operations in the group happen serially or in parallel. A video player for a TV series, for example,

could place all the episodes in the same group and then set the behavior to BackgroundTransfer-

Behavior.serialized. This ensures that the group’s operations are done one at a time, reflecting how

the user is likely to consume that content. A photo gallery app that download a composite page of

large images, on the other hand, might use BackgroundTransferBehavior.parallel (the default). As

for pausing, resuming, and cancelling groups, that’s best discussed in the context of app lifecycle

events, which is the subject of the next section.

Suspend, Resume, and Restart with Background Transfers
Earlier I mentioned that background transfers will continue while an app is suspended, and paused if

the app is terminated by the system. Because apps will be terminated only in low-memory conditions,

it’s appropriate to also pause background transfers in that case.

When an app is resumed from the suspended state, it can check on the status of pending transfers

by using the BackgroundDownloader.getCurrentDownloadsAsync and BackgroundUploader.-

getCurrentUploadsAsync methods. To limit that list to a specific transferGroup, use the

getCurrentDownloadsForTransferGroupAsync and getCurrentUploadsForTransferGroupAsync

229

methods instead.42

The list that comes back from these methods is a vector of DownloadOperation and

UploadOperation objects, which can be iterated like an array:

Windows.Networking.BackgroundTransfer.BackgroundDownloader.getCurrentDownloadsAsync()

 .done(function (downloads) {

 for (var i = 0; i < downloads.size; i++) {

 var download = downloads[i];

 }

 });

Windows.Networking.BackgroundTransfer.BackgroundUploader.getCurrentUploadsAsync()

 .done(function (uploads) {

 for (var i = 0; i < uploads.size; i++) {

 var upload = uploads[i];

 }

 });

In each case, the progress property of each operation will tell you how far the transfer has come

along. The progress.status property is especially important. Again, status is a

BackgroundTransferStatus value and will be one of idle, running, pausedByApplication,

pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). These are clearly

necessary to inform users, as appropriate, and to give them the ability to restart transfers that are

paused or experienced an error, to pause running transfers, and to act on completed transfers.

Speaking of which, when using the background transfer API, an app should always give the user

control over pending transfers. Downloads can be paused through the DownloadOperation.pause

method and resumed through DownloadOperation.resume. (There are no equivalents for uploads.)

Download and upload operations are canceled by canceling the promises returned from startAsync.

Again, if you requested a list of transfers for a particular group, iterate over the results to affect the

operations in that group.

This brings up an interesting situation: if your app has been terminated and later restarted, how do

you restart transfers that were paused? The answer is quite simple. By enumerating transfers through

getCurrentDownloads[ForTransferGroup]Async and getCurrentUploads[ForTransferGroup]-

Async, incomplete transfers are automatically restarted. But then how do you retrieve the promises

originally returned by the startAsync methods? Those are not values that you can save in your app

state and reload on startup, and yet you need them to be able to cancel those operations, if necessary,

and also to attach your completed, error, and progress handlers.

For this reason, both DownloadOperation and UploadOperation objects provide a method called

attachAsync, which returns a promise for the operation just like startAsync did originally. You can

then call the promise’s then or done methods to provide your handlers:

42 The optional group argument for the other methods is obsolete and replaced with these that work with a transferGroup

argument.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx

230

promise = download.attachAsync().then(complete, error, progress);

and call promise.cancel if needed. In short, when Windows restarts a background transfer and

essentially calls startAsync on your app’s behalf, it holds that promise internally. The attachAsync

methods simply return that new promise.

Authentication, the Microsoft Account, and the User Profile

If you think about it, just about every online resource in the world has some kind of credentials or

authentication associated with it. Sure, we can read many of those resources without credentials, but

having permission to upload data to a website is more tightly controlled, as is access to one’s account

or profile in a database managed by a website. In many scenarios, then, apps need authenticate with

services in some way, using service-specific credentials or perhaps using accounts from other providers

like Facebook, Twitter, Microsoft, and so on.

There are two approaches for dealing with credentials. First, you can collect credentials directly

through your own UI, which means the app is fully responsible for protecting those credentials. For thi s

there are a number of design guidelines for different login scenarios, such as when an app requires a

login to be useful and when a login is simply optional. These topics, as well as where to place login and

account/profile management UI, are discussed in Guidelines for login controls.

For storage purposes, the Credential Locker API in WinRT will help you out here—you can securely

save credentials when you collect them and retrieve them in later sessions so that you don’t have to

pester the user again. Transmitting those credentials to a server, on the other hand, will require

encryption work on your part, and there are many subtleties that can get complicated. For a few notes

on encryption APIs in WinRT, as well as a few other security matters, see Appendix C.

The simpler and more secure approach—one that we highly recommend—is to use the Web

Authentication Broker API. This lets the user authenticate directly with a server in the broker’s UI,

keeping credentials entirely on the server, after which the app receives back a token to use with later

calls to the service. The Web Authentication Broker works with any service that’s been set up as a

provider. This can be your own service, as we’ll see, or an OAuth/OpenID provider.

Tip When thinking about providers that you might use for authentication, remember that non-

domain-joined users sign into Windows with a Microsoft account to begin with. If you can leverage

that Microsoft account with your own services, signing into Windows means they won’t have to enter

any additional credentials or create a separate account for your service, providing a delightfully

transparent experience. The Microsoft account also provides access to other features, as we’ll see in

“Using the Microsoft Account” later on.

One of the significant benefits of the Web Authentication Broker is that authentication for any given

service transfers across apps as well as websites, providing a very powerful single sign-on experience for

users. That is, once a user signs in to a service—either in the browser or in an app that uses the

http://msdn.microsoft.com/library/windows/apps/hh965453.aspx

231

broker—they’re already signed into other apps and sites that use that same service (again, signing into

Windows with a Microsoft account also applies here). To make the story even better, those credentials

also roam across the user’s trusted devices (unless they opt out) so that they won’t even have to

authenticate again when they switch machines. Personally I’ve found this marvelously satisfying—when

setting up a brand new device, for example, all those credentials are immediately in effect!

Sidebar: User Verification via Fingerprints

If your scenario calls for verification that the user that is logged in to the current Microsoft

account is physically present (as opposed to someone who just happens to know a password),

check out the API in Windows.Security.Credentials.UI.UserConsentVerifier. This object

has just two methods, checkAvailabilityAsync and requestVerificationAsync, and yet

provides one of the strongest methods to authenticate a specific human being. For more details,

see “Fingerprint (Biometric) Readers” in Chapter 17, “Devices and Printing.”

The Credential Locker

One of the reasons that apps might repeatedly ask a user for credentials is simply because they don’t

have a truly secure place to store and retrieve those credentials that’s also isolated from all other apps.

This is entirely the purpose of the credential locker, a function that’s also immediately clear from the

name of this particular API: Windows.Security.Credentials.PasswordVault. It’s designed to store

credentials, of course, but you can use it to store other things like tokens as well.

With the locker, any given credential itself is represented by a PasswordCredential object, as we

saw briefly with the background transfer API. You can create an initialized credential as follows:

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password);

Another option is to create an uninitialized credential and set its properties individually:

var cred = new Windows.Security.Credentials.PasswordCredential();

cred.resource = "userLogin"

cred.userName = "username";

cred.password = "password";

A credential object also contains an IPropertySet value named properties, through which the

same information can be managed.

In any case, when you collect credentials from a user and want to save them, create a

PasswordCredential and pass it to PasswordVault.add:

var vault = new Windows.Security.Credentials.PasswordVault();

vault.add(cred);

Note that if you add a credential to the locker with a resource and userName that already exist, the

new credential will replace the old. And if at any point you want to delete a credential from the locker,

call the PasswordVault.remove method with that credential.

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifier.aspx
http://msdn.microsoft.com/library/windows/apps/br227081.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.ipropertyset.aspx

232

Furthermore, even though a PasswordCredential object sees the world in terms of usernames and

passwords, that password can be anything you need to store securely, such as an access token. As we’ll

see in the next section, authentication through OAuth providers might return such a token, in which

case you store something like “Facebook_Token” in the credential’s resource property, your app name

in userName, and the token in password. This is a perfectly legitimate and expected use.

Once a credential is in the locker, it will remain there for subsequent launches of the app until you

call the remove method or the user explicitly deletes it through Control Panel > User Accounts and

Family Safety >Credential Manager. On a trusted PC (which requires sign-in with a Microsoft account),

Windows will also automatically and securely roam the contents of the locker to the user’s other

devices (unless turned off in PC Settings > OneDrive > Sync Settings > Other Settings > Passwords).

This help to create a seamless experience with your app as the user moves between devices.43

So, when you launch an app—even when launching it for the first time—always check if the locker

contains saved credentials. There are several methods in the PasswordVault class for doing this:

 findAllByResource Returns an array (vector) of credential objects for a given resource

identifier. This is how you can obtain the username and password that’s been roamed from

another device, because the app would have stored those credentials in the locker on the other

machine under the same resource.

 findAllByUserName Returns an array (vector) of credential objects for a given username. This

is useful if you know the username and want to retrieve all the credentials for multiple resources

that the app connects to.

 retrieve Returns a single credential given a resource identifier and a username. Again, there

will only ever be a single credential in the locker for any given resource and username.

 retrieveAll Returns a vector of all credentials in the locker for this app. The vector contains

a snapshot of the locker and will not be updated with later changes to credentials in the locker.

There is one subtle difference between the findAll and retrieve methods in the list above. The

retrieve method will provide you with fully populated credentials objects. The findAll methods, on

the other hand, will give you objects in which the password properties are still empty. This avoids

performing password decryption on what is potentially a large number of credentials. To populate that

property for any individual credential, call the PasswordCredential.retievePassword method.

For further demonstrations of the credential locker—the code is very straightforward—refer to the

Credential locker sample. This shows variations for single user/single resource (scenario 1), single

user/multiple resources (scenario 2), multiple users/multiple resources (scenario 3), and clearing out the

locker entirely (scenario 4).

43 Such roaming will not happen, however, if a credential is first stored in the locker on a domain joined machine. This

protects domain credentials from leaking to the cloud.

http://code.msdn.microsoft.com/windowsapps/PasswordVault-f01be74a

233

The Web Authentication Broker
As described earlier, keeping the whole authentication process on a server is the most secure and

trusted way to authenticate with a service, whether you’re using a service-specific account or

leveraging one from any number of other OAuth providers (OAuth, in other words, is not a

requirement). The Web Authentication Broker provides a means of doing this authentication within the

context of an app while yet keeping the authentication process completely isolated from the app.

It works like this. An app provides the URI of the authenticating page of the external site (which

must use the https:// URI scheme; otherwise you get an invalid parameter error). The broker then

creates a new web host process in its own app container, into which it loads the indicated web page.

The UI for that process is displayed as an overlay dialog on the app, as shown in Figure 4-6, for which

I’m using scenario 1 of the Web authentication broker sample.

Provider guidance To create authentication pages for your own service to work with the web

authentication broker, see Web authentication broker for online providers on the dev center.

FIGURE 4-6 The Web authentication broker sample using a Facebook login page.

Note To run the sample you’ll need an app ID for each of the authentication providers in the various

scenarios. For Facebook in scenario 1, visit http://developers.facebook.com/setup and create an App

ID/API Key for a test app.

In the case of Facebook, the authentication process involves more than just checking the user’s

credentials. It also needs to obtain permission for other capabilities that the app wants to use (which

the user might have independently revoked directly through Facebook). As a result, the authentication

process might navigate to additional pages, each of which still appears within the web authentication

broker, as shown in Figure 4-7. In this case the app identity, ProgrammingWin8_AuthTest, is just one

that I created through the Facebook developer setup page for the purposes of this demonstration.

http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://msdn.microsoft.com/library/windows/apps/jj856911.aspx
http://developers.facebook.com/setup

234

FIGURE 4-7 Additional authentication steps for Facebook within the web authentication broker.

Within the broker UI—the branding of which is under the control of the provider—the user might

be taken through multiple pages on the provider’s site (but note that the back button next to the

“Connecting to a service” title dismisses the dialog entirely). But this begs a question: how does the

broker know when authentication is actually complete? In the second page of Figure 4-7, clicking the

Allow button is the last step in the process, after which Facebook would normally show a login success

page. In the context of an app, however, we don’t need that page to appear—we want the broker’s UI

taken down so that we return to the app with the results of the authentication. What’s more, many

providers don’t even have such a page—so what do we do?

Fortunately, the broker takes this into account: the app simply provides the URI of that final page of

the provider’s process. When the broker detects that it’s navigated to that page, it removes its UI and

gives the response to the app, where that response contains the appropriate token with which the app

can access the service API.

As part of this process, Facebook saves these various permissions in its own back end for each

particular user and token, so even if the app started the authentication process again, the user would

not see the same pages shown in Figure 4-7. The user can, of course, manage these permissions when

visiting Facebook through a web browser. If the user deletes the app information there, these

additional authentication steps would reappear (a good way to test the process, in fact).

The overall authentication flow, showing how the broker serves as an intermediary between the app

and a service, is illustrated in Figure 4-8. The broker itself creates a separate app container in which to

load the service’s pages to ensure complete isolation from the app. But then note how the broker is

only an intermediary for authentication: once the service provides a token, which the broker returns to

the app, the app can talk directly with the service. Oftentimes a service will also provide for renewing

the token as needed.

235

FIGURE 4-8 The authentication flow with the web authentication broker.

In WinRT, the broker is represented by the Windows.Security.Authentication.Web.-

WebAuthenticationBroker class. Authentication happens through its authenticateAsync methods. I

say “methods” here because there are two variations. We’ll look at one here and return to the second in

the next section, “Single Sign-On.”

This first variant of authenticateAsync method takes three arguments:

 options Any combination of values from the WebAuthenticationOptions enumeration

(combined with bitwise OR). Values are none (the default), silentMode (no UI is shown),

useTitle (returns the window title of the webpage in the results), useHttpPost (sends the

authentication token through HTTP POST rather than on the URI, to accommodate long tokens

that would make the URI exceed 2K), and useCorporateNetwork (to render the web page in an

app container with the Private Networks (Client & Server), Enterprise Authentication, and Shared

User Certificates capabilities; the app must have also declared these).

 requestUri The URI (Windows.Foundation.Uri) for the provider’s authentication page

along with the parameters required by the service; again, this must use the https:// URI

scheme.

 callbackUri The URI (Windows.Foundation.Uri) of the provider’s final page in its

authentication process. The broker uses this to determine when to take down its UI.44

44 As described on How the web authentication broker works, requestUri and callbackUri “correspond to an
Authorization Endpoint URI and Redirection URI in the OAuth 2.0 protocol. The OpenID protocol and earlier versions of

OAuth have similar concepts.”

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationoptions.aspx
http://msdn.microsoft.com/library/windows/apps/Hh750286.aspx

236

The results given to the completed handler for authenticateAsync is a WebAuthentication-

Result object. This contains properties named responseStatus (a WebAuthenticationStatus with

either success, userCancel, or errorHttp), responseData (a string that will contain the page title

and body if the useTitle and useHttpPost options are set, respectively), and responseErrorDetail

(an HTTP response number).

Tip Web authentication events are visible in the Event Viewer under Application and Services Logs >

Microsoft > Windows > WebAuth > Operational. This can be helpful for debugging because it brings

out information that is otherwise hidden behind the opaque layer of the broker. The Fiddler tool is also

very helpful for debugging. For more details, see Troubleshooting web authentication broker.

Generally speaking, the app is most interested in the contents of responseData, because it will

contain whatever tokens or other keys that might be necessary later on. Let’s look at this again in the

context of scenario 1 of the Web authentication broker sample. Set a breakpoint within the completed

handler for authenticateAsync (line 59 or thereabouts), and then run the sample, enter an app ID you

created earlier, and click Launch. (Note that the callbackUri parameter is set to https://

www.facebook.com/connect/login_success.html, which is where the authentication process finishes up.)

In the case of Facebook, the responseData contains a string in this format:

https://www.facebook.com/connect/login_success.html#access_token=<token>&expires_in=<timeout>

where <token> is a bunch of alphanumeric gobbledygook and <timeout> is some period defined by

Facebook. If you’re calling any Facebook APIs—which is likely because that’s why you’re authenticating

through Facebook in the first place—the <token> is the real treasure you’re after because it’s how you

authenticate the user when making later calls to that API. (This is true of web APIs in general too.)

This token is what you then save in the credential locker for later use when the app is relaunched

after being closed or terminated. With Facebook, you don’t need to worry about the expiration of that

token because the API generally reports that as an error and has a built-in renewal process. You’d do

something similar with other services, referring, of course, to their particular documentation on what

information you’ll receive with the response and how to use and/or renew keys or tokens. The Web

authentication broker sample, for its part, shows how to also work with Twitter (scenario 2), Flickr

(scenario 3), and Google/Picasa (scenario 4), and it also provides a generic interface for any other

service (scenario 5). The sample also shows the recommended UI for managing accounts (scenario 6)

and how to use an OAuth filter with the HttpClient API to separate authentication concerns from the

rest of your app logic.

It’s instructive to look through these various scenarios. Because Facebook and Google use the

OAuth 2.0 protocol, the requestUri for each is relatively simple (ignore the word wrapping):

https://www.facebook.com/dialog/oauth?client_id=<client_id>&redirect_uri=<redirectUri>&

scope-read_stream&display=popup&response_type=token

https://accounts.google.com/o/oauth2/auth?client_id=<client_id>&redirect_uri=<redirectUri>&

response_type=code&scope=http://picasaweb.google.com/data

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationstatus.aspx
http://msdn.microsoft.com/library/windows/apps/jj856910.aspx
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122

237

where <client_id> and <redirectUri> are replaced with whatever is specific to the app. Twitter and

Flickr, for their parts, use OAuth 1.0a protocol instead, so much more ceremony goes into creating the

lengthy OAuth token to include with the requestUri argument to authenticateAsync. I’ll leave it to

the sample code to show those details.

Single Sign-On

What we’ve seen so far with the credential locker and the web authentication broker works very well to

minimize how often the app needs to pester the user for credentials. Where a single app is concerned,

it would ideally only ask for credentials once until such time as the user explicitly logs out. But what

about multiple apps? Imagine over time that you acquire some dozens, or even hundreds, of apps from

the Windows Store that use services that all require authentication. Even if those services exclusively use

well-known OAuth providers, it’d still mean that you’d have to enter your Facebook, Twitter, Google,

LinkedIn, Tumblr, Yahoo, or Yammer credentials in each and every app. At that point, the fact that you

only need to authenticate each app once gets lost in the overall tedium!

From the user’s point of view, once they’ve authenticated through a given provider in one app, it

makes sense that other apps should benefit from that authentication if possible. Yes, some apps might

need to prompt for additional permissions and some providers may not support the process, but the

ideal is again to minimize the fuss and bother where we can.

The concept of single sign-on is exactly this: authenticating the user in one app (or the system in the

case of a Microsoft account) effectively logs the user in to other apps that use the same provider. To

make this work, the web authentication broker keep persisted logon cookies for each service in a

special app container that’s completely isolated from apps but yet allows those cookies to be shared

between apps (like cookies are shared between websites in a browser). At the same time, each app

must often acquire its own access keys or tokens, because these should not be shared between apps.

So the real trick is to effectively perform the same kind of authentication we’ve already seen, only to do

it without showing any UI unless it’s really necessary. (An example of this experience can be seen on the

Windows App Builder’s blog post on Facebook login.)

This is the purpose of the variation of authenticateAsync that takes only the options and

requestUri arguments (and not an explicit callbackUri). In this case options is often set to

WebAuthenticationOptions.silentMode to prevent the broker’s UI from appearing (this isn’t

required). But then how does the broker know when authentication is complete? That is, what

callbackUri does it use for comparison, and how does the provider know that itself? It sounds like a

situation where the broker would just sit there, forever hidden, while the provider patiently waits for

input to a web page that’s equally invisible!

What actually happens is that authenticateAsync watches for the provider to navigate to a special

callbackUri in the form of ms-app://<SID>, where <SID> is a security identifier that uniquely identifies

the calling app. This SID URI, as we’ll call it, is obtained in two ways. In code, call the static method

WebAuthenticationBroker.getCurrentApplicationCallbackUri. This returns a Windows.-

Foundation.Uri object whose absoluteUri property is the string you need. The second means is

http://blogs.windows.com/windows/b/appbuilder/archive/2013/11/14/facebook-login-for-windows-store-apps.aspx

238

through the Windows Store Dashboard. When viewing info for the app in question, go to the “Services”

section. There you’ll see a link to the “Live Services site” (rooted at https://account.live.com). On that

site, click the link “Authenticating your service” and you’ll see the URI listed here under Package

Security Identifier (SID).

To understand how it’s used, let’s follow the entire flow of the silent authentication process:

5. The app registers its SID URI with the service. From code, this could be done through some

service API or other endpoint that’s been set up for this purpose. A service could have a page

(like Facebook) where you, the developer, registers your app directly and provides the SID URI

as part of the process.

6. When constructing the requestUri argument for authenticateAsync, the app inserts its SID

URI as the value of the &redirect_uri= parameter. The SID URI will need to be appropriately

encoded as other URI parameters, of course, using encodeURIComponent.

7. The app calls authenticateAsync with the silentMode option.

8. When the provider processes the requestUri parameters, it checks whether the redirect_uri

value has been registered, responding with a failure if it hasn’t.

9. Having validated the app, the provider then silently authenticates (if possible) and navigates to

the redirect_uri, making sure to include things like access keys and tokens in the response data.

10. The web authentication broker will detect this navigation and match it to the app’s SID URI.

Finding a match, the broker can complete the async operation and provide the response data to

the app.

With all of this, it’s still possible that the authentication might fail for some other reason. For

example, if the user has not set up permissions for the app in question (as with Facebook), it’s not

possible to silently authenticate. So, an app attempting to use single sign-on would call this form of

authenticateAsync first and, failing that, would then revert to calling its longer form (with UI), as

described in the previous section.

Using the Microsoft Account
Because various Microsoft services are OAuth providers, it is possible to use the web authentication

broker with a Microsoft account such as Hotmail, Live, and MSN. (I still have the same @msn.com email

account I’ve had since 1996!) Details can be found on the OAuth 2.0 page on the Live Connect

Developer Center.

Live Connect accounts—also known as Microsoft accounts—are in a somewhat more privileged

position because they can also be used to sign in to Windows or can be connected to a domain

account used for the same purpose. Many of the built-in apps such as Mail, Calendar, OneDrive,

People, and the Windows Store itself work with this same account. Thus, it’s something that many other

apps might want to take advantage of. Such apps automatically benefit from single sign-on and have

https://account.live.com/
http://msdn.microsoft.com/library/ie/aeh9cef7(v=vs.94).aspx
http://msdn.microsoft.com/library/live/hh243647.aspx

239

access to the same Live Services that the built-in apps draw from themselves (including Skype, which

has taken the place of Live Messenger).

The whole gamut of what’s available can be found on the Live Connect documentation.45 You can

access Live Connect features directly through its REST API as well as through the client side libraries of

the Live SDK. When you install the SDK and add the appropriate references to your project, you’ll have

a WL namespace available in JavaScript. Signing in, for example, is accomplished through the WL.login

method.

To explore Live Services a little, we’ll first walk through the user experience that applies here and

then we’ll turn to the LiveConnect example in this chapter’s companion content, which demonstrates

using the Live SDK library. Note that when using Live Services, the app’s package information in its

manifest must match what exists in the Windows Store dashboard for your app. To ensure this, create

the app profile in the dashboard (to what extent you can), go to Visual Studio, select the Store >

Associate App with the Store menu command, sign in to the Store, and select your app.

The OnlineId API in WinRT The Windows.Security.Authentication.OnlineId namespace

contains an API that has some redundancy with the Live SDK, providing another route to log in and

obtain an access token. The Windows account authorization sample demonstrates this, using the token

when making HTTP requests directly to the Live REST API. Although the sample includes a JavaScript

version, the API is primarily meant for apps written in C++ where there isn’t another option like the

Live SDK. However, the API is also useful when the user logs into Windows with something other than

a Microsoft account, such as a domain account. The OnlineIdAuthenticator.canSignOut property,

for example, is set to true if the Microsoft account is not the primary login, and thus apps that use it

should provide a means to sign out. The OnlineId API also provides for authenticating multiple

accounts together (e.g., multiple OneDrive accounts) and can also work with provider like Windows

Azure Active Directory and OneDrive Pro.

The Live Connect User Experience

Whenever an app attempts to log in to Live Connect for the first time, a consent dialog such as that in

Figure 4-9 will automatically appear to make sure the user understands the kinds of information the

app might access. If the user denies consent, then of course the login will fail. For this reason the app

should provide a means through which the user can sign in again. (Also see Guidelines for the

Microsoft account sign-in experience for additional requirements.)

45 Additional helpful references include Live Connect (Windows Store apps), Single sign-on for apps and websites, Using

Live Connect to personalize apps, and Guidelines for the Microsoft account sign-in experience. Also see Bring single sign-

on and OneDrive to your Windows apps with the Live SDK and Best Practices when adding single sign-on to your app

with the Live SDK on the Windows 8 Developer Blog (prior to the Windows App Builder blog).

http://msdn.microsoft.com/library/live/ff621314.aspx
http://msdn.microsoft.com/live/ff621310
http://msdn.microsoft.com/library/windows/apps/Hh701371
http://code.msdn.microsoft.com/windowsapps/Windows-account-authorizati-7c95e284
http://msdn.microsoft.com/library/live/hh968443.aspx
http://msdn.microsoft.com/library/live/hh968443.aspx
http://msdn.microsoft.com/library/live/hh826551.aspx
http://msdn.microsoft.com/en-us/library/live/hh826544.aspx
http://msdn.microsoft.com/library/windows/apps/hh770853.aspx
http://msdn.microsoft.com/library/windows/apps/hh770853.aspx
http://msdn.microsoft.com/library/windows/apps/hh968443.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/14/bring-single-sign-on-and-skydrive-to-your-windows-8-apps-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/14/bring-single-sign-on-and-skydrive-to-your-windows-8-apps-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx

240

FIGURE 4-9 The Live Connect consent dialog that appears when you first attempt to log in.

With this Live Connect login, the information that appears here (and in the other UI described

below) comes through a configuration that’s specific to Live Connect. You can do this in two ways,

assuming you’ve created a profile for the app in the Windows Store dashboard. One way is to visit

https://account.live.com/Developers/Applications/ and find your app there. The other is to go to the

Windows Store dashboard, open your app’s profile, and click Services. There you should see a Live

Services Site link. Click that, and then find the link that reads Representing Your App to Live Connect

Users. Click that one (talk about runaround!) and you’ll finally arrive at a page where you can set your

app’s name, provide URIs for your terms of service and privacy statement, and upload a logo. All of this

is independent of other info that exists in your app or in the Store dashboard, though you’ll probably

use the same URIs for your terms and privacy policy.

Note that if the user signed in to Windows with a domain account that has not been connected to a

Microsoft account (through PC Settings > Accounts > Your Account), the first login attempt will

prompt the user for those account credentials, as shown in Figure 4-10. Fortunately, the user will have

to do this only once for all apps that use the Microsoft account, thanks to single sign-on.

https://account.live.com/Developers/Applications/

241

FIGURE 4-10 The Microsoft account login dialog if the user logged in to Windows with a domain account.

Once you’ve consented to any request from an app, those permissions can be managed through the

Microsoft Account portal, https://account.live.com. You can also get there from http://www.live.com by

clicking your name on the upper right. This will pop up some options (as shown below), where Account

Settings takes you to the account management page.

On the management page, select Permissions on the left side, and then click the Manage Apps And

Services link:

https://account.live.com/
http://www.live.com/

242

Now you’ll see what permissions you’ve granted to all apps that use the Microsoft account, and

clicking an app name (or the Edit link shown under it) takes you to a page where you can manage

permissions, including revoking those to which you’ve consented earlier:

If permissions are revoked, the consent dialog will appear again when the app is next run (though

you might need to sign out of Windows first—single sign on is sometimes quite sticky!). It does not

appear (from my tests) to affect an app that is already running; those permissions are likely cached for

the duration of the app session.

Live SDK Library Basics

Assuming that your app has been defined in Windows Store dashboard and that you’ve associated

your Visual Studio project to it as mentioned before (the Store > Associate App with the Store menu

command), the first thing you do in code is call WL.init. This can accept various configuration

properties, if desired. After this you can subscribe to various events using WL.Event.subscribe; the

LiveConnect example watches the login, sessionChange, and statusChange events:

WL.init();

WL.Event.subscribe("auth.login", onLoginComplete);

WL.Event.subscribe("auth.sessionChange", onSessionChange);

WL.Event.subscribe("auth.statusChange", onStatusChange);

Signing in with the Microsoft account, which provides a token, is then done with the WL.login

method (js/default.js):

WL.login({ scope: ["wl.signin", "wl.basic"] }).then(

 function (response) {

 WinJS.log && WinJS.log("Authorization response: " + JSON.stringify(response), "app");

 },

 function (response) {

 WinJS.log && WinJS.log("Authorization error: " + JSON.stringify(response), "app");

 }

);

http://msdn.microsoft.com/library/live/hh550844.aspx
http://msdn.microsoft.com/library/live/hh550840.aspx
http://msdn.microsoft.com/library/live/hh550845.aspx

243

WL.login takes an object argument with a scope property that provides the list of scopes—features,

essentially—that we want to use in the app (these can also be given to WL.init). WL.login returns a

promise to which we then attach completed and error handlers that log the response. (Note that

promises from WL methods support only a then method; they don’t have done.)

Again, when you run the app the first time, you’ll see the consent dialog shown earlier in Figure 4-9.

Assuming that consent is given and the login succeeds, the response that’s delivered to the completed

handler for WL.login will contain status and session properties, the latter of which contains the

access token. In the LiveConnect example, the response is output to the JavaScript console:

Authorization response: {"status":"connected","session":{"access_token":"<token_string>"}}

The token itself is easily accessed through the login result. Assuming we call that variable response,

as in the code above, the token would be in response.session.access_token.

Note that there really isn’t any need to save the token into persistent storage like the Credential

Locker because you’ll always attempt to login when the app starts. If that succeeds, you’ll get the token

again; if it fails, you wouldn’t be able to get to the service anyway. If the login fails, by the way, the

response object given to your error handler will contain error and error_description properties:

{ "error": "access_denied",

 "error_description": "The authentication process failed with error: Canceled" }

Note also that attempting to log out of the Microsoft account with WL.logout, if that’s how the user

logged in to Windows, will generate an error to this effect.

Anyway, a successful login will also trigger sessionChange events as well as the login event. In the

LiveConnect example, the login handler (a function called onLoginComplete) retrieves the user’s

name and profile picture by using the Live API as follows (js/default.js, code condensed and error

handlers omitted):

var loginImage = document.getElementById("loginImage");

var loginName = document.getElementById("loginName");

WL.api({ path: "me/picture?type=small", method: "get" }).then(

 function (response) {

 if (response.location) { img.src = response.location; }

 },

);

WL.api({ path: "me", method: "get" }).then(

 function (response) { name.innerText = response.name; },

);

Methods in the Live API are invoked, as you can see, with the WL.api function. The first argument to

WL.api is an object that specifies the path (the data or API object we want to talk to), an optional

method (specifying what to do with it, with “get” as the default), and an optional body (a JSON object

with the request body for “post” and “put” methods). It’s not too hard to think of WL.api as essentially

http://msdn.microsoft.com/library/live/hh243646.aspx
http://msdn.microsoft.com/library/live/hh550838.aspx

244

generating an HTTP request using method and body to https://apis.live.net/v5.0/<path>

?access_token=<token>, automatically using the token that came back from WL.login. But of course

you don’t have to deal with those details.

In any case, if all goes well, the app shows your username and image in the upper right, similar to

what you see in various apps:

The User Profile (and the Lock Screen Image)
Any discussion about user credentials brings up the question of accessing additional user information

that Windows itself maintains (this is separate from anything associated with the Microsoft account).

What is available to Windows Store apps is provided through the Windows.System.UserProfile API.

Here we find three classes of interest.

The first is the LockScreen class, through which you can get or set the lock screen image or

configure an image feed (a slideshow). The image is available through the originalImageFile

property (returning a StorageFile) and the getImageStream method (returning an

IRandomAccessStream). Setting the image can be accomplished through setImageFileAsync (using a

StorageFile) and setImageStreamAsync (using an IRandomAccessStream). This would be utilized in

a photo app that has a command to use a picture for the lock screen. For an image feed you use

requestSetImageFeedAsync and tryRemoveImageFeedAsync. See the Lock screen personalization

sample for a demonstration.

The second is the GlobalizationPreferences object, which contains the user’s specific choices for

language and cultural settings. We’ll return to this in Chapter 19, “Apps for Everyone, Part 1.”

Third is the UserInformation class, whose capabilities are clearly exercised within PC Settings >

Accounts > Your Account > Account Picture:

 User name If the nameAccessAllowed property is true, an app can then call

getDisplayNameAsync, getFirstNameAsync, and getLastNameAsync, all of which provide a

string to your completed handler. If nameAccessAllowed is false, these methods will complete

but provide an empty result. Also note that the first and last names are available only from a

Microsoft account.

 User picture or video Retrieved through getAccountPicture, which returns a StorageFile

for the image or video. The method takes a value from AccountPictureKind: smallImage,

largeImage, and video.

 If the accountPictureChangeEnabled property is true, you can use one of four methods to

set the image(s): setAccountPictureAsync (for providing one image from a StorageFile),

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.lockscreen.aspx
http://code.msdn.microsoft.com/windowsapps/Personalization-App-sample-9ebfe147
http://code.msdn.microsoft.com/windowsapps/Personalization-App-sample-9ebfe147
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.userinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.accountpicturekind.aspx

245

setAccountPicturesAsync (for providing small and large images as well as a video from

StorageFile objects), and setAccountPictureFromStreamAsync and

setAccountPicturesFromStreamAsync (which do the same given IRandomAccessStream

objects instead). In each case the async result is a SetAccountPictureResult value: success,

failure, changeDisabled (accountPictureChangeEnabled is false), largeOrDynamicError

(the picture is too large), fileSizeError (file is too large), or videorameSizeError (video

frame size is too large),

 The accountpicturechanged event signals when the user picture(s) have been altered.

Remember that because this event originates within WinRT, you should call

removeEventListener if you aren’t listening for this event for the lifetime of the app.

These features are demonstrated in the Account picture name sample. Scenario 1 retrieves the

display name, scenario 2 retrieves the first and last name (if available), scenario 3 retrieves the account

pictures and video, and scenario 4 changes the account pictures and video and listens for picture

changes.

One other bit that this sample demonstrates is the Account Picture Provider declaration in its

manifest, which causes the app to appear within PC Settings > Accounts > Your Account, under Create

an Account Picture:

In this case the sample doesn’t actually provide a picture directly but launches into scenario 4. A real

app, like the Camera app that’s also in PC Settings by default, will automatically set the account picture

when one is acquired through its UI. How does it know to do this? The answer lies in a special URI

scheme through which the app is activated. That is, when you declare the Account Picture Provider

declaration in the manifest, the app will be activated with the activation kind of protocol (see Chapter

15), where the URI scheme specifically starts with ms-accountpictureprovider. You can see how this

is handled in the sample’s js/default.js file:

if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.protocol) {

 // Check if the protocol matches the "ms-accountpictureprovider" scheme

 if (eventObject.detail.uri.schemeName === "ms-accountpictureprovider") {

 // This app was activated via the Account picture apps section in PC Settings.

 // Here you would do app-specific logic for providing the user with account

 // picture selection UX

 }

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.setaccountpictureresult.aspx
http://code.msdn.microsoft.com/windowsapps/Account-picture-name-sample-912baff1

246

Returning to the UserInformation class, it also provides a few more details for domain accounts

provided that the app has declared the Enterprise Authentication capability in its manifest:

 getDomainNameAsync Provides the user’s fully qualified domain name as a string in the form

of <domain>\<user> where <domain> is the full name of the domain controller, such as

mydomain.corp.ourcompany.com.

 getPrincipalNameAsync Provides the principal name as a string. In Active Directory parlance,

this is an Internet-style login name (known as a user principal name or UPN) that is shorter and

simpler than the domain name, consolidating the email and login namespaces. Typically, this is

an email address like user@ourcompany.com.

 getSessionInitiationProtocolUriAsync Provides a session initiation protocol URI that will

connect with this user; for background, see Session Initiation Protocol (Wikipedia).

The use of these methods is demonstrated in the User domain name sample.

What We’ve Just Learned

 Networks come in a number of different forms, and separate capabilities in the manifest

specifically call out Internet (Client), Internet (Client & Server), and Private Networks (Client &

Server). Local loopback within these is normally blocked for apps but may be used for

debugging purposes on machines with a developer license.

 Rich network information is available through the Windows.Networking.Connectivity.-

NetworkInformation API, including the ability to track connectivity, be aware of network costs,

and obtain connection profile details.

 Connectivity can be monitored from a background task by using the networkStateChange

trigger and conditions such as internetAvailable and internetNotAvailable.

 The ability to run offline can be an important consideration that can make an app much more

attractive to customers. Apps need to design and implement such features themselves, using

local or temporary app data folders to store the necessary caches.

 Web content can be hosted in an app both in webview and iframe elements, depending on

requirements. The local and web contexts for use with iframe elements provide different

capabilities for hosted content, whereas the webview can host local dynamically-generated

content (using ms-appdata URIs) and untrusted web content.

 To make HTTP requests, you can choose between XMLHttpRequest, WinJS.xhr, and

Windows.Web.Http.HttpClient, the latter of which is the most powerful. In all cases, the

resuming event if often used to refresh online content as appropriate.

 Windows.Networking.BackgroundTransfer provides for prefetching online content as well as

http://en.wikipedia.org/wiki/Session_Initiation_Protocol
http://code.msdn.microsoft.com/windowsapps/User-domain-name-sample-85ce3e49

247

managing transfers while an app isn’t running. It include cost-awareness, credentials, grouping,

and muItipart uploads, and is recommended over using your own HTTP requests for larger

transfers.

 The Credential Locker is the place to securely store any credentials or sensitive tokens that an

app might collect.

 To ideally keep credentials off the client device entirely, apps can log into services through the

Web Authentication Broker API, which also provides for single sign-on across apps that use the

same identity provider.

 Though the user’s Microsoft account and the Live SDK, apps can access all the information

available in Live Services, including OneDrive, contacts, and calendar.

 Apps can obtain and manage some of the user’s profile data, including the user image or video

and the lock screen image and video.

248

Chapter 5

Controls and Control Styling

Controls are one of those things you just can’t seem to get away from, especially within technology-

addicted cultures like those that surround many of us. Even low-tech devices like bicycles and various

gardening tools have controls. But this isn’t a problem—it’s actually a necessity. Controls are the means

through which human intent is translated into the realm of mechanics and electronics, and they are

entirely made to invite interaction. As I write this, in fact, I’m sitting on an airplane and noticing all the

controls that are in my view. The young boy in the row ahead of me seems to be doing the same, and

that big “call attendant” button above him is just begging to be pressed!

Controls are certainly essential to Windows Store apps, and they will invite consumers to poke, prod,

touch, click, and swipe them. (They will also invite the oft-soiled hands of many small toddlers as well;

has anyone made a dishwasher-safe tablet PC yet?) Windows, of course, provides a rich set of controls

for apps written in HTML, CSS, and JavaScript. What’s most notable in this context is that from the

earliest stages of design, Microsoft wanted to avoid forcing HTML/JavaScript developers to use controls

that were incongruous with what those developers already know—namely, the use of HTML control

elements like <button> that can be styled with CSS and wired up in JavaScript by using functions like

addEventListener and on<event> properties.

You can, of course, use those intrinsic HTML controls in a Store app because those apps run on top

of the same HTML/CSS rendering engine as Internet Explorer. No problem. There are even special

classes, pseudo-classes, and pseudo-elements that give you fine-grained styling capabilities, as we’ll

see. But the real question was how to implement Windows-specific controls like the toggle switch and

list view that would allow you to work with them in the same way—that is, declare them in markup,

style them with CSS, and wire them up in JavaScript with addEventListener and on<event>

properties.

The result of all this is that for you, the HTML/JavaScript developer, you’ll be looking to WinJS for

these controls rather than WinRT. Let me put it another way: if you’ve noticed the large collection of

APIs in the Windows.UI.Xaml namespace (which constitutes about 40% of WinRT), guess what? You

get to completely ignore all of them! Instead, you’ll use the WinJS controls that support declarative

markup, styling with CSS, and so on, which means that Windows controls (and custom controls that

follow the same model) ultimately show up in the DOM along with everything else, making them

accessible in all the ways you already know and understand.

The story of Windows controls is actually larger than a single chapter. We’ve already explored the

webview control in Chapter 4, “Web Content and Services.” Here we’ll now look primarily at those

controls that represent or work with simple data (single values) and that participate in page layout as

elements in the DOM. Participating in the DOM, in fact, is exactly why you can style and manipulate all

249

the controls (HTML and WinJS alike) through standard mechanisms, and a big part of this chapter is to

just visually show the styling options you have available.

In Chapter 6, “Data Binding, Templates, and Collections,” we’ll explore the related subject of data

binding: creating relationships between properties of data objects and properties of controls (including

styles) so that the controls reflect what’s happening in the data. Binding is frequently used with

collections of data objects, so Chapter 6 will also delve into those details along with the WinJS

templating mechanism that’s often used to render data items.

That brings us to the next part of the story in Chapter 7, “Collection Controls,” where we meet those

controls that exist to display and interact with potentially large data sets. These are the Repeater,

ItemContainer, FlipView, and ListView controls. Later on we’ll also give special attention to media

elements (image, audio, and video) and their unique considerations in Chapter 13, aptly titled “Media,”

and pick up the details of the SearchBox control in Chapter 15, “Contracts.” Similarly, those elements

that are primary for defining layout (like grid and flexbox) are the subject of Chapter 8, “Layout and

Views,” and we also have a number of UI elements that don’t participate in layout at all, like app bars,

navigation bars, and flyouts, as we’ll see in Chapter 9, “Commanding UI.”

In short, having covered much of the wiring, framing, and plumbing of an app in Chapter 3, “App

Anatomy and Performance Fundamentals,” and obtaining content from remote sources in Chapter 4,

we’re ready to start enjoying the finish work like light switches, doorknobs, and faucets—the things

that make an app and its content really come to life and engage with human beings.

Sidebar: Essential References for Controls

Before we go on, you’ll want to know about two essential topics on the Windows Developer

Center that you’ll likely refer to time and time again. First is the comprehensive Controls list that

identifies all the controls that are available to you, as we’ll summarize later in this chapter. The

second are comprehensive UX Guidelines for Windows Store apps, which describes the best use

cases for most controls and scenarios in which not to use them. This is a very helpful resource for

both you and your designers.

The Control Model for HTML, CSS, and JavaScript

Again, when Microsoft designed the developer experience for Windows Store apps, we strove for a

high degree of consistency between intrinsic HTML control elements, WinJS controls, and custom

controls. I like to refer to all of these as “controls” because they all result in a similar user experience:

some kind of widget with which the user interacts with an app. In this sense, every such control has

three parts:

 Declarative markup (producing elements in the DOM).

http://msdn.microsoft.com/library/windows/apps/hh465453.aspx
http://msdn.microsoft.com/library/windows/apps/hh465424#ui_controls

250

 Applicable CSS (styles as well as special pseudo-class and pseudo-element selectors); also see

the sidebar coming up on WinJS stylesheets.

 Methods, properties, and events accessible through JavaScript.

Standard HTML controls, of course, already have dedicated markup to declare them, like <button>,

<input>, and <progress>. Styles are applied to them as with any other HTML element, and once you

obtain the control’s object in JavaScript you can programmatically set styles, modify properties, call

methods, and attach events handlers, as you well know.

WinJS and custom controls follow nearly all of these same conventions with the exception that they

don’t have dedicated markup. You instead declare these controls by using some root element, typically

a <div> or , with two custom data-* attributes: data-win-control and data-win-options.

The value of data-win-control (required) specifies the fully qualified name of a public constructor

function that creates the necessary child elements of the root that make up the control. The second,

data-win-options, is an optional JSON string containing key-value pairs separated by commas: {

<key1>: <value1>, <key2>: <value2>, ... }. These values are used to initialize the control.

Headache relief #1 Avoid using self-closing div or span elements for controls. Self-closing tags, like

<div … /> are not valid HTML5 and will behave as if you left off the / entirely. This will cause great

confusion when subsequent controls aren’t instantiated properly. In short, always match <div> with

</div> and with .

Headache relief #2 If you’ve just made changes to data-win-options and your app seems to

terminate without reason (and without an exception) when you next launch it, check for syntax errors

in the options string. Forgetting the closing }, for example, will cause this behavior.

The constructor function itself takes two parameters: the root (parent) element and an options

object. Conveniently, WinJS.Class.define produces functions that look exactly like this, making it

very handy for defining controls. Indeed, WinJS defines all of its controls using WinJS.Class.define,

and you can do the same for custom controls. The only real difference, in fact, between WinJS controls

and custom controls is that the former’s constructors already exist in WinJS whereas you need to

implement the latter’s.

Because data-* attributes are, according to the HTML5 specifications, completely ignored by the

HTML/CSS rendering engine, some additional processing is necessary to turn an element with these

attributes into an actual control in the DOM. And this, as I’ve hinted at before, is exactly the life

purpose of the WinJS.UI.process and WinJS.UI.processAll methods. As we’ll see shortly, these

methods parse the data-win-options string and pass the resulting object and the root element to the

constructor function identified in data-win-control. The constructor then does all the rest.

The result of this simple declarative markup plus WinJS.UI.process/processAll is that WinJS and

custom controls are just elements in the DOM like any others. They can be referenced by DOM-

traversal APIs and targeted for styling using the full extent of CSS selectors (as we’ll see in the styling

251

gallery later on). They can listen for external events like other elements and can surface events of their

own by implementing [add/remove]EventListener and on<event> properties. (WinJS again provides

standard implementations of addEventListener, removeEventListener, and dispatchEvent for this

purpose.)

Let’s now look at the controls we have available for Windows Store apps, starting with the HTML

controls and then the WinJS controls. In both cases we’ll look at their basic appearance, how they’re

instantiated, and the options you can apply to them.

Sidebar: WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles

As you’ve seen by now with various code samples, WinJS comes with two parallel stylesheets that

provide many default styles and style classes for Windows Store apps: ui-light.css and ui-dark.css.

You’ll typically use one or the other; however, as described in Chapter 3 in the section “Page

Specific Styling,” you can apply them to specific pages. In any case, the light stylesheet is

intended for apps that are oriented around text, because dark text on a light background is

generally easier to read (so this theme is often used for news readers, books, magazines, etc.,

including figures in published books like this!). The dark theme, on the other hand, is intended

for media-centric apps like picture and video viewers where you want the richness of the media

to stand out.

Both stylesheets define a number of win-* style classes, which I like to think of as style

packages (containing styles and CSS-based behaviors like the :hover pseudo-class). Most of

these classes apply only to WinJS controls, but some specifically turn standard HTML controls

into a Windows-specific variant. These are win-backbutton and win-navigation-backbutton

for buttons, win-ring, win-medium, and win-large for circular progress controls, win-error

and win-paused for progress controls generally, win-small for a rating control, win-vertical

for a vertical slider (range) control, and win-textarea for a content editable div. There are also

a number of win-type-* classes to centralize font sizes. If you want to see the details, search on

their names in the Style Rules tab in Blend.

HTML Controls

HTML controls, I hope, don’t need much explaining. They are described in HTML5 references, such as

http://www.w3schools.com/html/html5_intro.asp , and shown with default “light” styling in Figure 5-1

and Figure 5-2. (See the next section for more on WinJS stylesheets.) It’s worth mentioning that most

embedded objects are not supported, except for specific ActiveX controls; see Migrating a web app.

http://www.w3schools.com/html/html5_intro.asp
http://msdn.microsoft.com/library/windows/apps/hh465143.aspx

252

Creating or instantiating HTML controls works as you would expect. You can declare them in

markup by using attributes to specify options, the rundown of which is given in the table following

Figure 5-2. You can also create them procedurally from JavaScript by calling new with the appropriate

constructor, configuring properties and listeners as desired, and adding the element to the DOM

wherever it’s needed. Nothing new here at all where Store apps are concerned.

For examples of creating and using these controls, refer to the HTML essential controls sample in

the Windows SDK, from which the images in Figure 5-1 and Figure 5-2 were obtained. In the sample

you’ll find different scenarios that show many variations for the individual controls, including styling

options as I’ll summarize later in the chapter. Note also that scenario 13 shows how to layout a form,

and all the scenarios provide a radiobutton to toggle between the light and dark stylesheets (modifying

the CSS links as discussed in Chapter 3). Scenario 14 lets you also see how this looks any page

background color of your choice.

Tip For more on creating, validating, and submitting forms built with HTML controls, refer to the

HTML5 form validation sample.

FIGURE 5-1 Standard HTML5 controls with default “light” styles (the ui-light.css stylesheet of WinJS).

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/HTML5-form-validation-25f43b45

253

FIGURE 5-2 Standard HTML5 text input controls with default “light” styles (the ui-light.css stylesheet of WinJS).

Control Markup Common Option Attributes Element Content (inner

text/HTML)

Button <button type="button"> (Note that without type, the

default is "submit")

button text

Button <input type="button">

<input type="submit">

<input type="reset">

value (button text) n/a

Checkbox <input type=“checkbox”>
value, checked n/a (use a label element

around the input control to

add clickable text)

Drop Down List <select>
size=“1” (default), multiple,
selectedIndex

multiple <option> elements

Email <input type="email">
value (initial text) n/a

File Upload <input type="file">
accept (mime types), mulitple n/a

Hyperlink <a>
href, target Link text

254

ListBox <select> with size > 1
size (a number greater than 1),

multiple, selectedIndex

multiple <option> elements

Multi-line Text <textarea>
cols, rows, readonly, data-

placeholder (because

placeholder has a bug)

initial text content

Number <input type="number">
value (initial text) n/a

Password <input type=“password">
value (initial text) n/a

Phone Number <input type=“tel">
value (initial text) n/a

Progress <progress>
value (initial position), max

(highest position; min is 0); no

value makes it inderterminate

n/a

Radiobutton <input type="radiobutton">
value, checked, defaultChecked radiobutton label

Rich Text <div> contentEditable=“true” HTML content

Slider <input type="range">
min, max, value (initial position),

step (increment)

n/a

URI <input type="url">
value (initial text) n/a

When to show progress controls? A progress element is clearly intended to inform the user that

something is happening in the app. They can be used to indicate background progress, like syncing, or

to indicate that some processing is blocking further interactivity. The latter case is best avoided

entirely, if possible, so that the app is always interactive. If you must block interactivity, however, the

recommendation is to show a progress indicator after two seconds and then provide a means to cancel

the operation after ten seconds.

Extensions to HTML Elements
As you probably know already, there are many developing standards for HTML and CSS. Until these are

brought to completion, implementations of those standards in various browsers are typically made

available ahead of time with vendor-prefixed names. In addition, browser vendors sometimes add their

own extensions to the DOM API for various elements.

With Windows Store apps, of course, you don’t need to worry about the variances between

browsers, but because these apps essentially run on top of the Internet Explorer engine, it helps to

know about those extensions that still apply. The key ones are summarized in the table below, and you

can find the full details in the Elements and Cascading Style Sheets references in the documentation.

We’ll also encounter a few others in later chapters. Another simple way to determine what extensions

are available on any given object is to examine that object directly in the Visual Studio debugger at run

time. Visual Studio will show the properties directly; expand the object’s Methods node to see all the

functions it supports, and expand its styles node for style-related properties.

If you’ve been working with HTML5 and CSS3 in Internet Explorer already (especially Internet

http://msdn.microsoft.com/library/windows/apps/hh767345.aspx
http://msdn.microsoft.com/library/windows/apps/hh996828.aspx

255

Explorer 9), you might be wondering why the table doesn’t show the various animation

(msAnimation*), transition (msTransition*), and transform properties (msPerspective* and

msTransformStyle), along with msBackfaceVisibility and msFlex* (among others). This is because

these standards are now far enough along that they no longer need vendor prefixes with Internet

Explorer 10+ or Store apps (though the ms* variants still work).

Methods Description

msMatchesSelector
Determines if the control matches a selector.

ms[Set | Get | Release]PointerCapture
Captures, retrieves, and releases pointer capture for an element.

msZoomTo Scrolls or zooms an element to a given coordinate with animation.

Style properties (on element.style) Description

msGrid*, msRow* Gets or sets placement of element within a CSS grid.

msContentZoom*, msContentZooming
Enables programmatic control of zooming; see Touch:Zooming

and Panning.

msScroll*, msOverflowStyle
Enables programmatic control of panning and scrollbar scylting;

see Touch:Zooming and Panning.

msTouchAction
Specifies whether a given region can be zoomed or panned

msTouchSelect
Toggles the “gripper” visuals that enable touch text selection.

msUserSelect
When set to ‘element’ allows the element to be selected; ‘text’

allows inline selection of the element’s contents; the default is

‘none’. Note that this replaces an earlier data-win-selectable

attribute from early developer previews of Windows 8.

Events (add “on” for event properties) Description

mscontentzoom
Fires when a user zooms an element (Ctrl+ +/-, Ctrl +

mousewheel), pinch gestures.

msgesture[change | end | hold | tap |

pointercapture]

Gesture input events (see Chapter 12, “Input and Sensors”).

msinertiastart
Gesture input events (see Chapter 12).

msgotpointercapture, mslostpointercapture
Element acquired or lost capture (set with msSetPointerCapture.

mspointer[cancel | down | enter| leave | |

move | out | over | up]

Pointer input events (see Chapter 12).

msmanipulationstatechanged
State of a manipulated element has changed.

WinJS Controls

Windows defines a number of controls that help apps fulfill various design guidelines. As noted before,

these are implemented in WinJS for apps written in HTML, CSS, and JavaScript, rather than WinRT; this

allows those controls to integrate naturally with other DOM elements. Each control is defined as part of

http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx

256

the WinJS.UI namespace using WinJS.Class.define, where the constructor name matches the

control name. So the full constructor name for a control like the Rating is WinJS.UI. Rating. As noted

before in the control model, this is the name you specify within a data-win-control attribute for the

control’s root element such that WinJS.UI.process/processAll can instantiate that control.

Tip Once a WinJS control is instantiated, the root element object will have a winControl property

attached to it. This winControl object is the result of calling new on the control’s constructor and gives

access to the control’s specific methods, properties, and events. The winControl object also has an

element property to go the other direction.

The simpler UI controls are BackButton, DatePicker, Rating, TimePicker, and ToggleSwitch, the

default styling for which are shown in Figure 5-3. I trust that the purpose of each control is obvious!

FIGURE 5-3 Default (light) styles for the simple WinJS controls.

There are then three other WinJS controls whose purpose is to contain other content and provide

some other behavior around it. These are HtmlControl, Tooltip, and ItemContainer.46

WinJS controls on Windows Phone As of this writing, the WinJS library that’s available for Windows

Phone 8.1 includes the HtmlControl, ToggleSwitch, and ItemContainer controls but not the others

described in this chapter. It does include the collection controls described in other chapters, including

the FlipView, ListView, Repeater, and SemanticZoom, along with the AppBar and its unique Pivot

control (which you use instead of Hub). For full details, refer to the documentation for the WinJS.UI

namespace.

46 There is also the WinJS.UI.TabContainer control that is primarily used within the ListView control implementation. It has

limited direct utility for apps and does not support declarative processing, so I won’t talk more of it here.

http://msdn.microsoft.com/library/windows/apps/br229782.aspx
http://msdn.microsoft.com/library/windows/apps/br229782.aspx
http://msdn.microsoft.com/library/windows/apps/hh701297.aspx

257

The HtmlControl is a simpler form of the page controls we saw in Chapter 3, allowing you to easily

load some HTML fragment from your app package (along with its referenced CSS and JavaScript) as a

control. The WinJS.UI.HtmlControl constructor, in fact, simply calls WinJS.UI.Pages.render,

loading that content into the control. Indeed, page controls themselves can be used in the same way—

you can, for example, load up multiple page controls within the same host page. I prefer to keep these

ideas separate, however, using page controls for full-page DOM replacement and the HtmlControl for

control-like fragments.

Because the purpose of the HtmlControl is to simply encapsulate other pieces of HTML, the control

itself has no inherent visuals or styling. If you want an example, simply look at the header and footer of

any Windows SDK sample!

The Tooltip control, for its part, is a step above the plain text tooltip that HTML provides

automatically for the title attribute. Its behavior is such that when you attach it to some other

control, it will appear automatically for hover states. With default styling and text, it appears just like

the default tooltips (I’ve cropped the button to which the tooltip is attached—it’s not part of the

tooltip):

Unlike the default tooltip, however, the WinJS Tooltip control can use any HTML including other

controls. We’ll see this shortly in the section “Example: WinJS.UI.Tooltip.” The default rectangle share

can also be fully styled, but I’ll also make you wait for that!

The ItemContainer control is also a container—as befits its name!—for some other piece of HTML

that acts as a single unit. The HTML within it can again include other controls, but the behaviors apply

to the item as a whole. Those behaviors, as determined by various options, include swipe (to select), tap

(to invoke), and HTML5 drag-and-drop support. Here’s an example item in both selection states:

We’ll see more about these options a little later with specific examples.

As noted in this chapter’s introduction, I’m saving other WinJS controls for later chapters because

they each need additional context. We’ll see the Repeater in Chapter 6; the FlipView, ListView, and

SemanticZoom that work with collections are covered in Chapter 7; the Hub we’ll see in Chapter 8 as it’s

pertinent to layout; AppBar, NavBar, and Flyout are transient commanding UI that we’ll come to in

Chapter 9 (because they don’t participate in layout); and media controls and the SearchBox we’ll

encounter in Chapters 13, and 15, respectively. Much to look forward to!

258

Now to reiterate the control model, a WinJS control is declared in markup by attaching data-win-

control and data-win-options attributes to some root element. That element is typically a div

(block element) or span (inline element), because these don’t bring much other baggage, but any

element, such as a button, can be used. These elements can, of course, have id and class attributes

as needed.

The available options for the WinJS controls we’re discussing in this chapter are summarized in the

table below. The table includes those events that can be wired up declaratively through the data-win-

options string, if desired, or through JavaScript. For full documentation on all these options, start with

the Controls list in the documentation and go to the control-specific topics linked from there, or use

the links given below. For details on the syntax of the data-win-options string, see the next section in

this chapter.

Fully-qualified constructor name

as used in data-win-control

Options in data-win-options

(note that event names use the ‘on’ prefix in the attribute syntax)

WinJS.UI.BackButton

(sample)
Events: none. The BackButton instead calls WinJS.Navigation.back directly

when clicked or tapped (or the user presses Alt+Left) and listens for

WinJS.Navigation.onnavigated to enable or disable itself appropriately,

depending on the navigation stack.

Methods: refresh

WinJS.UI.DatePicker

(sample)
Properties: calendar, current, datePattern, disabled, maxYear, minYear,

monthPattern, yearPattern

Events: onchange

WinJS.UI.HtmlControl

(see default.html in any SDK sample)
Properties: uri (referring to an in-package fragment), such as

“/controls/mycontrol.html”.

WinJS.UI.ItemContainer

(sample)
Properties: draggable, selected, selectionDisabled, swipeBehavior,

swipeOrientation, tapBehavior

Events: oninvoked, onselectionchanging, onselectionchanged

Methods: forceLayout

WinJS.UI.Rating

(sample)
Properties: averageRating, disabled, enableClear, maxRating, tooltipStrings

(an array of strings the size of maxRating), userRating

Events: oncancel, onchange, onpreviewchange

WinJS.UI.TimePicker

(sample)
Properties: clock, current, disabled, hourPattern, minuteIncrement,

minutePattern, periodPattern. (Note that the date portion of current will

always be July 15, 2011 because there are no known daylight savings time

transitions on this day.)

Events: onchange

WinJS.UI.ToggleSwitch

(sample)
Properties: checked, disabled, labelOff, labelOn, title

Events: onchange

WinJS.UI.Tooltip

(sample)
Properties: contentElement, innerHTML, infotip, extraClass, placement

Events: onbeforeclose, onbeforeopen, onclosed, onopened

Methods: open, close

http://msdn.microsoft.com/library/windows/apps/hh465453.aspx
http://msdn.microsoft.com/library/windows/apps/dn255082.aspx
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://msdn.microsoft.com/library/windows/apps/br211681.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://msdn.microsoft.com/library/windows/apps/hh700625.aspx
http://msdn.microsoft.com/library/windows/apps/dn255188.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-ItemContainer-Sample-932b2817
http://msdn.microsoft.com/library/windows/apps/br211895.aspx
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/library/windows/apps/br229736.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://msdn.microsoft.com/library/windows/apps/hh701411.aspx
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb
http://msdn.microsoft.com/library/windows/apps/br229763.aspx
http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce

259

Note All WinJS controls have the methods addEventListener, removeEventListener,

dispatchEvent, and dispose, along with an element property that identifies the control’s root

element.

When setting WinJS control options from JavaScript, be sure to set them on the winControl object

and not on the containing element itself. (This is very important to remember when doing data-

binding to control properties, as we’ll see in Chapter 6.) Event handlers can be assigned through

winControl.on<event> properties or through winControl.addEventListener. If you want to set

multiple options at the same time, you can use the WinJS.UI.setOptions method, which accepts the

winControl object (not the root element) and a second object containing the options. Such an object

is exactly what WinJS produces when it parses a data-win-options string.

Sidebar: The Ubiquitous dispose Method

If you look at the documentation for any of these controls, you’ll see that they each have a

method named dispose whose purpose is to release any resources held by the control. In

addition, every page control you define through WinJS.UI.Pages.define also has a dispose

method. All together, these methods allow WinJS to make sure that the pages and the controls

on those pages release any necessary resources when they’re removed from the DOM (correcting

memory leaks that were observed in Windows 8). That is, when you navigate away from a page,

the PageControlNavigator we learned about in Chapter 3 calls the page’s dispose method,

which in turn calls WinJS.Utilities.disposeSubTree on its root element. That method calls

dispose on every child control that is marked with the win-disposable class (as all WinJS

controls are) and that has a dispose method (as all WinJS controls do).

If you are using PageControlNavigator, then, you don’t need to worry much about calling

dispose yourself. However, if you implement your own navigation controller or page-loading

mechanism, be sure to replicate this behavior and call dispose on any controls that are being

removed from the DOM. Additionally, custom controls should also implement a dispose method

and mark themselves with the win-disposable class to participate in the process. Custom

controls that can contain other controls (like a ListView or the PageControlNavigator) must

also be mindful to manage control disposal. We’ll talk more of this later with custom controls,

but if you want a quick demonstration refer to the Dispose model sample.

Syntax for data-win-options
As noted earlier, the data-win-options attribute is a string containing key-value pairs, one for each

property or event, separated by commas, in the form { <key1>: <value1>, <key2>: <value2>,

... }. When a control is instantiated through WinJS.UI.process[All], WinJS parses the options

string into the equivalent JavaScript object and passes it to the control’s constructor. Easy enough!

(Remember to be mindful of syntax errors in your data-win-options string, though, because such

errors will cause an app to abruptly terminate during control instantiation.)

http://msdn.microsoft.com/library/windows/apps/hh440978.aspx
http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://code.msdn.microsoft.com/windowsapps/Dispose-model-sample-3b016282

260

Most of the time you’ll just be using literal values in the options string, as with this example that

we’ll see again later for the WinJS.UI.Rating control:

<div id="rating1" data-win-control="WinJS.UI.Rating"

 data-win-options="{averageRating: 3.4, userRating: 4, onchange: changeRating}">

</div>

Notice how WinJS control events use key names in the form of on<event>—those are the

equivalent JavaScript property names on the control object.

There are other possibilities for values, however, many of which you can find if you search through

the SDK JavaScript samples for "data-win-options". To summarize:

 Values can dereference objects, namespaces, and arrays by using dot notation, brackets ([]'s),

or both.

 Values can be array literals as well as objects surrounded by { }, which is how you assign values

to complex properties.

 Values can be an id of another element in the DOM, provided that element has an id attribute.

 Values can use the syntax select('<selector>') to declaratively reference an element in the

DOM.

Let’s see some examples. Dot notation is typically used to reference members of an enumeration or

a namespace. The latter is common with ListView controls (see Chapter 7), where the data source is

defined in a separate namespace, or with app bars (see Chapter 9), where its event handlers are defined

in a namespace:

data-win-options = "{ selectionMode: WinJS.UI.SelectionMode.multi,

 tapBehavior: WinJS.UI.TapBehavior.toggleSelect }"

data-win-options = "{ itemDataSource: DefaultData.bindingList.dataSource }"

data-win-options = "{ id: 'tenDay', label: 'Ten day', icon: 'calendarweek', type: 'toggle',

 onclick: FluidAppLayout.transitionPivot }"

The Adaptive layout with CSS sample in html/app.html shows the use of both dot notation and array

deferences together:

data-win-options = "{ data: FluidAppLayout.Data.mountains[0].weatherData[0] }"

data-win-options = "{ data: FluidAppLayout.Data.mountains[0].weatherData }"

Object notation is commonly used with ListViews to specify its layout object, along with dot

notation to identify the layout object:

data-win-options = "{ layout: {type: WinJS.UI.GridLayout} }"

data-win-options = "{ selectionMode: 'none', tapBehavior: 'none', swipeBehavior: 'none',

 layout: { type: WinJS.UI.GridLayout, maxRows: 2 } }

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2

261

data-win-options = "{ itemDataSource: Data.list.dataSource,

 layout: {type: SDKSample.Scenario1.StatusLayout} }

To declaratively refer to another element in the DOM—which must be instantiated before the

control that’s trying to reference it, of course—you have two choices.

First is to use the id of the element—that is, the same name that is in that element’s id attribute.

Note that you do not make that name a string literal, but you specify it directly as an identifier. For

example, if somewhere earlier in markup we declare a binding template (as we’ll see in Chapter 6):

<div id="smallListItemTemplate" data-win-control="WinJS.Binding.Template"><!-- ... --></div>

then we can reference that control’s root element in an options string as follows:

data-win-options = "{ itemTemplate: smallListItemTemplate }"

This works because the app host automatically creates variables in the global namespace for

elements with id attributes, and thus the value we’re using is that variable.

The other way is using the select syntax, which is a way of inserting the equivalent of

document.querySelector into the options string (technically WinJS.UI.scopedSelect, which calls

querySelector). So the previous options string could also be written like this:

data-win-options = "{ itemTemplate: select('smallListItemTemplate') }"

Alternately, if we declared a template with a class instead of an id:

<div class="templateSmall" data-win-control="WinJS.Binding.Template"><!-- ... --></div>

then we can refer to it as follows:

data-win-options = "{ itemTemplate: select('templateSmall') }"

The HTML AppBar control sample in html/custom-content.html and the HTML flyout control sample

in html/appbar-flyout.html provide a couple more examples:

data-win-options = "{ id: 'list', type: 'content', section: 'selection',

 firstElementFocus:select('.dessertType'), lastElementFocus:select('.dessertType') }"

data-win-options = "{ id: 'respondButton', label: 'Respond', icon: 'edit', type: 'flyout',

 flyout:select('#respondFlyout') }"

If you’re wondering, select is presently the only method that you can use in this way.

WinJS Control Instantiation

As we’ve seen a number of times already, WinJS controls declared in markup with data-* attributes are

not instantiated until you call WinJS.UI.process(<element>) for a single control or

WinJS.UI.processAll for all such elements currently in the DOM or, optionally, for all elements

contained in a given element. In the case of processAll, if you’ve just added a bunch of markup to the

DOM (through an innerHTML assignment or WinJS.UI.Pages.render, for instance), you can call

WinJS.UI.processAll to instantiate any WinJS controls in that markup.

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9
http://msdn.microsoft.com/library/windows/apps/hh440976.aspx
http://msdn.microsoft.com/library/windows/apps/hh440975.aspx

262

To understand this process, here’s what WinJS.UI.process does for a single element:

11. Parse the data-win-options string into an options object, throwing exceptions if parsing fails.

12. Extract the constructor specified in data-win-control and call new on that function passing

the root element and the options object.

13. The constructor creates whatever child elements it needs within the root element.

14. The object returned from the constructor—the control object—is stored in the root element’s

winControl property.

Clearly, then, the bulk of the work really happens in the constructor. Once this takes place, other

JavaScript code (as in your app’s activated method or a page control’s ready method) can call

methods, manipulate properties, and add listeners for events on both the root element and the

winControl object.

WinJS.UI.processAll, for its part, simply traverses the DOM (starting at the document root or an

optional element, if given) looking for data-win-control attributes and does WinJS.UI.process for

each. How you use both of these is really your choice: processAll does a deep traversal whereas

process lets you instantiate controls one at a time as you dynamically insert markup. Note that in both

cases the return value is a promise, so if you need to take additional steps after processing is complete,

provide a completed handler to the promise’s then or done method.

It’s also good to understand that process and processAll are really just helper functions. If you

need to, you can just directly call new on a control constructor with an element and options object. This

will create the control and attach it to the given element automatically. You can also pass null for the

element, in which case the WinJS control constructors create a new div element to contain the control

that is otherwise unattached to the DOM. This would allow you, for instance, to build up a control

offscreen and attach it to the DOM only when needed.

Also note that process and processAll will check whether any given control has already been

instantiated (the element already has a winControl property), so you can call either method

repeatedly on the same root element or the whole document without issue.

To see all this in action, we’ll look at some examples in a moment. First, however, we need to discuss

a matter referred to as strict processing.

Strict Processing and processAll Functions

WinJS has three DOM-traversing functions: WinJS.UI.processAll, WinJS.Binding.processAll

(which we’ll see later in Chapter 6), and WinJS.Resources.processAll (which we’ll see in Chapter 19,

“Apps for Everyone, Part 1”). Each of these looks for specific data-win-* attributes and then takes

additional actions using those contents. Those actions, however, can involve calling a number of

different types of functions:

 Functions appearing in a “dot path” for control processing and binding sources

263

 Functions appearing in the left-hand side for binding targets, resource targets, or control

processing

 Control constructors and event handlers

 Binding initializers or functions used in a binding expression

 Any custom layout used for a ListView control

Such actions introduce a risk of injection attack if a processAll function is called on untrusted

HTML, such as arbitrary markup obtained from the web. To mitigate this risk, WinJS has a notion of

strict processing that is enforced within all HTML/JavaScript apps. The effect of strict processing is that

any functions indicated in markup that processAll methods might encounter must be “marked for

processing” or else processing will fail. The mark itself is simply a property named

supportedForProcessing on the function object that is set to true.

Functions returned from WinJS.Class.define, WinJS.Class.derive, WinJS.UI.Pages.define,

and WinJS.Binding.converter are automatically marked in this manner. For other functions, you can

either set a supportedForProcessing property to true directly or use any of the following marking

functions:

WinJS.Utilities.markSupportedForProcessing(myfunction);

WinJS.UI.eventHandler(myHandler);

WinJS.Binding.initializer(myInitializer);

//Also OK

<namespace>.myfunction = WinJS.UI.eventHandler(function () {

});

Note also that appropriate functions coming directly from WinJS, such as all WinJS.UI.* control

constructors, as well as WinJS.Binding.* functions, are marked by default.

So, if you reference custom functions from your markup, be sure to mark them accordingly. But this

is only for references from markup: you don’t need to mark functions that you assign to on<event>

properties in JavaScript or pass to addEventListener.

Example: WinJS.UI.HtmlControl
OK, now that we got the strict processing stuff covered, let’s see some concrete examples of working

with a WinJS control.

For starters, you can find examples of using the HtmlControl in the default.html file of just about

any Windows SDK sample (such as the HTML Rating control sample). In that file you’ll see the following

construct:

<div id="header" data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri: '/sample-utils/header.html'}"></div>

<div id="content">

 <h1 id="featureLabel"></h1>

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750

264

 <div id="contentHost">

 <!-- Sample-specific content -->

 </div>

</div>

<div id="footer" data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri: '/sample-utils/footer.html'}"></div>

This uses two HtmlControl instances for static header and footer content, while the sample’s

JavaScript builds up its scenario selectors within the contentHost element. Clearly, each HtmlControl

allows the app to keep certain content isolated in separate files; in the case of the SDK samples, it

makes it very easy to globally update the headers and footers of hundreds of samples.

Example: WinJS.UI.Rating (and Other Simple Controls)
For starters, here’s some markup for a WinJS.UI.Rating control, where the options specify two initial

property values and an event handler:

<div id="rating1" data-win-control="WinJS.UI.Rating"

 data-win-options="{averageRating: 3.4, userRating: 4, onchange: changeRating}">

</div>

To instantiate this control, we need either of the following calls:

WinJS.UI.process(document.getElementById("rating1")); //Or any ancestor element

WinJS.UI.processAll();

Again, both of these functions return a promise, but it’s unnecessary to call then/done unless we

need to do additional post-instantiation processing or handle exceptions that might have occurred

(and that are otherwise swallowed). Also, note that the changeRating function specified in the markup

must be globally visible and marked for processing, or else the control will fail to instantiate.

Alternately, we can instantiate the control and set the options procedurally. In markup:

<div id="rating1" data-win-control="WinJS.UI.Rating"></div>

And in code:

var element = document.getElementById("rating1");

WinJS.UI.process(element);

element.winControl.averageRating = 3.4;

element.winControl.userRating = 4;

element.winControl.onchange = changeRating;

The last three lines above could also be written as follows using the WinJS.UI.setOptions method,

but this isn’t recommended because it’s harder to debug:

var options = { averageRating: 3.4, userRating: 4, onchange: changeRating };

WinJS.UI.setOptions(element.winControl, options);

We can also just instantiate the control directly. In this case the markup is nonspecific:

<div id="rating1"></div>

265

and we call new on the constructor ourselves:

var newControl = new WinJS.UI.Rating(document.getElementById("rating1"));

newControl.averageRating = 3.4;

newControl.userRating = 4;

newControl.onchange = changeRating;

Or, as mentioned before, we can skip the markup entirely, have the constructor create an element

for us (a div), and attach it to the DOM at our leisure:

var newControl = new WinJS.UI.Rating(null,

 { averageRating: 3.4, userRating: 4, onchange: changeRating });

newControl.element.id = "rating1";

document.body.appendChild(newControl.element);

Hint If you see strange errors on instantiation with these latter two cases, check whether you forgot

the new and are thus trying to directly invoke the constructor function.

Note also in these last two cases that the rating1 element will have a winControl property

that is the same as the newControl returned from the constructor.

To see this control in action, refer to the HTML Rating control sample.

The other simple controls—namely the DatePicker, TimePicker, and ToggleSwitch—are very

similar to what we just saw with Ratings. All that changes are the specific properties and events

involved; again, start with the Controls list page and navigate to any given control for all the specific

details. For working samples refer to the HTML DatePicker and TimePicker controls and the HTML

ToggleSwitch control samples.

Example: WinJS.UI.Tooltip

The WinJS.UI.Tooltip control works a little differently from the other simple controls. First, to attach

a tooltip to a specific element, you can either add a data-win-control attribute to that element or

place the element itself inside the control:

<!-- Directly attach the Tooltip to its target element -->

<targetElement data-win-control="WinJS.UI.Tooltip">

</targetElement>

<!-- Place the element inside the Tooltip -->

 <!-- The element that gets the tooltip goes here -->

<div data-win-control="WinJS.UI.Tooltip">

 <!-- The element that gets the tooltip goes here -->

</div>

Second, the contentElement property of the tooltip control can name another element altogether,

which will be displayed when the tooltip is invoked. For example, consider this piece of hidden HTML in

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/library/windows/apps/hh465453.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb

266

our markup that contains other controls:

<div style="display: none;">

 <!--Here is the content element. It's put inside a hidden container

 so that it's invisible to the user until the tooltip takes it out.-->

 <div id="myContentElement">

 <div id="myContentElement_rating">

 <div data-win-control="WinJS.UI.Rating" class="win-small movieRating"

 data-win-options="{userRating: 3}">

 </div>

 </div>

 <div id="myContentElement_description">

 <p>You could provide any DOM element as content, even with WinJS controls inside. The

tooltip control will re-parent the element to the tooltip container, and block interaction

events on that element, since that's not the suggested interaction model.</p>

 </div>

 <div id="myContentElement_picture">

 </div>

 </div>

</div>

We can reference it like so:

<div data-win-control="WinJS.UI.Tooltip"

 data-win-options="{infotip: true, contentElement: myContentElement}">

 My piece of data

</div>

When you hover over the text (with a mouse or hover-enabled touch hardware), this tooltip will

appear:

This example is taken directly from the HTML Tooltip control sample, so you can go there to see

how all this works, including other options like placement and infotip. Do be aware, as the sample

indicated, that controls within a Tooltip cannot themselves be interactive.

Example: WinJS.UI.ItemContainer
Like the Tooltip, the ItemContainer control wraps behaviors around some other piece of HTML,

namely whatever is declared as children of the ItemContainer. For example, the following code from

scenario 1 of the HTML ItemContainer sample wraps three img elements in separate containers

(html/scenario1.html):

<div id="flavorSelector">

 <div class="scenario1Containers" id="scen1-item1" data-win-control="WinJS.UI.ItemContainer"

http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce
http://code.msdn.microsoft.com/windowsapps/HTML-ItemContainer-Sample-932b2817

267

 data-win-options="{swipeBehavior: 'select', tapBehavior: 'toggleSelect'}">

 </div>

 <div class="scenario1Containers" id="scen1-item2" data-win-control="WinJS.UI.ItemContainer"

 data-win-options="{swipeBehavior: 'select', tapBehavior: 'toggleSelect'}">

 </div>

 <div class="scenario1Containers" id="scen1-item3" data-win-control="WinJS.UI.ItemContainer"

 data-win-options="{swipeBehavior: 'select', tapBehavior: 'toggleSelect'}">

 </div>

</div>

Note that each is marked with the swipeBehavior of select and the tapBehavior of

toggleSelect. The other option for swipeBehavior is none (these come from the

WinJS.UI.SwipeBehavior enumeration); the other options for tapBehavior are none, directSelect,

and invokeOnly (from the WinJS.UI.TabBehavior enumeration). You can also set

selectionDisabled to true to turn off selection completely.

In the graphic below, the left ItemContainer is unselected, the middle is selected, and the

rightmost is in the process of being selected from a top-down swipe gesture (indicated by the arrow

and circle). This is shown more dynamically in Video 5-1:

In all these cases the default swipeOrientation is vertical; the other option in

WinJS.UI.Orientation is horizontal, which is demonstrated in scenario 3 of the sample.

Scenario 4 demonstrates using other controls within the ItemContainer, such as a Rating control

(html/scenario4.html):

<div id="scen4Item1" data-win-control="WinJS.UI.ItemContainer"

 data-win-options="{swipeBehavior: 'select', tapBehavior:'toggleSelect'}">

 <div id="itemContent">

 <div id="itemDetail">

 Outrageous Orange!

 <div id="myRatingControl" class="win-interactive"

 data-win-control="WinJS.UI.Rating"></div>

 </div>

 </div>

</div>

http://msdn.microsoft.com/library/windows/apps/dn301793.aspx
http://msdn.microsoft.com/library/windows/apps/dn301795.aspx
http://msdn.microsoft.com/library/windows/apps/hh701287.aspx
http://msdn.microsoft.com/library/windows/apps/hh701303.aspx
http://msdn.microsoft.com/library/windows/apps/dn301794.aspx
http://msdn.microsoft.com/library/windows/apps/dn301906.aspx

268

Take special note of the win-interactive class given to the Rating control—this is what tells the

parent element (the ItemContainer) to pass interaction events down to the child control. This allows

you to directly change the rating, where the rating’s tooltip appears as it should for mouse hover:

By setting an ItemContainer.draggable option to true, you enable that item to be dragged away

and received by other HTML5 drag-and-drop targets. Scenario 2 of the sample does this with six

ItemContainer controls, making sure to disable default dragging on the img elements within them

(html/scenario2.html):

<div class="scenario2Containers" id="scen2-item1" data-win-control="WinJS.UI.ItemContainer"

 data-win-options="{draggable: true, selectionDisabled: true,

 oninvoked:Scenario2.invokedHandler}">

</div>

<!-- And so on -->

The drop target just registers for the standard HTML5 drag and drop events (dragenter, dragover,

dragleave, and drop) to create an interactive ice cream cone builder:

You can see that each item also has an oninvoked handler (marked for processing of course!) that

displays some details for that topping. See Video 5-2 for a short demonstration.

269

If you’ve played with Windows 8 or Windows 8.1 at all, you’ll probably recognize that the behaviors

of the ItemContainer show up in a collection control like the WinJS.UI.ListView. And in fact, the

ListView in Windows 8.1 uses the ItemContainer unabashedly! It was part of overhauling the

ListView for Windows 8.1 that created the ItemContainer as a separate entity that can be used for

single items outside of a collection.

Working with Controls in Blend

Before we move onto the subject of control styling, it’s a good time to highlight a few additional

features of Blend for Visual Studio where controls are concerned. As I mentioned in Video 2-2, the

Assets tab in Blend gives you quick access to all the HTML elements and WinJS controls (among many

other elements) that you can just drag and drop into whatever page is showing in the artboard. (See

Figure 5-4.) This will create basic markup, such as a div with a data-win-control attribute for WinJS

controls; then you can go to the HTML Attributes pane (on the right) to set options in the markup. (See

Figure 5-5.)

FIGURE 5-4 HTML elements (left) and WinJS control (right) as shown in Blend’s Assets tab.

270

FIGURE 5-5 Blend’s HTML Attributes tab shows WinJS control options, and editing them will affect the data-win-

options attribute in markup.

Next, take a moment to load up the HTML essential controls sample into Blend. This is a great

opportunity to try out Blend’s Interactive Mode to navigate to a particular page and explore the

interaction between the artboard and the Live DOM. (See Figure 5-6.) Once you open the project, go

into interactive mode by selecting View -> Interactive Mode on the menu, pressing Ctrl+Shift+I, or

clicking the small leftmost button on the upper right corner of the artboard. Then select scenario 5

(Progress introduction) in the listbox, which will take you to the page shown in Figure 5-6. Then exit

interactive mode (same commands), and you’ll be able to click around on that page. A short

demonstration of using interactive mode in this way is given in Video 5-3.

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24

271

FIGURE 5-6 Blend’s interaction between the artboard and the Live DOM.

With the HTML essential controls sample, you’ll see that there’s just a single element in the Live

DOM for intrinsic controls, as there should be, because all the internal details are part and parcel of the

HTML/CSS rendering engine. On the other hand, load up the HTML Rating control sample instead and

expand the div that contains one such control. There you’l l see all the additional child elements that

make up this control (shown in Figure 5-7), and you can refer to the right-hand pane for HTML

attributes and CSS properties. You can see something similar (with even more detailed information), in

the DOM Explorer of Visual Studio when the app is running. (See Figure 5-8.)

Tip To take a peek at what win-* and other classes are added to various WinJS controls, run a suitable

app inside Visual Studio. In the DOM Explorer pane, navigate to the controls you’re interested in and

you’ll see both their internal structure and the classes that are being applied. You can then also modify

styles within the DOM Explorer to see their immediate effects, which shortcuts the usual trial-and-error

experience with CSS (as you can also do in Blend). Once you know the styles you need, you can write

them into your CSS files. For a short demonstration, see Video 5-4.

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750

272

FIGURE 5-7 Expanding a WinJS control in Blend’s Live DOM reveals the elements that are used to build it.

FIGURE 5-8 Expanding a WinJS control in Visual Studio’s DOM Explorer also shows complete details for a control.

Control Styling

Now we come to a topic where we’ll mostly get to look at lots of pretty pictures: the various ways in

which HTML and WinJS controls can be styled. As we’ve discussed, this happens through CSS all the

way, either in a stylesheet or by assigning style.* properties, meaning that apps have full control over

273

the appearance of controls. In fact, absolutely everything that’s visually different between HTML

controls in a Windows Store app and the same controls on a web page is due to styling and styling

alone.

Design help Some higher-level design guidance for styling is available in the documentation:

Branding your Windows Store apps.

For both HTML and WinJS controls, CSS standards apply including pseudo-selectors like :hover,

:active, :checked, and so forth, along with -ms-* prefixed styles for emerging standards.

For HTML controls, there are also additional -ms-* styles—that aren’t part of CSS3—to isolate

specific parts of those controls. This is because the constituent parts of such controls don’t exist

separately in the DOM. So pseudo-selectors—like ::-ms-check to isolate a checkbox mark and ::-ms-

fill-lower to isolate the left or bottom part of a slider—allow you to communicate styling to the

depths of the rendering engine. In contrast, all parts of WinJS controls are addressable in the DOM, so

they are just styled with specific win-* classes defined in the WinJS stylesheets and the controls are

simply rendered with those style classes. Default styles are defined in the WinJS stylesheets, but apps

can override any aspect of those to style the controls however you want.

In a few cases, as already pointed out, certain win-* classes define style packages for use with HTML

controls, such as win-backbutton, win-vertical (for a slider) and win-ring (for a progress control).

These are intended to style standard HTML controls to look like special system controls.

There are also a few general purpose -ms-* styles (not selectors) that can be applied to many

controls (and elements in general), along with some general WinJS win-* style classes. These are

summarized in the following table.

Style or Class Description

-ms-user-select: none | inherit | element |

text | auto

Enables or disables selection for an element. Setting to none is

particularly useful to prevent selection in text elements.

-ms-zoom: <percentage> Optical zoom (magnification).

-ms-touch-action: auto | none (and more) Allows specific tailoring of a control’s touch experience,

enabling more advanced interaction models.

-ms-touch-select: grippers | none Toggles “gripper” visual elements for touch text selection.

win-interactive Prevents default behaviors for controls contained inside

ItemContainer, FlipView, and ListView controls (see Chapter 7

for the latter two).

win-swipeable Sets -ms-touch-action styles so a control within a ListView can

be swiped (to select) in one direction without causing panning

in the other.

win-small, win-medium, win-large Size variations to some controls.

win-textarea Sets typical text editing styles.

http://msdn.microsoft.com/library/windows/apps/hh465418.aspx

274

For all of these and more, spend some time with these three reference topics: WinJS CSS classes for

typography, WinJS CSS classes for HTML controls, and CSS classes for WinJS controls. I also wanted to

provide you with a summary of all the other vendor-prefixed styles (or selectors) that are supported

within the CSS engine for Store apps; see the next table. Vendor-prefixed styles for animations,

transforms, and transitions are still supported, though no longer necessary, because these standards

have recently been finalized. I made this list because the documentation here can be hard to penetrate:

you have to click through the individual pages under the Cascading Style Sheets topic in the docs to

see what little bits have been added to the CSS you already know.

Area Styles

Backgrounds and borders -ms-background-position-[x | y]

Box model -ms-overflow-[x | y]

Basic UI -ms-text-overflow (for ellipses rendering)

-ms-user-select (sets or retrieves where users are able to select text within an element)

-ms-zoom (optical zoom)

Exclusions -ms-wrap-[flow | margin | through]

Grid -ms-grid and -ms-grid-[column | column-align | columns | column-span | grid-
layer | row | row-align | rows | row-span]

High contrast -ms-high-contrast-adjust

Regions -ms-flow-[from | into] along with the MSRangeCollection method

Text -ms-block-progression, -ms-hyphens and –ms-hypenate-limit-[chars | lines | zone],

-ms-text-align-last, -ms-word-break, -ms-word-wrap, -ms-ime-mode, -ms-layout-grid and

–ms-layout-grid-[char | line | mode | type], and –ms-text-[autospace | justify |
overflow | underline-position]

Panning and Zooming -ms-content-zoom-[chaining | limit | limit-max | limit-min | snap | snap-points

| snap-type], -ms-content-zooming, -ms-overflow-style, -ms-scroll-[chaining |

limit | limit-x-max | limit-x-min | limit-y-max | limit-y-min | rails | snap-

points-x | snap-points-y | snap-type | snap-x | snap-y | translation]

Other -ms-writing-mode

Styling Gallery: HTML Controls
Now we get to enjoy a visual tour of styling capabilities for Windows Store apps. Much can be done

with standard styles, and then there are all the things you can do with special styles and pseudo-

elements as shown in the graphics in this section. The specifics of all these examples can be seen in the

HTML essential controls sample.

Also check out the very cool Applying app theme color (theme roller) sample. This beauty lets you

configure the primary and secondary colors for an app, shows how those colors affect different

controls, and produces about 200 lines of precise CSS that you can copy into your own stylesheet; you

can also copy the appropriate color code into the branding fields of your manifest and use them in

other branding graphics. This very much helps you create a color theme for your app, which we very

much encourage to establish an app’s own personality within the overall Windows design guidelines

and not try to look like the system itself. (Do note that controls in system-provided UI, like the

confirmation flyout when creating secondary tiles, system toast notifications, and message dialogs, will

be styled with system colors. These cannot be controlled or duplicated by the app.)

http://msdn.microsoft.com/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/library/windows/apps/hh770562.aspx
http://msdn.microsoft.com/library/windows/apps/hh440966.aspx
http://msdn.microsoft.com/library/windows/apps/Hh996828.aspx
http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2

275

276

Note Though not shown here, you can also use the -ms-scrollbar-* styles for scrollbars that appear

on pannable content in your app.

Styling Gallery: WinJS Controls

Similarly, here is a visual rundown of styling for WinJS controls, drawing again from the samples in the

SDK: HTML DatePicker and TimePicker controls, HTML Rating control, HTML ToggleSwitch control,

HTML Tooltip control, a modified version of the HTML Item Container sample (in the companion

content), and the Navigation and navigation history sample. The latter specifically shows a little styling

of the BackButton control. Scenario 4 (css/4_BackButton.css) overrides a few styles in the win-

navigation-backbutton class to change the control’s size. More generally, the back button control

http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb
http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa

277

itself is made up of a <button> with the class win-navigation-backbutton (for the overall control,

including pseudo-selectors) and a with the class win-back (that isolates the ring and the arrow

character). You can use these to change the coloration of the control:

Note that if you set the background-color for win-navigation-backbutton, you’ll set that color

for the control’s entire rectangle. By default that background is transparent, so you’ll typically just style

the inner part of the circle, as shown above.

For the DatePicker and TimePicker, refer to styling for the HTML select element along with the

::-ms-value and ::-ms-expand pseudo-elements. I will note that the sample isn’t totally

comprehensive, so the visuals below highlight the finer points:

278

The ItemContainer control has both constituent parts as well as two selection states, all of which

have win-* classes to identify them.

First, the two selections classes are win-selectionstylefilled and (the default) win-

selectionstyleoutlined. Adding these to the root element results in the standard WinJS styling

below:47

Typically you’ll use these selection style classes to create specific selectors for styling the control’s

individual parts, which are also identified with specific win-* classes:

Style Class Part
win-container Styles the entire control, including areas around the control (margin and states

like :hover).

win-focusedoutline Styles the control’s outline when it has the keyboard focus.

win-itembox Styles the inner box containing the item; this is of limited use because the item

generally overlays the item box.

win-item Styles the item area; any children of the ItemContainer that define its contents

can, of course, be styled separately through your own classes and selectors.

win-selectioncheckmark Styles the checkmark character (applies to both selection styles).

win-selectionborder For outline selection, styles the border lines; for filled selection, styles the color of

the entire inner area (so you normally use a semitransparent fill color so that the

item isn’t obscured).

win-selectioncheckmarkbackground Styles the triangular region around the checkmark, specifically through border-*

styles.

win-selectionhint Styles the checkmark when the item container is being swiped.

The win-container, win-itembox, and win-item classes identify successive layers of the control as

it’s built up by its constructor. That is, in your markup you’ll have one root element for the

47 Technically speaking, the WinJS stylesheets contain no references to win-selectionstyleoutline as all selectors simply

use :not(.win-selectionstylefilled).

279

ItemContainer control that contains the item contents. When that control is instantiated, the win-

container class is added to that root element and two more div elements with win-itembox and

win-item are inserted before the item contents. The classes let you target each layer for styling. Note

that the layers shown below all overlap one another; the offset is added only for visualization purposes:

In addition, a few more classes identify on the root element different control states or options:

Style Class State
win-swipeable Added to controls with swipeBehavior set to select.

win-vertical Added to controls with the vertical orientation.

win-horizontal Added to controls with the vertical orientation.

win-selected Added to controls that are in a selected state.

The following series of images are taken from the modified HTML ItemContainer sample found in

this chapter’s companion content. First are some of the outline styles you can use. (Default styles are on

the left, and somewhat ridiculous custom styles are shown on the right side with the applicable CSS.)

280

With the win-selectionstylefilled option, the default styling is shown below left and some

custom styling on the right. Notice that in the win-selectionborder class we style a semitransparent

background-color as it overlays the whole item:

The following example shows default outline selection styling (left) and custom styling (right). To

change the checkmark character itself, notice how we need to set the font-size of the default

checkmark to 0px and then use the ::before pseudo-element to insert a different character. With the

win-selectioncheckmarkbackground border, the default size is set to match the size of the

281

checkmark box, and the left and bottom borders are colored with transparent: this is what produces

the triangle. By setting the border-width larger, coloring all the borders, and adding a radius, we

create the circle. The margin on the background separates the circle from the edge outline, and the

margin on the ::before character centers it in the circle.

When changing the border styles, be sure to do it also for the selected hover state as well:

282

To finish up with ItemContainer, here’s how we can style the selection hint (default again shown

on the left)—in these cases the item is in the process of being swiped from top to bottom (see Video 5-

5 for the full experience):

The Rating control similarly has states that can be styled in addition to its stars and the overall

control. Again, win-* classes identify these individually and combinations style the variations:

Style Class Part
win-rating Styles the entire control

win-star Styles the control's stars generally

win-empty Styles the control's empty stars

win-full Styles the control's full stars

.win-star Classes State
win-average Control is displaying an average rating (user has not selected a rating and the

averageRating property is non-zero)

win-disabled Control is disabled

win-tentative Control is displaying a tentative rating

win-user Control is displaying user-chosen rating

Variation Classes (selectors)

Average empty stars .win-star.win-average.win-empty

Average full stars .win-star.win-average.win-full

Disabled empty stars .win-star.win-disabled.win-empty

Disabled full stars .win-star.win-disabled.win-full

Tentative empty stars .win-star.win-tentative.win-empty

Tentative full stars .win-star.win-tentative.win-full

User empty stars .win-star.win-user.win-empty

User full stars .win-star.win-user.win-full

283

For the ToggleSwitch, win-* classes identify parts of the control; states are implicit. Note that the

win-switch part is just an HTML slider control (<input type="range">), so you can utilize all the

pseudo-elements for its parts as shown in the “Styling Gallery: HTML Controls” section earlier.

And finally, for Tooltip, win-tooltip is a single class for the tooltip as a whole; the control can

then contain any other HTML to which CSS applies using normal selectors. The tooltips shown here

appear in relation to a gray button to which the tooltip applies:

284

Some Tips and Tricks
 The automatic tooltips on a slider (<input type="range">) are always numerical values; there

isn’t a means to display other forms of text, such as Low, Medium, and High. For something like

this, you could consider a Rating control with three values, using the tooltipStrings property

to customize the tooltips.

 The ::-ms-tooltip pseudo-selector for the slider affects only visibility (with display: none); it

cannot be used to style the tooltip generally. This is useful to hide the default tooltips if you

want to implement custom UI of your own.

 There are additional types of input controls (different values for the type attribute) that I

haven’t mentioned. This is because those types have no special behaviors and just render as a

text box. Those that have been specifically identified might also just render as a text box, but

285

they can affect, for example, what on-screen keyboard configuration is displayed on a touch

device (see Chapter 12) and also provide specific input validation (e.g., the number type only

accepts digits).

 The WinJS attribute, data-win-selectable, when set to true, specifies that an element is

selectable in the same way that all input and contenteditable elements are.

 If you don’t find width and height properties working for a control, try using style.width and

style.height instead.

 You’ll notice that there are two kinds of button controls: <button> and <input

type="button">. They’re visually the same, but the former is a block tag and can display HTML

inside itself, whereas the latter is an inline tag that displays only text. A button also defaults to

<input type="submit">, which has its own semantics, so you generally want to use <button

type="button"> to be sure.

 If a Tooltip is getting clipped, you can override the max-width style in the win-tooltip class,

which is set to 30em in the WinJS stylesheets. Again, peeking at the style in Blend’s Style Rules

tab is a quick way to see the defaults.

 The HTML5 meter element is not supported for Store apps.

 There’s a default dotted outline for a control when it has the focus (tabbing to it with the

keyboard or calling the focus method in JavaScript). To turn off this default rectangle for a

control, use <selector>:focus { outline: none; } in CSS.

 Store apps can use the window.getComputedStyle method to obtain a currentStyle

object that contains the applied styles for an element, or for a pseudo-element. This is very

helpful, especially for debugging, because pseudo-elements like ::-ms-thumb for an HTML

slider control never appear in the DOM, so the styling is not accessible through the element’s

style property nor does it surface in tools like Blend. Here’s an example of retrieving the

background color style for a slider thumb:

var styles = window.getComputedStyle(document.getElementById("slider1"), "::-ms-thumb");

styles.getPropertyValue("background-color");

Custom Controls

As extensive as the HTML and WinJS controls are, there will always be something you wish the system

provided but doesn’t. “Is there a calendar control?” is a question I’ve often heard. “What about charting

controls?” These clearly aren’t included directly in the Windows SDK, and despite any wishing to the

contrary, it means you or another third-party will need to create a custom control.

You can find a list of third-party control libraries on the Windows Partner Directory: visit

http://services.windowsstore.com/ and click the “Control & Frameworks” filter on the left-hand side. Be

http://msdn.microsoft.com/library/windows/apps/hh440973.aspx
http://msdn.microsoft.com/library/windows/apps/Hh702516.aspx
http://msdn.microsoft.com/library/windows/apps/hh453398.aspx
http://services.windowsstore.com/

286

sure to check for those that specifically offer HTML controls. Telerik, for example, provides calendar,

chart, and gauge controls, among others.

Tip One advantage of using built-in and professional third-party controls is that they implement

Accessibility features like keyboarding and high contrast support (see Chapter 19). If you create a

custom control that you might share with others, be sure to add similar support.

If none of those libraries meet your needs, you’ll need to write a control of your own. Do consider

using the HtmlControl or even WinJS.UI.Pages if what you need is mostly a reusable block of

HTML/CSS/JavaScript without custom methods, properties, and events. Along similar lines, if what you

need is a reusable block of HTML in which you want to do run-time data binding, check out

WinJS.Binding.Template, which we’ll see in Chapter 6. The Template isn’t a control as we’ve been

describing here—it doesn’t support events, for instance—but it might be exactly what you need.

When you do need to implement a custom control, everything we’ve learned about WinJS controls

applies. WinJS, in fact, uses the exact same control model, so you can look at the WinJS source code

anytime you like for a bunch of reference implementations.

But let’s spell out the pattern explicitly, recalling from our earlier definition that a control is just

declarative markup (creating elements in the DOM) plus applicable CSS, plus methods, properties, and

events accessible from JavaScript. Here are the steps:

1. Define a namespace for your control(s) by using WinJS.Namespace.define to both provide a

naming scope and to keep excess identifiers out of the global namespace. (Do not add controls

to the WinJS namespace.) Remember that you can call WinJS.Namespace.define many times

for the same namespace to add new members, so typically an app will just have a single

namespace for all its custom controls no matter where they’re defined.

2. Within that namespace, define the control constructor by using WinJS.Class.define (or

derive), assigning the return value to the name you want to use in data-win-control

attributes. That fully qualified name will be <namespace>.<constructor>.

3. Within the constructor (of the form <constructor>(element, options)):

a. You can recognize any set of options you want; these are arbitrary. Simply ignore any

that you don’t recognize.

b. If element is null or undefined, create a div to use in its place.

c. Assuming element is the root element containing the control, be sure to set

element.winControl=this and this.element=element to match the WinJS pattern.

d. Call WinJS.Utilities.addClass(this.element, "win-disposable") to indicate

that the control implements the dispose pattern (see #5 below). Also set

this._disposed = false. Alternately, use WinJS.Utilities.markDisposable (see

the next section, “Implementing the Dispose Pattern”), which encapsulates these steps

http://www.telerik.com/products/windows-8/overview.aspx
http://msdn.microsoft.com/library/windows/apps/dn301981.aspx

287

and parts of #5.

4. Within WinJS.Class.define, the second argument is an object containing your public

methods and properties (those accessible through an instantiated control instance); the third

argument is an object with static methods and properties (those accessible through the class

name without needing to call new).

5. Implement a public method named dispose. As described in “Sidebar: The Ubiquitous dispose

method” earlier in this chapter, this method is called when whatever is hosting your contro l is

doing its cleanup. In response, the control should do the following (a generic structure is given

in the next section):

a. Mark itself as disposed by setting this._disposed = true (dispose should check if

this is set to prevent reentrancy).

b. Call removeEventListener for any event handlers added earlier.

c. Call dispose on any child controls marked with the win-disposable class, if the

method is available. This can be done with WinJS.Utilities.disposeSubTree.

d. Cancel any outstanding async operations.

e. Release object references, disconnect event listeners, release connections, and

otherwise clean up any other allocations or resources (generally setting them to null

so that the JavaScript garbage collector finds them).

6. For your events, mix (WinJS.Class.mix) your class with the results from

WinJS.Utilities.createEventProperties(<events>) where <events> is an array of your

event names (without on prefixes). This will create on<event> properties in your class for each

name in the list.

7. Also mix your class with WinJS.UI.DOMEventMixin to add standard implementations of

addEventListener, removeEventListener, dispatchEvent, and setOptions.48

8. In your implementation (markup and code), refer to classes that you define in a default

stylesheet but that can be overridden by consumers of the control. Consider using existing win-

* classes to align with general styling.

9. A typical best practice is to organize your custom controls in per-control folders that contain all

the html, js, and css files for that control. Again, calls to WinJS.Namespace.define for the same

namespace are additive, so you can populate a single namespace with controls that are defined

in separate files.

48 Note that there is also a WinJS.Utilities.eventMixin that is similar (without setOptions) that is useful for noncontrol
objects that won’t be in the DOM but still want to fire events. The implementations here don’t participate in DOM event

bubbling/tunneling.

288

Note Everything in WinJS—like WinJS.Class.define and WinJS.UI.DOMEventMixin—are just

helpers for common patterns. You’re not in any way required to use these, because in the end, custom

controls are just elements in the DOM like any others and you can create and manage them however

you like. The WinJS utilities just make most jobs cleaner, easier, and more consistent.

For more about WinJS.Class methods and mixins, see Appendix B, “WinJS Extras.” Other sections of

the appendix outline some obscure WinJS features that might be helpful when implementing custom

controls.

Implementing the Dispose Pattern

The common pattern for the implementation of the dispose method looks like the following,

which assumes that this._disposed was set to false in the constructor:

dispose: function () {

 if (this._disposed) { return; }

 this._disposed = true;

 // Call dispose on all children

 WinJS.Utilities.disposeSubTree(this.element);

 // Disconnect listeners. A simple button.onclick case is shown here.

 if (this._button && this._clickListener) {

 this._button.removeEventListener("click", this._clickListener, false);

 }

 // Cancel outstanding promises

 this._somePromise && this._somePromise.cancel();

 this._somePromise = null;

 //Null out other resources (however many there are)

 this._someOtherResource = null;

}

An example of this can be found in scenario 1 of the Dispose model sample.

A simpler way of implementing the pattern—and one that relieves you from having to

remember certain details—is to use the WinJS.Utilities.markDisposable method. This adds

the standard win-disposable class to an element and automatically provides a

this._disposed flag. The part you provide is a function that contains your specific disposal

code. Here’s how markDisposable is implemented:

markDisposable: function (element, disposeImpl) {

 var disposed = false;

 WinJS.Utilities.addClass(element, "win-disposable");

 var disposable = element.winControl || element;

 disposable.dispose = function () {

 if (disposed) {

 return;

 }

http://code.msdn.microsoft.com/windowsapps/Dispose-model-sample-3b016282
http://msdn.microsoft.com/library/windows/apps/dn301981.aspx

289

 disposed = true;

 WinJS.Utilities.disposeSubTree(element);

 if (disposeImpl) {

 disposeImpl();

 }

 };

The benefit of markDisposable is that it gives you a way to put the dispose code right inside

your constructor, where you can more easily match the construction and disposal steps. Scenario

2 of the Dispose model sample shows how to use this construct, and we’ll see another example in

the next section that gives us more context for discussion.

Sidebar: Using the WinJS Scheduler in Custom Controls

If you do any kind of async work in a custom control, be sure to employ the

WinJS.Utilities.Scheduler API to appropriately mark each async task’s relative priority.

Typically, UI refresh work gets a higher priority, whereas secondary work like preloading

additional content can be scheduled at low priority. If you search for “Scheduler” in the WinJS

source file ui.js, you’ll see many examples, and refer back to Chapter 3 for the general discussion

of the Scheduler.

Custom Control Examples

To see this pattern in action, here are a couple of examples. First is what Chris Tavares, one of the WinJS

engineers who has been a tremendous help with this book, described as the “dumbest control you can

imagine.” Yet it certainly shows the most basic structures (in this case dispose isn’t needed):

WinJS.Namespace.define("AppControls", {

 HelloControl: WinJS.Class.define(function (element, options) {

 element.winControl = this;

 this.element = element;

 if (options.message) {

 element.innerText = options.message;

 }

 })

});

With this, you can then use the following markup so that WinJS.UI.process/processAll will

instantiate an instance of the control (as an inline element because we’re using span as the root):

<span data-win-control="AppControls.HelloControl"

 data-win-options="{ message: 'Hello, World'}">

Note that the control definition code must be executed before WinJS.UI.process/processAll so

that the constructor function named in data-win-control actually exists at that point.

http://code.msdn.microsoft.com/windowsapps/Dispose-model-sample-3b016282
http://msdn.microsoft.com/library/windows/apps/dn301978.aspx

290

For a more complete control, you can take a look at the HTML SemanticZoom for custom controls

sample. There is also a post on the Windows Developer blog that takes a patterns-oriented approach to

this subject. As for us here, let’s work with the CalendarControl example in this chapter’s companion

content, which was created by my friend Kenichiro Tanaka of Microsoft Tokyo and is shown in Figure 5-

9. (Note that this is example is only partly sensitive to localized calendar settings and doesn’t support

accessibility requirements; it is not meant to be full-featured.)

Following the steps given earlier, this control is defined using WinJS.Class.define within a

Controls namespace (controls/calendar/calendar.js lines 4–12 shown here):

WinJS.Namespace.define("Controls", {

 Calendar : WinJS.Class.define(

 // constructor

 function (element, options) {

 this.element = element || document.createElement("div");

 this.element.className = "control-calendar";

 this.element.winControl = this;

The rest of the constructor (lines 14–72) builds up the child elements that define the control, making

sure that each piece has a particular class name that, when scoped with the control-calendar class

placed on the root element above, allows specific styling of the individual parts. The defaults for this

are in controls/calendar/calendar.css; specific overrides that differentiate the two controls in Figure 5-9

are in css/default.css.

FIGURE 5-9 Output of the Calendar Control example.

Within the constructor you can also see that the control wires up its own event handlers for its child

http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://blogs.msdn.com/b/windowsappdev/archive/2012/10/11/building-a-custom-control-using-the-windows-library-for-javascript-winjs.aspx

291

elements, such as the previous/next buttons and each date cell. In the latter case, clicking a cel l uses

dispatchEvent to raise a dateselected event from the overall control itself. The event handler we

assign to this generates the output along the bottom of the screen.

Lines 74–169 then define the members of the control. There are two internal methods, _setClass

and _update, followed by three public methods, dispose, nextMonth and prevMonth, followed by

three public properties, year, month, and date. Those properties can be set through the data-win-

options string in markup or directly through the control object as we’ll see in a moment.

To implement dispose, the Calendar Control uses WinJS.Utilities.markDisposable within the

constructor:

WinJS.Utilities.markDisposable(this.element, disposeImpl.bind(this));

The disposeImpl function we pass to markDisposable, which is defined in the constructor itself,

carefully reverses any allocations made in the constructor or elsewhere in the control’s methods (look

especially for uses of new). This includes an instance of Windows.Globalization.calendar (which

could be replaced in _update), an array of cells, and quite a number of child elements. It also added

event listeners to most of those elements.

When implementing your disposal process, first copy and paste your constructor code and then

modify it to reverse each action. This makes it easier to see everything that was done in the constructor

so that you won’t forget anything. In the process, watch for any variables that you declared in the

constructor with var <name> to access some part of the control, such as child elements. Because you’ll

probably need these again in dispose, change each one from var <name> to this._<name> such that

you’ll have it later on. For example, the calendar saves its header element like so:

this._header = document.createElement("div");

// Other initialization

this.element.appendChild(this._header);

Similarly, assign event handlers in this._<handler> properties. For example:

this._prevListener = function () {

 this.prevMonth();

};

this.element.querySelector(".prev").addEventListener("click", this._prevListener.bind(this));

Looking at the control’s disposal code (the function passed to markDisposable), then, we can see

how handy it is to have these instance properties around, especially for removeEventListener:49

function disposeImpl () {

 //Reverse the constructor's steps

 this._cal = null;

49 If you’re using markDisposable and write your disposal code within the constructor, you can depend on closures instead

of instance variables. However, I prefer to keep instance variables clearly visible by referencing them through this.

292

 var prev = this.element.querySelector(".prev");

 prev && prev.removeEventListener("click", this._prevListener);

 var next = this.element.querySelector(".next");

 next && next.removeEventListener("click", this._nextListener);

 this.element.removeChild(this._header);

 var that = this;

 this._cells.forEach(function (cell) {

 cell.removeEventListener("click", that._cellClickListener);

 that._body.removeChild(cell);

 });

 this._cells = null;

 this.element.removeChild(this._body);

};

To test all this, you can click the Dispose button underneath the right-hand calendar in Figure 5-9.

This calls the right-hand calendar’s dispose method, after which the only thing left is the root div in

which the control was created. The button’s click handler then hides that div.

Anyway, at the very end of controls/calendar/calendar.js you’ll see the two calls to

WinJS.Class.mix to add properties for the events (there’s only one here), and the standard DOM

event methods like addEventListener, removeEventListener, and dispatchEvent, along with

setOptions:

WinJS.Class.mix(Controls.Calendar, WinJS.Utilities.createEventProperties("dateselected"));

WinJS.Class.mix(Controls.Calendar, WinJS.UI.DOMEventMixin);

Very nice that adding all these details is so simple—thank you, WinJS!50

Between controls/calendar/calendar.js and controls/calendar/calendar.css we thus have the

complete definition of the control. In default.html and default.js we can then see how the control is

used. In Figure 5-9, the control on the left is declared in markup and instantiated through the call to

WinJS.UI.processAll in default.js.

<div id="calendar1" class="control-calendar" aria-label="Calendar 1"

 data-win-control="Controls.Calendar"

 data-win-options="{ year: 2012, month: 5, ondateselected: CalendarDemo.dateselected}">

</div>

You can see how we use the fully qualified name of the constructor as well as the event handler

we’re assigning to ondataselected. But remember that functions referenced in markup like this have

to be marked for strict processing. The constructor is automatically marked through

WinJS.Class.define, but the event handler needs extra treatment: we place the function in a

50 Technically speaking, WinJS.Class.mix accepts a variable number of arguments, so you can actually combine the two

calls into a single one. See Appendix B for more details.

293

namespace (to make it globally visible) and use WinJS.UI.eventHandler to do the marking:

WinJS.Namespace.define("CalendarDemo", {

 dateselected: WinJS.UI.eventHandler(function (e) {

 document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected";

 })

});

Again, if you forget to mark the function in this way, the control won’t be instantiated at all.

(Remove the WinJS.UI.eventHandler wrapper to see this.)

To demonstrate creating a control outside of markup, the control on the right of Figure 5-9 is

created as follows, within the calendar2 div:

//Because we're creating this calendar in code, we're independent of WinJS.UI.processAll.

var element = document.getElementById("calendar2");

//Because we're providing an element, this will be automatically added to the DOM.

var calendar2 = new Controls.Calendar(element);

//Because this handler is not part of markup processing, it doesn't need to be marked.

calendar2.ondateselected = function (e) {

 document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected";

}

There you have it!

Note For a control you really intend to share with others, you’ll want to include the necessary

comments that provide metadata for IntelliSense. See the “Sidebar: Helping Out IntelliSense” in

Chapter 3 for more details. You’ll also want to make sure that the control fully supports considerations

for accessibility and localization, as discussed in Chapter 19.

Custom Controls in Blend
Blend is an excellent design tool for working with controls directly on the artboard, so you might be

wondering how custom controls integrate into that story.

First, because custom controls are just elements in the DOM, Blend works with them like all other

parts of the DOM. Try loading the Calendar Control example into Blend to see for yourself.

Next, a control can determine if it’s running inside Blend’s design mode if the Windows.-

ApplicationModel.DesignMode.designModeEnabled property is true. One place where this is very

useful is when handling resource strings. We won’t cover resources in full until Chapter 19, but it’s

important to know here that resource lookup through the data-win-res attribute works just fine in

design mode but not through Windows.ApplicationModel.Resources.ResourceLoader (it throws

exceptions). If you run into this, you can use the design-mode flag to just provide a suitable default

instead of doing the lookup.

For example, one of the early partners I worked with had a method to retrieve a localized URI to

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.designmode.designmodeenabled.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.designmode.designmodeenabled.aspx

294

their back-end services, which was failing in design mode. Using the design mode flag, then, we just

had to change the code to look like this:

WinJS.Namespace.define("App.Localization", {

 getBaseUri: function () {

 if (Windows.ApplicationModel.DesignMode.designModeEnabled) {

 return "www.default-base-service.com";

 } else {

 var resources = new Windows.ApplicationModel.Resources.ResourceLoader();

 var baseUri = resources.getString("baseUrl");

 return baseUri;

 }

 }

});

Alternately, you could create a hidden element in the DOM that uses data-win-res to load the

string into itself and then have a function like the below retrieve that string:

<!—In markup -->

<div id="baseUri" data-win-res="textContent: 'baseUrl'" style="display: none;"></div>

//In code

WinJS.Namespace.define("App.Localization", {

 getBaseUri: function () {

 return document.getElementById("baseUri").textContent;

 }

});

Finally, it is possible to have custom controls show up in the Assets tab alongside the HTML

elements and the WinJS controls. For this you’ll first need an OpenAjax Metadata XML (OAM) file that

provides all the necessary information for the control, and you already have plenty of references to

draw from. To find them, search for *_oam.xml files within Program Files (x86). You should find some

under the Microsoft Visual Studio 12.0 folder and deep down within Microsoft SDKs where WinJS

metadata lives. In both places you’ll also find plenty of examples of the 12x12 and 16x16 icons you’ll

want for your control.

If you look in the controls/calendar folder of the CalendarControl example with this chapter, you’ll

find calendar_oam.xml and two icons alongside the .js and .css files. The OAM file, which must have a

filename ending in _oam.xml, tells Blend how to display the control in its Assets panel and what code it

should insert when you drag and drop the control into an HTML file. Here are the contents of that file:

<?xml version="1.0" encoding="utf-8"?>

<!-- Use underscores or periods in the id and name, not spaces. -->

<widget version="2.0"

 spec="2.0"

 id="http://www.kraigbrockschmidt.com/schemas/ProgrammingWin_JS/Controls/Calendar"

 name="ProgWin_JS.Controls.Calendar"

 xmlns="http://openajax.org/metadata">

 <author name="Kenichiro Tanaka" />

 <!-- title provides the name that appears in Blend's Assets panel

http://www.openajax.org/member/wiki/OpenAjax_Metadata_1.0_Specification_Descriptive

295

 (otherwise it uses the widget.name). -->

 <title type="text/plain"><![CDATA[Calendar Control]]></title>

 <!-- description provides the tooltip fir Assets panel. -->

 <description type="text/plain"><![CDATA[A single month calendar]]></description>

 <!-- icons (12x12 and 16x16 provide the small icon next to the control

 in the Assets panel. -->

 <icons>

 <icon src="calendar.16x16.png" width="16" height="16" />

 <icon src="calendar.12x12.png" width="12" height="12" />

 </icons>

 <!-- This element describes what gets inserted into the .html file;

 comment out anything that's not needed -->

 <requires>

 <!-- The control's code -->

 <require type="javascript" src="calendar.js" />

 <!-- The control's stylesheet -->

 <require type="css" src="calendar.css" />

 <!-- Any inline script for the document head -->

 <require type="javascript"><![CDATA[WinJS.UI.processAll();]]></require>

 <!-- Inline CSS for the style block in the document head -->

 <!--<require type="css"><![CDATA[.control-calendar{}]]></require>-->

 </requires>

 <!-- What to insert in the body for the control; be sure this is valid HTML

 or Blend won't allow insertion -->

 <content>

 <![CDATA[

 <div class="control-calendar" data-win-control="Controls.Calendar"

 data-win-options="{ year: 2012, month: 6 }"></div>

]]>

 </content>

</widget>

When you add all five files to a project in Blend, you’ll see the control’s icon and title in the Assets

tab (and hovering over the control shows the tooltip):

296

If you drag and drop that control onto an HTML page , you’ll then see the different bits added in:

<!DOCTYPE html>

<html>

<head>

 <!-- ... -->

 <script src="calendar.js" type="text/javascript"></script>

 <link href="calendar.css" rel="stylesheet" type="text/css">

</head>

<body>

 <div class="control-calendar" data-win-control="Controls.Calendar"

 data-win-options="{month: 7, year: 2013}"></div>

</body>

</html>

But wait! What happened to the WinJS.UI.processAll() call that the XML indicated to include

within a script tag in the header? It just so happens that Blend singles out this piece of code to check

if it’s already being called somewhere in the loaded script. If it is (as is typical with the project

templates), Blend doesn’t repeat it. If it does include it, or if you specify other code here, Blend will

insert it in a <script> tag in the header. Of course, you’ll probably want to move that call into a .js file.

Also, errors in your OAM file will convince Blend that it shouldn’t insert the control at all, so be

careful with the details. When making changes, Blend won’t reload the metadata unless you reload the

project or rename the OAM file (preserving the _oam.xml part). I found the latter is much easier, as

Blend doesn’t care what the rest of the filename looks like. In this renaming process too, if you find that

the control disappeared from the Assets panel, it means you have an error in the OAM XML structure

itself, such as attribute values containing invalid characters. For this you’ll need to do some trial and

error, and of course you can refer to all the OAM files already on your machine for details.

You can also make your control available to all projects in Blend. To do this, go to Program Files

(x86)\Microsoft Visual Studio 12.0\Blend, create a folder called Addins if one doesn’t exist, create a

subfolder therein for your control (using a reasonably unique name), and copy all your control assets

there (that is, the same stuff in the /controls/calendar folder of the example). When you restart Blend,

you’ll see the control listed under Addins in the Assets tab:

This would be appropriate if you create custom controls for other developers to use. In that case

your desktop installation program would simply place your assets in the Addins folder. As for using

such a control, when you drag and drop the control to an HTML file, its required assets (but not the

297

icons nor the OAM file) are copied to the project into the root folder. You can then move them around

however you like, patching up the file references as needed.

Sidebar: Custom Control Adorners

Controls that are built into Blend generally show small adorners that allow more interactivity with

the control on the artboard. To do this, you implement an additional design-time DLL in

C#/XAML using the Windows Presentation Foundation (WPF). More information can be found on

Walkthrough: Creating a Design-time Adorner and especially Creating a Design-time adorner

layer in Windows RT (Hungry Philosopher’s blog).

What We’ve Just Learned

 The overall control model for HTML and WinJS controls, where every control consists of

declarative markup, applicable CSS, and methods, properties, and events accessible through

JavaScript.

 Standard HTML controls have dedicated markup; WinJS controls use data-win-control and

data-win-options attributes, which are processed using WinJS.UI.process or

WinJS.UI.processAll.

 Both types of controls can also be instantiated programmatically using new and the appropriate

constructor, such as button or WinJS.UI.Rating.

 All controls have various options that can be used to initialize them. These are given as intrinsic

attributes for HTML controls and within the data-win-options attribute for WinJS controls.

 All controls have standard styling as defined in the WinJS stylesheets: ui-light.css and ui-dark.css.

Those styles can be overridden as desired, and some style classes, like win-ring, are used to

style a standard HTML control to look like a Windows-specific control.

 Windows Store apps have rich styling capabilities for both HTML and WinJS controls alike. For

HTML controls, -ms-*-prefixed pseudo-selectors allow you to target specific pieces of those

controls. For WinJS controls, specific parts are styled using win-* classes that you can override.

 Custom controls are implemented in the same way WinJS controls are, and WinJS provides

standard implementations of methods like addEventListener. It’s important for custom

controls to implement the WinJS dispose pattern and make use of the WinJS scheduler when

asynchronous work is involved.

 Custom controls can also be shown in Blend’s Assets panel either for a single project or for all

projects.

http://msdn.microsoft.com/library/bb907306(v=vs.90).aspx
http://blog.sailmadeline.com/2013/07/15/creating-a-design-time-adorner-layer-in-windows-rt/
http://blog.sailmadeline.com/2013/07/15/creating-a-design-time-adorner-layer-in-windows-rt/

298

Chapter 6

Data Binding, Templates, and

Collections

Having just now in Chapter 5, “Controls and Control Styling,” thoroughly teased you with plenty of UI

elements to consider, I’m going to step away from UI and controls for a short time to talk about glue.

You see, I have a young son and glue is a big part of his life! OK, I’m joking about the real glue, but it’s

an appropriate term when we talk about data binding because data binding is, in many ways, a kind of

glue that keeps the UI we build with various controls appropriately attached to the data that the UI

represents.

A while back I saw a question on one of the MSDN forums that asked, simply, “When do I use data

binding at all?” It’s a good question, because writers of both books and documentation often assume

that their readers know the why’s and when’s already, so they just launch into discussions about

models, views, and controllers, tossing out acronyms like MVC, MVVM, MVMMVMV,

MMVMMVMVMVMVMCVVM, and so on until you think they’re revving up an engine for some

purpose or another or perhaps getting extra practice at writing confusing Roman numerals! Indeed, the

whole subject can often be shrouded in some kind of impenetrable mystique. As I don’t at all count

myself among the initiates into such mysteries, I’ll try to express the concepts in prosaic terms. I’ll

covers the basics of what data binding is and why you care about it, and then I’ll demonstrate how data

binding is expressed through WinJS. (Though you can implement it however you like, WinJS serves as a

helpful utility here, as is true for most of the library. Other developers employ angular.js for this

purpose, which is certainly another option but one that I don’t address in this book.)

At first we’ll be looking at data binding with simple data sources, such as single objects with

interesting properties. Where data binding really starts to prove its worth, however, is with collections

of such objects, which is exactly why we’re talking about it here before going on to Chapter 7,

“Collection Controls.” To that end, we’ll explore the different kinds of collections that you might

encounter when writing apps, including those from WinRT, such as the vector, and the

WinJS.Binding.List that is an essential building block for collection controls.

Speaking of building blocks, this chapter also includes a subject that flows naturally from the others:

templates. A template is a way to define how to render some data structure such that you can give it

any instance of that structure and have it produce UI. Again, this is clearly another building block for

collection controls, but it’s something you can use separately from them.

So let’s play with the glue and get our hands sticky!

http://angularjs.org/

299

Data Binding

Put simply, data binding means to create relationships between properties of data objects and

properties of UI elements (including styles). This way those UI elements automatically reflect what’s

happening in the data to which they are “bound,” which is often exactly what you want to accomplish

in your user experience. Data binding can also work in the other direction: data objects can also be

bound to UI elements such that changes a user makes in the UI are reflected back to the data objects.

When small bits of UI and data are involved, you can easily set up all these relationships however

you want, by directly initializing UI element values from their associated data object and updating

those values when the data is modified. You’ve probably already written plenty of code like this. And to

go the other direction, you can watch for change events on those UI elements and update the data

objects in response. You’ve probably written that kind of code as well!

As the UI gets more involved, however, such as when you're using collections or you're setting up

relationships to multiple properties of multiple elements, having more formalized structures to handle

the data-to-UI wiring starts to make a lot of sense, especially when you start dealing with collections.

It’s especially helpful to have a declarative means to set up those relationships, rather than having to do

it all through procedural code. In this section, then, we’ll start off with the basics of how data binding

works, and then we’ll look at the features of the WinJS.Binding namespace and what it has to offer

(including declarative structures). This gives us the basis for working with collections, which leads us

naturally (in the next chapter) to how we bind collections to collection controls.

Let me note that we won’t be talking about other formalized patterns and coding conventions for

data binding, such as “model-view-controller” (MVC), “model-view-viewmodel” (MVVM), and others,

primarily because this book’s focus is on the features of the Windows platform more than higher-level

software engineering practices. (Indeed, I’ve often found discussions of data binding to start right in on

patterns and frameworks, leaving the basics of data binding in the dust!) If you like working with these

patterns, you can of course design your app’s architecture accordingly around the mechanisms that

WinJS or other frameworks provide.

Data Binding Basics
The general idea of data binding is again to connect or “bind” properties of two different objects

together, typically properties of a data object—or context—and properties of a UI object. We can

generically refer these as source and target. A key here is that data binding generally happens between

properties of the source and target objects, not the objects as a whole.

The binding can also involve converting values from one type into another, such as converting a set

of separate source properties into a single string as suitable for the target. It’s also possible to have

multiple targets bound to the same source or one target bound to multiple sources. This flexibility is

exactly why the subject of data binding can become somewhat nebulous, and why numerous

conventions have evolved around it! Still, for most scenarios, we can keep the story simple.

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model_View_ViewModel

300

A common data-binding scenario is shown in Figure 6-1, where we have specific properties of two

UI elements, a span and an img, bound to properties of a data object. There are three bindings here:

(1) the span.innerText property is bound to the source.name property; (2) the img.src property is

bound to the source.photoURL property; and (3) the span.style.color property is bound to the

output of a converter function that changes the source.userType property into a color.

FIGURE 6-1 A common data-binding scenario between a source data object and two target UI elements, involving

two direct bindings and one binding with a conversion function.

How these bindings actually behave at run time then depends on the particular direction of each

binding, which can be one of the following (omitting any converters that might be involved):

One-time: the value of the source property is copied to the target property at some point, after

which there is no further relationship. This is what you automatically do when passing variables to

control constructors, for instance, or simply initializing target property values with source properties.

What’s useful here is to have a declarative means to make such assignments directly in element

attributes, as we’ll see.

301

One-way: the target object listens for change events on bound source properties so that it can

update itself with new values. This is typically used to update a UI element in response to underlying

changes in the data. Changes within the target element (like a UI control), however, are not reflected

back to the data itself (but can be sent elsewhere as with form submission, which could in turn update

the data through another channel).

Two-way: essentially one-way binding in both directions, as the source object also listens to change

events for target object properties. Changes made within a UI element like a text box are thus saved

back in the bound source property, just as changes to the source property update the UI element.

Obviously, there must be some means to not get stuck in an infinite loop; typically, both objects avoid

firing another change event if the new value is the same as the existing one.

Data Binding in WinJS

Now that we’ve seen what data binding is all about, we can see how it can be implemented within a

Windows Store app. Again, you can create whatever scheme you want for data binding or use a third-

party JavaScript library for the job: it’s just about connecting properties of source objects with

properties of target objects.

If you’re anything like a number of my paternal ancestors, who seemed to wholly despise relying on

anyone to do anything they could do themselves (like drilling wells, mining coal, and manufacturing

engine parts), you may very well be content with engineering your own data-binding solution. But if

you have a more tempered nature like I do (thanks to my mother’s side), I’m delighted when someone

302

is thoughtful enough to create a solution for me. Thus my gratitude goes out to the WinJS team who,

knowing of the common need for data binding, created the WinJS.Binding API. This supports one-

time and one-way binding, both declaratively and procedurally, along with converter functions. At

present, WinJS does not provide for two-way binding, but such structures aren’t difficult to set up.

Within the WinJS structures, properties of multiple target elements can be bound to a single data

source property. WinJS.Binding, in fact, provides for what are called templates, basically collections of

target elements whose properties are all bound to the same data source, as we’ll see later in this

chapter. Though we don’t recommend it, it’s possible to bind a single target element to multiple

sources, but this gets tricky to manage properly. A better approach in such cases is to wrap those

separate sources into a single object and bind to its properties instead. This way the wrapper object can

manage the process of combining multiple source properties into a single one to use in the binding

relationship.

To understand core data binding with WinJS, let’s look at how we’d write our own binding code and

then see the solution that WinJS offers. We’ll use the scenario shown in Figure 6-1, where we have a

source object bound to two separate UI elements, with one converter that changes a source property

into a color.

One-Time Binding

One-time binding, as mentioned before, is essentially what you do whenever you just assign values to

properties of an element. Consider the following HTML, which is found in Test 1 of the BindingTests

example in this chapter’s companion content:

<!-- Markup: the UI elements we'll bind to a data object -->

<section id="loginDisplay1">

 <p>You are logged in as </p>

</section>

Given the following data source object:

var login1 = { name: "liam", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"};

we can bind as follows, where we include a converter function (userTypeToColor) in the process:

//"Binding" is done one property at a time, with converter functions just called directly

var name = document.getElementById("loginName1");

name.innerText = login1.name;

name.style.color = userTypeToColor(login1.userType);

document.getElementById("photo1").src = login1.photoURL;

function userTypeToColor(type) {

 return type == "kid" ? "Orange" : "Black";

}

This gives the following result, in which I shamelessly publish a picture of my kid as a baby:

http://msdn.microsoft.com/library/windows/apps/br229775.aspx

303

With WinJS we can accomplish the same thing by using a declarative syntax and a processing

function. In markup, we use the attribute data-win-bind to map target properties of the containing

element to properties of the source object. The processing function, WinJS.Binding.processAll, then

creates the necessary code to implement those binding relationships. This follows the same idea as

using the declarative data-win-control and data-win-options attributes instruct

WinJS.UI.process[All] how to instantiate controls, as we saw in Chapter 5.

The value of data-win-bind is a string of property pairs. Each pair’s syntax is <target property>

: <source property> [<initializer>] where the <initializer> is an optional function that

determines how the binding relationship is set up.

Each property identifier can use dot notation as needed (see the sidebar coming up for additional

syntax), and uses JavaScript property names. Property pairs are separated by a semicolon, as shown in

the HTML for Test 2 in the example:

<section id="loginDisplay2">

 <p>You are logged in as

 <span id="loginName2"

 data-win-bind="innerText: name; style.color: userType Tests.typeColorInitializer">

 </p>

</section>

Tip The syntax of data-win-bind is different than data-win-options! Whereas the options string is

an object within braces { } with options separated by a comma, a binding string has no braces and

items are separated by semicolons. If you find exceptions being thrown from Binding.processAll,

check that you have the right syntax.

Here we’re saying that the innerText property of the loginName2 target is bound to the source’s

name property and that the target’s style.color property is bound to the source’s userType property

according to whatever relationship the Tests.typeColorInitializer establishes. As we’ll see in a

moment, that initializer is built directly around the userTypeToColor converter.

As you can see, the data-win-bind notation above does not specify the source object. That’s the

purpose of Binding.processAll. So, assuming we have a data source as before:

http://msdn.microsoft.com/library/windows/apps/br229846.aspx

304

var login2 = { name: "liamb", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"};

we call processAll with the target element and the source object as follows:

//processAll scans the element's tree for data-win-bind, using given object as data context

WinJS.Binding.processAll(document.getElementById("loginDisplay2"), login2);

The data context The second argument to Binding.processAll is the data context (or source) with

which to perform the binding. If you omit this, it defaults to the global JavaScript context. If, for

example, you have a namespace called Data that contains a property bindSource, you can specify

Data.bindSource in data-win-bind and omit a data context in processAll, or you can specify just

bindSource in data-win-bind and pass Data as the second argument to processAll.

Other arguments Binding.processAll performs a deep traversal of all elements contained within

the given root, so you need only call it once on that root for all data binding in that part of the DOM.

If you want to process only that element’s children and not the root element itself, pass true as the

third parameter (called skipRoot). A fourth parameter called bindingCache also exists as an

optimization for holding the results of parsing data-win-bind expressions. Both skipRoot and

bindingCache are useful when working with binding templates that we’ll talk about toward the end of

this chapter.

The result of all this, in Test 2, is identical to what we did manually in Test 1. In fact, processAll

basically takes the declarative data-win-bind syntax along with the source and target and dynamically

executes the same code that we wrote out explicitly in Test 1. The one added bit is that the initializer

function must be globally accessible and marked for processing, which is done as follows:

//Use a namespace to export function from the current module so WinJS.Binding can find it

WinJS.Namespace.define("Tests", {

 typeColorInitializer: WinJS.Binding.converter(userTypeToColor)

});

As with control constructors defined with WinJS.Class.define, WinJS.Binding.converter

automatically marks the functions it returns as safe for processing. It does a few more things as well,

but we’ll return to that subject in a bit.

We could also put the data source object and applicable initializers within the same namespace.51

For example, in Test 3 we place our login data object and the typeColorInitializer function in a

LoginData namespace, and the markup and code now look like this:

<section id="loginDisplay3">

 <p>You are logged in as

 <span id="loginName3"

 data-win-bind="innerText: name; style.color: userType LoginData.typeColorInitializer">

51 More commonly, initializers and converters would be part of a namespace in which applicable UI elements are defined,

because they’re more specific to the UI than to a data source.

305

 </p>

</section>

WinJS.Binding.processAll(document.getElementById("loginDisplay3"), LoginData.login);

WinJS.Namespace.define("LoginData", {

 login : {

 name: "liamb", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png",

 userType: "kid"

 },

 typeColorInitializer: WinJS.Binding.converter(userTypeToColor)

 });

In summary, for one-time binding WinJS.Binding simply gives you a declarative syntax to do

exactly what you’d do in code, with a lot less code. Because it’s all just some custom markup and a

processing function, there’s no magic here, though such useful utilities are magical in their own way! In

fact, the code here is really just one-way binding without having the source fire any change events.

We’ll see how to do that with WinJS.Binding.as in a moment after a couple more notes.

First, Binding.processAll is actually an async function that returns a promise. Any completed

handler given to its then/done method will be called when the processing is finished, if you have

additional code that’s depending on that state.

Second, you can call Binding.processAll more than once on the same target element, specifying

a different source object (data context) each time. This won’t replace any existing bindings, mind you—

it just adds new ones, meaning that you could end up binding the same target property to more than

one source, which could become a big mess. So again, a better approach is to combine those sources

into a single object and bind to that, using dot notation to identify nested properties.52

Third, the binding that we’ve created with WinJS here is actually one-way binding by default, not

one-time, because one-way binding is the most common scenario. To get true one-time binding, use

the built-in initializer function, oneTime, in your data-win-bind string. More on this under “Binding

Initializers” later on.

Sidebar: Additional Property Syntax and Binding to WinJS Controls

Property identifiers in data-win-bind can be single identifiers like name or compound identifiers

such as style.color. This applies to both source and target properties. This is important when

binding to properties of a WinJS control, rather than its root element, as those properties must

be referenced through winControl. For example, if we had a source object called myData and

52 A final comment that only warrants a footnote is that in Windows 8, apps typically added a line of code
WinJS.Binding.optimizeBindingReferences = true to avoid some memory leaks. This is done automatically in WinJS

2.0 (for Windows 8.1), so that line is no longer necessary.

306

wanted to bind some of its properties to those of a WinJS.UI.Rating control, we’d use the

following syntax:

<div id="rating1" data-win-control="WinJS.UI.Rating"

 data-win-options="{onchange: changeRating}"

 data-win-bind="{winControl.averageRating: myData.average,

 winControl.userRating: myData.rating}">

</div>

Notice that data-win-control, data-win-options, and data-win-bind can be used

together and UI.process[All] and Binding.processAll will pick up the appropriate

attributes. It’s important, however, that UI.process[All] has completed its work before calling

Binding.processAll as the latter depends on the control being instantiated. Typically, then,

you’ll call Binding.processAll within the completed handler for UI.process[All]:

args.setPromise(WinJS.UI.processAll().then(function () {

 WinJS.Binding.processAll(document.getElementById("boundElement"));

}));

Within data-win-bind, array lookup for source properties using [] is not supported, though

you can do that through an initializer. Array lookup is supported on the target side, as i s dot

notation. Also, if the target object has a property that you want to refer to using a hyphenated

identifier (where dot notation won’t work), you can use the following syntax:

That is, the target property string in data-win-bind basically carries through into the binding

code that Binding.processAll generates; just as you can use this['hyphenated-property']

in code (this being the data context), you can use it in data-win-bind.

A similar syntax is necessary for binding attributes of the target element, such as the aria-*

attributes for accessibility. As you probably know, attributes aren’t directly accessible through

JavaScript properties on an element: they’re set through the element.setAttribute method

instead. So you’d need to insert a converter into the data binding process to perform that

particular step. Fortunately, WinJS.Binding includes initializers that do exactly this, initializer,

setAttribute (for one-way binding) and setAttributeOneTime (for one-time binding). These

are used as follows:

<label data-win-bind="this['aria-label']: title WinJS.Binding.setAttribute"></label>

<label data-win-bind="this['aria-label']: title

 WinJS.Binding.setAttributeOneTime"></label>

One-Way Binding

The goal for one-way binding is, again, to update a target property, typically in a UI control, when the

bound source property changes. One-way binding means to effectively repeat the one-time binding

process whenever the source property changes.

http://msdn.microsoft.com/library/windows/apps/jj215608.aspx
http://msdn.microsoft.com/library/windows/apps/jj215607.aspx

307

In the previous section’s code, if we changed login.name after calling Binding.processAll,

nothing will change in the output UI. So how can we automatically update the output?

Generally speaking, this requires that the data source maintains a list of bindings, where each

binding describes a source property, a target property, and any associated converter function. The data

source also needs to provide methods to manage that list, like addBinding, removeBinding, and so

forth. Thirdly, whenever one of its bindable properties changes it goes through its list of bindings and

updates any affected target property accordingly. All together, this makes what we call an observable

source.

These requirements are quite generic; you can imagine that their implementation would pretty

much join the ranks of classic boilerplate code. So, of course, WinJS.Binding provides just such an

implementation with two functions at its core!

 Binding.as wraps any arbitrary object with an observable structure. (It’s a no-op for

nonobjects, and Binding.unwrap removes that structure if there’s a need.)

 Binding.define creates a constructor for observable objects around a set of properties

(described by a kind of empty object that just has property names). Such a constructor allows

you to instantiate source objects dynamically, as when processing data retrieved from an online

service.

Let’s see some code. Going back to the last BindingTests example above (Test 3), any time before or

after Binding.processAll we can take the LoginData.login object and make it observable with just

one line of code:

var loginObservable = WinJS.Binding.as(LoginData.login)

With everything else the same as before, we can now change a bound property within the

loginObservable object:

loginObservable.name = "liambro";

This will update the target property (the mechanics of which we’ll talk about under “Under the

Covers: Binding mixins” a little later):

Here’s how we’d then create and use a reusable class for an observable object (Test 4 in the

BindingTests example). Notice the object we pass to Binding.define contains property names, but no

http://msdn.microsoft.com/library/windows/apps/br229801.aspx
http://msdn.microsoft.com/library/windows/apps/br211870.aspx
http://msdn.microsoft.com/library/windows/apps/br229814.aspx

308

values (they’ll be ignored in any case):

WinJS.Namespace.define("LoginData", {

 //...

 //LoginClass is a constructor for observable objects with the specified properties

 LoginClass: WinJS.Binding.define({name: "", id: "", photoURL: "", userType: "" }),

});

We can now create instances of LoginClass, initializing desired properties with values. In this

example, we’re using a different picture and leaving userType uninitialized:

var login4 = new LoginData.LoginClass({ name: "liamb",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam08.png" });

Binding to this login object, the username initially comes out black.

//Do the binding (initial color of name would be black)

WinJS.Binding.processAll(document.getElementById("loginDisplay"), login4);

Updating the userType property will then cause an update the color of the target property, which

happens through the converter automatically. In the example, this line of code is executed after a two-

second delay so that you can see it change when you run the app:

login4.userType = "kid";

Sidebar: Binding to WinRT Objects

Although it is possible to declaratively bind directly to WinRT source objects, those objects

support only one-time binding. The underlying reason for this is that each WinRT object is

represented in JavaScript by a thin proxy that’s linked to that object instance, but calling

WinJS.Binding.as on this proxy does not make the WinRT observable within the rest of the

WinJS binding mechanisms. For this reason, it’s necessary to enforce one-time binding when

using such sources directly. This can be done by specifying the WinJS oneTime initializer within

each data-win-bind relationship, or specifying oneTime as the default initializer for processAll

(the fifth argument). For example:

WinJS.Binding.processAll(element, winRTSourceObject, false, null, WinJS.Binding.oneTime);

http://msdn.microsoft.com/library/windows/apps/br211694.aspx

309

As in the previous sidebar, if you’re binding to element attributes, you’ll need to use the

setAttributeOneTime initializer instead.

To work around this limitation, you can create a custom proxy in JavaScript that watches

changes in the WinRT source and copies those values to properties in the proxy. Because this

proxy has its own set of properties, you can then make it observable with WinJS.Binding.as.

Implementing Two-Way Binding

As mentioned earlier, WinJS doesn’t presently include any facilities for two-way binding, but it’s

straightforward to implement on your own:

1. Add listeners to the appropriate UI element events that relate to bound data source propertie s.

2. Within those handlers, update the data source properties.

The data source should be smart enough to know when the new value of the property is already the

same as the target property, in which case it shouldn’t try to update the target lest you get caught in a

loop. The observable object code that WinJS provides does this type of check for you.

To see an example of this, refer scenario 1 of the Declarative binding sample in the SDK, which

listens for the change event on text boxes and updates values in its source accordingly. The input

controls are declared as follows (html/1_BasicBinding.html, omitting much of the surrounding HTML

structure):

<input type="text" id="basicBindingInputText" />

<input type="text" id="basicBindingInputRed" />

<input type="text" id="basicBindingInputGreen" />

<input type="text" id="basicBindingInputBlue" />

and the output elements like so:

<p>The text you entered was .

The value for red is ,

the value for green is ,

and blue is .

</p>

<p data-win-bind="style.background: color BasicBinding.toCssColor">

And here's your color as a background.</p>

The source object is defined in js/1_BasicBinding.js as a member of the surrounding page control:

this.bindingSource = {

 text: "Initial text",

 color: {

 red: 128,

 green: 128,

 blue: 128

 }

};

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5

310

and is made observable through this line of code:

var b = WinJS.Binding.as(this.bindingSource);

You can see how its members are referenced in the data-win-bind attributes above, so that when

we call processAll (on the div that contains all the output element):

WinJS.Binding.processAll(element.querySelector("#basicBindingOutput"), this.bindingSource);

we’ve set up one-way binding between the data source and the output. To complete two-way binding,

we set up event handlers for the change event of each input field that take the value from the control

and copy it back to the observable source:

this.bindTextBox("#basicBindingInputText", b.text,

 function (value) { b.text = toStaticHTML(value); });

this.bindTextBox("#basicBindingInputRed", b.color.red,

 function (value) { b.color.red = toStaticHTML(value); });

this.bindTextBox("#basicBindingInputGreen", b.color.green,

 function (value) { b.color.green = toStaticHTML(value); });

this.bindTextBox("#basicBindingInputBlue", b.color.blue,

 function (value) { b.color.blue = toStaticHTML(value); });

bindTextBox: function (selector, initialValue, setterCallback) {

 var textBox = this.element.querySelector(selector);

 textBox.addEventListener("change", function (evt) {

 setterCallback(evt.target.value);

 }, false);

 textBox.value = initialValue;

}

In the HTML, you might have noticed an initializer called BasicBinding.toCssColor. This is

defined in js/1_BasicBinding.js as follows:

var toCssColor = WinJS.Binding.initializer(

 function toCssColor(source, sourceProperty, dest, destProperty) {

 function setBackColor() {

 dest.style.backgroundColor =

 rgb(source.color.red, source.color.green, source.color.blue);

 }

 return WinJS.Binding.bind(source, {

 color: { red: setBackColor, green: setBackColor, blue: setBackColor, }

 });

 }

);

// A little helper function to convert from separate rgb values to a css color

function rgb(r, g, b) { return "rgb(" + [r, g, b].join(",") + ")"; }

WinJS.Namespace.define("BasicBinding", {

311

 toCssColor: toCssColor

});

Clearly, there’s more going on here than just creating a simple converter as we did before, including

use of the methods WinJS.Binding.initializer and WinJS.Binding.bind. Now is a good time,

then, to peek under the covers to see how initializers work and what functions like bind are doing.

Under the Covers: Binding mixins

Earlier in the “One-Way Binding” section I spelled out three requirements for an observable object: it

maintains a list of bindings, provides methods to manage that list, and iterates through that list to

update any target properties when source properties change. And we saw that Binding.as and

Binding.define let you easily add such structures to a source object or class definition (you can find

the source for both in the WinJS base.js file).

Both as and define create an observable object from an existing one by adding the necessary

methods that the rest of WinJS.Binding requires. (This is done through mixins; to review details on

WinJS.Class.mix and mixins, refer to Appendix B, “WinJS Extras.”)

The as method, for its part, assumes that the data source is just a plain object (and not a Date,

Array, or nonobject) and creates a proxy object around it using an internal WinJS class called

ObservableProxy. You wouldn’t instantiate this class directly, of course, but it’s instructive to look at its

definition, where data is the object you give to as:

var ObservableProxy = WinJS.Class.mix(function (data) {

 this._initObservable(data);

 Object.defineProperties(this, expandProperties(data));

}, dynamicObservableMixin);

The call to _initObservable on the data source turns out to be very important. All it does is ensure

that the class has a property called _backingData that’s set to the original source. Without this you’d

see a bunch of exceptions at run time.

Binding.define does pretty much the same thing except that its purpose is to create a constructor

for an observable object class, rather than just wrapping an existing instance. It’s how you define your

own variant of the internal ObservableProxy class we see above.

You can also create an observable source manually, as shown in Scenario 3 of the Programmatic

binding sample. Here it defines a RectangleSprite class with Class.define and then makes it

observable (and adds a few more observable properties) as follows (js/3_CreatingBindableTypes.js):

WinJS.Class.mix(RectangleSprite,

 WinJS.Binding.mixin,

 WinJS.Binding.expandProperties({ position: 0, r: 0, g: 0, b: 0 })

);

http://msdn.microsoft.com/library/windows/apps/br229836.aspx
http://code.msdn.microsoft.com/windowsapps/ProgrammaticBinding-de038b64
http://code.msdn.microsoft.com/windowsapps/ProgrammaticBinding-de038b64

312

Note that the RectangleSprite constructor in this case must call this._initObservable() or else

none of the binding will work (that is, the app will crash and burn). This is the only case I know of where

you need to explicitly call an underscore-named method in WinJS!

However you do it, though, the bottom line is that we’re creating a new class that combines the

members defined by each argument to mix. In the cases above we have three such arguments: the

original class, WinJS.Binding.mixin, and whatever object is produced by WinJS.Binding.expand-

Properties.

expandProperties creates an object whose properties match those in the given object (the same

names, but not the values), where each new property is wrapped in the proper structure for binding.53

Clearly, this type of operation is useful only when doing a mix, and it’s exactly why Binding.define

can digest an oddball, no-values object like the one we gave to it in Test 4 of the BindingTest example.

By “proper structure for binding,” I mean that each property has a get and set method (along with

two properties names enumerable and configurable, both set to true). These methods rely on the

class also having methods called getProperty and setProperty:

get: function () { return this.getProperty(propertyName); },

set: function (value) { this.setProperty(propertyName, value); },

It’s unlikely that any arbitrary class will contain such methods already, which is where the

Binding.mixin object comes in. It contains a standard implementation of the binding functions, like

[get | set]Property, that the rest of WinJS.Binding expects.

The mixin object itself an extension of the more basic Binding.observableMixin, which just

contains three methods to manage a list of bindings:

 bind Saves a binding (property name and a listener function to invoke on change) into an

internal list (an array). This is the binding equivalent of addEventListener.

 unbind Removes a binding created by bind (removing it from the list), or removes all bindings

if a specific one isn’t given. This is the binding equivalent of removeEventListener.

 notify Goes through the bindings list for a property and asynchronously invokes its listeners

with the new property value (at “normal” priority in the scheduler). notify will cancel any

update that’s already in progress for the same property. This is the binding equivalent of

dispatchEvent.

The mixin object then adds five methods to manage properties through bind, unbind, and notify:

 setProperty Updates a property value and notifies listeners if the value changed.

 updateProperty Like setProperty, but returns a promise that completes when all listeners

have been notified (the result in the promise is the new property value) .

53 expandProperties also includes properties of the object’s prototype.

http://msdn.microsoft.com/library/windows/apps/br211859.aspx
http://msdn.microsoft.com/library/windows/apps/br229817.aspx
http://msdn.microsoft.com/library/windows/apps/br229817.aspx
http://msdn.microsoft.com/library/windows/apps/hh701055.aspx

313

 getProperty Retrieves a property value as an observable object itself , which makes it possible

to bind within nested object structures (obj1.obj2.prop3, etc.).

 addProperty Adds a new property to the object that is automatically enabled for binding (it

adds the same properties and methods that that expandProperties does).

 removeProperty Removes a property altogether from the object.

The Binding.dynamicObservableMixin object, I should note, is exactly the same as mixin except

for one small difference. If you take an observable class built with mixin and then derive a new class

from it (see WinJS.Class.derive), the new class will not automatically be observable. If you build the

base class with dynamicObservableMixin, on the other hand, its observability will apply to derived

classes.

Programmatic Binding and WinJS.Binding.bind

Taking a step back from the details now, we can see that the eight mixin methods, along with the get

and set implementations from expandProperties, fulfill the requirements of an observable data

source. With such a source in hand you can do some interesting things programmatically. First, you can

call the object’s bind method directly to hook up any number of additional actions manually. A couple

of scenarios come to mind where this would apply:

 You set up two-way binding between a local data source and the app’s UI, and want to also

sync changes to the source with a back-end service. A second handler attached through bind

would be called whenever the source is modified through any other means.

 You need to create an intermediate source object that combines and consolidates property

changes from other sources, simplifying binding to a final target UI element. Calling bind

directly in such cases is necessary because Binding.processAll specifically works with UI

elements declared in HTML rather than arbitrary JavaScript objects.

The notify method, for its part, is something you can call directly to trigger notifications. This is

useful with additional bindings that don’t necessarily depend on the values themselves, just the fact

that they changed. The major use case here is to implement computed properties—ones that change in

response to another property value changing.

The WinJS binding engine also has some intelligent handling of multiple changes to the same

source property. After the initial binding, further change notifications are asynchronous and multiple

pending changes to the same property are coalesced. So, if in our example we made several changes to

the name property in quick succession:

login.name = "Kenichiro";

login.name = "Josh";

login.name = "Chris";

only one notification for the last value would be sent and that would be the value that shows up in

bound targets.

314

A couple of additional demonstrations of calling these binding methods directly can also be found

in scenarios 1 and 2 of the Programmatic binding sample, which doesn’t use any declarative syntax at

all. Scenario 1, for example, creates an observable source with Binding.as and wires it up with bind

method to a couple of change handlers for two-way binding. (It employs the WinJS.Utilities.query

and WinJS.Utilities.QueryCollection.listen methods, which are described in Appendix B.) Be

mindful when looking at lines like this (js/1_BasicBinding.js):

this.bindSource.bind("x", this.onXChanged.bind(this));

that the first bind method on the source object comes from WinJS.Binding.mixin, whereas the bind

method on the onXChanged function is the standard JavaScript method to manage the this variable!

Scenario 2 demonstrates a coding construct called a binding descriptor that works in conjunction

with the static helper method WinJS.Binding.bind. Yes, be aware! WinJS.Binding.bind is yet

another bind method that’s separate from a source object’s bind that’s defined in the mixins and

separate from a function’s bind method. Fortunately, you must always call WinJS.Binding.bind with

its full name, and I’ll refer to it this way to avoid confusion.

I call WinJS.Binding.bind a helper function, because it’s basically a way to make a bunch of bind

calls for properties of a complex object. Consider the source object that’s created in scenario 2 of the

Programmatic binding sample (js/2_BindingDescriptors.js):

this.objectPosition = WinJS.Binding.as({

 position: { x: 10, y: 10},

 color: { r: 128, g: 128, b: 128 }

}

If we wanted to set up binding relationships to each of these properties, we’d have to make a bunch

of calls to this.objectPosition.bind like this:

this.objectPosition.bind(this.objectPosition.position.x, <action>)

Such code gets ugly to write in a hurry. A binding descriptor, then, succinctly expresses the

property-action mappings in a structure that matches the source object. The generic syntax is:

{ property: { sub-property: function(value) { ... } } }. Here’s a concrete example from

scenario 2 (js/2_BindingDescriptors.js):

{

 position: {

 x: onPositionChange,

 y: onPositionChange

 },

 color: {

 r: onColorChange,

 g: onColorChange,

 b: onColorChange

 }

}

http://code.msdn.microsoft.com/windowsapps/ProgrammaticBinding-de038b64
http://msdn.microsoft.com/library/windows/apps/br229803.aspx

315

where onPositionChange and onColorChange both refresh the output in response to data changes.54

Scenario 1 of the Declarative binding sample has another example (js/1_BasicBinding.js):

{

 color: {

 red: setBackColor,

 green: setBackColor,

 blue: setBackColor,

 }

}

When calling WinJS.Binding.bind, then, just pass the source object as the first argument and the

binding descriptor as the second. As shown in the Declarative binding sample:

return WinJS.Binding.bind(source, {

 color: {

 red: setBackColor,

 green: setBackColor,

 blue: setBackColor,

 }

});

The return value of WinJS.Binding.bind is an object with a cancel method that will clear out all

these binding relationships (basically iterating through the structure calling unbind). In the Declarative

binding sample, it returns this object from the binding initializer where it appears, which is actually very

important. So let’s now turn to initializers.

Binding Initializers

When Binding.processAll encounters a data-win-bind attribute on an element, its main job is to

take each <target property> : <source property> [<initializer>] string and turn it into a real

binding relationship. Assuming that the data source is observable, this basically means calling the

source’s bind method with the source property name and some handler that will update the target

property accordingly.

The purpose of the initializer function in this process is to define exactly what happens in that

handler—that is, what happens to the target property in response to a source property update. In

essence, an initializer provides the body of the handler given to the source’s bind. In a simple binding

relationship, that code might simply copy the source value to the target or it might involve a converter

function. It could also consolidate multiple source properties—you can really do anything you want

here. The key thing to remember is that the initializer itself will be called once and only once for each

binding relationship, but the code it provides, such as a converter function, will be called every time the

source property changes.

Now if you don’t specify a custom initializer within data-win-bind, WinJS will always use a default,

54 The actual code uses this.onPositionChange.bind(this) which I’ve simplified to avoid confusion between all the

binds!

316

namely WinJS.Binding.defaultBind.55 It simply sets up a binding relationship that copies the source

property’s value straight over to the target property, as you’d expect. In short, the following two

binding declarations have identical behavior:

data-win-bind="innerText: name"

data-win-bind="innerText: name defaultBind"

WinJS.Binding provides a number of other built-in initializers that can come in handy, most of

which we’ve already encountered:

 oneTime Performs a one-time copy of the source property to the target property without

setting up any other binding relationship. This is necessary when the source is a WinRT object,

as noted earlier in “Sidebar: Binding to WinRT Objects.”

 setAttribute and setAttributeOneTime Similar to defaultBind and oneTime but injects a

call to the target element’s setAttribute method instead of just copying the source value to a

target property. See “Sidebar: Additional Property Syntax and Binding to WinJS Controls” earlier

for more details.

 addClassOneTime Like setAttributeOneTime except that it interprets the source property as

a class name and thus calls the target element’s classList.add method to apply that class.

This is useful when working with templates, which are described later in this chapter, because

you can assign static classes to elements with the class attribute and then apply additional

data-bound classes with this initializer.

Beyond these, we enter into the realm of custom initializers. The most common and simplest case is

when you need to inject a converter into the binding relationship. All this takes on your part is to pass

your conversion function to WinJS.Binding.converter, which returns the appropriate initializer

(that’s also marked for declarative processing). We did this in Tests 2, 3 and 4 of the BindingTests

example. For Tests 3 and 4, for example, the initializer LoginData.typeColorInitializer is created

as follows:

WinJS.Namespace.define("LoginData", {

 //...

 typeColorInitializer: WinJS.Binding.converter(userTypeToColor)

 });

which we use in the HTML like so:

<span id="loginName3"

 data-win-bind="innerText: name; style.color: userType LoginData.typeColorInitializer">

Doing anything more requires that you implement the initializer function directly. This is necessary,

55 As shown earlier in “Sidebar: Binding to WinRT Objects,” you can override the default initializer by providing your own as
the fifth argument to processAll (after skipRoot and bindingCache). Though this argument doesn’t appear in the

MSDN documentation, it is described within the WinJS source file and is safe to use.

http://msdn.microsoft.com/library/windows/apps/br211691.aspx
http://msdn.microsoft.com/library/windows/apps/br211694.aspx
http://msdn.microsoft.com/library/windows/apps/jj215608.aspx
http://msdn.microsoft.com/library/windows/apps/jj215607.aspx
http://msdn.microsoft.com/library/windows/apps/dn301979.aspx
http://msdn.microsoft.com/library/windows/apps/br229809.aspx

317

for instance, if you need to apply a converter to a WinRT data source, where normally you’re required

to use the oneTime initializer already. A custom initializer can then do both steps at once.

Scenario 1 of the Declarative binding sample gives us an example of an initializer function

(js/1_BasicBinding.js):

var toCssColor = WinJS.Binding.initializer(

 function toCssColor(source, sourceProperty, dest, destProperty) {

 function setBackColor() {

 dest.style.backgroundColor =

 rgb(source.color.red, source.color.green, source.color.blue);

 }

 return WinJS.Binding.bind(source, {

 color: { red: setBackColor, green: setBackColor, blue: setBackColor, }

 });

 }

);

// A little helper function to convert from separate rgb values to a css color

function rgb(r, g, b) { return "rgb(" + [r, g, b].join(",") + ")"; }

WinJS.Namespace.define("BasicBinding", {

 toCssColor: toCssColor

});

WinJS.Binding.initializer is just an alias for WinJS.Utilities.markSupportedFor-

Processing, as discussed in Chapter 4, “Web Content and Services.” It makes sure you can reference

this initializer from processAll and doesn’t add anything else where binding is concerned.

The arguments passed to your initializer clearly tell you which properties of source and target

(dest) are involved in this particular relationship. The source and dest arguments are the same as the

dataContext and rootElement arguments given to processAll, respectively. The sourceProperty

and destProperty arguments are both arrays that contain the “paths” to their respective properties,

where each part of the identifier is an element in the array. That is, if you have an identifier like

style.color in data-win-bind, the path array will be [style, color].

Tip If you find it tricky to set a breakpoint inside an initializer, just insert the debugger statement at

the top and you’ll always stop at that point.

With all this information in hand, you can then set up whatever binding relationships you want by

calling the source’s bind method with whatever properties and handlers you require. To duplicate the

behavior of oneTime, as with WinRT sources, you wouldn’t call bind but instead just assign the value of

the source property to the destination property.

Although sourceProperty is what’s present in the data-win-bind attribute, you’re free to wire up

to any other property you want to include in the relationship. The code above, for example, will be

called with sourceProperty equal to [color], but it doesn’t actually bind to that directly. It instead

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5
http://msdn.microsoft.com/library/windows/apps/hh967817.aspx

318

uses a binding descriptor with WinJS.Binding.bind to hook up the setBackColor handler to three

separate color subproperties. Although setBackColor is used for all three, you could just as easily have

separate handlers for each one if, for example, each required a unique conversion.

Ultimately, what’s important is that the handler given to the source.bind method performs an

appropriate update on the target object. In the code above, you can see that setBackColor sets

dest.style.backgroundColor.

Hmmm. Do you see a problem there? Try changing the last data-win-bind attribute in

html/1_BasicBinding.html to set the text color instead:

data-win-bind="style.color : color BasicBinding.toCssColor"

Oops! It still changes the background color! This is because the initializer isn’t honoring

destProperty, and that would be a difficult bug to track down when it didn’t work as expected.

Indeed, because the initializer pays no attention to destProperty you can use a nonexistent identifier

and it will still change the background color:

data-win-bind="some.ridiculous.identifier : color BasicBinding.toCssColor"

Technically speaking, then, we could rewrite the code as follows:

dest.[destProperty[0]].[destProperty[1]] =

 rgb(source.color.red, source.color.green, source.color.blue);

Even this code makes the assumption that the target path has only two components—to be really

proper about it, you need to iterate through the array and traverse each step of the path. Fortunately,

WinJS.Utilities.getMember is a helper for just that purpose, though to do an assignment you need

to pop the last property from the array so that you can use [] to reference it:

var lastProp = destProperty.pop();

var target = destProperty.length ?

 WinJS.Utilities.getMember(destProperty.join("."), dest) : dest;

destProperty.push(lastProp);

function setBackColor() {

 target[lastProp] = rgb(source.color.red, source.color.green, source.color.blue);

}

This code can be found in the modified Declarative binding sample in this chapter’s companion

content. Note that I’m building that reference outside of the setBackColor handler because there’s no

need to rebuild it every time a source property changes. Also, calling push to restore destProperty is

important in scenario 3 when this initializer is used with a template that’s rendered multiple times on

the same page. In that case the same destProperty array is used with each call to the initializer,

meaning that we don’t want to make any permanent changes.

Remember also that sourceProperty can also contain multiple parts, so you may need to evaluate

that path as well. The sample gets away with ignoring sourceProperty because it knows it’s only using

the toCssColor initializer with source.color to begin with. Still, if you’re going to write an initializer,

http://msdn.microsoft.com/library/windows/apps/br229823.aspx

319

best to make it as robust as you can! Again, you can use getMember to assemble the reference you

need, and because you’re just retrieving the value, you can do it in one line:

var value = WinJS.Utilities.getMember(sourceProperty.join("."), source);

Binding Templates

Now that we understand how controls work from Chapter 5 and how data binding works to populate

those controls from a data source, the next question to ask is how we might define reusable pieces of

HTML that also integrate declarative data binding.

There are two ways to do this. First, you can certainly use data-win-bind syntax within an

HtmlControl or a custom control (remembering to bind control properties through winControl rather

than the root element). Once the control is instantiated with WinJS.UI.process[All], you can then

call WinJS.Binding.processAll to bind each element to an appropriate source.

The second way is through the WinJS.Binding.Template control. It provides a way to define an

HTML snippet, either inline or in a separate HTML file, and then render that snippet, however many

times you want, with whatever data source you need for each rendering. The template makes the call

to Binding.processAll automatically and provides some other options where binding is concerned.

To define a template control, first create a div with data-win-control =

"WinJS.Binding.Template" and an optional data-win-options string. The contents of the

template—which are copied into the DOM when you render the template—can then be defined either

inline or in a separate file. In that markup you’re free to use whatever controls you want along with

data-win-bind attributes (as well as data-win-res attributes for localization).

Tip Blend for Visual Studio 2013 has some helpful features to easily create templates and data

bindings from a data source for WinJS collection controls. We’ll see this in Chapter 7.

Template designs For an extensive collection of premade templates (designed primarily for the

ListView control, but a great reference nonetheless), see Item templates for grid layouts and Item

templates for list layouts.

Here’s an example from scenario 2 of the modified Declarative binding sample in this chapter’s

companion content (html/2_TemplateControl.html, where the toCssColor initializer is corrected as we

did earlier for scenario 1):

<div id="templateControlTemplate" data-win-control="WinJS.Binding.Template">

 <!-- Bind both the background and the aria-label HTML attribute for the div -->

 <div class="templateControlRenderedItem"

 data-win-bind="style.background: color TemplateControl.toCssColor;

 this['aria-label']: text WinJS.Binding.setAttribute" role="article">

 <li data-win-bind="textContent: text">

http://msdn.microsoft.com/library/windows/apps/br229723.aspx
http://msdn.microsoft.com/library/windows/apps/hh465463.aspx
http://msdn.microsoft.com/library/windows/apps/hh465478.aspx
http://msdn.microsoft.com/library/windows/apps/hh465478.aspx

320

 r:

 g:

 b:

 </div>

</div>

Scenario 3 of the example, which is an addition I’ve made to the original sample, has the same

template contents stored in html/3_TemplateContents.html (<!DOCTYPE html>, <html>, and <body>

tags are optional and have no effect). We then refer to those contents with the control’s href option in

data-win-options (html/3_TemplateControlHref.html):

<div id="templateControlTemplate" data-win-control="WinJS.Binding.Template"

 data-win-options="{ href : '/html/3_TemplateContents.html' }">

</div>

Note Using the href option disables certain optimizations with templates that dramatically improve

performance. You should only use href, then, when absolutely necessary.

What’s unique about this control is that it automatically hides itself (setting style.display =

"none") inside its constructor so that its contents never appear in your layout. You can confirm this

when you run scenarios 2 or 3 of the example—if you expand everything in Visual Studio’s DOM

Explorer, you won’t be able to find the template control anywhere. The control instance, however, is

still in memory: a quick getElementById or querySelector will get you to the hidden root element,

and that element’s winControl property is where you’ll find the WinJS template object.

That object has a number of methods and properties that we’ll return to in a bit. The most

important of these is the asynchronous render method. Given whatever data source you want to bind

to, render returns a promise that’s fulfilled with a copy of the template’s contents in a new element,

where Binding.processAll has already been called with the data source. You can then attach that

element to the DOM wherever you’d like.

Scenario 2 of the example, for instance, renders the template three times, binding each to a

different source object that contains text and a color. First, in html/2_TemplateControl.html, the target

div for the rendered templates is initially empty:

<div id="templateControlRenderTarget"></div>

In js/2_TemplateControl.js, we define the observable data sources as follows (showing

WinJS.Binding.define):

var DataSource = WinJS.Binding.define({

 text: "", color: { r: 0, g: 0, b: 0 }

});

321

// In the page control's init method

this.sourceObjects = [

 new DataSource({ text: "First object", color: { r: 192, g: 64, b: 64 } }),

 new DataSource({ text: "Second object", color: { r: 64, g: 192, b: 64 } }),

 new DataSource({ text: "Third object", color: { r: 51, g: 153, b: 255 } })

];

In the page’s ready method, which is called after the page is rendered (meaning UI.processAll

has instantiated the template), we do a bunch of work to wire up two-way binding and then render the

template for each data source:

var templateControl = element.querySelector("#templateControlTemplate").winControl;

var renderHere = element.querySelector("#templateControlRenderTarget");

this.sourceObjects.forEach(function (o) {

 templateControl.render(o).then(function (e) {

 renderHere.appendChild(e);

 });

});

Again, the template control is hidden but still present in the DOM, so we can get to it with the

querySelector call. We then get the target div and iterate through the data sources, rendering the

template with each source in turn, and attaching the resulting element tree (in e) to the target. The

result of all this is shown below:

Note that render will, by default, create an extra container div for the template contents. That is,

the output above will have this structure:

<div id="templateControlRenderTarget">

 <div class="win-template win-disposable">

 <!-- Template contents, starting with <div class="templateControlRenderedItem"> -->

 </div>

 <div class="win-template win-disposable">

 <!-- ... -->

 </div>

 <div class="win-template win-disposable">

 <!-- ... -->

 </div>

</div>

You can eliminate that extra div by setting the template’s extractChild option to true:

322

data-win-options="{ extractChild : true }"

Also keep in mind that render calls Binding.processAll as part of its process, using, of course, the

source you gave to render. Because there’s no point to process the template’s root element—the one

with the data-win-control= "WinJS.Binding.Template"—the call to processAll has the

skipRoot argument set to true. Internally WinJS also uses the bindingCache argument to optimize

repeated renderings. That’s really what those arguments are there for.

As you can see, binding templates are quite straightforward to use. They will come in very handy

when we talk about collection controls in the next chapter, because you can just point those controls to

a template to use with each item in the collection. And with the WinJS.UI.Repeater control, we’ll

even see how you can use nested templates.

Sidebar: The Static WinJS.Binding.Template.render method

Within the WinJS.Binding.Template API is an odd duck of a method that’s documented as

render.value. This is actually just a static method whose actual name in code is

WinJS.Binding.Template.render and whose implementation is simply the following:

value: function (href, dataContext, container) {

 return new WinJS.Binding.Template(null, { href: href }).render(dataContext, container);

}

This provides a programmatic shortcut for declaring a template with an href option, calling

WinJS.UI.processAll to instantiate it, and then obtaining the control object and calling its

render method. In short, WinJS.Binding.Template.render, which you’ll always call with the

full identifier, is a one-line wonder for quickly rendering a file-based template with some data

source into a container element. Scenario 4 of the modified Declarative Binding sample in this

chapter’s companion content has a quick demonstration. The caveat is that the template will be

loaded from disk each time you make this call, so it’s really best for one-shot renderings. If you’ll

be using a template in multiple places, use an inline declaration so that the template object is

present in the DOM for the lifetime of the page.

Template Options, Properties, and Compilation
Now that we’ve seen the basics of the Template control, let’s see what other features it supports. First

are the options for the constructor that you can include in data-win-options:56

 href Specifies the path of an in-package HTML file that contains the template definition, as

we’ve seen. Using this implicitly sets disableOptimizedProcessing to true.

 bindingInitializer Specifies a binding initializer to apply as the default to all data-win-

bind relationships. This does not override any explicit initializer given in data-win-bind.

56 Two other options, enableRecycling and processTimeout, are deprecated and for internal use, respectively.

http://msdn.microsoft.com/library/windows/apps/hh920315.aspx

323

 debugBreakOnRender Executes a debugger statement whenever the template is first rendered

and especially gives you a hook into a compiled template (see below). This is essential when a

template’s render call is being made implicitly from within another control like the ListView.

 disableOptimizedProcessing Turns off template compiling; see below.

 extractChild If set to true, suppresses creation of a containing div for the template

contents, as discussed in the previous section. The default is false.

All of these except for href can be accessed at run time through properties with the same names on

the control: bindingInitializer, debugBreakOnRender, disableOptimizedProcessing, and

extractChild.57 Note that changing any of these properties at run time will reset the template and

cause it to be recompiled the next time it’s used.

Related to the behavior of the extractChild option is a second argument to the render method. If

you already have a container into which you want the template contents rendered, you can provide it

through this argument. For example, with extractChild set to true, the following code in scenario 3

of the modified Declarative binding sample (in the companion content) produces the same result as

the default behavior (js/3_TemplateControlHRef.js):

this.sourceObjects.forEach(function (o) {

 var container = document.createElement("div");

 WinJS.Utilities.addClass(container, "win-template win-disposable");

 renderHere.appendChild(container);

 templateControl.render(o, container);

});

Such code gives you complete control over the kind of container element that’s created for the

template, if you have need of it.

As for disableOptimizedProcessing and debugBreakOnRender, these relate to a significant

change for WinJS 2.0 (in Windows 8.1): template compilation. In WinJS 1.0, template rendering was

always done in an interpreted manner, meaning that each time you rendered a template, WinJS would

parse your template’s markup and create each element in turn. You could improve this process by

creating a rendering function directly, but you then lost the advantages of declarative markup.

To improve performance of declarative templates, especially with the ListView control, WinJS 2.0

compiles each template upon first rendering. This step dynamically creates a rendering function that

makes subsequent use of the template much faster. In fact, if you have a Windows 8 (WinJS 1.0) app

that uses the ListView control and you simply migrate the project to Windows 8.1 (WinJS 2.0), you’ll

probably find it performing much better than before with no other changes.

Of course, with such extensive restructuring of the template engine there’s always the possibility

that it breaks some existing code somewhere—perhaps yours! If you find that’s the case, or if for some

57 One other property called isDeclarativeControlContainer is always set to true, and as with all other WinJS controls,

the template has an element property that contains its root element in the DOM.

http://msdn.microsoft.com/library/windows/apps/dn301967.aspx
http://msdn.microsoft.com/library/windows/apps/dn301968.aspx
http://msdn.microsoft.com/library/windows/apps/dn301969.aspx
http://msdn.microsoft.com/library/windows/apps/dn301970.aspx

324

reason want your app to just run slower, set disableOptimizedProcessing to true to bypass

compilation and use the WinJS 1.0 rendering behavior. And again, note that using href to refer to

template content will implicitly disable compilation.

With compiled templates, the WinJS engineers found it very helpful to have a hook into the

dynamically-generated code, so they included the debugBreakOnRender option. If set to true (try it in

scenario 2) and you run an app in the debugger, you’ll hit a debugger statement in code like this:

// generated template rendering function

return function render(data, container) {

 if (++sv23_debugCounter === 1) { debugger; }

 if (typeof data === "object" && typeof data.then === "function") {

 // async data + a container falls back to interpreted path

If you step through this code you can see the nature of the compiled template. The HTML contents

are added through a single insertAdjacentHtml with a string, for instance, and the steps that would

normally happen within the async Binding.processAll, including calls to initializers, are done inline,

so there’s no extra parsing of data-win-bind attributes. The same is true for WinJS controls in the

template that would normally go through the async UI.processAll method: they are instead

instantiated directly with new and a pre-parsed options object. Avoiding async calls and eliminating

extra parsing clearly make compiled templates run much faster.

On the other hand, if you’re using href or have disableOptimizedProcessing turned on (as in

scenario 3 of the example), you’ll instead hit a debugger statement inside this internal WinJS function:

function interpretedRender(template, dataContext, container) {

 if (++template._counter === 1

 && (template.debugBreakOnRender || WinJS.Binding.Template._debugBreakOnRender)) {

 debugger;

 }

Stepping through this code you’ll see just how much more work is going on, such as a call to

WinJS.UI.Fragments.renderCopy to asynchronously load up the template contents. Inside the

completed handler for this (a variable called renderComplete), you’ll also see calls to the async

UI.processAll and Binding.processAll methods.

If you continue looking through both renderers (compiled or interpreted), you’ll see they return an

object with two properties called element and renderComplete. element is a promise that’s fulfilled

when the element tree has been built up in memory, and renderComplete is a function that’s called

once the promise is fulfilled (where data binding can then happen). This isn’t at all important for using

the Template object but becomes important with collection controls like the ListView when you want

to do performance optimization through your own rendering functions. We’ll see all that in Chapter 7.

Collection Data Types

No sooner had I sat down to start this section than my wife called me about the shopping list she’d left

325

lying on our kitchen counter. It was a timely reminder that much of our reality where data is concerned

is oriented not around single items or object instances, as we’ve dealt with thus far in this chapter, but

around collections of such things. And as I said in the introduction to this chapter, dealing with

collections and presenting them in an app’s UI is where data binding becomes exceptional useful.

Otherwise you’d become very proficient (though I imagine you are already!) at doing copy/paste with

lots of redundant binding code.

I assume that you’re already well familiar with the core collection type in JavaScript—the Array—

whose various capabilities are all supported in Windows Store apps, as are the typed JavaScript

collections like Uint16Array.

By itself, Array and typed arrays are not observable for data-binding purposes. Fortunately, WinJS

provides the WinJS.Binding.List collection type that is easily built on an array. The List also

supports creating grouped, sorted, and filtered projections of itself.

What also enters into the picture are specific language-neutral collection types that are used with

WinRT APIs. In Chapter 4, for example, we encountered vectors in a number of places, such as network

information, the credential locker, the content precacher, and background transfers. The other types

are iterators, key-value pairs, maps, and property sets. As we’re talking about collections in this section,

we’ll take the opportunity to familiarize ourselves with each of these constructs.

What’s most important to understand about the WinRT collections—especially where data binding

is concerned—is how they project into the JavaScript environment, because that determines whether

you can easily bind to them. Earlier we learned that it’s not possible to do one-way or two-way binding

with WinRT objects, and these collections count as such. Fortunately, the JavaScript projection layer

conveniently turns some of them into arrays, meaning that we can create a List and go from there.

Windows.Foundation.Collection Types
All of the WinRT collection types are found in the Windows.Foundation.Collections namespace.

What you’ll notice immediately upon perusing the namespace is that it actually contains only one

concrete class, PropertySet, and otherwise it is chock full of “interfaces” with curious names like

IIterable<T>, IMapView<K, V>, and IVectorView<T>.

If you’ve at least fiddled with .NET languages like C# in your development career, you probably

already know what the I and <T> business is all about because you get to type them out all the time.

For the rest of you, it probably makes you appreciate the simplicity of JavaScript! In any case, let me

explain a little more.

An interface, first of all, is an abstract definition of a group of related methods and properties.

Interfaces in and of themselves have no implementation, so they’re sometimes referred to as abstract

or virtual types. They simply describe a way to interact with some object that “implements” the

interface, regardless of what else the object might do. Many objects, in fact, implement multiple

interfaces. So anytime you see an I in front of some identifier, it’s just a shorthand for a group of

http://msdn.microsoft.com/library/ie/k4h76zbx(v=vs.94).aspx
http://msdn.microsoft.com/library/windows/apps/br206657.aspx

326

members with some well-defined behavior.58

With collections in particular, it’s convenient to talk about the collection’s behavior independently

from the particular object type that the collection contains. That is, whether you have an array of

strings, integers, floats, or other complex objects, you still use the same methods to manipulate the

array and the same properties like length are always there. The <T> shorthand is thus a way of saying

“of type T” or “of whatever type the collection contains.” It certainly saves the documentation writers

from having to copy and paste the same text into dozens of separate pages and do a search-and-

replace on the data type! Of course, you’ll never encounter an abstract collection interface directly—in

every instance you’ll see a concrete type in place of <T>. For instance, IVector<String> denotes a

vector of strings: you navigate the collection through the methods of IVector, and the items in the

collection are of type String.

In a few cases you’ll see <K> and <K, V> where K means key and V means value, both of which can

also be of some arbitrary type. Again, it’s just a shorthand that enables us to talk about the behavior of

the collection without getting caught up in the details of whatever object type it contains.

So that’s the syntactical sugar—let’s now look at the different WinRT collections.

Iterators

An iterator is the most basic form of a collection and one that maps directly to a simple array in

JavaScript. The two iterator interfaces in WinRT are IIterable<T> and IIterator<T>. You’ll never

work with these directly in JavaScript, however. For one thing, a JavaScript array (containing objects of

any type) can be used with any WinRT API that wants an IIterable. Second, when a WinRT API

produces an iterator as a result, you treat it as an array. (There are, in fact, no WinRT APIs available from

JavaScript that directly produce a plain iterator; they produce vectors and maps that derive from

IIterable and thus have those methods.)

In short, iterators are transparent from the JavaScript point of view, so when you see IIterable in

the documentation for an API, just think “array.” For example, the first argument to Background-

Downloader.requestUnconstrainedDownloadsAsync that we saw in Chapter 4 is documented as an

IIterable<DownloadOperation>. In JavaScript this just means an array of DownloadOperation

objects; the JavaScript projection layer will make sure that the array is translated into an IIterable

suitable for WinRT.

Similarly, a number of APIs in the Windows.Storage.FileIO and PathIO classes, such as

appendLinesAsync and writeLinesAsync all take arguments of type IIterable<String>, which to

us just means an array of strings.

58 There are actually all kinds of interfaces floating around the WinRT API. When working in JavaScript, however, you rarely

bump into them because the language doesn’t have such a formal construct. For example, a page control technically

implements the WinJS.UI.Pages.IPageControlMembers interface, but you never see a direct reference to that name.
Instead, you simply include its methods among the instance members of your page class. In contrast, when creating

classes in other languages like C#, you explicitly list an interface as an abstract base class to inherit its methods.

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pathio.aspx
http://msdn.microsoft.com/library/windows/apps/br206657.aspx

327

Occasionally you’ll run into an API like ImageProperties.savePropertiesAsync (in Windows.-

Storage.FileProperties) that takes an argument of type IIterable<IKeyValuePair>, which forces

us to pause and ask just what we’re supposed to do with a collection interface of another interface!

(IKeyValuePair<K, V> is also in Windows.Foundation.Collections.) Fortunately, the JavaScript

projection layer translates IIterable<IKeyValuePair> into the concrete Windows.Foundation.-

Collections.PropertySet class, which can be easily addressed as an array with named members, as

we’ll see shortly.

Vectors and Vector Views

By itself, an iterator has methods to go through the collection in only one direction (IIterable.first

returns an IIterator whose only methods are getMany and moveNext). A vector is a more capable

variant (IVector derives from IIterable) that adds random-access methods (getAt and indexOf) and

methods to modify the collection (append, clear, insertAt, removeAt, removeAtEnd, replaceAll,

and setAt). A vector can also report its size.59

Because a vector is a type of iterator, you can also just treat it as a JavaScript array—a vector that

you obtain from some WinRT API, that is, will have methods like forEach and splice as you’d expect.

The one caveat here is that if you inspect a vector in Visual Studio’s debugger (as when you hover over

a variable), you’ll see only its IVector members. But trust me, the others are there!

Vectors basically exist to help marshal changes to the collection between the JavaScript environment

and WinRT. This is why IIterable is used as arguments to WinRT APIs (the input array is effectively

read-only), whereas IVector is used as an output type, either for the return value of a synchronous API

or for the results of an asynchronous API. For example, the readLinesAsync methods of the FileIO

and PathIO methods in Windows.Storage provide results as a vector.

Within WinRT you’ll most often encounter vectors with a read-write collection property on some

object. For example, the Windows.UI.Popups.MessageDialog object, which we’ll meet in Chapter 9,

“Commanding UI,” has a commands property of type IVector<IUICommand>, which translates into

JavaScript simply as an array of UICommand objects. Because the collection can be modified by either

the app or the WinRT API, a vector is used to marshal those changes across the boundary.

In quite a number of cases—properties and methods alike—the collection involved is read-only but

still needs to support random-access characteristics. For this we have the vector view (IVectorView also

derives from IIterable), which doesn’t have the vector’s modification methods. To give a few

examples, a vector view of ConnectionProfile objects comes back from NetworkInformation.-

getConnectionProfiles (which we saw in Chapter 4). Similarly, StorageFolder.getFilesAsync

provides a vector view of StorageFile objects. The user’s preferred languages in the Windows.-

System.UserProfile.GlobalizationPreferences object is a vector view of strings. And you can

59 The IObservableVector<T> interface in Windows.Foundations.Collections exists for other languages and is not ever

seen in JavaScript.

http://msdn.microsoft.com/library/windows/apps/br207734.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.messagedialog.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommand.aspx

328

always get a read-only view for any given read-write vector through the latter’s getView method.

Now because a vector is just a more capable iterator, guess what? You can just treat a vector like an

array. For example, the Folder enumeration sample uses StorageFolder.getFilesAsync and

getItemsAsync to list the contents of in your various media libraries, using forEach to iterate the

array that those APIs produce. Using that example, here’s what I meant earlier when I mentioned that

Visual Studio shows only the IVector members—the items from getItemsAsync doesn’t show array

methods, but we can clearly call forEach (circled):

What all this means for data binding, to return to the context of this chapter, is that it’s no problem

to create a WinJS.Binding.List from the WinRT methods and properties that produce vectors and

vector views, because those collections are projected as arrays.

Tip If you’re enumerating folder contents to create a gallery experience—that is, displaying

thumbnails of files in a control like the WinJS.UI.ListView—always use Windows.Storage.Storage-

File.getThumbnailAsync or StorageFile.getScaledImageAsThumbnailAsync to retrieve a

small image for your data source, which can be passed to URL.createObjectURL and the result

assigned to an img.src attribute. This performs far better in both speed and memory efficiency, as the

API draws from the thumbnails cache instead of loading the entire file contents (as happens if you call

URL.createObjectURL on the full StorageFile). See the File and folder thumbnail sample for

demonstrations.

http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-ec5f1263
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getthumbnailasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getthumbnailasync.aspx
http://msdn.microsoft.com/library/windows/apps/dn298481.aspx
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959

329

Maps and Property Sets

A map (IMap<K, V>) and its read-only map view companion (IMapView<K, V>) are additional

derivations of the basic iterator. A map is composed of key-value pairs, where the keys and values can

both be arbitrary types.60 A closely related construct is the property set (IPropertySet), which relates

to the map. The difference is that maps and map views are used (like vectors) to return collections from

WinRT APIs and to handle certain properties of WinRT objects. Property sets, for their part, as used (like

basic iterators) as input arguments to WinRT APIs.61

It’s important to note right up front that maps and property sets are not projected as arrays. They do

support value lookup through the [] operator, but otherwise do not have array methods. A map,

instead, has methods (from IMap) called lookup (same as []), insert, remove, clear, and hasKey,

along with a size property and a getView method like the vector. A map view shares hasKey, lookup,

and size, and adds a split method. You can also pass a map or map view to Object.keys to retrieve

an array of keys.

A property set has a more extensive interface, but let me come back to that in a bit.

The generic term for maps and property sets alike is a dictionary. A dictionary does just what the

word means in colloquial language: it lets you look up an item (similar to a definition) in a collection

(the dictionary) by a key (such as a word). This is very useful when the collection you’re working with

doesn’t store items in a linear or indexed array, or doesn’t have a need to do so. For example, when

working with the Windows.Storage.Pickers.FileSavePicker class, you give the user a choice of file

types through its fileTypeChoices property. This property is interesting because its type is

IMap<String, IVector>, meaning that it’s a map between a string key and a value that is itself an

array. This makes sense, because you want to use something like “JPEG” for a key while yet mapping

that single key to a group of values like “.jpg” and “.jpeg”.

Maps are also used extensively when working with file properties, where you have access to a

deeper hierarchy of metadata that’s composed of key-value pairs. This is the same metadata that you

can explore if you right-click a file in Windows Explorer and click the details tab, as shown here for a

picture I took on a trip to Egypt where the camera recorded exposure details and so forth:

60 Each pair is described by the IKeyValuePair<K, V> interface, but you don’t encounter that construct explicitly in

JavaScript. Also, the IObservableMap<K, V> interface is also meant for other languages and not used in JavaScript.
61 In JavaScript, a property set is the only type of WinRT collection that you can create directly with the new operator.

However, a few APIs that require a Map or IIterable argument have managed to slip through the API review process,
thereby posing a problem for JavaScript developers. In these few cases, you have to find another method that returns the

right type and then munge it to fit your needed input argument. See this forum post for an example of this workaround.

http://msdn.microsoft.com/library/windows/apps/br226042.aspx
http://msdn.microsoft.com/library/windows/apps/br226037.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filesavepicker.filetypechoices.aspx
http://social.msdn.microsoft.com/Forums/windowsapps/en-US/5589e0dc-40da-4412-8e07-8c6efd337b4b/using-httpformurlencodedcontent?forum=winappswithhtml5

330

As we’ll see in Chapter 11, “The Story of State, Part 2,” the Windows.Storage.FileProperties API

is how you get to all this metadata. Images provide an ImageProperties object, whose

retrievePropertiesAsync produces a map containing the metadata. You can play with this in the

Simple Imaging sample if you’d like, where once you’ve obtained a map you can access individual

properties by name (retrievedProps is the map):

retrievedProps["System.Photo.ExposureTime"]

On the flip side of this metadata scene is where we encounter property sets. Again, these are a form

of dictionary like maps but one that an app needs to create for input to methods like

ImageProperties.savePropertiesAsync. This is why Windows.Foundation.Collections has a

concrete PropertySet class and not just an interface, because then we can new up an instance like so:

var properties = new Windows.Foundation.Collections.PropertySet();

and create key-value pairs with the [] operator:

properties["System.GPS.LatitudeNumerator"] = latNum;

or with the insert method:

properties.insert("System.GPS.LatitudeNumerator", latNum);

Be mindful that while the documentation for PropertySet lists quite a few methods and properties,

only some of them are projected into JavaScript:

http://msdn.microsoft.com/library/windows/apps/br207732.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0
http://msdn.microsoft.com/library/windows/apps/br207734.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.propertyset.aspx

331

 Properties: size

 Lookup methods: [], lookup, hasKey, first (returns an iterator for the key-value pairs)

 Manipulation methods: clear, insert, remove

 Other: getView (retrieves a map view) and the mapChanged event

In summary, maps and property sets are distinct collection constructs that must be worked with

through their own methods and properties. Vectors, on the other hand, are projected into JavaScript as

an array and are thus suitable for data binding. If you want to bind to a map or property set, on the

other hand, you’ll need to maintain an array copy.

WinJS Binding Lists
The WinJS.Binding.List object is the core of collection-based data binding in WinJS and is what you

use with both templates and collection controls, as discussed in this chapter and the next. That is, the

name of the ListView control is quite apt: it’s a view of a list but not the list itself. That list is a

WinJS.Binding.List, which I’ll just refer to as List or “list” for convenience.

A List takes a JavaScript array and makes it observable, because such a process means more than

WinJS.Binding.as does with a single object. The array in question can contain any kind of objects,

from simple values to complex objects and other arrays. All it takes is a new:

list = new WinJS.Binding.List(dataArray);

Note that you can build a List with a sparse array—that is, an array with noncontiguous indices

(see Using Arrays).

Once created, the List provides a number of array-like methods and properties, namely length,

concat, every, filter, forEach, indexOf, join (using a comma), lastIndexOf, map, push, pop,

reduce, reduceRight, reverse, shift, slice, sort, and unshift. These operate exactly like they do

with a typical array except that functions like concat produce another List rather than an array. The

List also provides additional lookup and management methods: getAt, getItem, getItemFromKey,

indexOfKey, move, setAt, and some. I’ll leave you to check out the details of all these as needed, as

they are all very simple and straightforward.

Hint You can create an empty List without an array, using new WinJS.Binding.List(). You then

use methods like push to populate the list. Any data-binding relationships you set up with the empty

list will remain in effect as you add items or remove and change existing items.

What’s much more interesting are those List features that apply more to data binding in particular,

which come under four groups:

 Constructor options The binding and proxy options affect whether items in the list are

individually observable (binding) and whether the list uses the array directly for data storage

http://msdn.microsoft.com/library/windows/apps/hh700774.aspx
http://msdn.microsoft.com/library/ie/5kh4af6c.aspx

332

(proxy).

 Projections The createFiltered, createGrouped, and createSorted methods generate

new List objects whose contents are controlled by filtering, grouping, and sorting functions,

respectively.

 Events As an observable object, the list can notify listeners when changes happen within its

content. This is clearly important for any controls that are built on the List, such as the

ListView. The supported events are itemchanged, iteminserted, itemmoved, itemmutated,

itemremoved, and reload. (The List has the standard addEventListener, removeEvent-

Listener, and dispatchEvent methods, and provides on* properties for the events.) Three

additional methods—notify, notifyMutated, and notifyReload—will trigger appropriate

events; notifyReload is generally called within operations like reverse and sort.

 Binding The bind and unbind methods support binding to the list’s own properties (rather

than those of its contents). The dataSource property supplies an “adapter” that’s specifically

used by WinJS ListView and FlipView controls (see Chapter 7) or custom controls that want

to use the same data model.

You’ll find that many Windows SDK samples use a List, especially those that deal with collection

controls; there’s no shortage of examples. However, those samples are typically intertwined with the

details of the control, so I’ve included the more fundamental BindingLists example in this chapter’s

companion content to demonstrate two aspects of the List class: how the list relates to its underlying

array (if one exists), and the various projections. These are the subjects of the next two sections.

Sidebar: Async Data Sources and Populating from a Feed

The implementation of List is wholly synchronous, meaning that significant operations on large

data sets can block the UI thread. To avoid this, consider executing list-modifying code at a lower

than normal priority using the WinJS.Utilities.Scheduler discussed in Chapter 3, “App

Anatomy and Performance Fundamentals.” If you’re creating a custom control around a

potentially large collection, consider using data sources that implement the IListDataSource

interface as used by WinJS controls like the ListView. This interface accommodates asynchronous

behavior as well as virtualization. See “Collection Control Data Sources” in Chapter 7.

If your collection isn’t so large that the synchronous nature of List will be a problem, you can

still populate that list asynchronously such that items will automatically appear within data-

bound controls. An excellent example of this (both virtualized and nonvirtualized cases) can be

found in scenario 6 of the HTML FlipView control sample that we’ll meet in Chapter 7 and discuss

in that chapter’s “Custom Data Sources and WinJS.UI.VirtualizedDataSource” section.

List-Array Relationships

By default, a List built on an array of simple values does not have any inherent relationship to the

http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4

333

array. Scenario 1 of the BindingLists example in the companion content, for instance, creates a simple

array of random numbers (this._array) and builds a list on it (this._list; js/scenario1.js):

this._list = new WinJS.Binding.List(this._array, this._options);

where this._options is optional and initially empty—more on this in a bit. Two buttons in this

scenario then randomize the contents of the array and List separately. In both cases we iterate

through the collection, using array[i] or List.setAt(i) to set the new numbers:

function randomizeArray(arr, num, lower, upper) {

 for (var i = 0; i < num; i++) {

 arr[i] = randInt(lower, upper);

 }

}

function randomizeList(list, num, lower, upper) {

 for (var i = 0; i < list.length; i++) {

 list.setAt(i, randInt(lower, upper));

 }

}

If you tap these buttons in scenario 1 (leaving the Proxy option unchecked for now), you’ll see that

modifying the array does not update the List, nor does modifying the List update the array. Now

let’s play with the checkboxes that recreate the list with its different constructor options:

Option Effect
{binding: true}

(default is false)
Calls WinJS.Binding.as for each item in the array, making each item individually observable if

supported by as. This also affects any items inserted with setAt, push, unshift, etc. The binding option

does not affect the relationship between the array and the list, and this option has no effect on arrays of

nonobject values that are ignored by as.

{proxy: true}

(default is false)
Instructs the list to use the underlying array for its own storage, meaning that changes to the list will

directly update the array. Note that sparse arrays are not allowed with this option.

In scenario 1 you’ll see that the Binding checkbox doesn’t do anything, which is expected. Now

check the Proxy option and you’ll see that changes to the list now show up in the array because the list

in this case is just a thin veneer over the array. Bear in mind, though, that if you then change the array,

the list doesn’t get updated. This means it won’t fire any events and any other control that is built on

the list will get badly out of sync with the real data. For this reason, it’s best to avoid changing the array

directly when using the proxy option.

It’s very helpful to peek under the covers again and understand exactly what the List object is

doing with the array, why the proxy works like it does, and what specific behaviors arise when object

arrays are involved.

By default, with proxy set to false, the List creates an internal map of the array’s contents (no

such map exists if the List is created without an array). Each entry in the map holds a key for an array

item (typically its positional index as a string) and the item’s value, as shown in Figure 6-2.

http://msdn.microsoft.com/library/windows/apps/hh700764.aspx

334

FIGURE 6-2 The default relationship between a WinJS.Binding.List and its underlying array.

If the binding option is set to true, then the item in the map is the result of

WinJS.Binding.as(<array_item>) instead, as shown in Figure 6-3.

FIGURE 6-3 The relationship between a WinJS.Binding.List and its underlying array with the binding option set

to true. If the array is sparse, the keys will not be contiguous, of course.

In both of these cases, all of the list manipulation methods like concat, splice, reverse, sort, and

so forth affect only the map—the array itself is left untouched.

That changes when the proxy option is set to true, because here the List no longer maintains a

separate map but just holds a direct reference to the array, as shown in Figure 6-4. In this case, the

binding option is ignored and the manipulation methods act directly on the array—they simply call

the array’s methods of the same name. In this relationship it is obvious why changes to the List are

reflected in the array, as scenario 1 of the example demonstrates.

335

FIGURE 6-4 The relationship between a WinJS.Binding.List and its underlying array with the proxy option set to

true. The binding option is ignored in this case.

With proxy: true, this relationship holds regardless of whether the array contains simple values or

complex objects. Note also in this case that when you change the array, methods like List.getAt will

clearly return the updated value.

In contrast, when the List is using a map (proxy: false), something a little more interesting

happens with an array of objects by virtue of this little bit of (condensed) code in the list’s constructor:

item = options.binding ? WinJS.Binding.as(inputArray[i]) : inputArray[i];

_keyMap[key] = { key: key, data: item }

If the item at inputArray[i] is a simple value, then the map will contain a copy of that value.

However, if the item is an object, then the map will contain the item object itself (or an observable

variant), rather than a copy. “So what?” you might ask. On the surface this doesn’t seem to mean much

at all, but in fact it has two important implications (still assuming proxy: false):

 If you replace a whole item object in the array, the corresponding List entry will be unchanged

because the original item object is still intact.

 If you change properties on an item object in the array, the properties of the corresponding List

entry will also change.

This effect is demonstrated in scenario 2 of the BindingLists example. This scenario repeats the UI as

scenario 1 but uses an array of objects rather than simple values. I have added an additional output

element that’s data-bound to the first item in the list to show the effect of the binding option. The

effect of the modification buttons and the Binding and Proxy checkboxes is the same as before. For

example, with Proxy unchecked, the Modify Array Objects button replaces the array’s content with new

objects like so (js/scenario2.js):

arr[i] = { number: randInt(lower, upper), color: randColor() };

but because the list’s map maintains references to the original items in the array, the List doesn’t see

any changes (see the left side of Figure 6-5). Similarly, changing the list’s item through setAt:

336

list.setAt(i, { number: randInt(lower, upper), color: randColor() });

replaces the whole object in the map with the new one, leaving the array unaffected (see the right side

of Figure 6-5).

FIGURE 6-5 Replacing a whole object in either the array or the list will disconnect the related item in the other.

But now, with Proxy still unchecked, try the new button labeled Modify Array Object Properties,

which instead modifies each array item this way:

arr[i].number = randInt(lower, upper);

arr[i].color = randColor();

Because we’re now modifying the existing objects in the array instead of replacing them, and

because the list’s map contains references to those same objects, you’ll see that those changes are

reflected automatically in the List (as well as the one element bound to a list item). This is illustrated

on the left side of Figure 6-6. On the flip side, the Modify List Object Properties button calls

List.getAt to obtain the item in the map and then changes its properties:

var item = list.getAt(i);

item.number = randInt(lower, upper);

item.color = randColor();

Because that’s still the same item as the one in the array, the array also sees those changes, as shown

on the right side of Figure 6-6.

Note Tapping the Modify Array Objects or Modify List Objects buttons will replace all objects in the

corresponding collection, disconnecting it from the other. The result is that modifying objects via

properties will have no effect on the other collection. To restore the connection, re-create the List by

changing one of the checkboxes.

337

FIGURE 6-6 Changing properties of objects in either the array or the list will change the properties in the other,

because both are still referencing the same object.

All of this is important to keep in mind as you’re building more complex UI around a data source of

some kind, whether using controls like the ListView or a custom control built on the List. That is, if

you have code that modifies the array—or UI capabilities in the control to modify the List—you’ll

know how the list and the array will be correspondingly affected. Otherwise you might be left

scratching your head wondering just why certain changes to the list or array (item replacement) don’t

affect the other whereas other changes (via properties) do!

Indeed, in scenario 2 you might notice that the span element that’s data-bound to the item from

List.getAt(0) automatically updates when changes come through the List but not when they come

through the array. This is because the binding mechanics are watching the list’s item, not the array item

sitting beneath it. In such cases, be sure to make modifications through only the List.

It’s also good to know how the array and List relate when you start using projections of the List,

because changes to the projections will propagate to the original List as well, as we’ll see next.

List Projections

The idea of a projection comes from the world of databases and data sources to mean a particular view

of a data source that is still completely connected to that source. Projections are typically used to

massage a raw data source into something more suitable for data binding to your UI, but without

altering the original source.

For example, a data source for your personal contacts might have those contacts listed in any order

and would of course contain the entire collection of those contacts. In an app’s UI, however, you

probably want to sort and re-sort those contacts by one or more fields in each record. Each time you

change the sort order in the UI, you’d create another sorted projection and bind the UI to it. Again,

creating a projection doesn’t alter the data source. At the same time, changing properties of an item in

the projection, inserting or removing items, or otherwise modifying the projection does propagate

those changes back to the source. Similarly, if you add, remove, or change items in the underlying

338

source—even through a projection—those changes propagate to all projections. In short, there is only

ever one data source no matter how many projections are involved.

You might also want to present only a subset of your contacts in the UI based on certain filtering

criteria. That’s called a filtered projection. You might also want to group those contacts by the first letter

of the last name or by location. Whatever the case, projections make all this easier by applying such

operations at the level of the data source so that you can just use the same UI and the same data

binding code across the board.

Sorting, filtering, and grouping are the most common operations applied to data projections, and

thus WinJS.Binding.List supports these through its createSorted, createFiltered, and

createGrouped methods:

Method Return Type Arguments and Description

createSorted SortedListProjection

(Note: The documentation for

this and the other projection

types shows only a few

methods, but all List methods

are available.)

Accepts a single sorter function argument that is called pairs of items in

the list. The sorter returns a negative number if the first item is sorted

before the second, zero if the two are sorted equally, and a positive

number if the first is sorted after the second.

Be aware that a sorter can be called up to N^2 times for a list of N items,

so it should be very efficient.

Note that a list’s sort method does not create a projection. It applies

the sorting in-place, just like the JavaScript array’s sort.

createFiltered FilteredListProjection Accepts a single predicate function argument that is called for each item

in the list, returning true if the item should be included in the filtered

projection, false if it should not.

createGrouped GroupedSortedListProjection Accepts three function arguments. The first, groupKey, is called for each

item in the list and returns the group key (a string) for that item.

(Technically the List can handle any type of key usable with [] on an

array; the ListView control, however, requires that keys are strings.)

The second, groupData, is called once for each group with a

representative item from that group. The groupData function returns an

object that contains all the appropriate data for that group. Because

groupData is called only once per group, you can do more computation

here without affecting performance, such as calculating summary data

for the group to include in the returned object.

The third, groupSorter, is optional. It works the same as the argument to

createSorted above but is applied to the data returned from the

groupData function. Because the group data is typically a smaller set,

this function doesn’t need to be as efficient as a typical sorter.

Performance tip If deriving the group key from an item at run time requires an involved process,

you’ll improve overall performance by storing a prederived key in the item instead and just returning

that from the group key function.

http://msdn.microsoft.com/library/windows/apps/hh700743.aspx
http://msdn.microsoft.com/library/windows/apps/hh920311.aspx
http://msdn.microsoft.com/library/windows/apps/hh700741.aspx
http://msdn.microsoft.com/library/windows/apps/hh920299.aspx
http://msdn.microsoft.com/library/windows/apps/hh700742.aspx
http://msdn.microsoft.com/library/windows/apps/hh920302.aspx

339

Globalization tip When sorting or otherwise comparing items, be sure to use globalization APIs like

localeCompare to determine sort orders, or else you’ll really confuse your customers in different world

markets! For grouping of textual items, also use the Windows.Globalization.Collation.-

CharacterGroupings API. We’ll see an example in Chapter 7 in “Quickstart #4: The ListView Grouping

Sample.”

Each projection generated by these methods is itself a special variant of the List class, meaning

that each projection is individually bindable. You can also compose projections together. Calling

List.createFiltered().createSorted(), for example, will first filter the original List and then

apply sorting. List.createFiltered().createGrouped() will filter the List and then apply

grouping (and sorting). It’s quite common, in fact, to filter a list first and then apply sorting and/or

grouping because filtering is typically a less expensive operation than sorting or grouping.

When you create a grouped projection, it won’t necessarily call your grouping functions for every

item right away. Instead, the projection will call those functions only when necessary, specifically when

someone is asking the List or a projection for one or more items. This makes it possible to use

projections with virtualized data sources where all the data isn’t necessarily in memory but loaded only

when a control like the ListView is preparing a page of items.

Debugging tip You can of course set breakpoints within sorter, predicate, and grouping functions

and step through the code a few times. With large and even modest collections, however, breakpoints

quickly become tedious as these functions will be called many, many times! Instead, try using

console.log or WinJS.log to emit the parameters received by these functions as well as their return

values, allowing you to review the overall results much more quickly. In fact, it’s a great place to use

WinJS.log with a tag specific to projections so that you can turn this specific logging output on and

off independently.

Let’s see some examples now, drawing from scenario 3 of the BindingLists example in the

companion content for the fundamentals. Trust me, we’ll see plenty more of p rojections in the next

chapter when we work with collection controls!

Scenario 3 (js/scenario3.js) of the example creates an empty List without an underlying array and

uses push to populate it with objects containing a random number and color (like scenario 2):

this._list = new WinJS.Binding.List();

for (var i = 0; i < num; i++) {

 this._list.push({ number: randInt(this._rangeLower, this._rangeUpper), color: randColor() });

}

The output of this list is as follows:

It then creates two filtered projections, one that contains only those items whose key is greater than

340

50 and another that contains only those items where the blue of the color is greater than 192. The first

filtering is done with an inline predicate, the second with a separate function. Note that in this and the

following code I’ve omitted calls to WinJS.log and intermediate variables used for logging, and I’ll just

show the output afterwards without additional comment:

this._filteredByNumber = this._list.createFiltered(function (j) { return j.number > 50; });

this._filteredByBlueness = this._list.createFiltered(filterBluenessOver192);

function filterBluenessOver192(j) {

 return j.color.b > 192;

}

Then we have three sorted projections, one of the original list sorted by number (then blueness in

case of repeats), one sorted just by blueness, and one sorted from the list filtered by blueness:

this._sorted = this._list.createSorted(sortByNumberThenBlueness);

this._sortedByBlueness = this._list.createSorted(sortByBlueness);

this._sortedByFilteredBlueness = this._filteredByBlueness.createSorted(sortByBlueness);

function sortByNumberThenBlueness (j, k) {

 var result = j.number - k.number;

 //If the items' numbers are the same, sort by blueness as the second tier

 if (result == 0) {

 result = sortByBlueness(j, k)

 }

 return result;

}

function sortByBlueness(j, k) {

 return j.color.b - k.color.b;

}

Then we can add a projection that’s grouped by decades:

this._groupedByDecades = this._list.createGrouped(decadeKey, decadeGroupData.bind(this._list));

function decade(n) { return Math.floor(Math.floor(n / 10) * 10); }

function decadeKey(j) {

 return decade(j.number);

341

}

//"this" will be bound to the list that's being grouped

function decadeGroupData(j) {

 var dec = decade(j.number);

 //Do a quick in-place filtering of the list so we can get the population of the decade.

 var decArray = this.filter(function (v) { return (decade(v.number) == dec); })

 return {

 decade: dec,

 name: dec.toString(),

 count: decArray.length

 }

}

The last one is grouped by decades with the groups sorted in descending order, using the same key

and group data functions as above:

this._groupedByDecadesSortedByCount =

 this._list.createGrouped(decadeKey, decadeGroupData.bind(this._list),

 //j and k are keys as returned from decadeKey; k-j does reverse sort

 function (j, k) { return k - j; });

342

The Modify List button that’s included with this scenario demonstrates how the projections are

always tied to the underlying List: when the list is repopulated with new values, you’ll see that all the

projections get those new values as well. And if you look at the console output, you’ll see the log

entries from the different sorting, filtering, and grouping functions. (You can turn logging off in

js/default.js by removing the WinJS.Utilities.startLog calls.)

Tip When making many modifications to the root List, the group key, sorting, and filtering methods of

the projections will be called repeatedly, but the groupData function won’t get called unless the

groupKey function returns a key that doesn’t already exist. This means that the group data can get out

of sync with the real list. For this reason I call the List.notifyReload method after repopulating the

list to make sure that the projections are reset.

The Modify Projection button demonstrates that a change to a projection ripples through the other

projections and the original list. In this case I just change the first item of the groupedByDecades-

SortedByCount projection, which just goes to show that it doesn’t matter how many projection layers

you have—you’re always talking to the same data source ultimately.

The code that generates the group data output answers a question you might have had earlier:

what happens to the objects returned from the createGrouped method’s groupData function? Did all

that just vanish into the netherworld? Not at all! Those objects simply ended up in the groups property

of the GroupedSortedListProjection object. This property is just another List (technically a

GroupedListProjection object) that contains that group data. As a List you can bind UI to it, filter it,

sort it, and so on. In the example, I just output its raw data along with its projection.

There’s one last detail to point out with the groupData function and the contents of the groups list:

because you can return whatever objects you want from groupData, and because that function is called

only once for each group, you can calculate other information like sums, counts—and really anything

else!—and include that in the returned object. The List and its projections won’t care one way or the

other. So if you want to communicate such information to the consumers of the grouped projection,

the groupData function is the place to do it. This becomes very useful with collection controls like the

ListView and especially the Semantic Zoom control that lets you switch between two lists with

different levels of data. With semantic zoom, the zoomed-out view of a list typically shows group

information and allows you to quickly navigate between groups. The objects you return from

groupData are where you store any data you want to use in that view.

What We’ve Just Learned

 WinJS provides declarative data-binding capabilities for one-time and one-way binding,

employing data-win-bind attributes and the WinJS.Binding.processAll method.

 WinJS.Binding mixins along with WinJS.Binding.as and WinJS.Binding.define simplify

making arbitrary JavaScript objects observable and able to participate in data binding.

http://msdn.microsoft.com/library/windows/apps/hh921584.aspx

343

 With a little extra code to watch for changes in UI elements, an app can implement two-way

binding.

 By default, data binding performs a simple copy between source and target properties. Through

binding initializers, apps can customize the binding behavior, such as adding a conversion

function or defining complex binding relationships between multiple properties.

 WinJS.Binding.Template controls provide a declarative means to easily define bits of HTML

that can be repeatedly rendered with different source objects. Templates are heavily used in

collection controls.

 In addition to the Array type of JavaScript, WinRT supports a number of other collection types

such as the iterator, vector, map, and property set. Iterators and vectors project into JavaScript

as an array and can be used with data binding through WinJS.Binding.List.

 WinJS.Binding.List provides an observable collection type that is a building block for

collection controls. A List can be built from scratch or from an existing JavaScript array, as well

as WinRT types that are projected as arrays.

 List projections provide filtering, sorting, and grouping capabilities on top of the original List

without altering the list. As projections share the same data source as the original list, changes

to items in the list or a projection will propagate to the list and all other projections.

344

Chapter 7

Collection Controls

It’s a safe bet to say that wherever you are, right now, you’re probably surrounded by quite a number

of visible collections. This book you’re reading is a collection of chapters, and chapters are a collection

of pages. Those pages are collections of paragraphs, which are collections of words, which are

collections of letters, which are (assuming you’re reading this electronically) collections of pixels. On

and on….

Your body, too, has collections on many levels, which is what one studies in college-level anatomy

courses. Looking around my office and home, I see even more collections: a book shelf with books;

scrapbooks with pages and pages of pictures; cabinets with cans, boxes, and bins of food; my son’s

innumerable toys; the case of DVDs. Even the forest outside is a collection of trees and bushes, which

then have branches, which then have leaves. On and on….

We look at these things as collections because we’ve learned how to generalize specific instances of

unique things—like leaves or pages or my son’s innumerable toys—into categories or groups. This

gives us powerful ways to organize and manage those things (except for the clothes in my closet, as my

wife will attest). And just as the physical world around us is made of collections, the digital world that

we use to represent the physical is naturally full of collections as well.

In Chapter 6, “Data Binding, Templates, and Collections,” we learned about the data side of this

story: the features of the WinJS.Binding namespace, including binding templates and the observable

List class. Now we turn our attention to collection controls through which we visualize and

manipulate that data.

In this chapter we’ll explore the three collection controls provided by WinJS—available on both

Windows and Windows Phone—that can handle items of arbitrary complexity both in terms of data

and presentation (unlike the HTML controls). These are the FlipView, which shows one item from a

collection at a time; the Repeater, which when combined with the ItemContainer we saw in Chapter

5, “Controls and Control Styling,” provides a lightweight means to display a collection of multiple items;

and the ListView, which displays a collection of multiple items with provisions for layouts, interactivity,

drag and drop, keyboarding, cell spanning, and more. As you might expect, the ListView is the richest

of the three. Because it’s the centerpiece of many app designs, we’ll be spending the bulk of this

chapter exploring its depths.

In this mix we’ll also encounter how to work with some additional data sources, such as files and

online feeds, and we’ll cross paths with the concept of semantic zoom, which is implemented through

the WinJS SemanticZoom control.

“But hey,” you might be asking, “what about the intrinsic HTML collection controls like <select>

and <table>, as well as other list-related elements like , , and <datalist>? Don’t these have

345

a place in this discussion?” Indeed they do! Not so much with static content, of course—you already

know how to write such HTML. What’s instead really interesting is asking how we can bind such

elements to a List so that they, like other controls, automatically reflect the contents of that collection.

This turns out to be one of the primary uses of the Win JS Repeater—and our very first topic!

Get a Bing Search API account Three of the SDK samples that we’ll be working with require a Bing

Search API account, which is free for under 5000 transactions a month. Visit the Windows Azure

Marketplace page for this API to get started. Once you’ve signed up, go to the My Account page. The

Primary Account Key listed there is what you’ll need in the samples.

ListView 1.0 to 2.0 changes The ListView control got quite an overhaul between WinJS 1.0 (Windows

8) and WinJS 2.0 (Windows 8.1), resulting in many performance improvements and API changes. This

chapter focuses on only the WinJS 2.0 ListView and its features and does not point out the specific

changes from WinJS 1.0. For those details, please refer to API changes for Windows 8.1.

Collection Control Basics

In previous chapters we’ve built our understanding of collections, templates, data binding, and simple

controls that can be used within a template. Collection controls—the Repeater, the FlipView, and the

ListView—bring all these fundamentals together to bring those collections to life in your app’s UI.

Note Technically the WinJS.UI.NavBarContainer control, which we’ll see in Chapter 9,

“Commanding UI,” is also a collection control and can, in fact, be used outside of a nav bar. Its utility

outside that context is limited, however. You might also come across the WinJS TabContainer control,

but this is for internal use by the ListView.

Quickstart #1: The WinJS Repeater Control with HTML controls

Here’s a quick quiz question for a quickstart: given all that you know about data binding, the

WinJS.Binding.List, data-win-bind, and WinJS.Binding.processAll, how would you take an

empty HTML <select> element like this:

<select id="select1"> <!-- Options to be created at runtime --></select>

and populate it with data from a dynamically-generated array, perhaps from a web API?

var animals = [{ id: 1, description: "Hamster" },

 { id: 2, description: "Koala" },

 { id: 3, description: "Llama" }];

A quick, brute-force method, which you’ve probably employed at some time in your career, would

be to just iterate the array and create <option> elements within the <select>:

var e = document.getElementById("select1");

https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
http://msdn.microsoft.com/library/windows/apps/dn263112.aspx
http://msdn.microsoft.com/library/windows/apps/hh700774.aspx
http://msdn.microsoft.com/library/windows/apps/hh440968.aspx
http://msdn.microsoft.com/library/windows/apps/br229846.aspx

346

animals.forEach(function (item) {

 var o = document.createElement("option");

 o.value = item.id;

 o.textContent = item.description;

 e.appendChild(o);

});

And you’d generally repeat this process whenever the array contents changed, clearing out the

<select> and creating each <option> anew.

Now to detect such changes automatically, we’d want to turn that array into a Binding.List, then

drop in a data-win-bind attribute to each <option> element and call Binding.processAll for it:

//Make each item in the List individually bindable

var bindingList = new WinJS.Binding.List(animals, { binding: true });

bindingList.forEach(function (item) {

 var o = document.createElement("option");

 o.setAttribute("data-win-bind", "value: id; textContent: description");

 e.appendChild(o);

 WinJS.Binding.processAll(o, item);

});

//Change one item in the list to show that binding is set up.

var item = bindingList.getAt(0);

item.description = "Rabbit";

This would work quite well, producing a <select> element as follows:

Now you might be thinking, “We could encapsulate this process into a custom control, declared

with data-win-control on the <select> element, yes?” After all, we know that when WinJS.UI.-

process[All] sees a data-win-control attribute, it simply calls the given constructor (with options)

and lets that constructor do whatever it wants. This means we can really use WinJS controls or a custom

control with any container element we’d like, not just div and span: we could put all the above code

into control constructor, specify the List through one of its options, and even turn the child elements

declared in HTML into a WinJS.Binding.Template that gets rendered for each item in the collection.

Then our markup would become very simple (assuming appropriate namespaces):

<select data-win-control="Controls.ListMaker" data-win-options="{data: Data.bindingList}">

 <option data-win-bind="value: id; textContent: description"></option>

</select>

347

If that’s how you’re thinking, you’re well attuned to some folks on the WinJS team who created a

little beauty that does exactly this: the WinJS.UI.Repeater control. The Repeater is useful anywhere

you need to create multiple copies of the same set of elements where each copy is bound to an item in

a collection. It neither adds nor imposes any other functionality, though of course you can have it

render whatever interactive content you want, including other WinJS controls and nested Repeaters.

Here’s how it’s used in scenario 1 of the HTML Repeater control sample with <select>, , and

<tbody> elements; note that each Repeater has only one immediate child element

(html/scenario1.html):

<select data-win-control="WinJS.UI.Repeater" data-win-options="{data: Data.items}">

 <option data-win-bind="value: id; textContent: description"></option>

</select>

<ul data-win-control="WinJS.UI.Repeater" data-win-options="{data: Data.items}">

 <li data-win-bind="textContent: description">

<table class="table">

 <thead class="table-header"><tr><td>Id</td><td>Description</td></tr></thead>

 <tbody class="table-body"

 data-win-control="WinJS.UI.Repeater" data-win-options="{data: Data.items}">

 <tr class="table-body-row">

 <td data-win-bind="textContent: id"></td>

 <td data-win-bind="textContent: description"></td>

 </tr>

 </tbody>

</table>

The data option here points to the repeater’s data source, Data.items, which is a WinJS.-

Binding.List defined in js/scenario1.js with some thoroughly uninspiring items:

WinJS.Namespace.define("Data", {

 items: new WinJS.Binding.List([

 { id: 1, description: "Item 1 description" },

 { id: 2, description: "Item 2 description" },

 { id: 3, description: "Item 3 description" },

 //And so on...

])

});

The output for scenario 1 is shown below.

http://msdn.microsoft.com/library/windows/apps/dn301916.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Repeater-control-da22d278

348

Because the Repeater turns its child element (and there must be only one) into a Template using

the extractChild option, those elements are removed from the DOM. Rendering the template for

each item in the collection will then create individual copies bound to those items. And because the

Repeater just works with a template, you can just as easily declare the template elsewhere and perhaps

use it with multiple Repeater controls. In this case you just point to it in the template option, as

shown in scenario 2 of the sample where we see both <label> and <progress> elements in the

Template control (html/scenario2.html):

<div class="template" data-win-control="WinJS.Binding.Template">

 <div class="bar">

 <label class="label" data-win-bind="textContent: description"></label>

 <progress data-win-bind="value: value" max="100"></progress>

 </div>

</div>

<h3>Progress Bar Graph</h3>

<div class="graph" data-win-control="WinJS.UI.Repeater"

 data-win-options="{data: Data.samples2, template: select('.template')}">

</div>

The recommended practice for naming templates, that’s shown here, is to use a class rather than an

id (which also works, but we’ll discuss the caveats in “Referring to Templates” la ter in the chapter). You

then use select('<selector>') to refer to the template. Personally, I wouldn’t use a generic name

like template; something like barGraphTemplate would be better.

Anyway, the result of this Repeater is as follows, which shows that the Repeater is perfect at creating

things like graphs and charts where repeated elements are involved:

349

With the Repeater and others control that can declaratively reference a template (like the FlipView

and ListView), note that it’s important to always declare the template before any references. This is so

WinJS.UI.processAll will instantiate the template first; otherwise references to it will not be valid.

It’s also possible to specify an item rendering function for the template option (see scenario 3 in

the sample), because that’s ultimately what gets inserted there when you use a declarative template.

We’ll come back to this in “How Templates Work with Collection Controls,” and we’ll see more of the

Repeater in “Repeater Features and Styling.”

Quickstart #2: The FlipView Control Sample
As shown in Figure 7-1, the HTML FlipView control sample is both a great piece of reference code for

the FlipView and a great visual tool through which to explore the control itself. For the purposes of this

Quickstart, let’s just look at the first scenario of populating the control from a simple data source and

using a template for rendering the items, as we’re already familiar with these mechanisms and will

become even more so! We’ll come back to the other FlipView scenarios later in this chapter in

“FlipView Features and Styling.”

It’s worth mentioning that although this sample demonstrates the control’s capabilities in a

relatively small area, a FlipView can be any size, even occupying most of the screen. A common use for

the control, in fact, is to let users flip through full-sized images in a photo gallery. See Guidelines for

FlipView controls for more.

FIGURE 7-1 The HTML FlipView control sample; the FlipView is the control displaying the picture.

http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4
http://msdn.microsoft.com/library/windows/apps/hh850405
http://msdn.microsoft.com/library/windows/apps/hh850405

350

The FlipView’s constructor is WinJS.UI.FlipView, and its primary options are itemDataSource and

itemTemplate (html/simpleFlipview.html):

<div id="simple_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView"

 data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource,

 itemTemplate: simple_ItemTemplate }">

</div>

The Template control (also in html/simpleFlipview.html) is just like those we’ve seen before:62

<div id="simple_ItemTemplate" data-win-control="WinJS.Binding.Template">

 <div class="overlaidItemTemplate">

 <div class="overlay">

 <h2 class="ItemTitle" data-win-bind="innerText: title"></h2>

 </div>

 </div>

</div>

Note again that a template must be declared in markup before any controls that reference them (or

you can use a function, see “How Templates Work with Collection Controls”). Anyway, the prosaically

named simple_ItemTemplate here is made of img and h2 elements, the latter being contained in a

div whose background color is partially transparent (see css/default.css for the

.overlaidItemTemplate .overlay selector). As usual, we’re also binding these elements to the

picture and title properties of the data source.

Tip Within both FlipView and ListView controls, as with the ItemContainer, you need to add the

win-interactive class to any nested controls for them to be directly interactive rather than being

treated as static content in the overall item. win-interactive specifically tells the outer item

container to pass input events to the inner controls.

There’s one important distinction with the FlipView’s itemDataSource option—did you see it?

Instead of directly referring to the WinJS.Binding.List of DefaultData.bindingList (which is

created in js/DefaultData.js as we’ve seen many times), we’re binding to the list’s dataSource property:

data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource }"

The dataSource property is an object that provides the methods of the WinJS.UI.IList-

DataSource interface, and it exists specifically to adapt a List to the needs of the FlipView and

ListView controls. (It exists for no other purpose, in fact.) If you forget and attempt to just bind to the

List directly, you’ll see an exception that says, “Object doesn’t support property or method

‘createListBinding’.” In other words, both FlipView and ListView don’t work directly with a List; they

work with an IListDataSource. As we’ll see later in “Collection Control Data Sources,” this allows the

control to work with other kinds of sources like the file system or online feeds.

62 In the sample you might notice the inline style="display:none" on the template. This is unnecessary as templates hide

themselves automatically.

http://msdn.microsoft.com/library/windows/apps/br211786.aspx
http://msdn.microsoft.com/library/windows/apps/br211786.aspx

351

Whatever the case, note that itemDataSource sets up one-way binding by default, but you can use

other binding initializers to change that behavior.

Quickstart #3: The ListView Essentials Sample
The basic mechanisms for data sources and templates apply to the ListView control exactly as they do

to FlipView, Repeater, and any other control. We can see these in the HTML ListView essentials sample

(shown in Figure 7-2); scenarios 1 and 2 specifically create a ListView and respond to item events.

The key thing that distinguishes a ListView from other collection controls is that it applies a layout to

its presentation of that collection. That is, in addition to the data source and the template, the ListView

also needs something to describe how those items visually relate to one another. This is the ListView’s

layout property, which we see in the markup for scenario 1 of the sample along with a few other

behavioral options (html/scenario1.html):

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myData.dataSource,

 itemTemplate: smallListIconTextTemplate, selectionMode: 'none',

 tapBehavior: 'none', swipeBehavior: 'none', layout: { type: WinJS.UI.GridLayout } }">

</div>

FIGURE 7-2 The HTML ListView essentials sample.

http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db

352

As with the FlipView, the ListView’s itemDataSource property must be an object with the

IListDataSource interface, conveniently provided by a Binding.List.dataSource property. Again,

we can place other kinds of data sources behind this interface, as we’ll see in the “Collection Control

Data Sources” section.

The control’s item template is defined earlier in scenario1.html with the id of smallListIconText-

Template and is essentially the same sort of thing we saw with the FlipView (an img and some text

elements), so I won’t list it here. And as with the other collection controls you can use a rendering

function instead. See “How Templates Work with Collection Controls” later on.

In the control options we see three behavioral properties: selectionMode, tapBehavior, and

swipeBehavior. These are all set to 'none' in this sample to disable selection and click behaviors

entirely, making the ListView a passive display. It can still be panned, but the items don’t respond to

input. (Also see “Sidebar: Item Hover Styling.”)

As for the layout property, this is an object of its own, whose type property indicates which layout

to use. WinJS.UI.GridLayout, as we’re using here, is a two-dimensional top-to-bottom then left-to-

right algorithm, suitable for horizontal panning (but which can also be rearranged for vertical panning).

WinJS provides another layout type called WinJS.UI.ListLayout, a one-dimensional top-to-bottom

organization that’s suitable for vertical panning, especially in narrow views. (We’ll see this with the Grid

App project template shortly; the ListView essentials sample doesn’t handle narrow widths.) The other

layout in WinJS.UI is CellSpanningLayout for variable-sized items, and it’s also a relatively simple

matter to create custom layouts. We’ll see all of these in “ListView Features and Styling” except for

custom layouts, which are discussed in Appendix B, “WinJS Extras.”

Tip A number of errors will cause the ListView constructor to fail. First, check that your data source is

constructed properly and field names match between it and the template. Second, if you’re using a

WinJS.Binding.List, be sure to assign its dataSource property to the ListView’s itemDataSource.

Third, the ListView will crash if the data source can’t be found or isn’t instantiated yet, so move that

earlier in your code. Similarly, the template must always be present before creating the ListView, so its

markup should come before the ListView’s. And finally, make sure the reference to the template in the

ListView’s options is correct.

Now while the ListView control in scenario 1 displays only passive items, we often want those items

to respond to a click or tap. Scenario 2 shows this, where the tapBehavior property is set to invoke

(see html/scenario2.html). Technically this should be invokeOnly because invoke isn’t a real option

and we’re getting invokeOnly by default. Other options come from the WinJS.UI.TapBehavior

enumeration. Other variations are toggleSelect, which will select or deselect an item, depending on

its state, and then invoke it; and directSelect, where an item is always selected and then invoked.

You can also set the behavior to none so that clicks and taps are ignored, as we saw in scenario 1.

When an item is invoked, the ListView control fires an itemInvoked event. You can wire up a

handler by using either addEventListener or the ListView’s oniteminvoked property. Here’s how

scenario 2 does it (slightly rearranged from js/scenario2.js):

http://msdn.microsoft.com/library/windows/apps/br211786.aspx
http://msdn.microsoft.com/library/windows/apps/hh701303.aspx

353

var listView = element.querySelector('#listView').winControl;

listView.addEventListener("iteminvoked", itemInvokedHandler, false);

function itemInvokedHandler(eventObject) {

 eventObject.detail.itemPromise.done(function (invokedItem) {

 // Act on the item

 });

}

Note that we’re listening for the event on the WinJS control, but it also works to listen for the event

on the containing element thanks to bubbling. This can be helpful if you need to add listeners to a

control before its instantiated, because the containing element will already be there in the DOM.

In the code above, you could also assign a handler by using the listView.oniteminvoked property

directly, or you can specify the handler in the iteminvoked property data-win-options (in which case

it must be marked safe for processing). The event object you then receive in the handler contains a

promise for the invoked item, not the item itself, because the underlying data source might deliver the

full item asynchronously. So you need to call it’s done or then method to obtain the actual item data.

It’s also good to know that you should never change the ListView’s data source properties directly

within an iteminvoked handler, because you’ll probably cause an exception. If you have the need,

wrap the change code inside a call to setImmediate so that you can yield the UI thread first.

Sidebar: Item Hover Styling

Although disabling selection and tap behaviors on a ListView creates a passive control, hovering

over items with the mouse (or suitable touch hardware) still highlights each item; refer back to

Figure 7-2. You can control this by styling the .win-container:hover pseudo-selector for the

desired control. For example, the following style rule removes the hover effect entirely:

#myListView .win-container:hover {

 background-color: transparent;

 outline: 0px;

}

Quickstart #4: The ListView Grouping Sample

Displaying a list of items is great, but more often than not, a collection needs another level of

organization—such as filtering, sorting, and especially grouping. This is readily apparent when I open

the file drawer next to my desk, which contains a collection of various important and not so important

papers. Right away, on the file folder tabs, I see my groups: Taxes, Financials, Community, Insurance,

Cars, Writing Projects, and Miscellany (among others). Clearly, then, we need a grouping facility within

a collection control and ListView is happy to oblige.

There are two parts to this. One is grouping of the data source itself, which we know happens

through the List.createGrouped method (along with createFiltered and createSorted), as we

saw in Chapter 6. The WinJS.Binding.GroupedSortedListProjection that we get back in that case

supplies both its grouped items (through its dataSource property) and a GroupedListProjection of

http://msdn.microsoft.com/library/windows/apps/hh920302.aspx

354

the groups themselves through its groups property. Note that when we refer to groups in a ListView

we’ll also use its groups.dataSource property.

The second part is representing the grouped data visually. This is demonstrated in the HTML

ListView grouping and Semantic Zoom sample (the output for scenario 1 is shown in Figure 7-3). As

with the Essentials sample, the code in js/groupedData.js contains a lengthy in-memory array around

which we create a List. Here’s a condensation to show the item structure (I’d show the whole array,

but this is making me hungry for some dessert!):

var myList = new WinJS.Binding.List([

 { title: "Banana Blast", text: "Low-fat frozen yogurt", picture: "images/60Banana.png" },

 { title: "Lavish Lemon Ice", text: "Sorbet", picture: "images/60Lemon.png" },

 { title: "Creamy Orange", text: "Sorbet", picture: "images/60Orange.png" },

 ...

Here we have a bunch of items with title, text, and picture properties. We can group them any

way we like and even change the groupings on the fly. As Figure 7-3 shows, the sample groups these

by the first letter of the title using both a GridLayout and a ListLayout.

FIGURE 7-3 The output of scenario 1 of the HTML ListView grouping and Semantic Zoom sample.

If you take a peek at the ListView reference, you’ll see that the control works with two templates and

two collections: that is, alongside its itemTemplate and itemDataSource properties are ones called

groupHeaderTemplate and groupDataSource. The group-capable layouts use these to organize the

groups and create the headers above the items.

The header template in html/scenario1.html is very simple:

<div id="headerTemplate" data-win-control="WinJS.Binding.Template">

 <div class="simpleHeaderItem">

 <h1 data-win-bind="innerText: groupTitle"></h1>

 </div>

</div>

This is referenced in the control declaration along with the appropriate grouped projection’s

groups.dataSource (other options omitted):

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/library/windows/apps/br211833.aspx

355

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ groupDataSource: myGroupedList.groups.dataSource,

 groupHeaderTemplate: headerTemplate }">

</div>

myGroupedList is, of course, created with the original list’s createGrouped method:

var myGroupedList = myList.createGrouped(getGroupKey, getGroupData);

The getGroupKey function returns a single character to use for the grouping. With textual data, you

should always use the Windows.Globalization.Collation.CharacterGroupings class and its

lookup method to determine groupings—never assume that something like the first character in a

string is the right one! The sample shows how simple this is:

var charGroups = Windows.Globalization.Collation.CharacterGroupings();

function getGroupKey(dataItem) {

 return charGroups.lookup(dataItem.title);

}

Remember that this group key function determines only the association between the item and a

group, nothing more. It also gets called for every item in the collection when createGrouped is called,

so it should be a quick operation. This is why we call CharacterGroupings outside of the function.

Performance tip As noted in Chapter 6, if deriving the group key from an item at run time requires

an involved process, you’ll improve overall performance by storing a prederived key in the item instead

and just returning that from the group key function.

The sample’s group data function, getGroupData, is called with a representative item for each

group to obtain the data that ends up in the groups collection. It simply returns an object with a single

groupTitle property that’s the same as the group key, but of course you can make that value

anything you want. Note that by using our world-ready getGroupKey function, we’re handling

globalization concerns appropriately:

function getGroupData(dataItem) {

 var key = getGroupKey(dataItem);

 return {

 groupTitle: key

 };

}

You might be asking, “Why do we have the group data function separated out at all? Why not just

create that collection automatically from the group keys?” It’s because you often want to include

additional properties within the group data for use in the header template or in a zoomed-out view

(with semantic zoom). Think of your group data function as providing summary information for each

group. (The header text is only the most basic such summary.) Because this function is called only once

per group, rather than once per item, it’s the proper time to calculate or otherwise retrieve summary-

level data. For example, to show an item count in the group headers, we just need to include that

http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.lookup.aspx

356

property in the objects returned by the group data function, then data-bind an element in the header

template to that property.

For example, in a slightly modified version of the sample in this chapter’s companion code I use

createFiltered to obtain a projection of the list filtered by the current key.63 The length property of

this projection is then the number of items in the group:

function getGroupData(dataItem) {

 var key = getGroupKey(dataItem);

 //Obtain a filtered projection of our list, checking for matching keys

 var filteredList = myList.createFiltered(function (item) {

 return key == getGroupKey(item);

 });

 return {

 groupTitle: key,

 count: filteredList.length

 };

}

With this count property in the collection, we can use it in the header template:

<div id="headerTemplate" data-win-control="WinJS.Binding.Template">

 <div class="simpleHeaderItem">

 <h1 data-win-bind="innerText: groupTitle"></h1>

 <h6> items</h6>

 </div>

</div>

After a small tweak in css/scenario1.css—changing the simpleHeaderItem class height to 65px to

make a little more room—the list will now appears as follows:

63 Creating a filtered projection is also useful to intentionally limit the number of items you want to display in a control,

where your predicate function returns true for only that number.

357

One other note for scenario 1 is that although it doesn’t use a group sorter function with

createGrouped. It actually does an initial (globalized) sort of the raw data before creating the List:

var sortedData = rawData.sort(function (left, right) {

 return right.title.localeCompare(left.title);

});

var myList = new WinJS.Binding.List(sortedData);

Although this results in sorted groups, adding new items to the list or a projection would not sort

them properly nor sort the groups (especially if a new group is created as a result). It would be better,

then, to create a sorted projection first (through createSorted), then the grouped projection from

that using a locale-aware group sorter function. The modified sample shows this, but I’ll leave you to

examine the code.

The other little bit demonstrated in this sample—in scenario 3—is the ability to create headers that

can be invoked. This is done by setting the ListView’s groupHeaderTapBehavior property to invoke

(html/scenario3.html; other options omitted):

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{groupHeaderTapBehavior: WinJS.UI.GroupHeaderTapBehavior.invoke }">

</div>

A header is invoked with a click or tap, obviously, and if it has the keyboard focus the Enter key will

also do the job. When invoked, the ListView fires a groupheaderinvoked event where the

eventArgs.detail object contains groupHeaderPromise and groupHeaderIndex properties.

ListView in the Grid App Project Template

Now that we’ve covered the details of the ListView control and in-memory data sources, we can finally

understand the rest of the Grid App project template in Visual Studio and Blend. As we covered in ”The

Navigation Process and Navigation Styles” section of Chapter 3, “App Anatomy and Performance

Fundamentals,” this project template provides an app structure built around page navigation: the home

page (pages/groupedItems) displays a collection of sample data (see js/data.js) in a ListView control,

where each item’s presentation and the group headings are described by templates. Figure 7-4 shows

the layout of the home page and identifies the relevant ListView elements. As we discussed before,

tapping an item navigates to the pages/itemDetail page and tapping a heading navigates to the

pages/groupDetail page, and now we can see how that all works with the ListView control.

The ListView in Figure 7-4 occupies the lower portion of the app’s contents. Because it can pan

horizontally, it actually extends all the way across; various CSS margins are used to align the first items

with the layout silhouette while allowing them to bleed to the left when the ListView is panned.

358

FIGURE 7-4 ListView elements as shown in the Grid App template home page. (All colored items are added labels

and lines.)

There’s quite a bit going on with the ListView in this project, so let’s take one part at a time. For

starters, the control’s markup in pages/groupedItems/groupedItems.html is very basic, where the only

option is to indicate that the items have no selection behavior:

<div class="groupeditemslist win-selectionstylefilled" aria-label="List of groups"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ selectionMode: 'none' }"

 layout: {type: WinJS.UI.GridLayout, groupHeaderPosition: 'top'} >

</div>

Switching over to pages/groupedItems/groupedItems.js, the page’s ready method handles

initialization:

ready: function (element, options) {

 var listView = element.querySelector(".groupeditemslist").winControl;

 listView.groupHeaderTemplate = element.querySelector(".headerTemplate");

 listView.itemTemplate = element.querySelector(".itemtemplate");

 listView.addEventListener("groupheaderinvoked", this._groupHeaderInvoked.bind(this));

 listView.oniteminvoked = this._itemInvoked.bind(this);

 listView.itemDataSource = Data.items.dataSource;

 listView.groupDataSource = Data.groups.dataSource;

 listView.element.focus();

}

359

Here you can see that the control’s templates can be set in code just as easily as from markup, and

in this case we’re using a class to locate the template element instead of an id. Why does this work? It’s

because we’ve actually been referring to elements the whole time: the app host automatically creates a

variable for an element that’s named the same as its id. It’s the same thing. Plus, references to

templates ultimately resolve into a rendering function, which we’ll again cover later.

You can also see how this page assigns handlers to the iteminvoked and groupheaderinvoked

events. Those handlers call WinJS.Navigation.navigate to go to the itemDetail or groupDetail pages

as we saw in Chapter 3:

_itemInvoked: function (args) {

 var item = Data.items.getAt(args.detail.itemIndex);

 nav.navigate("/pages/itemDetail/itemDetail.html", { item: Data.getItemReference(item) });

 }

},

_groupHeaderInvoked: function (args) {

 var group = Data.groups.getAt(args.detail.groupHeaderIndex);

 nav.navigate("/pages/groupDetail/groupDetail.html", { groupKey: group.key });

},

Here now are the templates for the home page (pages/groupedItems/groupedItems.html):

<div class="headertemplate" data-win-control="WinJS.Binding.Template">

 <button class="group-header win-type-x-large win-type-interactive"

 role="link" tabindex="-1" type="button" >

 </button>

</div>

<div class="itemtemplate" data-win-control="WinJS.Binding.Template">

 <div class="item">

 <div class="item-overlay">

 <h4 class="item-title" data-win-bind="textContent: title"></h4>

 <h6 class="item-subtitle win-type-ellipsis"

 data-win-bind="textContent: subtitle"></h6>

 </div>

 </div>

</div>

Nothing new here, just Template controls with sprinkling of data-binding syntax.

As for the data itself (which you’ll likely replace), this is defined in js/data.js as an in-memory array

that feeds into a Binding.List. In the sampleItems array each item is populated with inline data or

other variable values. Each item also has a group property that comes from the sampleGroups array.

Unfortunately, this latter array has almost identical properties as the items array, which can be

confusing. To help clarify that a bit, here’s the complete property structure of an item:

{

 group : {

360

 key,

 title,

 subtitle,

 backgroundImage,

 description

 },

 title,

 subtitle,

 description,

 content,

 backgroundImage

}

As we saw with the ListView grouping sample earlier, the Grid App project template uses

createGrouped to set up the data source. What’s interesting to see here is that it sets up an initially

empty list, creates the grouped projection (omitting the group sorter function), and then adds the

items by using the list’s push method:

var list = new WinJS.Binding.List();

var groupedItems = list.createGrouped(

 function groupKeySelector(item) { return item.group.key; },

 function groupDataSelector(item) { return item.group; }

);

generateSampleData().forEach(function (item) {

 list.push(item);

});

This clearly shows the dynamic nature of lists and ListView: you can add and remove items from the

data source, and one-way binding will make sure the ListView is updated accordingly. In such cases you

do not need to refresh the ListView’s layout—that happens automatically. I say this because there’s

occasional confusion with the ListView’s forceLayout method, which you only need to call, as the

documentation states, “when making the ListView visible again after its style.display property had

been set to ‘none’.” You’ll find, in fact, that the Grid App code doesn’t use this method at all.

In js/data.js there are also a number of other utility functions, such as getItemsFromGroup, which

uses List.createFiltered. Other functions provide for cross-referencing between groups and items,

as is needed to navigate between the items list, group details (where that page shows only items in that

group), and item details. All of these functions are wrapped up in a namespace called Data at the

bottom of js/data.js, so references to anything from this file are prefixed elsewhere with Data..

And with that, I think you’ll be able to understand everything that’s going on in the Grid App

project template to adapt it to your own needs. Just remember that all the sample data, like the default

logo and splash screen images, are intended to be wholly replaced with real data that you obtain from

other sources, like a file or some web API, and wrapped in a List. Some further guidance on this can

be found in the Create a blog reader tutorial on the Windows Dev Center, and although the tutorial

uses the Split App project template, there’s enough in common with the Grid App projec t template

that the discussion is applicable to both.

http://msdn.microsoft.com/library/windows/apps/Hh974582.aspx

361

The Semantic Zoom Control

Because we’ve already loaded up the HTML ListView grouping and Semantic Zoom sample, and have

completed our first look at the collection controls, now is a good time to check out another very

interesting WinJS control: Semantic Zoom.

Semantic zoom lets users easily switch between two views of the same data: a zoomed-in view that

provides details and a zoomed-out view that provides more summary-level information. The primary

use case for semantic zoom is a long list of items that a user will likely get bored of panning all the way

from one end to the other, no matter how fun it is to swipe the screen with a finger. With semantic

zoom, you can zoom out to see headers, categories, or some other condensation of the data, and then

tap on one of those items to zoom back into its section or group. The design guidance recommends

having the zoomed-out view fit on one to three screenfuls at most, making it very easy to see and

comprehend the whole data set.

Go ahead and try semantic zoom through scenario 2 of the ListView grouping and Semantic Zoom

sample. To switch between the views, use pinch-zoom touch gestures, Ctrl+/Ctrl- keystrokes,

Ctrl+mouse wheel, and/or the small zoom button that automatically appears in the lower-right corner

of the control, as shown in Figure 7-5. When you zoom out, you’ll see a display of the group headers,

as also shown in the figure. For the dynamic experience, see Video 7-1 in the companion content,

where I show the effects both at normal and slow speeds.

FIGURE 7-5 Semantic zoom between the two views in the ListView grouping and Semantic Zoom sample. The zoom

control overlay appears only for the mouse (as does the scrollbar). See Video 7-1 for the dynamic effect.

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/library/windows/apps/br229690.aspx
http://msdn.microsoft.com/library/windows/apps/hh465319.aspx

362

The control itself is quite straightforward to use. In markup, declare a WinJS control using the

WinJS.UI.SemanticZoom constructor. Within that element you then declare two (and only two) child

elements: the first defining the zoomed-in view, and the second defining the zoomed-out view—

always in that order. Here’s how the sample does it with two ListView controls (plus the template used

for the zoomed-out view; I’m showing the code in the modified sample included with this chapter’s

companion content):

<div id="semanticZoomTemplate" data-win-control="WinJS.Binding.Template" >

 <div class="semanticZoomItem">

 <h2 class="semanticZoomItem-Text" data-win-bind="innerText: groupTitle"></h2>

 </div>

</div>

<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom">

 <div id="zoomedInListView" class="win-selectionstylefilled"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myGroupedList.dataSource,

 itemTemplate: mediumListIconTextTemplate,

 groupDataSource: myGroupedList.groups.dataSource,

 groupHeaderTemplate: headerTemplate,

 selectionMode: 'none', tapBehavior: 'none', swipeBehavior: 'none'

 layout: { type: WinJS.UI.GridLayout } }">

 </div>

 <div id="zoomedOutListView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myGroupedList.groups.dataSource,

 itemTemplate: semanticZoomTemplate,

 selectionMode: 'none', tapBehavior: 'invoke', swipeBehavior: 'none' }" >

 </div>

</div>

The first child, zoomedInListView, is just like the ListView for scenario 1 with group headers and

items; the second, zoomedOutListView, uses the groups as items and renders them with a different

template. The semantic zoom control simply switches between the two views in response to the

appropriate input gestures. When the zoom changes, the semantic zoom control fires a zoomchanged

event where the args.detail value in the handler is true when zoomed out, false when zoomed in.

You might use this event to make certain app bar commands available for the different views, such as

commands in the zoomed-out view to change sorting or filtering, which would then affect how the

zoomed-in view is displayed. We’ll see the app bar in Chapter 9.

The control has a few other properties, such as enableButton (a Boolean to control the visibility of

the overlay button; default is true), locked (a Boolean that disables zooming in either direction and

can be set dynamically to lock the current zoom state; default is false), and zoomedOut (a Boolean

indicating if the control is zoomed out, so you can initialize it this way; default is false). There is also a

forceLayout method that’s used in the same case as the ListView’s forceLayout: namely, when you

remove a display: none style.

The zoomFactor property is an interesting one that determines how the control animates between

the two views, something you can see more easily in the slowed-down segment of Video 7-1. The

http://msdn.microsoft.com/library/windows/apps/br229690.aspx

363

animation is a combination of scaling and cross-fading that makes the zoomed-out view appear to

drop down from or rise above the plane of the control, depending on the direction of the switch, while

the zoomed-in view appears to sink below or come up to that plane. To be specific, the zoomed-in

view scales between 1 and zoomFactor while transparency goes between 1 and 0, and the zoomed-out

view scales between 1/zoomFactor and 1 while transparency goes between 0 and 1. The default value

for zoomFactor is 0.65, which creates a moderate effect. Lower values (minimum is 0.2) emphasize the

effect, and higher values (maximum is 0.8) minimize it.

Where styling is concerned, you do most of what you need directly to the Semantic Zoom’s children.

However, to style the Semantic Zoom control itself you can override styles in win-semanticzoom (for

the whole control) and win-semanticzoomactive (for the active view). The win-semanticzoombutton

style also lets you style the zoom control button if needed.

It’s important to understand that semantic zoom is intended to switch between two views of the

same data and not to switch between completely different data sets (again see Guidelines and checklist

for the Semantic Zoom control). Also, the control does not support nesting (that is, zooming out

multiple times to different levels). Yet this doesn’t mean you have to use the same kind of control for

both views: the zoomed-in view might be a list, and the zoomed-out view could be a chart, a calendar,

or any other visualization that makes sense. The zoomed-out view, in other words, is a great place to

show summary data that would be otherwise difficult to derive from the zoomed-in view. For example,

using the same changes we made to include the item count with the group data for scenario 1 (see

“Quickstart #4” above), we can just add a little more to the zoomed-out item template (as done in the

modified sample in this chapter’s companion content):

The other thing you need to know is that the semantic zoom control does not work with arbitrary

child elements. An exception about a missing zoomableView property will tell you this! Each child

control must provide an implementation of the WinJS.UI.IZoomableView interface through a

property called zoomableView. Of all built-in HTML and WinJS controls, only the ListView and Hub do

this (see Chapter 8, “Layout and Views”) , which is why you typically see semantic zoom in those

contexts. However, you can certainly provide this interface on a custom control, where the object

returned by the constructor should contain a zoomableView property, which is an object containing

the IZoomableView methods. Among these methods are beginZoom and endZoom for obvious

purposes, and getCurrentItem and setCurrentItem that enable the semantic zoom control to zoom

in to the right group when it’s tapped in the zoomed-out view.

http://msdn.microsoft.com/library/windows/apps/hh700396.aspx
http://msdn.microsoft.com/library/windows/apps/hh700396.aspx
http://msdn.microsoft.com/library/windows/apps/br229794.aspx

364

For more details, check out the HTML SemanticZoom for custom controls sample, which also serves

as another example of a custom control. The documentation also has a topic called SemanticZoom

templates where you’ll find a few additional template designs for zoomed-out views.

How Templates Work with Collection Controls

As we’ve looked over the collection controls, I’ve mentioned that you can use a function instead of a

declarative template for properties like template (Repeater), itemTemplate (FlipView and ListView),

and groupHeaderTemplate (ListView). This is an important capability because it allows you to

dynamically render items in a collection individually, using its particular contents to customize its view,

in contrast to a declarative template that will render each item identically. A rendering function also

allows you to initialize item elements in ways that can’t be done in the declarative form, such as

building them up in asynchronous stages with delay-loaded images. This level of control provides many

opportunities for performance optimization, a subject we’ll return to at the end of this chapter after

we’ve explored ListView thoroughly.

For the time being, it’s helpful to understand exactly what’s going on with declarative templates and

how that relates to custom template functions. Once you see how they work, you will probably start

dreaming up many uses for them!

Struggling for a template design? The documentation has two pages that contain a variety of pre-

defined templates (both HTML and CSS). These are oriented around the ListView control but can be

helpful anywhere a template is needed. The two pages are Item templates for grid layouts and Item

templates for list layouts.

Referring to Templates

When you refer to a declarative template in the Repeater, FlipView, or ListView controls, what you’re

actually referring to is an element. You can use an element id as a shortcut because the app host

creates variables with those names for the elements they identify. However, I don’t recommend this

approach, especially within page controls (which you’ll probably use often). The first concern is that

only one element can have a particular id, which means you’ll get really strange behavior if you happen

to render the page control twice in the same DOM.

The second concern is a timing issue. The element id variable that the app host provides isn’t

created until the chunk of HTML containing the element is added to the DOM. With page controls,

WinJS.UI.processAll is called before this time, which means that element id variables for templates

in that page won’t yet be available. As a result, any controls that use an id for a template will either

throw an exception or just show up blank. Both conditions are guaranteed to be terribly, terribly

confusing.

http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://msdn.microsoft.com/library/windows/apps/hh770118.aspx
http://msdn.microsoft.com/library/windows/apps/hh770118.aspx
http://msdn.microsoft.com/library/windows/apps/hh465463.aspx
http://msdn.microsoft.com/library/windows/apps/hh465478.aspx
http://msdn.microsoft.com/library/windows/apps/hh465478.aspx

365

To avoid this issue with a declarative template, place the template’s name in its class attribute (and

be sure to make that name unique and descriptive):

<div data-win-control="WinJS.Binding.Template"

 class="recipeItemTemplaterecipeItemTemplate" ...></div>

Then in your control declaration, use the select('<selector>') syntax in the options record,

where <selector> is anything supported by element.querySelector:

<div data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemTemplate: select('.recipemyItemTemplate') }"></div>

There’s more to this, actually, than just a querySelector call. The select function within the

options searches from the root of its containing page control. If no match is found, it looks for another

page control higher in the DOM, then looks in there, continuing the process until a match is found. This

lets you safely use two page controls at once that both contain the same class name for different

templates, and each page will use the template that’s most local.

You can also retrieve the template element using querySelector directly in code and assign the

result to the appropriate property. This would typically be done in a page’s ready function, as

demonstrated in the Grid App project, and doing so avoids both concerns identified here because

querySelector will be scoped to the page contents and will happen after UI.processAll.

Tip If you’re uncertain about whether your data source is providing the right information to the

template, just remove the template reference from the control’s options. Without a template, the

control will just output the text of the data source, allowing you to easily examine its contents.

Template Functions (Part 1): The Basics

Whenever you assign a Template object to one of the collection controls’ template properties, those

controls detect that it’s an object and uses its render method when needed. However, the collection

controls also detect if you instead assign a rendering function to those properties, which can be done

both programmatically or declaratively. In other words, if you provide a function directly—which I will

refer to simply as a renderer—it will be called in place of Template.render. This gives you complete

control over what elements are generated for each individual data item as well as how and when

they’re created. (Warning! There be promises in your future!)

Again, we’ll talk about rendering stages at the end of this chapter. For now, let’s look at the core

structure of a renderer that applies to the Repeater, FlipView, and ListView controls, examples of which

you can find in the HTML ListView item templates, HTML ListView optimizing performance samples,

and scenario 6 of the HTML FlipView control sample.

For starters, you can specify a renderer by name in data-win-options in all three controls for their

respective template properties. That function must be marked for processing as discussed in Chapter 5

because it definitely participates in UI.processAll. Assigning a function in JavaScript, on the other

hand, doesn’t need the mark.

http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0
http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4

366

In its basic form, a renderer receives an item promise as its first argument and returns a promise

that’s fulfilled with the root element of the rendered template. Here’s what that looks like in pra ctice:

function basicRenderer(itemPromise) {

 return itemPromise.then(buildElement);

};

function buildElement (item) {

 var result = document.createElement("div");

 //Build up the item, typically using innerHTML

 return result;

}

The item comes as a promise because it might be delivered asynchronously from the data source;

thus, we need to attach a completed handler to it. That completed handler, buildElement in the code

above, then receives the item data and returns the rendered item’s root e lement as a result.

The critical piece here is that the renderer is returning the promise from itemPromise.then (which

is why we’re not using done). Remember from Chapter 3 that then returns a separate promise that’s

fulfilled when the completed handler given to then itself returns. And the return value from that

completed handler is what this second promise delivers as its own result. The simple structure shown

here, then, very succinctly returns a promise that’s fulfilled with the rendered item.

Why not just have the renderer return the element directly? Well, for one, it’s possible that you

might need to call other async APIs in the process of building the element—this especially comes into

play when building up the element in stages by delay-loading images, as we’ll see in “Template

Functions (Part 2): Optimizing Item Rendering.” Second, returning a promise allows the collection

control that’s using this renderer to chain the item promise and the element-building promise

together. This is especially helpful when the item data is coming from a service or other potentially

slow feed, and with page loading because it allows the control to cancel the promise chain if the page

is scrolled away before those operations complete. In short, it’s a good idea!

Just to show it, here’s how we’d make a renderer directly usable from markup, as in data-win-

options = "{itemTemplate: Renderers.basic }":

WinJS.Namespace.define("Renderers", {

 basic: WinJS.Utilities.markSupportedForProcessing(function (itemPromise) {

 return itemPromise.then(buildElement);

 })

}

It’s also common to just place the contents of a function like buildElement directly within the

renderer itself, resulting in a more concise expression of the exact same structure:

function basicRenderer(itemPromise) {

 return itemPromise.then(function (item) {

 var result = document.createElement("div");

 //Build up the item, typically using innerHTML

367

 return result;

 })

};

Inside the element creation function (whether named or anonymous) you then build up the

elements of the item along with the classes to style with CSS. As an example, here’s the declarative

template from scenario 1 of the HTML ListView item templates sample (html/scenario1.html):

<div id="regularListIconTextTemplate" data-win-control="WinJS.Binding.Template">

 <div class="regularListIconTextItem">

 <div class="regularListIconTextItem-Detail">

 <h4 data-win-bind="innerText: title"></h4>

 <h6 data-win-bind="innerText: text"></h6>

 </div>

 </div>

</div>

And here’s the equivalent renderer, found in scenario 2 (js/scenario2.js):

var MyJSItemTemplate = WinJS.Utilities.markSupportedForProcessing(

 function MyJSItemTemplate(itemPromise) {

 return itemPromise.then(function (currentItem) {

 // Build ListView Item Container div

 var result = document.createElement("div");

 result.className = "regularListIconTextItem";

 result.style.overflow = "hidden";

 // Build icon div and insert into ListView Item

 var image = document.createElement("img");

 image.className = "regularListIconTextItem-Image";

 image.src = currentItem.data.picture;

 result.appendChild(image);

 // Build content body

 var body = document.createElement("div");

 body.className = "regularListIconTextItem-Detail";

 body.style.overflow = "hidden";

 // Display title

 var title = document.createElement("h4");

 title.innerText = currentItem.data.title;

 body.appendChild(title);

 // Display text

 var fulltext = document.createElement("h6");

 fulltext.innerText = currentItem.data.text;

 body.appendChild(fulltext);

 //put the body into the ListView Item

 result.appendChild(body);

 return result;

368

 });

 });

Note that within a renderer you always have the data item in hand, so you don’t need to quibble

over the details of declarative data binding and initializers: you can just directly use the needed

properties from item.data and apply whatever conversions you require.

You might also notice that there are a lot of DOM API calls in this renderer for what is a fairly simple

template. If you took a look at one of the compiled templates discussed in Chapter 6, you will have

seen that it does most of its work by assigning a string to the root element’s innerHTML property.

Generally speaking, once you get to about four elements in your item rendering, setting innerHTML

becomes faster than the equivalent createElement and appendChild calls. This is because the parser

that’s applied to innerHTML assignments is a highly optimized piece of C++ code in the app host and

doesn’t need to go through any other layers to get to the DOM API.

Such an optimization doesn’t matter so much for a FlipView control whose items are rendered one

at a time, or even a Repeater with a small or moderate number of items, but it becomes very important

for a ListView with potentially thousands of items.

Taking this approach, the renderer above could also be written as follows with the same results:

var MyJSItemTemplate = WinJS.Utilities.markSupportedForProcessing(

 function MyJSItemTemplate(itemPromise) {

 return itemPromise.then(function (currentItem) {

 // Build ListView Item Container div

 var result = document.createElement("div");

 result.className = "regularListIconTextItem";

 result.style.overflow = "hidden";

 var data = currentItem.data;

 var str = ""

 str += "<div class='regularListIconTextItem-Detail' style='overflow:hidden'>";

 str += "<h4>" + data.title + "</h4>";

 str += "<h6>" + data.text + "</h6>";

 str += "</div>";

 result.innerHTML = str;

 return result;

 });

 });

Creating Templates from Data Sources in Blend
Blend for Visual Studio 2013 offers some shortcuts for creating templates for WinJS controls directly

from a data source, where it inserts markup into your HTML file so you can go right into styling. The

process is described here, and Video 7-2 provides a walk through.

First create your data source in code as you normally would, making sure it’s accessible from

markup. In early stages of development you can use placeholder data, of course. As in the video, here’s

one that lives in a data.js file and is accessible via Data.seasonalItems:

369

var slTitle = "Item Title";

var slSubtitle = "Item Sub Title";

var slSubtext = "Quisque in porta lorem dolor amet sed consectetuer ising elit, ...";

var seasonalList = [

 { title: slTitle, subtitle: slSubtitle, description: slSubtext,

 image: "/images/assets/section2_1a.jpg" },

 { title: slTitle, subtitle: slSubtitle, description: slSubtext,

 image: "/images/assets/section2_1b.jpg" },

 { title: slTitle, subtitle: slSubtitle, description: slSubtext,

 image: "/images/assets/section2_1c.jpg" },

 { title: slTitle, subtitle: slSubtitle, description: slSubtext,

 image: "/images/assets/section2_1d.jpg" },

];

var seasonalItems = new WinJS.Binding.List(seasonalList);

WinJS.Namespace.define("Data", {

 seasonalItems: seasonalItems

});

In markup, or directly in Blend, insert a control wherever you need either through markup or by

dragging a control from the Assets pane to the artboard. In the video I use a Repeater control, whose

default markup is very simple:

<div data-win-control="WinJS.UI.Repeater"></div>

With that control selected, the HTML Attributes pane (on the right) will have a section for Windows

App Controls, which lists the relevant properties of the control. For the Repeater we have just data and

template:

In the data property, enter the identifier for your data source (Data.seasonalItems in the example).

This will create a data-win-options string in your markup, and you should see the untemplated

results in the control:

<div data-win-control="WinJS.UI.Repeater" data-win-options="{data:Data.seasonalItems}" ></div>

370

Next, click the drop-down next to the template property and select <Create New Template…>,

which brings up the dialog below wherein you’ll conveniently see the members of your data source.

Check those you need and give your template a name:

When you press OK, Blend will create unstyled markup in your HTML file and insert the appropriate

reference in the control’s options. Because I selected to identify the template with a class, the reference

uses the select syntax:

<div class="seasonalItemTemplate" data-win-control="WinJS.Binding.Template">

 <div>

 <div data-win-bind="textContent:description"></div>

 <div data-win-bind="textContent:subtitle"></div>

 <div data-win-bind="textContent:title"></div>

 </div>

</div>

<div data-win-control="WinJS.UI.Repeater" data-win-options="{data:Data.seasonalItems,

 template:select('.seasonalItemTemplate')}" ></div>

371

With this, you’ll see the template being rendered (below left), at which point we can just reorder and

style the elements as usual, resulting in much better output (below right):

Blend also provides a shortcut to create and edit data-win-bind entries for individual properties,

which works especially well inside a template. With a specific control selected (whether inside a

template or anywhere else), click the little square to the right of a property in the HTML attributes

pane, as shown below for the img element in the template we just created:

The yellow highlight here means that the property is data-bound already. When you click the

square, select Edit Data Binding… on the menu and you’ll see the dialog below, where you can edit the

data-win-bind entry or add one if none exists:

372

For a data context to appear here, note that WinJS.Binding.processAll must be called

somewhere in your code for the element in question, or a suitable parent element. Otherwise no

context will appear.

Repeater Features and Styling

In Quickstart #1 we’ve already covered the full extent of the Repeater control’s options. Its data

option refers to a Binding.List data source, and template can be used to refer to a template control

declared elsewhere in your markup or a rendering function, if the template is not otherwise is declared

as a child of the Repeater. Both of these options are, of course, available as read-write properties of

the Repeater object at runtime, and changing either one will fire an itemsloaded event.64

Like all other WinJS controls, the read-only Repeater.element property contains the element in

which the Repeater was declared; remember that the element also has a winControl property that

will container the Repeater object. The only other property of the Repeater is length (read-only),

which holds the number of items in the control.

Where methods are concerned, the Repeater has the usual roster of addEventListener,

removeEventListener, dispatchEvent, and dispose. Its only custom method is elementFromIndex

through which you can easily retrieve the root HTML element for one of the rendered children.

As a collection control, the Repeater is clearly affected by changes to its data source. As its children

are bound to the source, they update automatically; when items are added to or removed from the

source, the Repeater automatically adds or removes children. In all these cases, the Repeater fires

various events:

Event trigger Before DOM is updated After DOM is updated

The List in the data property fires its reload event itemsreloading itemsreloaded

Individual item in the data source changed itemchanging itemchanged

Item added to the data source iteminserting iteminserted

Item removed from the data source itemremoving itemremoved

Item moved in the data source itemmoving itemmoved

data or template property changes n/a itemsloaded

To see the effect of adding and removing items, scenarios 4-6 of the HTML Repeater control sample

all have Add Item and Remove Item buttons that just add and remove an item from the data source.

What’s more interesting in these scenarios is their demonstration of basic styling (scenario 4), using

the iteminserted and itemremoved events to trigger animations (scenario 5), and using nested

64 A bug in the WinJS 2.0 repeater control throws an exception when you change the data or template properties from
code when the template is not declared inline. For details and workaround, see my blog WinJS.UI.Repeater bug and

workarounds (WinJS 2.0).

http://msdn.microsoft.com/library/windows/apps/dn301916.aspx
http://msdn.microsoft.com/library/windows/apps/dn301910.aspx
http://msdn.microsoft.com/library/windows/apps/dn301930.aspx
http://msdn.microsoft.com/library/windows/apps/dn301925.aspx
http://msdn.microsoft.com/library/windows/apps/dn301915.aspx
http://msdn.microsoft.com/library/windows/apps/dn301913.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Repeater-control-da22d278
http://kraigbrockschmidt.com/blog/?p=1193
http://kraigbrockschmidt.com/blog/?p=1193

373

WinJS.Binding.Template controls (scenario 6).

With styling, the Repeater has no default styles because it has no visuals of its own: the repeater’s

element will have a win-repeater class added to it, but there are no styles for this class in the WinJS

stylesheets. It’s completely for your styling needs.

The repeater’s children won’t receive any styling classes of their own either, so it’s up to you to

define styles for the appropriate selectors. Scenarios 4, 5, and 6, for example, all have buttons to switch

between Horizontal Layout and Vertical Layout, as shown below for scenarios 4 and 5.

In these cases the whole graph is a div (horizontal by default), where the Repeater is used inside

for the list of tasks to create each bar (html/scenario4.html):

<div class="template" data-win-control="WinJS.Binding.Template">

 <div class="bar">

 <label class="label" data-win-bind="textContent: description"></label>

 <div class="barClip">

 <progress class="progress" data-win-bind="value: value" max="100"></progress>

 </div>

 </div>

</div>

<div class="graphArea horizontal">

 <div class="graphTitle win-type-large">Progress Bar Graph</div>

 <div class="graphData" data-win-control="WinJS.UI.Repeater"

 data-win-options="{data: Data.samples4, template: select('.template')}">

 </div>

 <div class="graphTaskAxis">Tasks</div>

 <div class="graphValueAxis">

 Value (%)

 </div>

</div>

The Vertical Layout button will remove the horizontal class and add a vertical class to the graphArea

element, and the Horizontal Layout button does the opposite. In css/scenario4.css, you can see that the

graphArea element is laid out with a CSS grid and all other elements like the bars with CSS flexboxes.

The styling simply controls the placement of elements in the grid and the direction of the flexbox, all of

374

which is specific to the elements that end up in the DOM and isn’t affected by the Repeater itself.

Scenario 5 is the same as scenario 4 but adds small animation effects when items are added or

removed, because the Repeater doesn’t include any on its own (unlike the ListView). The effects are

created using the WinJS Animations Library that we’ll meet in Chapter 14, “Purposeful Animations.”

Here’s a simplified version of the iteminserted handler (js/scenario5.js):

repeater.addEventListener("iteminserted", function (ev) {

 var a = WinJS.UI.Animation.createAddToListAnimation(ev.affectedElement);

 a.execute();

};

Scenario 6, finally, is very interesting because it shows the ability to nest Template controls, which in

this case even nests the same template inside itself! Here the data source also has a nested structure

(js/scenario6.js):

WinJS.Namespace.define("Data", {

 samples6: new WinJS.Binding.List([

 { value: 5, description: "Task 1" },

 {

 value: 50,

 description: "Task 2",

 subTasks: new WinJS.Binding.List([

 { value: 50, description: "Task 2: Part 1" },

 { value: 50, description: "Task 2: Part 2" }

])

 },

 { value: 25, description: "Task 3" },

 // ... (remaining data omitted)

])

});

Take a close look now at the template in html/scenario6.html:

<div class="template" data-win-control="WinJS.Binding.Template">

 <div class="bar">

 <label class="label" data-win-bind="textContent: description"></label>

 <div class="barClip">

 <progress class="progress" data-win-bind="value: value" max="100"></progress>

 </div>

 <div class="subTasks" data-win-control="WinJS.UI.Repeater"

 data-win-options="{template: select('.template')}"

 data-win-bind="winControl.data: subTasks">

 </div>

 </div>

</div>

<div class="graphArea horizontal">

 <div class="graphTitle win-type-large">Progress Bar Graph</div>

 <div class="graphData" data-win-control="WinJS.UI.Repeater"

 data-win-options="{data: Data.samples6, template: select('.template')}">

 </div>

 <div class="graphTaskAxis">Tasks</div>

 <div class="graphValueAxis">

375

 Value (%)

 </div>

</div>

Notice how the first Repeater (at the bottom) refers to the full data source, so it generates the first

level of the graph. For this repeater, each rendering of the template is bound to a top-level item in the

data source. Within the template, then, the second-level Repeater (in the subTasks element) has its

data option bound to a subTasks property of that first-level item, if it exists. Otherwise the Repeater

will create an empty WinJS.Binding.List to work with so you can still add and remove items, but

initially that repeater will be empty.

The initial output of scenario 6 is as follows, shown for both horizontal and vertical layouts:

Nesting the second-level Repeater that refers to the same template is perfectly legal—a template

control just renders its child elements when asked, and if that happens to contain a copy of itself, then

you’ll have some recursive rendering, but nothing that’s going to confuse WinJS! In fact, the nested

template structure will easily accommodate additional levels of data. If you modify “Task 2” in the data

(js/scenario6.js) to add details to “Part 1”:

{

 value: 50,

 description: "Task 2",

376

 subTasks: new WinJS.Binding.List([

 {

 value: 50,

 description: "Task 2: Part 1",

 subTasks: new WinJS.Binding.List([

 { value: 12, description: "Task 2: Part 1: Detail A" },

 { value: 24, description: "Task 2: Part 1: Detail B" },

 { value: 36, description: "Task 2: Part 1: Detail C" },

])

 },

 { value: 50, description: "Task 2: Part 2" }

])

},

you’ll see this output for Task2 without any changes to the code or markup:

So very cool! Indeed, you can start to see that nested templates and repeaters can work very well to

render highly structured data like an XML document or a piece of complex JSON. Of course, in many

cases you’ll want the rendered items to be interactive rather than static as we’ve seen here. In that case

you can use a WinJS.UI.ItemContainer within a repeater (see sidebar), a ListView control, or

possibly nested ListView controls.

Sidebar: Repeater + ItemContainer = Lightweight ListView

One reason that the ItemContainer and Repeater elements were created for WinJS 2.0 was that

many developers wanted a UI that worked a lot like a ListView, but without all the ListView

features. Thus instead of trying to make a ListView in which all those features could be disabled,

the WinJS team instead pulled the per-item ListView behaviors into its own control, the

ItemContainer (see Chapter 5), and then created the simple Repeater to make it easy to create

such controls bound to items in a data source.

As a result, it’s very straightforward in WinJS 2.0 to create a lightweight type of ListView

where you have fully interactive items (select, swipe, drag, and invoke behaviors) but without any

other layout policy or list-level interactivity (panning, incremental loading, keyboard navigation,

reordering, etc.) In other words, the Repeater and ItemContainer controls are excellent

building blocks for creating your own collection controls, which is typically a better choice than

trying to bludgeon the ListView into something it wasn’t made to do!

http://msdn.microsoft.com/library/windows/apps/dn255188.aspx

377

FlipView Features and Styling

The WinJS.UI.FlipView is a very capable and flexible control for any situation where you want to

page through items in a data source one at a time. We saw the basics earlier, in “Quickstart #2,” so let’s

now see the rest of its features through the other scenarios of the HTML FlipView control sample. (It’s

worth repeating that although this sample demonstrates the control’s capabilities in a relatively small

area, a FlipView can be any size. Refer again to Guidelines for FlipView controls for more.)

Scenario 2 of the sample (“Orientation and Item Spacing”) demonstrates the control’s orientation

property. This determines the placement of the arrow controls: left and right (horizontal) or top and

bottom (vertical) as shown below. It also determines the enter and exit animations of the items and

whether the control uses the left/right or up/down arrow keys for keyboard navigation. This scenario

also let you set the itemSpacing property (an integer), which determines the number of pixels

between items when you swipe items using touch (below right). Its effect is not visible when using the

keyboard or mouse to flip; to see it on nontouch devices, use touch emulation in the Visual Studio

simulator to drag items partway between page stops.

Scenario 3 (“Using interactive content”) shows the use of a renderer function instead of a declarative

template, as we learned about in “How Templates Work with Collection Controls.” Scenario 3 uses a

renderer (a function called mytemplate in js/interactiveContent.js) to create a “table of contents” for

the item in the data source marked with a “contentArray” type:

Scenario 3 also sets up a listener for click events on the TOC entries, the handler for which flips to

the appropriate item by setting the FlipView’s currentPage property. The picture items then have a

back link to the TOC. See the clickHandler function in the code for both of these actions.

http://msdn.microsoft.com/library/windows/apps/br211711.aspx
http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4
http://msdn.microsoft.com/library/windows/apps/hh850405

378

Scenario 4 (“Creating a context control”) demonstrates adding a navigation control to each item:

The items themselves are rendered using a declarative template, which in this case just contains a

placeholder div called ContextContainer for the navigation control (html/context- Control.html):

<div>

 <div id="contextControl_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView"

 data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource,

 itemTemplate: contextControl_ItemTemplate }">

 </div>

 <div id="ContextContainer"></div>

</div>

When the control is initialized in the processed method of js/contextControl.js, the sample calls the

FlipView’s async count method. The completed handler, countRetrieved, then creates the navigation

control using a row of styled radiobuttons. The onpropertychange handler for each radiobutton then

sets the FlipView’s currentPage property.

Scenario 4 also sets up listeners for the FlipView’s pageselected and pagevisibilitychanged

events. The first is used to update the navigation radiobuttons when the user flips between pages. The

other is used to prevent clicks on the navigation control during a flip. (The event occurs when an item

changes visibility and is fired twice per flip, once for the previous item, and again for the new one.)

Scenario 5 (“Styling Navigation Buttons”) demonstrates the styling features of the FlipView, which

involves various win-* styles and pseudo-classes as shown here (also documented on Styling the

FlipView and its items):

http://msdn.microsoft.com/library/windows/apps/jj863144.aspx
http://msdn.microsoft.com/library/windows/apps/jj863144.aspx

379

If you were to provide your own navigation buttons in the template (wired to the next and

previous methods), hide the default by adding display: none to the <control selector> .win-

navbutton style rule.

As we saw with the ItemContainer in Chapter 5, the FlipView creates some intermediate div

elements between the root where you declare the FlipView and where the template gets rendered.

These layers are classed with win-flipview (the root element), win-surface (the panning region), and

win-item (where a template is rendered); you’ll typically use these to style margins, padding, etc.:

The win-surface class is where you style a different background color for the gap created with the

itemSpacing property. To demonstrate this, scenario 5 of the modified sample in this chapter’s

companion content sets itemSpacing to 50 (html/stylingButtons.html) and adds the following CSS

(css/stylingButtons.css):

#stylingButtons_FlipView .win-surface {

 background-color: #FFE0E0;

}

Finally, there are a few other methods and events for the FlipView that aren’t used in the sample, so

here’s a quick rundown:

 pageCompleted An event raised when flipping to a new item is fully complete (that is, the new

item has been rendered). In contrast, the aforementioned pageselected event will fire when a

placeholder item (not fully rendered) has been animated in. See “Template Functions (Part 2):

Optimizing Item Rendering” at the end of this chapter.

380

 datasourcecountchanged An event raised for obvious purpose, which something like

scenario 4 would use to refresh the navigation control if items could be added or removed from

the data source.

 next and previous Methods to flip between items (like currentPage), which would be useful

if you provided your own navigation buttons.

 forceLayout A method to call specifically when you make a FlipView visible by removing a

display: none style.

 setCustomAnimations A method that allows you to control the animations used when

flipping forward, flipping backward, and jumping to a random item.

For details on all of these, refer to the WinJS.UI.FlipView documentation.

Collection Control Data Sources

Before we get into the details of the ListView, it’s appropriate to take a little detour into the subject of

data sources as they pertain specifically to collection controls. In all the examples we’ve seen thus far,

we’ve been using synchronous, in-memory data sources built with WinJS.Binding.List, which works

well up to about 2000–3000 total items. But what if you have a different kind of source, perhaps one

that works asynchronously (doing data retrieval off the UI thread)? It certainly doesn’t make sense to

pull everything into memory first, and especially not with data sources that have tens or hundreds of

thousands of items. For such sources we need a solution that’s scalable and can be virtualized.

For these reasons, collection controls like the FlipView and ListView don’t work directly against a

List (like the Repeater)—they instead work against an abstract data source defined by a set of

interfaces. That abstraction allows you to implement any kind of data source you want and plug it into

the controls. Those sources could be built on top of an in-memory object, like the List, data from a

service, object structures from other WinRT APIs or WinRT components, and really anything else. The

abstraction is simply a way to shape any kind of data into something that the controls can use.

In this section, we’ll first look at those interfaces and their relationships. Then we’ll see two helpers

that WinJS provides: the WinJS.UI.StorageDataSource object, which works with the file system, and

the WinJS.UI.VirtualizedDataSource, which serves as a base class for custom data sources.

Tip If you define a data source (like a Binding.List) within a page control, the declarative syntax

select('.pagecontrol').winControl.myData.dataSource can be used to assign that source to an

itemDataSource or groupDataSource property. Here, pageControl class is a class you’d add to your

page control’s root element. That element’s winControl property gets you to the object defined with

WinJS.UI.Pages.define, wherein the myData property would return the Binding.List.

http://msdn.microsoft.com/library/windows/apps/br211711.aspx

381

Super performance tip I said this in Chapter 6, but it’s very much worth saying again. If you’re

enumerating folder contents to display images in a collection control (what is generally called a gallery

experience), use metadata to represent file content instead of using file I/O to read that file content.

Always use Windows.Storage.StorageFile.getThumbnailAsync or getScaledImageAs-

ThumbnailAsync (or the same methods on the StorageFolder object) to retrieve a small image for

your data source, which can be passed to URL.createObjectURL and the result assigned to an img

element. (The StorageDataSource.getThumbnail method is a helper for this too, as we’ll see later.)

This is much faster and uses less memory, as the API draws from the thumbnails cache instead of

touching the file contents (as happens if you call URL.createObjectURL on a StorageFile). See the

File and folder thumbnail sample for demonstrations. You might also be interested in watching Marc

Wautier’s What’s new for working with Files session from //build 2013, where he talks about the

improved performance with thumbnails, especially where working with OneDrive is concerned.

The Structure of Data Sources (Interfaces Aplenty!)
When you assign a data source to the itemDataSource property of the FlipView and ListView controls,

or the ListView’s groupDataSource property, that object is expected to implement the methods of the

interface called IListDataSource.65 Everything these controls do with their data sources happens

exclusively through these methods and those of several companion interfaces: IListBinding,

IItemPromise, and IItem. The fact that the data source is abstracted behind these interfaces, and that

most of the methods involved are asynchronous, means that the data source can work with any kind of

data, whether local or remote. On the other side of the picture, collection controls that want to receive

change notifications create a handler object with the IListNotificationHandler methods. Together,

all these interfaces provide the necessary means to asynchronously manipulate items in the data source

and to bind to those items (that is, enumerate them and register for change notifications).

Tip It is entirely expected and recommended that custom collection controls work with these same

interfaces to support a variety of data sources. There’s little point in reinventing it all! Also take note of

the WinJS.UI.computeDataSourceGroups helper that adds grouping information to a data source

give an IListDataSource.

For in-memory source, the WinJS.Binding.List conveniently supplies everything that’s needed

through its dataSource property, as we’ve seen. This is why you’ll always see a reference to

List.dataSource with the FlipView and ListView: they know nothing about the List itself. As

mentioned earlier in this chapter, if you see an exception about a missing method called

createListBinding, it’s probably telling you that you’re assigning a List instead of a List.dataSource

to one of the FlipView or ListView source properties.

The createListBinding method, in fact, is the one through which a source object (with

IListDataSource) provides the binding capabilities expressed through IListBinding, and how a

65 See “Windows.Foundation.Collection Types” in Chapter 6 for an overview of what interfaces are in JavaScript. For custom

sources, you typically get the methods from the VirualizedDataSource class.

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getthumbnailasync.aspx
http://msdn.microsoft.com/library/windows/apps/dn298481.aspx
http://msdn.microsoft.com/library/windows/apps/dn298481.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.aspx
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959
http://channel9.msdn.com/Events/Build/2013/2-119
http://msdn.microsoft.com/library/windows/apps/br211786.aspx
http://msdn.microsoft.com/library/windows/apps/br212560.aspx
http://msdn.microsoft.com/library/windows/apps/br212598.aspx
http://msdn.microsoft.com/library/windows/apps/br212592.aspx
http://msdn.microsoft.com/library/windows/apps/br211803.aspx
http://msdn.microsoft.com/library/windows/apps/hh700578.aspx

382

collection control registers an object, with the IListNotificationHandler methods, to listen for data

changes. The general relationships between these and the source are illustrated in Figure 7-6.

FIGURE 7-6 The general relationships between a data source, the IListDataSource and IListBinding interfaces,

and a collection control like the ListView that uses that data source through those interfaces and provides a

notification handler with IListNotificationHandler methods.

Looking at Figure 7-6, the relationship between the data source and the objects that represent it is

private and very much depends on the nature of the data, but all that’s hidden from the controls on

the right. You can also see that items are represented by promises that have the usual then/done

methods, of course, but also sport a few others as found in IItemPromise. What these promises deliver

are then item objects with the IItem methods. It’s a lot to keep track of, so let’s break it down.

The members of IListDataSource, in the table below, primarily deal with manipulations of items in

the source. If you’ve worked with databases, you’ll recognize that this interface expressed the typical set

of create, update, and delete operations. The object behind the interface can implement these however

it wants. The List.dataSource object, for example, mostly uses List methods like move, splice,

push, setAt, etc. But be mindful again that all the IListDataSource methods that affect item content

(change, getCount, item*, insert*, move*, and remove) are asynchronous and return item promises

(IItemPromise) for the results in question.

Member (methods unless noted) Description
createListBindings Returns an object that implements IListBinding methods that allow for enumeration

of data items and change notifications as needed for data binding.

beginEdits, endEdits Changes made between a call to beginEdit and endEdit will defer notification

(through the statusChanged event) until endEdit is called.

itemFromKey, itemFromIndex,

itemFromDescription

Item lookup methods using a key (string), index (number), or a description (object).

change Updates an item with new data.

383

insertAfter, insertAtEnd,

insertAtStart, insertBefore

Inserts a new item in the source relative to an existing one or at the beginning or end

of the source.

moveAfter, moveBefore, moveToEnd,

moveToStart

Moves an existing item elsewhere in the source, if supported (read-only and non-

orderable collections would not, for instance).

remove Deletes an existing item.

statusChanged (event) plus

addEventListener, et. al.

Raised when the data source has changed in some way; a data source is not required

to implement this (the List.dataSource does not).

getCount Returns a promise for the total number of items in the data source. This can be an

estimated size as it’s used by collection controls to do virtualization.

invalidateAll Instructs a data source to clear and reset any caches it might be maintaining.

You’ll also find that all operations that reference existing items, like change, move*, insertAfter,

and so on, reference items by keys rather than indicies. This was a conscious design decision because

indices can be quite volatile in different data sources. Keys, on the other hand, which a source typically

assigns to uniquely identify an item, are very stable.

The members of IListBinding, for their part, deal with enumeration of items in the source. All of

its methods are asynchronous and return promises with IItemPromise methods:

Member (methods unless noted) Description
current Returns a promise the current item in the enumeration.

jumpToItem Makes a given item the current one and returns a promise for it.

first, last, previous, next Returns a promise for an item in the enumeration, relative to the whole or to the

current item.

fromKey, fromIndex,

fromDescription

Returns a promise for an item from a key (string), index (number), or a description

(object). Each of these methods make the returned item the current one.

releaseItem, release Stops change requests for an item or all items if a notification handler was provided to

IListDataSource.createListBinding.

To listen to change notifications on any particular item, the control that’s using the data source

must first provide an object with IListNotificationHandler to the createListBinding method, as

shown earlier in Figure 7-6. This step provides the handler to the source, but doesn’t actually start

notifications. That step happens when the control requests an item (through whatever other method)

to get an item promise and calls IItemPromise.retain. When the control is done listening, it retrieves

the item from the promise (IItemPromise.then or done) and calls that item’s release.

This per-item notification is done to support virtualization. If you have a data source with potentially

thousands of items, but the control that’s using that source only displays a few dozen at a time, then

there’s no reason for the source to keep every item in memory: the control would instead call retain

for those items that are visible (or about to be visible), and later call release when they’re well out of

view. This allows the data source to manage its own memory efficiently.

That’s the whole relationship in a nutshell. For the most part, you won’t have to deal with all these

details. For custom data sources, the VirtualizedDataSource provides a core implementation, as we’ll

see later. And when your data source is a List, you can just manipulate that source through the List

methods. At the same time, you can also make changes through the IListDataSource and

IListBinding methods directly. This is necessary when the data source isn’t a List, and becomes

important if you’re creating a custom collection control that supports arbitrary sources.

http://msdn.microsoft.com/library/windows/apps/br212601.aspx

384

An example of this can be found in the HTML ListView working with data sources sample. Scenarios

2 and 3 use a ListView to displays letter tiles like those found in many word games:

A series of buttons lets you shuffle the list, add a tile, remove a tile, or swap tiles. In scenario 2, these

manipulations are done through the Binding.List to which the ListView is bound. Adding a tile, for

example, just happens with List.push (js/scenario2.js):

function addTile() {

 var tile = generateTile();

 lettersList.push(tile);

}

Scenario 3, on the other hand, does all the same stuff, still using a List, but performs manipulations

through IListDataSource methods. Adding a tile, for example, happens through insertAtEnd

(js/scenario3.js):66

function addTile() {

 var ds = document.getElementById("listView3").winControl.itemDataSource;

 var tile = generateTile();

 ds.insertAtEnd(null, tile);

}

The shuffling operation is more involved as it must first call createListBinding to get the

IListBinding methods through which it can enumerate the collection. This results in an array of item

promises, which can be fulfilled with WinJS.Promise.join. It then calls the source’s beginEdits to

batch changes, randomly moves items to the top of the list with moveToStart, and then calls endEdits

to wrap up. The code is a bit long, so you can look at it in js/scenario3.js.

A FlipView Using the Pictures Library

For everything we’ve seen in the FlipView sample already, it really begs for the ability to do something

completely obvious: flip through pictures in a folder. How might we implement something like that?

We already have an item template containing an img tag, so perhaps we just need some URIs for those

files. We could make an array of these using the Windows.Storage.KnownFolders.picturesLibrary

folder and that library’s StorageFolder.getFilesAsync method (declaring the Pictures Library

capability in the manifest, of course!). This would give us a bunch of StorageFile objects for which we

could call URL.createObjectURL. We could store those URIs in an array and create a List, whose

dataSource property we can assign to the FlipView’s itemDataSource:

var myFlipView = document.getElementById("pictures_FlipView").winControl;

66 The sample calls beginEdits and endEdits here, which is not necessary for a single addition or deletion. The methods

are effective when swapping items or shuffling the whole set where multiple changes are involved.

http://code.msdn.microsoft.com/windowsapps/ListView-custom-data-4dcfb128

385

Windows.Storage.KnownFolders.picturesLibrary.getFilesAsync()

 .done(function (files) {

 var pixURLs = [];

 files.forEach(function (item) {

 var url = URL.createObjectURL(item, {oneTimeOnly: true });

 pixURLs.push({type: "item", title: item.name, picture: url });

 });

 var pixList = new WinJS.Binding.List(pixURLs);

 myFlipView.itemDataSource = pixList.dataSource;

 });

Although this approach works, it can consume quite a bit of memory with a larger number of high-

resolution pictures because each picture has to be fully loaded into memory. We can alleviate the

memory requirements by loading thumbnails instead of the full image, but there’s still the significant

drawback that the images are stretched or compressed to fit into the FlipView without any concern for

aspect ratio, and this produces lousy results unless every image is the same size (highly unlikely!).

A better approach is to use the WinJS.UI.StorageDataSource object, a demonstration of which is

found in scenario 8 of the modified HTML FlipView sample in this chapter’s companion content.

Another example can be found in the StorageDataSource and GetVirtualizedFilesVector sample, which

creates a ListView over the Pictures folder as well.

StorageDataSource provides all the necessary interfaces, of course, and works directly with the file

system metadata as a data source instead of an in-memory array. It provides automatic change

detection, so if you add files to a folder or modify existing ones, it will fire off the necessary change

notifications so that bound controls can update themselves. Furthermore, it provides automatic scaling

and cropping services for thumbnails—pictures, for example, are auto-cropped with a 0.7 height to

width ratio, using the upper part of a picture where the subject is usually found. Videos automatically

receive an adornment to distinguish them from pictures, and also use a 0.7 height to width ratio. Music

and documents, on the other hand, automatically use a square representation, as befits album a rt and

icons. You can also customize this behavior through the ThumbnailMode options that you pass to the

StorageDataSource constructor.

The StorageDataSource works with something called a query, which we’ll learn about in Chapter

11, “The Story of State, Part 2.”67 Fortunately, WinJS lets you shortcut the process for media libraries

and just pass in a string like “Pictures” (js/scenario8.js):

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures");

67 To be specific, the first argument to the StorageDataSource constructor is a query object that comes from the
Windows.Storage.Search API. Queries feed into the powerful StorageFolder.createFileQueryWithOptions function

and are ways to enumerate files in a folder along with metadata like album covers, track details, and thumbnails that are
cropped to maintain the aspect ratio. Shortcuts like "Pictures", "Music", and "Videos" (which require the associated

capability in the manifest) just create typical queries for those libraries.

http://msdn.microsoft.com/library/windows/apps/br212650.aspx
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.thumbnailmode.aspx
http://msdn.microsoft.com/library/windows/apps/br212651.aspx
http://msdn.microsoft.com/library/windows/apps/br230579.aspx
http://msdn.microsoft.com/library/windows/apps/br211591.aspx

386

This will create a StorageDataSource on top of the contents of the Pictures library (assuming

you’ve declared the capability, of course).

The caveat with StorageDataSource is that it doesn’t directly support one-way binding: you’ll get

an exception if you try to refer to item properties directly in a declarative template. To work around

this, you have to explicitly use WinJS.Binding.oneTime as the initializer function for each property (or

set it as the default in Binding.processAll). This template is in html/scenario8.html:

<div id="pictures_ItemTemplate" data-win-control="WinJS.Binding.Template">

 <div class="overlaidItemTemplate">

 <img class="image" data-win-bind="src: thumbnail InitFunctions.thumbURL;

 alt: name WinJS.Binding.oneTime" />

 <div class="overlay">

 <h2 class="ItemTitle" data-win-bind="innerText: name WinJS.Binding.oneTime"></h2>

 </div>

 </div>

</div>

In the case of the img.src property, the query gives us items of type Windows.Storage.-

BulkAccess.FileInformation (the s variable in the code below), which contains a thumbnail image,

not a URI. To convert that image data into a URI, we need to use our own binding initializer:

WinJS.Namespace.define("InitFunctions", {

 thumbURL: WinJS.Binding.initializer(function (s, sp, d, dp) {

 var thumb = WinJS.Utilities.getMember(sp.join("."), s);

 if (thumb) {

 var lastProp = dp.pop();

 var target = dp.length ? WinJS.Utilities.getMember(dp.join("."), d) : d;

 dp.push(lastProp);

 target[lastProp] = URL.createObjectURL(thumb, { oneTimeOnly: true });

 }

 })

});

Note that thumbnails aren’t always immediately available in the FileInformation object, which is

why we have to verify that we actually have one before creating a URI for it. This means that quickly

flipping through the images might show some blanks. To solve this particular issue, we can listen for

the FileInformation.onthumbnailupdated event and update the item at that time. The best way to

accomplish this is to use the StorageDataSource.loadThumbnail helper, which makes sure to call

removeEventListener for this WinRT event. (See “WinRT Events and removeEventListener” in Chapter

3.) You can use this method within a binding initializer, as demonstrated in scenario 1 of the afore-

mentioned StorageDataSource and GetVirtualizedFilesVector sample, or within a rendering function

that takes the place of the declarative template. Scenario 9 of the modified FlipView sample does this.

Custom Data Sources and WinJS.UI.VirtualizedDataSource

Creating a custom data source means, when all is said and done, to provide the implementations of all

the interfaces we saw earlier in “The Structure of Data Sources (Interfaces Aplenty!).” Clearly, that would

http://msdn.microsoft.com/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx
http://msdn.microsoft.com/library/windows/apps/jj553712.aspx
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535

387

be a lot of coding work and would involve change detection and lots of optimization work like caching

and virtualization. To make the whole job easier, WinJS provides the WinJS.UI.Virtualized-

DataSource class that does most of the heavy-lifting and provides all the IListDataSource and

IListBinding methods. The piece you provide is a stateless adapter—an object that implements some

or all of the methods of the IListDataAdapter interface—to customize or adapt the

VirtualizedDataSource to your particular data store.

Tip The Using ListView topic in the documentation contains a number of performance tips for custom

data sources that aren’t covered here. As it notes, the IListDataAdapter interface and the

VirtualizedDataSource object are the best means for creating an asynchronous data source.

Walkthrough For more on the concepts around custom data sources and a walkthrough of using an

adapter, watch Sam Spencer’s talk from //build 2011, Build data-driven collection and list apps using

ListView, specifically between 31:16 and 48:48. It’s interesting to note that he builds a data source on

top of WCF data services (OData) talking to a SQL Server database hosted on Windows Azure. An

adapter is also applicable to other cloud services, data-related WinRT APIs, and local databases.

If you take a look at IListDataAdapter, you’ll see that it has many of the same methods as

IListDataSource, because it handles many of the same functions. Be sure not to confuse the two,

however, because there are differences and even methods with the same names might have different

arguments.

Member (methods unless noted) Description
change Asynchronously modifies an item.

getCount Returns a promise that’s fulfilled with an estimated count of the items in the data

source. As with IListDataSource, the count does not have to be accurate: it’s

primarily used to help a collection control manage its paging or virtualization.

insertAfter, insertAtEnd,

insertAtStart, insertBefore

Adds items to the source. All the methods return a promise for the item added.

itemsFromDescription,

itemsFromEnd, itemsFromIndex,

itemsFromKey, itemsFromStart

Return a promise that’s fulfilled with one or more items depending on location (start,

end), index (number), key (a string), or description (object). All these methods can be

asked to retrieve more than one item (e.g., some number before and after the primary

item) to efficiently support paging and virtualization.

The group of items delivered by the promise is specifically an object with the

IFetchResult interface.

moveAfter, moveBefore, moveToEnd,

moveToStart

Moves an item in the source, returning a promise for the item.

remove Deletes an item from the source, returning a promise for the item.

setNotificationHandler Registers a notification handler. In this case the handler should implement the

IListDataNotificationHandler interface methods.

compareByIdentity (property) Indicates whether the object’s identity is used to detect changes as opposed to its

value.

itemSignature Returns a string representation of an item to use for comparisons.

When you look at these methods and think about them in relation to different kinds of data sources,

it should be clear that certain methods won’t be needed. A read-only source, for example, has no need

http://msdn.microsoft.com/library/windows/apps/hh701413.aspx
http://msdn.microsoft.com/library/windows/apps/hh701413.aspx
http://msdn.microsoft.com/library/windows/apps/br212603.aspx
http://msdn.microsoft.com/library/windows/apps/Hh781224.aspx
http://channel9.msdn.com/Events/Build/BUILD2011/APP-210T
http://channel9.msdn.com/Events/Build/BUILD2011/APP-210T
http://msdn.microsoft.com/library/windows/apps/br212548.aspx
http://msdn.microsoft.com/library/windows/apps/br212587.aspx

388

for the insert* or move* methods. Fortunately, the adapter interface and the

VirtualizedDataSource are designed to be flexible, allowing you to implement only those adapter

methods as described in the following table.

Source capability Applicable methods

read-only, index-based getCount, itemsFromIndex

read-only, key-based getCount, itemsFromKey, itemsFromStart, itemsFromEnd

read-write without ordering Above methods plus change, remove, insertAtEnd

read-write with ordering Above methods plus insertAtStart, insertBefore, insertAfter, insertAtEnd, moveAfter,

moveBefore, moveToEnd, and moveToStart

change notifications Add setNotificationHandler

Now for some examples! First, if you’ve been keeping score, you might have noticed that we’ve

talked about every scenario in the HTML FlipView sample (the modified one) except for scenario 6.

That’s because this particular scenario implements a custom data source to work with images from Bing

Search. This is where you’ll need the Bing Search API key that I mentioned at the beginning of this

chapter, so if you didn’t get a key yet, do that now.

Scenario 6 is shown in Figure 7-7, using the modified sample in which I’ve changed the default

search strings from Seattle and New York to a few things closer to my heart (my son’s favorite train and

the community where I live). You can do a lot in this scenario. The controls let you select from different

forms of item rendering, which we’ll be talking about later in this chapter, and to select either a

virtualized online data source with a configurable delay time—as we’ll be talking about here—or an

online source that’s incrementally loaded into a Binding.List.

FIGURE 7-7 Scenario 6 of the modified HTML FlipView sample in the companion content (cropped).

When you select the Virtualized DataSource option, as shown in the figure, the code assigns the

FlipView and instance of a custom class called bingImageSearchDataSource:

389

dataSource = new bingImageSearchDataSource.datasource(devkey, "SP4449", delay);

where devkey is the Bing Search API account key, “SP4449” is the search string, and delay is from the

Delay range control (to simulate network latency). The class itself is implemented in js/bingImage-

SearchDataSource.js, deriving from WinJS.UI.VirtualizedDataSource:

WinJS.Namespace.define("bingImageSearchDataSource", {

 datasource: WinJS.Class.derive(WinJS.UI.VirtualizedDataSource,

 function (devkey, query, delay) {

 this._baseDataSourceConstructor(new bingImageSearchDataAdapter(devkey, query, delay));

 })

});

The call to this._baseDataSourceConstructor is the same as calling new on the Virtiualized-

DataSource. However you do it, the argument to this constructor is your adapter object. In this case it’s

an instance of the bingImageSearchDataAdapter class, which is the bulk of the code in

js/bingImageSearchDataSource.js. Because we have a read-only, index-based, nonorderable source

without change notification, the adapter implements only the getCount and itemFromIndex methods.

Both of these make HTTP requests to Bing to retrieve the necessary data.

In the earlier table, I mentioned that getCount doesn’t have to be accurate—it just helps a

collection control plan for virtualization; the sample, in fact, always returns 100 if it successfully pings

the server with a request for 10. Typically, once itemFromIndex has been called and you start pulling

down real data, you can make the count increasingly accurate.

Speaking of counts, the itemFromIndex method is interesting because it’s not just asked to retrieve

one item: it’s might also be asked for some number of items on either side. This specifically supports

pre-caching of items near the current point at which a control is displaying a collection because those

are the most likely items that the user will navigate to next. By asking the data source for more than

one at a time—especially when making an HTTP request—we cut down network traffic and deliver a

smoother user experience.

As an optimization, these extra item requests are not hard rules. Depending on the service, the

adapter can decide to deliver however many items is best for the service. For example, if

itemsFromIndex is asked for 20 items before and after the primary item, but the service works best

with requests of 32 items at a time, the adapter can deliver 15 before and 16 after; or if the service is

best with 64 items, the adapter can deliver 31 before and 32 after.

To show this aspect of the adapter, here’s the beginning of itemsFromIndex, after which is just the

code making the HTTP request and processing the results into an array. The _minPageSize and

_maxPageSize properties represent the optimal request range (js/bingImageSearchDataSource.js):

itemsFromIndex: function (requestIndex, countBefore, countAfter) {

 // Some error checking omitted

 var fetchSize, fetchIndex;

http://msdn.microsoft.com/library/windows/apps/hh701413.aspx

390

 // See which side of the requestIndex is the overlap

 if (countBefore > countAfter) {

 countAfter = Math.min(countAfter, 10); //Limit the overlap

 //Bound the request size based on the minimum and maximum sizes

 var fetchBefore = Math.max(Math.min(countBefore,

 this._maxPageSize - (countAfter + 1)), this._minPageSize - (countAfter + 1));

 fetchSize = fetchBefore + countAfter + 1;

 fetchIndex = requestIndex - fetchBefore;

 } else {

 countBefore = Math.min(countBefore, 10);

 var fetchAfter = Math.max(Math.min(countAfter,

 this._maxPageSize - (countBefore + 1)), this._minPageSize - (countBefore + 1));

 fetchSize = countBefore + fetchAfter + 1;

 fetchIndex = requestIndex - countBefore;

 }

 // Build up a URL for the request

 var requestStr = "https://api.datamarket.azure.com/Data.ashx/Bing/Search/Image"

 // Common request fields (required)

 + "?Query='" + that._query + "'" + "&$format=json" + "&Market='en-us'" + "&Adult='Strict'"

 + "&$top=" + fetchSize + "&$skip=" + fetchIndex;

The items, as noted in the table of adapter methods, are returned in the form of an object with the

IFetchResult interface. Unlike the others we’ve seen, this one contains only properties, where items is

the most important as it contains the item data (objects with IItem). Here’s how the sample builds the

fetch result: for each item in the HTTP response, it creates a data object (that can contain whatever

information you want) and pushes it into an array called results:

for (var i = 0, itemsLength = items.length; i < itemsLength; i++) {

 var dataItem = items[i];

 results.push({

 key: (fetchIndex + i).toString(),

 data: {

 title: dataItem.Title,

 thumbnail: dataItem.Thumbnail.Url,

 width: dataItem.Width,

 height: dataItem.Height,

 linkurl: dataItem.Url,

 url: dataItem.MediaUrl

 }

 });

}

The return value, that’s ultimately delivered through a promise, then has the results array as the

item’s data property, along with two other properties:

return {

 items: results, // The array of items

 offset: requestIndex - fetchIndex, // The offset into the array for the requested item

 totalCount: that._maxCount,

};

http://msdn.microsoft.com/library/windows/apps/br212548.aspx
http://msdn.microsoft.com/library/windows/apps/br212592.aspx

391

The prefetching nature of the item* methods is helpful for the FlipView but essential for the

ListView. This is demonstrated more clearly in the HTML ListView working with data sources sample

that we saw earlier. Scenario 1 (see Figure 7-8) uses the same Bing Search data source as the FlipView

sample with one small change. In the case of the FlipView, though, the page size is set between 1 and

10 and the largest number that the source will pull down at once is 100 items. In the ListView sample,

the page size is set to 50 and the max number to 1000, as befits a collection control that will show

more items at one time. Otherwise everything about the data source and the adapter is the same.

Another example The PDF viewer showcase sample contains another implementation of a custom

data source for reference, which you can find in its js/pdfDataSource.js file.

FIGURE 7-8 Scenario 1 of the modified HTML ListView working with data sources sample, which allows you to enter

a search term of your choice.

You can see the effect of the ListView’s precaching by adding some console output to the top of the

itemsFromIndex method in js/bingImageSearchDataSource.js:

console.log("itemsFromIndex: requestIndex = " + requestIndex + ", countBefore = " +

 countBefore + ", countAfter =" + countAfter);

Tip A collection control can call itemFromIndex many times, so console output is often a more

efficient way to watch what’s happening than breakpoints.

With this in place, run the sample and page around quickly in the ListView, even dragging the scroll

thumb far down in the list. You’ll see console output that shows what the ListView i s asking for:

itemsFromIndex: requestIndex = 0, countBefore = 0, countAfter =1

itemsFromIndex: requestIndex = 50, countBefore = 0, countAfter =30

http://code.msdn.microsoft.com/windowsapps/ListView-custom-data-4dcfb128
http://code.msdn.microsoft.com/windowsapps/PDF-viewer-showcase-sample-39ced1e8

392

itemsFromIndex: requestIndex = 150, countBefore = 0, countAfter =14

itemsFromIndex: requestIndex = 322, countBefore = 1, countAfter =80

itemsFromIndex: requestIndex = 508, countBefore = 1, countAfter =82

itemsFromIndex: requestIndex = 210, countBefore = 0, countAfter =0

itemsFromIndex: requestIndex = 607, countBefore = 0, countAfter =253

itemsFromIndex: requestIndex = 907, countBefore = 0, countAfter =41

itemsFromIndex: requestIndex = 1000, countBefore = 0, countAfter =0

itemsFromIndex: requestIndex = 543, countBefore = 13, countAfter =148

It’s good to note, even though we haven’t seen it yet, that the fulfillment of item promises—that is,

the delivery of items—has a direct effect on the ListView control’s loadingState property and its

loadingStateChanged event. The ListView tracks whether its items have been rendered through

completion of the item promises. The rest of your UI code, on the other hand, can just watch the

ListView’s loadingStateChanged event to track its state: there’s no need to watch the data source

directly from that other code.

To wrap up this sample and this section, now, scenario 4 demonstrates a custom data source

implemented on top of two JavaScript arrays (items and groups) using two adapters and

VirtualizedDataSource. We’re still using a ListView here, but a Binding.List is nowhere in sight.

What’s important in this scenario is that the items returned from the adapter’s itemsFromIndex

contain both the key and a groupKey properties of IItem (js/scenario4.js):

// Iterate and form the collection of items. results is returned in

// the IFetchResult.items property.

for (var i = fetchIndex; i <= lastFetchIndex; i++) {

 var item = that._itemData[i];

 results.push({

 key: i.toString(), // the key for the item itself

 groupKey: item.kind, // the key for the group for the item

 data: item // the data fields for the item

 });

}

where the groupKey values in the items match the key values in the itemFromIndex results returned

by the group’s data source and are also used in the group’s itemFromKey implementation. Take a look

through js/scenario4.js for more—the code is well commented.

Sidebar: Custom Data Sources in C++

Even though the IListDataSource and other interfaces are documented as part of WinJS,

there’s nothing that says they have to be implemented on JavaScript objects. The beauty of

interfaces is that it doesn’t matter how they’re implemented, so long as they do what they’re

supposed to. Thus, if working with a data source will perform better when written in a language

like C++, you can implement it as a class in a WinRT Component. This allows you to instantiate

the object from JavaScript and still take advantage of the performance of compiled C++. The

basics of writing a component are discusssed in Chapter 18, “WinRT Components.”

393

ListView Features and Styling

Having already covered data sources and templates along with a number of ListView examples, we can

now explore the additional features of the ListView control, such as styling, loading state transitions,

drag and drop, and layouts. Optimizing item rendering then follows in the last section of this chapter

(and applies to FlipView and ListView). First, however, let me answer a very important question.

When Is ListView the Right Choice?
ListView is the hands-down richest control in all of Windows. It’s very powerful, very flexible, and, as

we’re already learning, very deep and intricate. But for all that, sometimes it’s also just the wrong

choice! Depending on the design, it might be easier to just use basic HTML/CSS layout or the

WinJS.UI.Hub control, as we’ll see in Chapter 8.

Conceptually, a ListView is defined by the relationship between three parts: a data source, templates,

and layout. That is, items in a data source, which can be grouped, sorted, and filtered, are rendered

using templates and organized with a layout (typically with groups and group headers). In such a

definition, the ListView is intended to help visualize a single collection of similar and/or related items,

where their groupings also have a relationship of some kind.

With this in mind, the following factors strongly suggest that a ListView is a good choice to display a

particular collection:

 The collection can contain a variable number of items to display, possibly a very large number,

showing more when the app runs on a larger display.

 It makes sense to organize and reorganize the items into various groups.

 Group headers help to clarify the common properties of the items in those groups, and they can

be used to navigate to a group-specific page.

 It makes sense to sort and/or filter the items according to different criteria.

 Different groupings of items and information about those groups suggest ways in which

semantic zoom would be a valuable user experience.

 The groups themselves are all similar in some way, meaning that they each refer to a similar

kind of thing. Different place names, for example, are similar; a news feed, a list of friends, and a

calendar of holidays are not similar.

 Items might be selectable individually or in groups so that you can apply commands on them.

On the flip side, opposite factors suggest that a ListView is not the right choice:

 The collection contains a limited or fixed number of items, or it isn’t really a collection of related

items at all.

394

 It doesn’t make sense to reorganize the groupings or to filter or sort the items.

 You don’t want group headers at all.

 You don’t see how semantic zoom would apply.

 The groups are highly dissimilar—that is, it wouldn’t make sense for the groups to sit side-by-

side if the headers weren’t there.

 Some items might be selectable or interactive, while others are not.

Let me be clear that I’m not talking about design choices here—your designers can hand you any

sort of layout they want and as a developer it’s your job to implement it! What I’m speaking to is how

you choose to approach that implementation, whether with controls like ListView and Hub or just with

HTML/CSS layout.

I say this because in working with the developers who created the very first apps for the Windows

Store (especially before the Hub control was available in Windows 8.1), we frequently saw them trying

to use ListView in situations where it just wasn’t appropriate. An app’s hub page, for example, might

combine a news feed, a list of friends, and a calendar. An item details page might display a picture, a

textual description, and a media gallery. In both cases, the page contains a limited number of sections

and the sections contain very different content with very dissimilar items. Because of this, using a

ListView gets complicated. It’s better to use a single pannable div with a CSS grid in which you can lay

out whatever sections you need, or the Hub control that was created for these scenarios.

Within those sections, of course, you might use ListView controls to display an item collection. I’ve

illustrated these choices in Figure 7-9 (on the next page) using an image from the Navigation patterns

topic, because you’ll probably receive similar images from your designers. Ignoring the navigation

arrows, the hub and details pages typically use a div at the root, whereas a section page is often a

ListView. Within the hub and details pages there might be some ListView controls, but where the

content is essentially fixed (like a single item), the best choice is a div.

A clue that you’re going down the wrong path, by the way, is if you find yourself trying to combine

multiple collections of unrelated data into a single source, binding that source to a ListView, and

implementing a renderer to tease all the data apart again so that everything renders properly! All that

extra work could be avoided simply by using the Hub or straight HTML/CSS layout.

For more on ListView design, see Guidelines for ListView controls, which includes details on the

interaction patterns created with combinations of selection, tap, and swipe behaviors.

Tip I’ll say it again: if you’re creating a gallery experience with thumbnails in a ListView, avoid loading

whole image files for that purpose. See the “Super performance tip” in the “Collection Control Data

Sources” section earlier in this chapter.

http://msdn.microsoft.com/library/windows/apps/hh761500
http://msdn.microsoft.com/library/windows/apps/hh465465.aspx

395

FIGURE 7-9 Breaking down typical hub-section-detail page designs into div elements and ListView controls. The

Hub control is typically useful for pannable regions that contain different types of sections.

Options, Selections, and Item Methods
In previous sections we’ve already seen some of the options you can use when creating a ListView,

options that correspond to the control’s properties. Let’s look now at the complete set of properties,

methods, and events, which I’ve organized into a few groups— after all, those properties and methods

form quite a collection in themselves! Because the details for the individual properties are found on the

WinJS.UI.ListView reference page, what’s most useful here is to understand how the members of

these groups relate (enumerations noted here are also in the WinJS.UI namespace):68

 Data sources and templates We’ve already seen the groupDataSource, groupHeader-

Template, itemDataSource, and itemTemplate properties many times, so little more needs to

be said on the technical details. For specific item template designs, the documentation provides

two galleries of examples that you’ll find in Item templates for grid layouts (11 designs) and

Item templates for list layouts (6 designs).

 Addressing items The currentItem property gets or sets the item with the focus, and the

elementFromIndex and indexOfElement methods let you cross-reference between an item

index and the DOM element for that item. The latter could be useful if you have other controls

in your item template and need to determine the surrounding item in an event handler.

 Item visibility The indexOfFirstVisible and indexOfLastVisible properties let you know

68 I’ll remind you that the ListView was overhauled for WinJS 2.0, as I describe on ListView Changes between WinJS 1.0 and

WinJS 2.0. Here I describe the WinJS 2.0 control; anything you see in the docs that I omit is probably deprecated.

http://msdn.microsoft.com/library/windows/apps/br211837.aspx
http://msdn.microsoft.com/library/windows/apps/hh465463.aspx
http://msdn.microsoft.com/library/windows/apps/hh465478.aspx
http://kraigbrockschmidt.com/blog/?p=1031
http://kraigbrockschmidt.com/blog/?p=1031

396

what indices are visible, and they can be used to scroll the ListView appropriate for a given item.

The ensureVisible method brings the specified item into view, if it’s been loaded. Also, the

scrollPosition property contains the distance in pixels between the first item in the list and

the current viewable area. Though you can set the scroll position of the ListView with this

property, it’s reliable only if the control’s loadingState (see “Loading state” group below) is

ready, otherwise the ListView may not yet know its actual dimensions. It’s thus better to instead

use ensureVisible or indexOfFirstVisible to control scroll position.

 Item invocation The itemInvoked event, as we’ve seen, fires when an item is tapped, unless

the tapBehavior property is not set to none, in which case no invocation happens. Other

tapBehavior values from the TapBehavior enumeration will always fire this event but

determine how the item selection is affected by the tap: invokeOnly, directSelect, and

toggleSelect. You can override the selection behavior on a per-item basis using the

selectionchanging event and suppress the animation if needed. See the “Item Tap/Click

Behavior” sidebar after this list. Also note that the args.details.itemIndex value that you

receive with this event is a zero-based index relative to the current visible items in the ListView.

 Item selection The selectionMode property contains a value from the SelectionMode,

enumeration, indicating single-, multi-, or no selection. At all times the selection property

contains a ListViewItems object whose methods let you enumerate and manipulate the

selected items (such as setting selected items through its set method). Changes to the selection

fire the selectionchanging and selectionchanged events; with selectionchanging, its

args.detail.newSelection property contains the newly selected items. For more on this,

refer to scenario 4 of the HTML ListView essentials sample and the whole of the HTML ListView

customizing interactivity sample, which among other things demonstrates a using the ListView

in a master-detail layout (scenario 2). Note also that support for keyboard selection is built in.

 Header invocation The groupHeaderTapBehavior is set to a value from the

GroupHeaderTapBehavior enumeration, which can be either invoke or none (the default).

When set to invoke, group headers will fire the groupheaderInvoked event in response to

taps, clicks, or the Enter key (when the header has the focus). As noted earlier with

“Quickstart #4,” a demonstration is found in scenario 3 of the HTML ListView grouping and

Semantic Zoom sample. With the keyboard, the Tab key will navigate from a group of items to

its header, after which the arrow keys navigate between headers. It’s also recommended that

apps also handle the Ctrl+Alt+G keystroke to navigate from items in the current group to the

header.

 Swiping Related to item selection is the swipeBehavior property that contains a value from

the SwipeBehavior enumeration. This determines the response to swiping or cross-slide

gestures on an item where the gesture moves perpendicular to the panning direction of the list.

If swipeBehavior is set to none, swiping has no effect on the item and the gesture is bubbled

up to the parent element. If this is set to select, the gesture selects the item.

http://msdn.microsoft.com/library/windows/apps/hh701303.aspx
http://msdn.microsoft.com/library/windows/apps/br229687.aspx
http://msdn.microsoft.com/library/windows/apps/br211809.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db
http://code.msdn.microsoft.com/windowsapps/ListView-selection-detail-95e06ade
http://code.msdn.microsoft.com/windowsapps/ListView-selection-detail-95e06ade
http://msdn.microsoft.com/library/windows/apps/dn376328.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/library/windows/apps/hh701287.aspx

397

 Layout As we’ve also seen, the layout property (an object) describes how items are arranged

in the ListView, which we’ll talk about more in “Layouts” below. Note that orientation (vertical or

horizontal) is a property of the layout and not of the ListView itself . We’ve also seen the

forceLayout function that’s specifically used when a display: none style is removed from a

ListView and it needs to re-render itself. One other method, recalculateItemPosition,

repositions all items in the ListView and is meant specifically for UI designer apps or when

changing items within a cell-spanning layout.

 Loading behavior A ListView is set up to provide random access to all the items it contains

but keeps only five total pages of items in memory at a time. The total number of items is

limited to the maxDeferredItemCleanup property. More on this under “Loading State

Transitions” below.

 Loading state The read-only loadingState property contains either "itemsLoading" (the

list is requesting items and headers from the data source), "viewportLoaded" (all items and

headers that are visible have been loaded from the source), "itemsLoaded" (all remaining

nonvisible buffered items have been loaded), or "complete" (all items are loaded, content in

the templates is rendered, and animations have finished). Whenever this property changes while

the ListView is updating its layout due to panning, the loadingStateChanged event fires.

Again, see “Loading State Transitions.”

 Drag and drop If the itemsDraggable property is true, the ListView can act as an HTML5

drag and drop source, such that items can be dragged to other controls. If itemsReorderable

is true, the ListView allows items within it to be moved around via drag and drop. The events

that occur during drag and drop are itemDragStart, itemDragLeave, itemDragEnter,

itemDragBetween, itemDragChanged, itemDragDrop, and itemDragEnd. See “Drag and Drop”

below for more.

 Events addEventListener, removeEventListener, and dispatchEvent are the

standard DOM methods for handling and raising events. These can be used with

any event that the ListView supports. To round out the event list, there are

two more to mention. First, contentanimating fires when the control is about to run an

item entrance or transition animation, allowing you to either prevent or delay those animations.

Second, the keyboardnavigating event indicates that the user has tabbed to a new item or a

header.

 Semantic zoom The zoomableView property contains the IZoomableView implementation as

required by semantic zoom (apps will never manipulate this property).

 Dispose pattern The ListView implements the dispose method and also has a

triggerDispose method to run the process manually.

398

Sidebar: Referring to Enumerations in data-win-options

When specifying values from enumerations in data-win-options, you can use two forms. The

most explicit way is to use the full name of the value, as shown here (other options omitted):

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{

 selectionMode: WinJS.UI.SelectionMode.none,

 tapBehavior: WinJS.UI.TapBehavior.invokeOnly,

 groupHeaderTapBehavior: WinJS.UI.GroupHeaderTapBehavior.invoke,

 swipeBehavior: WinJS.UI.SwipeBehavior.none }">

</div>

Because all those values resolve to strings, you can just use the string values directly:

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{

 selectionMode: 'none',

 tapBehavior: 'invokeOnly',

 groupHeaderTapBehavior: 'invoke',

 swipeBehavior: 'none' }">

</div>

Either way, always be careful about using exact spellings here. The forgiving nature of

JavaScript is such that if you specify a bogus option, you won’t necessarily see any exception:

you’ll just see default behavior for that option. This can be a hard bug to find, so if something

isn’t working quite right, really scrutinize your data-win-options string.

Sidebar: Item Tap/Click Behavior

When you tap or click an item in a ListView with the tapBehavior property set to something

other than none, there’s a little ~97% scaling animation to acknowledge the tap (this does not

happen for headers). If you have some items in a list that can’t be invoked (like those in a

particular group or ones that you show as disabled because backing data isn’t available), they’ll

still show the animation because the tapBehavior setting applies to the whole control. To

remove the animation for any specific item, you can add the win-interactive class to its

element within a renderer function, which is a way of saying that the item internally handles

tap/click events, even if it does nothing but eat them. If at some later time the item becomes

invocable, you can, of course, remove that class.

If you need to suppress selection for an item, add a handler for the ListView’s selection-

changing event and call its args.detail.preventTapBehavior method. This works for all

selection methods, including swipe, mouse click, and the Enter key.

399

Styling
Following the precedent of Chapter 5 and the earlier sections on Repeater and FlipView, styling is best

understood visually as in Figure 7-10, where I’ve applied some garish CSS to some of the win-* styles

so that they stand out. I also highly recommend that you look at the Styling the ListView and its items

and How to brand your ListView topics in the documentation.

FIGURE 7-10 Most of the style classes as utilized by the ListView control.

Some short notes about styling:

 Remember that Blend is your best friend here!

 As with styling the FlipView, a class like win-listview is most useful with styles like borders

around the control. You can also style background colors and nonscrolling images here if the

viewport, surface, and items have a transparent background as well.

 To style a background that pans with the items, set background-image for the win-surface

selector.

 The ListView will automatically display a <progress> control while loading items, and you can

style this with the .win-listview .win-progress selector.

 win-viewport styles the nonscrolling background of the ListView and is the best place to style

margins. As the container for the scrollable area, the win-viewport element will also have a

win-horizontal or win-vertical class depending on the layout’s orientation.

 win-container primarily exists for two things. One is to create space between items using

margin styles, and the other is to override the default background color, often making its

http://msdn.microsoft.com/library/windows/apps/hh850406.aspx
http://msdn.microsoft.com/library/windows/apps/jj244627.aspx

400

background transparent so that the win-surface or win-listview background shows

through. Note that if you set a padding style here instead of margin, you’ll create areas around

what the user will perceive as the item but that are still invoked as the item. Not good. So always

use margin to create space between items.

 Though win-item is listed as a style, it’s deprecated and may be removed in the future: just

style the item template directly.

 The documentation points out that styles like win-container and win-surface are used by

multiple WinJS controls. (FlipView uses a few of them.) If you want to override styles for a

ListView, be sure to scope your selectors with other classes like .win-listview or a particular

control’s id or class.

 The default ListView height is 400px, and the control does not automatically adjust itself to its

content. You’ll almost always want to override the height style in CSS or set it from JavaScript

when you know the space that the ListView should occupy in your overall layout.

 Not shown in the figure is the win-backdrop style that’s used as part of the win-container

element. The “backdrop” is a blank item shape that can appear when the user very quickly pans

a ListView to a new page and before items are rendered. This is gray by default, but you can

add styles in the .win-container .win-backdrop selector to override it.

Selections and selection state take a little more explaining than one bullet item. First, the default

selection styling is a “bordered” look (below left). If you want the filled look (below right), add the win-

selectionstylefilled class to the ListView’s root element.

The following styles then apply to the different parts of the selection:

Style class Part identified
win-selectionborder The border around a selected item.

win-selectionbackground The background of selected items.

win-selectionhint The selection hint that appears behind a selected item during swiping.

win-selectioncheckmark The selection checkmark.

win-selectioncheckmarkbackground The checkmark background.

If you’ve read Chapter 5, you’ll recognize these as the same ones that apply to the ItemContainer

control, and, in fact, they have exactly the same meaning. For examples on using these classes, refer to

the “Styling Gallery: WinJS Controls” in that chapter.

401

Loading State Transitions
If you’re like myself and others in my family, you probably have an ever-increasing stockpile of digital

photographs that make you glad that 1TB+ hard drives keep dropping in price. In other words, it’s not

uncommon for many consumers to have ready access to collections of tens of thousands of items that

they will at some point want to pan through in a ListView. But just imagine the overhead of trying to

load thumbnails for every one of those items into memory to display in a list. On low-level and low-

power hardware, you’d probably be causing every suspended app to be quickly terminated, and the

result will probably be anything but “fast and fluid”! The user might end up waiting a really long time

for the control to become interactive and will certainly tire of watching a progress ring.

With this in mind, the ListView always reflects the total extent of the list in its scrollbar. This gives the

user has some idea of the size of the list and allows scrolling to any point in the list (random access). At

the same time, the ListView keeps a total of only five pages or screenfuls of items in memory at any

given time, limiting the number of items to maxDeferredItemCleanup if you set that property. This

generally means that the visible page (in the viewport) plus two buffer pages ahead and behind will be

loaded in memory at any given time. If you’re viewing the first page, the buffer extends four pages

ahead; if you’re on the last page, the buffer extends four pages behind—you get the idea. (The priority

at which these different pages are loaded also changes with the panning direction via the scheduler—

those pages that are next in the panning direction are scheduled at a higher priority than those in the

opposite direction. This is all transparent to your app.)

When the pages first start loading, the ListView’s loadingState property will be set to

itemsLoading. When all the visible items are loaded, the state changes to viewportLoaded. Once all

the buffered pages are loaded, the state changes to itemsLoaded. When all animations are done, the

state becomes complete. The loadingstatechanged event will of course fire on each transition.

Whenever the user pans to a location in the list, any pages that fall out of the viewport or buffer

zone are discarded, if necessary, to stay under maxDeferredItemCleanup and loading of the new

viewport page and its buffer pages begins. Thus, the ListView’s loadingState property will start again

at itemsLoading and then transition through the other states as before. If the user pans some more

during this time, the loadingState is again reset and the process begins anew.

Sidebar: Incremental Loading

Apart from potentially very large but known collections, other collections are, for all intents and

purposes, essentially unbounded, like a news feed that might have millions of items stretching

back to the Cenozoic Era (at least by Internet reckoning!). With such collections, you probably

won’t know just how many items there are at all; the best you can do is just load another chunk

when the user wants them.

Although the ListView itself doesn’t provide support for automatically loading another batch

of items at the appropriate time, it’s relatively straightforward to do within either a data source

or an item rendering function. Just watch for item requests near the end of the list (however far

402

you want to make it), and use that as a trigger to load more items. Within an item renderer,

check the position of the items being rendered, which tells you where the ListView’s viewport is

relative to the collection. In a data source, watch the index or key in IListDataAdapter methods

like itemsFromIndex, especially when the countAfter argument exceeds the end of the current

list. Either way, you then load more items into the collection, changes that should generate

change notifications to the control. The control will call the source’s getCount method in

response and update its scrollbar accordingly.

A small demonstration of this can be found in scenarios 2 and 3 of the HTML ListView

incremental loading behavior sample, which adds more items to a Binding.List when needed

from within the item renderer.

Drag and Drop

It’s very natural when one is looking at a collection of neat stuff to want to copy or move some of that

neat stuff to some other location in the app. HTML5 drag and drop provides a standard for how this

works between elements, and the ListView is capable of participating in such operations with both

mouse and touch.

To briefly review the standard, a draggable element has the draggable="true" attribute. It

becomes a source of a dataTransfer object (that carries the data) and sees dragstart, drag,

dragenter, dragleave, dragover, and dragend events at appropriate times (for a concise reference,

see DragEvent on MSDN). A target element, for its part, will see dragenter, dragleave, dragover, and

drop events and have access to the dataTransfer object. There’s more to it, such as drop effects you set

within various events in response to the state of the Ctrl and Alt keys, but those are the basics.

The ListView implements these parts of the HTML5 spec on your behalf, surfacing similar events and

giving you access to the dataTransfer object, whose setData and getData methods are what you use

to populate and retrieve the data involved.

The ListView can participate in drag and drop in four ways. First, it can be made reorderable within

itself, independent of exchanging items with other sources or targets. Second, it can be made a drag

source, so you can drag items from the ListView to other HTML5 drop targets. Third, the ListView can

be a drop target and accept data dragged from other HTML5 sources. And fourth, items within a

ListView can themselves be individual drop targets. (Note that ListView and HTML5 drag and drop is

not presently enabled between apps, just within an app.)

Let’s go through each of these possibilities using examples from the HTML ListView reorder and

drag and drop sample. Reordering in a ListView is perhaps the simplest: it requires nothing more than

setting the itemsReorderable option to true, as demonstrated in scenario 1 (html/scenario1.html):

<div id="listView" data-win-control="WinJS.UI.ListView" data-win-options="{

 itemDataSource: myData.dataSource, itemTemplate: smallListIconTextTemplate,

 itemsReorderable: true, layout: { type: WinJS.UI.GridLayout } }">

</div>

http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673
http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673
http://www.w3.org/TR/2011/WD-html5-20110525/dnd.html
http://msdn.microsoft.com/library/windows/apps/hh441102.aspx
http://msdn.microsoft.com/library/windows/apps/hh465782.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-ListView-reorder-and-ffd280d9
http://code.msdn.microsoft.com/windowsapps/HTML-ListView-reorder-and-ffd280d9

403

That’s it—with this one option and no other code (you can see that js/scenario1.js does nothing

else), you get the behavior shown in Video 7-3, for both single and multiple items (shown with the

mouse as it’s more efficient). Under the covers, reordering of the ListView fundamentally means moving

items in the data source, in response to which the ListView updates its display. To be precise, the

ListView uses the moveBefore and moveAfter methods of IListDataSource to do the reordering.

This implies, of course, that the data source itself is reorderable. If it isn’t, you’ll get an exception

complaining about moveAfter. (If you like throwing exceptions for fun, try adding itemsReorderable:

true to the ListView in scenario 1 of the HTML ListView working with data sources sample.)

In short, setting itemsReorderable turns on all the code to reorder items in the data source in

response to user action in the ListView. Quite convenient!

Although scenario 1 doesn’t show it, the ListView’s various itemdrag* events will fire when

reordering takes place, as they do for all drag and drop activities in the control:

 itemdragstart when dragging begins,

 itemdragbetween as the item is moved around in the list,

 itemdragleave and itemdragenter if the item moves out of and into the ListView,

 itemdragdrop if and when the item is released, making it the one you’d use to detect a

reordering, and

 itemdragend when it’s all over (including when the item is dragged out and released, or the

ESC key is pressed).

The only event not represented here is itemdragchanged, which specifically signals that items

currently being dragged have been updated in the source. Note also that loadingstatechanged will

be fired after itemdragdrop and itemdragend as the control re-renders itself.

To serve as a drag source, independent of reordering, set the ListView’s itemsDraggable property

to true, as in scenario 2 (html/scenario2.html):

<div id="listView" data-win-control="WinJS.UI.ListView" data-win-options="{

 itemDataSource: myData.dataSource, selectionMode: 'none',

 itemTemplate: smallListIconTextTemplate,

 itemsDraggable: true, layout: { type: WinJS.UI.GridLayout } }">

</div>

When dragging starts in the ListView, it will fire an itemdragstart event, whose eventArgs.-

detail contains two objects. The first is the HTML5 dataTransfer object, which you populate with

your source data through its setData method. The second is a dragInfo object that specifically

contains a ListView Selection object for the items being dragged (selected or not). The sample uses

dragInfo.getIndices to source the indicies of those items (js/scenario2.js):

listView.addEventListener("itemdragstart", function (eventArgs) {

 eventArgs.detail.dataTransfer.setData("Text",

 JSON.stringify(eventArgs.detail.dragInfo.getIndices()));

http://code.msdn.microsoft.com/windowsapps/ListView-custom-data-4dcfb128
http://msdn.microsoft.com/library/windows/apps/dn301819.aspx
http://msdn.microsoft.com/library/windows/apps/dn301813.aspx
http://msdn.microsoft.com/library/windows/apps/dn301818.aspx
http://msdn.microsoft.com/library/windows/apps/dn301817.aspx
http://msdn.microsoft.com/library/windows/apps/dn301815.aspx
http://msdn.microsoft.com/library/windows/apps/dn301816.aspx
http://msdn.microsoft.com/library/windows/apps/dn301814.aspx
http://msdn.microsoft.com/library/windows/apps/hh872204.aspx

404

});

The target in this scenario is another div named myDropTarget that simply handles the HTML5

drop event (and a few others to give visual feedback). In the drop handler, the eventArgs.data-

Transfer property contains the HTML5 dataTransfer object again, whose getData method returns

the goods (an array of indices in this sample):

dropTarget.addEventListener("drop", function (eventArgs) {

 var indexSelected = JSON.parse(eventArgs.dataTransfer.getData("Text"));

 var listview = document.querySelector("#listView").winControl;

 var ds = listview.itemDataSource;

 ds.itemFromIndex(indexSelected[0]).then(function (item) {

 WinJS.log && WinJS.log("You dropped the item at index " + item.index + ", "

 + item.data.title, "sample", "status");

 });

});

You can, of course, do whatever you want with the dropped data. As you can see, the sample simply

looks up the item in the ListView’s data source. If you wanted to move the item out of the source list,

you would use that index to call the data source’s remove method.

Moving on to scenarios 3 and 4, these make the ListView a drop target. Scenario 3 allows dropping

the data at a specific location in the control by setting itemsReorderable is true. Scenario 4, on the

other hand, leaves itemsReorderable set to false but then implements a handler for the HTML5

drop event. This is a key difference: you use the ListView’s itemdragdrop event only if the ListView is

reorderable, meaning that you’ll have an index for the specific insertion point; otherwi se you can use

the HTML5 drop event and insert the data where it makes sense. For example, if the data source is

sorted, you’d just append the new item to the collection and let its sorted projection figure out the

location.

In both cases, of course, data source must support insertions; otherwise you’ll see an exception.

In scenario 3 now, with itemsReorderable: true, dropping something on the ListView will fire an

itemdragdrop event. The eventArgs.detail object here will contain the index of the drop location,

the insertAfterIndex for the insertion point, and the HTML5 dataTransfer object (js/scenario3.js):

listView.addEventListener("itemdragdrop", function (eventArgs) {

 var dragData = eventArgs.detail.dataTransfer &&

 JSON.parse(eventArgs.detail.dataTransfer.getData(“Text”));

 if (dragData && dragData.sourceId === myDragContent.id) {

 var newItemData = { title: dragData.data,

 text: ("Source id: " + dragData.sourceId), picture: dragData.imgSrc };

 // insertAfterIndex tells us where in the list to add the new item. If we're

 // inserting at the start, insertAfterIndex is -1. Adding 1 to insertAfterIndex

 // gives us the nominal index in the array to insert the new item.

 myData.splice(eventObject.detail.insertAfterIndex + 1, 0, newItemData);

 }

});

405

Scenario 4 with itemsReorderable: false just implements a drop handler with pretty much the

same code, only it always inserts the dropped item at the beginning of the list (js/scenario4.js):

listView.addEventListener("drop", function (eventArgs) {

 var dragData = JSON.parse(eventArgs.dataTransfer.getData("Text"));

 if (dragData && dragData.sourceElement === myDragContent.id) {

 var newItemData = { title: dragData.data,

 text: ("id: " + dragData.sourceElement), picture: dragData.imgSrc };

 var dropIndex = 0;

 myData.splice(dropIndex, 0, newItemData);

 }

});

Be aware that the myData object in both these cases is a Binding.List; if you use a different data

source behind the ListView, use the IListDataSource methods to insert the item or items instead.

The last scenario in the sample shows how to drop data on a specific item in the ListView, rather

than into the control as a whole, which simply means adding HTML5 drag and drop event handlers to

the items themselves. Scenario 5 does this within the item template (html/scenario5.html):

<div id="smallListIconTextTemplate" data-win-control="WinJS.Binding.Template">

 <div class="smallListIconTextItem" ondragover="Scenario5.listItemDragOverHandler(event)"

 ondrop="Scenario5.listItemDropHandler(event)"

 ondragleave="Scenario5.listItemDragLeaveHandler(event)">

 <!-- Other content omitted -->

 </div>

</div>

In other words, handling drag and drop on an item in a ListView—or any other collection control or

custom control for that matter—is simply a matter of handling the HTML5 events on the items and has

nothing to do with the collection control itself. Where the ListView gets involved is just to act as a thin

proxy on the HTML5 events so that it can add a little more information to support reordering and

selection information.

Layouts
The ListView’s layout property contains an object that’s used to visually organize the list’s items.

Whatever layout you provide as an option to the ListView constructor determines the control’s initial

appearance. Changing the layout at run time tells the ListView to re-render itself with the new

structure, which is how a ListView can easily switch between one- and two-dimensional layouts,

between horizontal and vertical orientations, and so on. An example can be found in scenario 3 of the

HTML ListView essentials sample.

WinJS.UI contains several prebuilt layouts, each of which is an object class in its own right that

follows the recommended design guidelines for presenting collections:

 GridLayout A two-dimensional layout that can pan horizontally or vertically based on the CSS

grid. This is the ListView’s default if you don’t specify a layout.

http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db
http://msdn.microsoft.com/library/windows/apps/br211751.aspx

406

 ListLayout A one-dimensional layout that can pan horizontally or vertically, based on the

CSS flexbox.

 CellSpanningLayout A derivative of the GridLayout that supports items of different sizes—

that is, items that can span rows and columns.

You can also create custom layouts, which are covered in Appendix B and the HTML ListView

custom layout sample.

How you specify a layout depends on whether you’re doing it in markup or code. In markup, the

layout option within the data-win-options string has this syntax:

layout: { type: <layout> [, <options>] }

<layout> is the full name of the layout constructor, such as WinJS.UI.GridLayout, WinJS.UI.-

ListLayout, WinJS.UI.CellSpanningLayout, or a custom class; <options> then provides options for

that constructor. For example, the following configures a GridLayout with headers on the left and a

maximum of four rows:

layout: { type: WinJS.UI.GridLayout, groupHeaderPosition: 'left', maximumRowsOrColumns: 4 }

If you create the layout object in JavaScript by using new to call the constructor directly and

assigning the result to the layout property, you provide such options directly to the constructor:

listView.layout = new WinJS.UI.GridLayout({ groupHeaderPosition: "left",

 maximumRowsOrColumns: 4 });

You can also set properties on the ListView’s layout object in JavaScript once it’s been created, if

you want to take that approach. Changing properties will generally update the layout.

In any case, each layout has its own unique options, as described in the following tables, which are

also accessible at run time as properties on the layout object. As with the enumerations for ListView

options, you can use string values, such as 'horizontal', or the full identifier from the enumeration,

such as WinJS.UI.Orientation.horizontal.69

GridLayout option/property Description
groupHeaderPosition Controls the placement of headers in relation to their groups using a value from

the HeaderPosition enumeration: top (the default) or left (which becomes right

in right-to-left languages).

maximumRowsOrColumns Controls the number of items the layout will place vertically before starting

another column (with orientation set to horizontal) or place horizontally

before starting another row (orientation set to vertical).

orientation Controls the panning direction of the layout with a value from the Orientation

enumeration: horizontal (the default) or vertical.

69 Other properties you see in the documentation are either deprecated from WinJS 1.0 or for internal use. You’ll also see

many methods on these objects that are how the ListView talks to the layout; apps don’t call those methods directly.

http://msdn.microsoft.com/library/windows/apps/br211792.aspx
http://msdn.microsoft.com/library/windows/apps/dn255099.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-ListView-custom-9676a187
http://code.msdn.microsoft.com/windowsapps/HTML-ListView-custom-9676a187
http://msdn.microsoft.com/library/windows/apps/dn255119.aspx
http://msdn.microsoft.com/library/windows/apps/dn301906.aspx

407

ListLayout option/property Description

groupHeaderPosition Controls the placement of headers in relation to their groups using a value from

the HeaderPosition enumeration: top (the default) or left (which becomes right

in right-to-left languages).

orientation Controls the panning direction of the layout with a value from the Orientation

enumeration: horizontal or vertical (the default)

CellSpanningLayout option/property Description
groupHeaderPosition Controls the placement of headers in relation to their groups using a value from

the HeaderPosition enumeration: top (the default) or left (which becomes right

in right-to-left languages).

maximumRowsOrColumns Controls the number of items the layout will place vertically before starting

another column (with orientation set to horizontal) or place horizontally

before starting another row (orientation set to vertical).

orientation Always horizontal; the vertical orientation is not supported.

groupInfo Identifies a function that returns an object whose properties indicate whether cell

spanning should be used and the size of the cell. This is called only once within a

layout process.

itemInfo Identifies a function that returns an object whose properties describe the exact

size for each item and whether the item should be placed in a new column or row

(depending on orientation).

Let’s see these options in action. The horizontal and vertical variations for GridLayout and

ListLayout are demonstrated in scenario 6 of the HTML ListView essentials sample. The four layout

properties are declared as follows (for different controls, of course; html/scenario6.html), with the

output shown in Figures 7-11 and 7-12:

layout: { type: WinJS.UI.GridLayout, orientation: WinJS.UI.Orientation.horizontal}

layout: { type: WinJS.UI.GridLayout, orientation: WinJS.UI.Orientation.vertical}

layout: { type: WinJS.UI.ListLayout, orientation: WinJS.UI.Orientation.vertical}

layout: { type: WinJS.UI.ListLayout, orientation: WinJS.UI.Orientation.horizontal}

FIGURE 7-11 Horizontal (default) and vertical orientations for the GridLayout; notice the directions in which the

items are laid out: top to bottom in horizontal, right to left in vertical (which is reversed with right-to-left

languages). I’ve included the scrollbars here to show the panning direction more clearly.

http://msdn.microsoft.com/library/windows/apps/dn255119.aspx
http://msdn.microsoft.com/library/windows/apps/dn301906.aspx
http://msdn.microsoft.com/library/windows/apps/dn255119.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db

408

FIGURE 7-12 Vertical (default) and horizontal orientations for the ListLayout. I’ve again included the scrollbars

here to show the panning direction more clearly.

In the Vertical Grid of Figure 7-11, the layout was able to fit only three items horizontally before

starting a new row on a 1366x768 display, where I took the screenshot. On a larger monitor where the

control is wider, I get more horizontal items. If, however, I wanted to always limit each row to three

items, I could use the maximumRowsOrColumns options like so:

layout: { type: WinJS.UI.GridLayout, orientation: WinJS.UI.Orientation.vertical,

 maximumRowsOrColumns: 3}

With the groupHeaderPosition option, the easiest way to see its effect is to go to scenario 1 of the

HTML ListView grouping and Semantic Zoom sample and set the option to left in the ListView

declarations of html/scenario1.html. The results are shown in Figure 7-13.

layout: { type: WinJS.UI.GridLayout, groupHeaderPosition: 'left' }

layout: { type: WinJS.UI.ListLayout, groupHeaderPosition: 'left' }

FIGURE 7-13 Using groupHeaderPosition: 'left' with GridLayout and ListLayout. With a right to left

language, the left position will shift to the right. Compare this to Figure 7-3, and note that I made the controls a

little bigger in CSS so that the items would show fully.

For the CellSpanningLayout now, we can turn to Scenarios 4 and 5 of the HTML ListView item

templates sample, the output of which is shown in Figure 7-14. (The only difference between the

scenarios is that 4 uses a rendering function and 5 uses a declarative template.)

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f
http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f

409

FIGURE 7-14 The HTML ListView item templates sample showing multisize items through cell spanning.

Tip #1 If you start playing with this sample and make changes to the CSS in any given scenario, be

aware that it does not scope the CSS for each scenario to the associated page, which means that styles

from the most recently loaded scenario might be used by the others. To correct this, I’ve added such

scoping to the modified sample in this chapter’s companion content.

Tip #2 If you alter items in a cell spanning layout, call the ListView.recalculateItemPosition

method after the change is made. If you’re using a data source other than the Binding.List, also call

the IListDataSource.beginEdits before making changes and endEdits afterwards.

The basic idea of cell spanning is to define a layout grid based on the size of the smallest item. For

best performance, make the grid as coarse as possible, where every other element in the ListView is a

multiple of that size.

You define the cell grid through the CellSpanningLayout.groupInfo property. This is a function

that returns an object with three properties: enableCellSpanning, which is set to true (unless you

want GridLayout behavior!), and cellWidth and cellHeight, which contain the pixel dimensions of

your minimum cell. In the sample (see js/data.js), this function is named groupInfo like the layout’s

property. I’ve given it a different name here (and omitted some other bits) for clarity:

function cellSpanningInfo() {

 return {

 enableCellSpanning: true,

 cellWidth: 310,

 cellHeight: 80

 };

}

Tip In thinking about the layout of your ListView, know that three styles in the WinJS stylesheets set

default item spacing. You can override these with the same selectors depending on your orientation,

and they’re important to know for calculations that we’ll see shortly:

.win-horizontal .win-gridlayout .win-container {

 margin: 5px;

}

.win-vertical .win-gridlayout .win-container {

 margin: 5px 24px 5px 7px;

}

.win-rtl > .win-vertical .win-gridlayout .win-container {

410

 margin: 5px 7px 5px 24px;

}

The second required piece is a function you specify in the itemInfo property, which is called for

every item in the list and should thus execute quickly. It receives an item index and returns an object

with the item’s width and height properties, along with an optional newColumn property that lets you

control whether the layout should start a new column for this item. Here’s the general idea:

function itemInfo(itemIndex) {

 //determine values for itemWidth and itemHeight given itemIndex

 return {

 newColumn: false,

 itemWidth: itemWidth,

 itemHeight: itemHeight

 };

}

In the sample, itemInfo is implemented by performing a quick lookup for the item in a size map

(again in js/data.js):

var sizeMap = {

 smallListIconTextItem: { width: 310, height: 80 },

 mediumListIconTextItem: { width: 310, height: 170 },

 largeListIconTextItem: { width: 310, height: 260 },

 defaultSize: { width: 310, height: 80 }

};

var itemInfo = WinJS.Utilities.markSupportedForProcessing(function itemInfo(itemIndex) {

 var size = sizeMap.defaultSize;

 var item = myCellSpanningData.getAt(itemIndex);

 if (item) {

 size = sizeMap[item.type];

 }

 return size;

});

With both of these functions in place (and both are required), you then specify them in the

ListView’s layout property in code or in markup. Here’s how it’s done declaratively in a data-win-

options string (html/scenario4.html and html/scenario5.html):

layout: { groupInfo: groupInfo, itemInfo: itemInfo, type: WinJS.UI.CellSpanningLayout }

Now notice that the heights returned from itemInfo are not exact multiples of the cell height of 80

in groupInfo. The same would be true if we spanned columns, as we’ll see later. This is because we

have to take into account the margins between items as determined by the win-container styles

shown earlier. You do this according to either of the following formulae (which are the same, just

rearranged):

411

itemSize = ((cellSize + containerMargin) x span) – containerMargin

cellSize = ((itemSize + containerMargin) / span) - containerMargin

where Size here is either width of height, depending on the dimension you’re calculating, span is the

number of rows or columns an item is spanning, and containerMargin is the top+bottom margin when

calculating height or left+right when calculating width.

You use the first formula if you want to start with the cell dimension as defined by the groupInfo

function and calculate the size of the item as you’ll report in itemInfo and as you’ll style in CSS. If you

want to start from the item size in CSS or itemInfo and get the cell dimension for groupInfo, use the

second formula.

In the sample, we have items with the same widths but spanning one, two, or three rows, so we want

to do the calculations for height. Using the first formula, cellSize is 80 (the height from groupInfo); and

the top and bottom margins from win-container for a horizontal grid are both 5px, so

containerMargin is 10. Plugging in the spans, we get the following itemSize results:

((80 + 10) * 1) - 10 = 80

((80 + 10) * 2) - 10 = 170

((80 + 10) * 3) - 10 = 260

The itemInfo function, then, should return 310x80, 310x170, and 310x260, as we see it does. In CSS

the width+padding+margin+border and height+padding+margin+border styles for each item must

match these dimensions exactly. This is illustrated nicely in the How to display items that are different

sizes topic in the documentation:

Our styles in in css/scenario4.css and css/scenario5.css are thus the following:

http://msdn.microsoft.com/library/windows/apps/jj657974.aspx
http://msdn.microsoft.com/library/windows/apps/jj657974.aspx

412

.smallListIconTextItem {

 width: 300px;

 height: 70px;

 padding: 5px;

}

.mediumListIconTextItem {

 width: 300px;

 height: 160px;

 padding: 5px;

}

.largeListIconTextItem {

 width: 300px;

 height: 250px;

 padding: 5px;

}

Now let’s play with the width instead, using a scenario 7 I’ve added to the modified sample in this

chapter’s companion content. This gets interesting because of how the CellSpanningLayout fills in

gaps when laying out items. That is, although it generally places items in columns from top to bottom,

then left to right (or right to left for some languages), it can backfill empty spaces with suitable items it

comes across later on.

In this added scenario 7, I’ve create new groupInfo2 method in js/data.js that sets the cell size to

155x80. The small items will be occupy one cell, the medium items will span two columns, and the large

items will span two rows and two columns. To make the calculations more interesting, I’ve also set

some custom margins on win-container (css/scenario7.css):

.page7 .win-horizontal .win-gridlayout .win-container {

 margin: 9px 7px 3px 2px; /* top, right, bottom, left*/

}

Applying the first formula again we get these item dimensions:

Item size Width (cellWidth = 155) Height (cellHeight = 80)

small (1x1) ((155 + (7+2)) * 1 - (7+2) = 155 ((80 + (9+3)) * 1 - (9+3) = 80

medium (2x1) ((155 + (7+2)) * 2 - (7+2) = 319 ((80 + (9+3)) * 1 - (9+3) = 80

large (2x2) ((155 + (7+2)) * 2 - (7+2) = 319 ((80 + (9+3)) * 2 - (9+3) = 172

These sizes are what’s returned by the itemInfo2 functions in js/data.js (via sizeMap2), and they are

accounted for in css/scenario7.css. The results (with a taller ListView as well) are shown in Figure 7-15,

where I’ve also added numbers in the data item titles to reveal the order of item layout (and apologies

for clipping the text…experiments must make sacrifices at times!). Take special note of how the layout

placed items sequentially (as with 1–5) the backfilled a gap (as with 6).

413

FIGURE 7-15 A horizontal CellSpanningLayout with varying item widths, showing infill of gaps.

To play a little with the newColumn property in itemInfo, as follows, try forcing a column break

before items #7 and #15 because they span odd columns (this code is in a comment in itemInfo2):

newColumn: (index == 6 || index == 14), //Break on items 7 and 15 (index is 6 and 14)

The result of this change is shown in Figure 7-16.

FIGURE 7-16 Using new columns in cell spanning on items 7 and 15.

414

Three last notes: First, if you’re working with cell spanning and the layout gets all wonky, double-

check your match for the item sizes; even making a one-pixel mistake will throw it off. Second, if the

item size in a style rule like smallListIconTextItem ends up being smaller than the size of a child

element, such as regularListIconTextItem (which includes margin and padding), the larger size wins

in the layout, and this can also throw things off. And third, remember that the CellSpanningLayout

supports only a horizontal orientation; if you want a vertical experience, you’ll need a custom layout.

For details, refer again to Appendix B in the section “Custom Layouts for the ListView Control.”

Template Functions (Part 2): Optimizing Item Rendering

Where managing, displaying, and interacting with large collections is concerned, performance is super-

critical. The WinJS team invests heavily in the performance of the ListView control as a whole, but one

part is always the app’s responsibility: item rendering. Simply said, it’s the app’s sacred duty to render

items as quickly as possible, which keeps the ListView itself fluid and responsive.

When we first looked at template functions or renderers (see “How Templates Work with Collection

Controls”), I noted that they give us control over both how and when items are constructed. That when

part is very important, because it’s possible to render items in stages, doing the most essential work

quickly and synchronously while deferring other asynchronous work like loading thumbnails. Within a

renderer, then, you can implement progressive levels of optimization for ListView (and also FlipView,

though this is less common). Just using a renderer, as we already saw, is the first level; now we’re ready

to see the others. This is a fascinating subject, because it shows the kind of sophistication that the

ListView enables for us!

Note Beyond what’s discussed here, refer also to the Using ListView topic in the documentation,

where you’ll find a variety of other performance tips.

Our context for this discussion is the HTML ListView optimizing performance sample that

demonstrates all these levels and allows you to see their respective effects (also using the Bing Search

API data source that we’ve seen elsewhere, so you’ll need your API key again). Here’s an overview:

 A simple or basic renderer allows control over the rendering on a per-item basis and allows

asynchronous delivery of item data and the rendered element.

 A placeholder renderer separates creation of the item element into two stages. The first stage

returns only those elements that define the shape of the item. This allows the ListView to quickly

do its overall layout before all the details are filled in, especially when the data is coming from a

potentially slow source. When item data is available, the second stage is then invoked to copy

that data into the item elements and create additional elements that don’t contribute to the

shape.

 A multistage renderer extends the placeholder renderer to defer expensive visual operations,

http://msdn.microsoft.com/library/windows/apps/Hh781224.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0

415

like loading thumbnails and running animations, until the item is visible and the ListView isn’t

being rapidly panned.

 Finally, a multistage batching renderer batches image loading to minimize re-rendering of the

DOM as images become available.

With all of these renderers, always strive to make them execute as fast as possible, as described

earlier in “Template Functions (Part 1).” Especially minimize the use of DOM API calls, which includes

setting individual properties. Use an innerHTML string where you can to create elements rather than

discrete calls, and minimize your use of getElementById, querySelector, and other DOM-traversal

calls by caching the elements you refer to most often. This will make a big difference.

To visualize the effect of these improvements, the following graphic shows an example of how

unoptimized ListView rendering might happen (this is output from some of the performance tools

discussed in Chapter 3):

The yellow bars indicate execution of the app’s JavaScript—that is, time spent inside the renderer.

The beige bars indicate the time spent in DOM layout, and aqua bars indicate actual rendering to the

screen. As you can see, when elements are added one by one, there’s quite a bit of breakup in what

code is executing when, and the kicker here is that most display hardware refreshes only every 10–20

milliseconds (50–100Hz). As a result, there’s lots of choppiness in the visual rendering.

After making improvements, the chart can look like the one below, where the app’s work is

combined in one block, thereby significantly reducing the DOM layout process (the beige):

Let’s see what steps we can take to make this happen. As a baseline for our discussion, here is a

simple renderer—this and all the following code is taken from js/scenario1.js:

function simpleRenderer(itemPromise) {

 return itemPromise.then(function (item) {

 var element = document.createElement("div");

 element.className = "itemTempl";

 element.innerHTML = "<img src='" + item.data.thumbnail +

 "' alt='Databound image' /><div class='content'>" + item.data.title + "</div>";

 return element;

 });

}

Again, this structure waits for the item data to become available, and it returns a promise for the

416

element. That is, the return value from itemPromise.then is a promise that’s fulfilled with element, if

and when the ListView needs it. If the ListView pans the item out of view before this promise is fulfilled,

it will cancel the promise.

A placeholder renderer separates building the element into two stages. The return value is an object

that contains a minimal placeholder in the element property and a renderComplete promise that is

fulfilled with the remainder of the element:

function placeholderRenderer(itemPromise) {

 // create a basic template for the item which doesn't depend on the data

 var element = document.createElement("div");

 element.className = "itemTempl";

 element.innerHTML = "<div class='content'>...</div>";

 // return the element as the placeholder, and a callback to update it when data is available

 return {

 element: element,

 // specifies a promise that will be completed when rendering is complete

 // itemPromise will complete when the data is available

 renderComplete: itemPromise.then(function (item) {

 // mutate the element to include the data

 element.querySelector(".content").innerText = item.data.title;

 element.insertAdjacentHTML("afterBegin", "<img src='" +

 item.data.thumbnail + "' alt='Databound image' />");

 })

 };

}

Note that the element.innerHTML assignment could be moved inside the function in

renderComplete because the itemTempl class in css/scenario1.css specifies the width and height of the

item directly. The reason why it’s in the placeholder is because it provides the default “…” text, and you

could just as easily provide a default in-package image here instead (which would render quickly).

In any case, the element property defines the item’s shape and is returned synchronously from the

renderer. This lets the ListView (or other control) do its layout, after which it will fulfill the

renderComplete promise. You can see that renderComplete essentially contains the same sort of

thing that a simple renderer returns, minus the already created placeholder elements. (For another

example, the added scenario 9 of the FlipView example in this chapter’s companion content

implements this approach.)

Of course, now that we’ve separated the time-critical and synchronous part of element creation

from the rest, we can complete the rendering in asynchronous stages, taking however long is necessary.

The multistage renderer uses this capability to delay-load images and other media until the rest of the

item is wholly present in the DOM, and to further delay effects like animations until the item is truly

on-screen. This recognizes that users often pan around within a ListView quite rapidly, so it makes

sense to asynchronously defer the more expensive operations until the ListView has settled into a stable

position.

417

The hooks for this are a property called ready (a promise) and two methods, loadImage and

isOnScreen, that are attached to the item provided by the itemPromise:

renderComplete: itemPromise.then(function (item) {

 // item.ready, item.loadImage, and item.isOnScreen available

})

Here’s how you use them:

 ready Return this promise from the first completed handler in any async chain you might use

in the renderer. This promise is fulfilled when the full structure of the element has been

rendered and is visible. This means you can chain another then with a completed handler in

which you do post-visibility work like loading images.

 isOnScreen Returns a promise whose fulfillment value is a Boolean indicating whether the

item is visible or not. In present implementations, this is a known value, so the promise is

fulfilled synchronously. By wrapping it in a promise, though, it can be used in a longer chain.

 loadImage Downloads an image from a URI and displays it in the given img element,

returning a promise that’s fulfilled with that same element. You attach a completed handler to

this promise, which itself returns the promise from isOnScreen. Note that loadImage will create

an img element if one isn’t provided and deliver it to your completed handler.

The following code shows how these are used (where element.querySelector traverses only a

small bit of the DOM and is a highly optimized method in the first place, so it’s not a concern):

 renderComplete: itemPromise.then(function (item) {

 // mutate the element to update only the title

 if (!label) { label = element.querySelector(".content"); }

 label.innerText = item.data.title;

 // use the item.ready promise to delay the more expensive work

 return item.ready;

 // use the ability to chain promises, to enable work to be cancelled

 }).then(function (item) {

 //use the image loader to queue the loading of the image

 if (!img) { img = element.querySelector("img"); }

 return item.loadImage(item.data.thumbnail, img).then(function () {

 //once loaded check if the item is visible

 return item.isOnScreen();

 });

 }).then(function (onscreen) {

 if (!onscreen) {

 //if the item is not visible, then don't animate its opacity

 img.style.opacity = 1;

 } else {

 //if the item is visible then animate the opacity of the image

 WinJS.UI.Animation.fadeIn(img);

 }

 })

418

I warned you that there would be promises aplenty in these performance optimizations! But all we

have here is the basic structure of chained promises. The first async operation in the renderer updates

simple parts of the item element, such as text. It then returns the promise in item.ready. When that

promise is fulfilled—or, more accurately, if that promise is fulfilled—you can use the item’s async

loadImage method to kick off an image download, returning the item.isOnScreen promise from that

completed handler. When and if that isOnScreen promise is fulfilled, you can perform those

operations that are relevant only to a visible item.

I again emphasize the if part of all this because it’s very likely that the user will be panning around

within the ListView while all this is happening. Having all these promises chained together makes it

possible for the ListView to cancel the async operations any time these items are scrolled out of view

and/or off any buffered pages. Suffice it to say that the ListView control has gone through a lot of

performance testing!

Which brings us to the final multistage batching renderer, which combines the insertion of images in

the DOM to minimize layout and repaint work. It does this by letting loadImage create the img

elements for us, so they’re not initially in the DOM, and then inserting batches of them until there’s a

64-millisecond gap between images coming in.

The sample does this inside a renderComplete that now has this structure (most code omitted):

 renderComplete: itemPromise.then(function (i) {

 item = i;

 // ...

 return item.ready;

 }).then(function () {

 return item.loadImage(item.data.thumbnail);

 }).then(thumbnailBatch()

).then(function (newimg) {

 img = newimg;

 element.insertBefore(img, element.firstElementChild);

 return item.isOnScreen();

 }).then(function (onscreen) {

 //...

 })

This is almost the same as the multistage renderer except for the insertion of a call to this mysterious

thumbnailBatch function between the item.loadImage call and the item.isOnScreen check. The

placement of thumbnailBatch() in the chain indicates that its return value is a completed handler that

itself returns another promise, and somewhere in there it takes care of the batching.

The thumbnailBatch function itself is created by another function called createBatch, which is one

of the finest examples of promise magic you’ll see :

//During initialization (outside the renderer)

thumbnailBatch = createBatch();

//The implementation of createBatch

function createBatch(waitPeriod) {

 var batchTimeout = WinJS.Promise.as();

419

 var batchedItems = [];

 function completeBatch() {

 var callbacks = batchedItems;

 batchedItems = [];

 for (var i = 0; i < callbacks.length; i++) {

 callbacks[i]();

 }

 }

 return function () {

 batchTimeout.cancel();

 batchTimeout = WinJS.Promise.timeout(waitPeriod || 64).then(completeBatch);

 var delayedPromise = new WinJS.Promise(function (c) {

 batchedItems.push(c);

 });

 return function (v) { return delayedPromise.then(function () { return v; }); };

 };

}

This code is designed to be something you can just drop into your own apps with complete blind

faith that it will work as advertised: you don’t have to understand (or even pretend to understand) how

it works. Still, I know some readers will be curious, so I’ve deconstructed it all at the end of Appendix A,

“Demystifying Promises.”

What We’ve Just Learned

 The WinJS.UI.Repeater provides a simple and lightweight means to iterate over a

Binding.List and render a data-bound template for each item into a container.

 The WinJS.UI.FlipView control displays one item of a collection at a time;

WinJS.UI.ListView displays multiple items according to a specific layout. Both support

different options, different behaviors, and rich styling capabilities.

 Central to all collection controls is the idea that a data source exists and an item template

defines how each item in that source is rendered. Templates can be either declarative or

procedural.

 ListView works with the added notion of layout. WinJS provides three built-in layouts.

GridLayout is a two-dimensional, horizontally or vertically panning list; CellSpanningLayout

is a horizontal GridLayout that allows items to span rows or columns; ListLayout is for a one-

dimensional vertically or horizontally panning list. It is also possible to implement custom

layouts, which are explained in Appendix B.

 ListView provides the capability to display items in groups, organizing items into groups

according to a group data source. WinJS.Binding.List provides methods to created grouped,

420

sorted, and filtered projections of items from a data source.

 The Semantic Zoom control (WinJS.UI.SemanticZoom) provides an interface through which

you can switch between two different views of a data source, a zoomed-in (details) view and a

zoomed-out (summary) view. The two views can be very different in presentation but should

display related data. The IZoomableView interface is required on each of the views so that the

Semantic Zoom control can switch between them and scroll to the correct item. The ListView

implements this interface.

 The FlipView and ListView controls work with their data sources through the IListDataSource

interface, allowing any kind of source (synchronous or asynchronous) to operate behind that

interface. WinJS provides a StorageDataSource to create a collection over StorageFile items,

and it also provides the VirtualizedDataSource where an object with the IListDataAdapter

interface is used to customize its behavior.

 Procedural templates are implemented as template functions, or renderers. These functions can

implement progressive levels of optimization for delay-loading images and adding items to the

DOM in batches.

421

Chapter 8

Layout and Views

Compared to other members of my family, I seem to need the least amount of sleep and am often up

late at night or up before dawn. To avoid waking the others, I generally avoid turning on lights and just

move about in the darkness (and here in the rural Sierra Nevada foothills, it can get really dark!). Yet

because I know the layout of the house and the furniture, I don’t need to see much. I need only a few

reference points, such as a door frame, a corner on the walls, or the edge of the bed, to know exactly

where I am. What’s more, my body has developed a muscle memory for where doorknobs are located,

how many stairs there are, how many steps it takes to get around the bed, and so on. It’s helped me

understand how visually impaired people “see” their own world.

If you observe your own movements in your home and your workplace—probably when the spaces

are lit!—you’ll probably find that you move in fairly regular patterns. This is one of the most important

considerations in home design: a skilled architect looks carefully at how people in the home might

move between primary spaces like the kitchen, dining room, and living room, and even within a single

workspace like the kitchen. Then the architect designs the home’s layout so that the most common

patterns of movement are easy and free from obstructions. If you’ve ever lived in a home where it

wasn’t designed this way, you can very much appreciate what I’m talking about!

There are two key points here: first, good layout makes a huge difference in the usability of any

space, and second, human beings quickly form habits around how they move about within a space,

habits that hopefully make their movement more efficient and productive.

Good app design follows the same principles, which is exactly why Microsoft recommends following

consistent patterns within your apps, as described on the Design Principles page and UX Patterns.

Those recommendations are not in any way whimsical or haphazard: they are the result o f many years

of research and investigation into what works best for apps and for Windows as a whole. The

placement of the charms, for instance, as well as commands on an app bar (as we’ll see in Chapter 9,

Commanding UI”), arise from the reality of human anatomy, namely how far we can move our thumbs

around the edges of the screen when holding a tablet device.

With page layout, in particular, the recommendations on Laying out an app page—describing where

headers and body content are ideally placed, the spacing between items, and so forth—can seem

rather limiting, if not draconian. The silhouette, however, is meant to be a good starting point, not a

hard-and-fast rule. What’s most important is that the shape of an app’s layout helps users develop a

visual and physical muscle memory that can be applied across many apps. Research has shown that

users develop such habits very quickly, even within a matter of minutes, but of course those habits are

not exact to specific pixels! In other words, the silhouette represents a general shape that helps users

immediately understand how an app works and where to go for certain functions, just like you can

easily recognize the letter “S” in many different fonts. This is very efficient and productive. On the other

http://msdn.microsoft.com/library/windows/apps/hh779072.aspx
http://msdn.microsoft.com/library/windows/apps/hh770552.aspx
http://msdn.microsoft.com/library/windows/apps/hh872191.aspx

422

hand, when presented with an app that uses a completely different layout (or, worse, a layout that is

similar to the silhouette but behaves differently), users must expend much more energy just figuring

out where to look and where to tap, just as I would have to be much more careful late at night if you

moved my furniture around!

The bottom line is that very good reasons support all the design principles for Windows Store apps,

layout included. As I’ve said before, if you’re fulfilling the designer role for your app, study the

principles and patterns referred to above. If someone else is fulfilling that role, make sure they study

those principles!

Either way, we’ll be reviewing the key ones early in this chapter. After that, our focus will be on how

we implement layout designs, not creating the designs themselves. (Although I apparently got the mix

of my parent’s genes that bestowed an aptitude for technical communication, my brother got most of

the genes for artistry.)

With layout, make sure to remember that the user is always in control of where each view of your

app appears on the screen and how much space it has to work with. Users can move app views around

on their displays, narrowing the view down to 500px (or even 320px if the app allows it) to share

display space with other apps. On a large monitor, this means having as many as four app views

running side-by-side—and the same is true with each additional monitor on the system.

The display space for any view also depends on the display hardware itself—different monitors have

different sizes, of course, as well as different pixel densities for which Windows might apply automatic

scaling. Most displays can also be rotated, so orientation plays an important role in layout. We’ll be

exploring all of these factors in the first half of this chapter.

You might have noticed in the last few paragraphs that I switched from using the word app in this

context to the word view. This was intentional. Windows 8.1 introduces the ability for apps to create

multiple independent views that operate on independent UI threads. Each view is an additional space

in which the app can display content and even maintain a separate navigation stack, and the user

retains control over each view’s size, placement, and lifetime (that is, the user can close a view at any

time). With multiple views, then, apps can extend themselves across multiple monitors or have multiple

side-by-side views on the same monitor.

That said, each view is essentially just a page container, so layout principles for any one page applies

across views. In the latter half of this chapter, we’ll talk about the additional layout tools you have to

handle whatever conditions you encounter. This includes the WinJS hub control and various CSS

capabilities, such as pannable sections, snap points, flexbox, grid, and multicolumn text.

I’ll remind you again that some UI elements like the app bar and flyouts don’t participate in layout;

I’ll cover these in other chapters. Also, auxiliary app pages that service contracts (such as Settings and

Search) will exist outside your main navigation flow. These should employ the same layout principles

covered in this chapter, but how and when they should appear will be covered in later chapters.

423

Principles of Page Layout

Page layout (in whatever view) is truly one of the most important considerations in Windows app

design. The principle of “do more with less” (also referred to as “content before chrome”) means that

most of what you display on any given page is meaningful content, with little in the way of

commanding surfaces, persistent navigation tabs, and passive graphical elements like separators, blurs,

and gradients that don’t in themselves mean anything. Another way of putting this is that content itself

should be directly interactive rather than composed of passive elements that are acted upon when the

user invokes some other command (the chrome). Semantic zoom is a good example of such interactive

content—instead of needing buttons or menus elsewhere in the app to switch between views, the

capability is inherent in the control itself, with the small zoom button appearing only when needed for

mouse users. Other app commands, for the most part, are similarly placed on UI surfaces that appear

when needed through app bars, nav bars, and other flyouts, as we’ll see in Chapter 9.

In short, “do more with less” means immersing the user in the experience of the content rather than

distracting them with nonessentials. In Windows app design, then, emphasis is given to the space

around and between content, which serves to organize and group content without the need for lines

and boxes. These essentially transparent “space frames” help consumer’s eyes focus on the content that

really matters. Windows app design also uses typography (font size, weight, color, etc.) to convey a

sense of structure, hierarchy, and relative importance of different content. That is, because the text on a

page is already content, why not use its characteristics—the typography—to communicate what is

often communicated with extraneous chrome? (As with the layout silhouette, the general use of the

Segoe UI font within app design is not a hard-and-fast requirement but a starting point. Having a

consistent type ramp for different headings is more important than the font.)

Figure 8-1 shows a typical web application design for a blog. Notice the persistent chrome along the

top and right side: search commands, navigation tabs, navigation controls, and so forth. Perhaps only

50% of the screen space is left for content.

Figure 8-2 shows a Windows Store app design for the same content (with a single view)—in this case

using the Feed reader sample in the Windows SDK. All the ancillary commands have been moved

offscreen. Search is accomplished through the Search charm (or on the app bar); Settings through the

Settings charm; adding feeds, refresh, and navigation through commands on the app bar; and

switching views through semantic zoom. Typography is used to convey the hierarchy instead of a menu

or folder structure. All this reduces distractions, leaves much more room for content, and creates a

much more immersive and engaging experience, don’t you think? (Note that a Search box is one

control that often does appear on-canvas because of its central role in many app experiences.)

Design ideas a-plenty The Windows Developer Center has a great Inspiration section that contains a

few case studies and quite a number of “idea books” for different categories of apps, from games,

entertainment, and news apps to medical, enterprise administration, and educational apps. Each idea

book discusses not only design but also key features that such apps would want to use. The case

studies, for their part, show how to convert websites, iOS apps, and enterprise line-of-business apps to

http://msdn.microsoft.com/library/windows/apps/dn263105.aspx
http://msdn.microsoft.com/library/windows/apps/hh868274

424

Windows Store apps. Definitely worth a few minutes of your time to at least see what’s available!

FIGURE 8-1 A typical desktop or web application design that emphasizes chrome at the expense of content.

FIGURE 8-2 The Feed reader sample drawing on the same feed as the web app in Figure 8-1. Most of the chrome

has disappeared, leaving much more space for content or visually-relaxing space.

Even where typography is concerned, Windows app design encourages the use of distinct font sizes,

again called the typographic ramp, to establish a sense of hierarchy. The default WinJS stylesheets—ui-

light.css and ui-dark.css—provide four fixed sizes where each level is proportionally larger than the

previous (42pt = 80px, 20pt = 40px, etc.), as shown in Figure 8-3 and described more fully on

Guidelines for fonts (and see also Guidelines for typography). These proportions allow users to easily

establish an understanding of content structure with just a glance. Again, it’s a ma tter of encouraging

habit and muscle memory, and Microsoft’s research has shown that beyond this size granularity, users

http://msdn.microsoft.com/library/windows/apps/hh700394.aspx
http://msdn.microsoft.com/library/windows/apps/jj553415.aspx

425

are generally unable to differentiate where a piece of content fits in a hierarchy.

Figure 8-3 The typographic ramp of Windows Store app design, shown in both the ui-dark.css (left) and ui-light.css

(right) stylesheets.

Within the body of content, Windows app design encourages these layout principles:

 Let content flow from edge to edge (full bleed).

 Keep ergonomics in mind: pan the page along the long edge of the view (primarily horizontal in

landscape aspect ratios, vertical in portrait aspect ratios).

 Pan on a single axis only to create a sense of stability and to support swiping to select (as with

the ListView control), or employ rails to limit panning directions to a single axis.

 Create visual alignment, structure, and clarity with the page silhouette, aligning elements on a

grid for consistency. Refer again to Laying out an app page. This shape is what allows a

consumer’s eyes to recognize something as a Store app without having to think about it, which

provides a feeling of familiarity and confidence.

As I’ve mentioned before, the project templates in Visua l Studio and Blend have these principles

baked right in and thus provide a convenient starting point for apps. Even if you start with the Blank

App template, the others like the Grid App and Hub App will serve as a reference point. This is exactly

what we did with the Here My Am! app in Chapter 2, “Quickstart.”

Another important guiding principle that’s relevant to layout is “scaling beautifully on any size

screen.” What we’ve talked about in this section has been the design principles for laying out a page .

Scaling beautifully, on the other hand, means understanding the conditions that affect and drive the

layout: view sizes, display resolutions, and pixel densities. This means making sure you design every

http://msdn.microsoft.com/library/windows/apps/hh872191.aspx

426

page in your app to appropriately handle all these concerns and then using the tools you have at your

disposal to implement those designs, as we’ll see next.

The last piece to consider with layout in general is that it’s often not a static concern only: the ease

of creating animations means that a dynamic relationship can exist between a page and the content on

that page. Keep this in mind with your designs; animation can certainly affect the personality of your

app and the user’s enjoyment of your app.

Sizing, Scaling, and Views: The Many Faces of Your App

If there’s one certainty about layout for a Windows Store app, it’s that the display space for each of its

views (whether one or multiple) will likely change during a single app session and change frequently.

For one, auto-rotation—especially on tablet devices—makes it quick and simple for the user to switch

between landscape and portrait orientations. Second, a device might be connected to an external

display or a user might move an app view from one display to another, meaning that the view needs to

adjust itself to different resolutions and pixel densities on the fly. Third, users can change display

settings through PC Settings > PC & Devices > Display, including orientation and effective scaling.

Fourth, users have the ability to arrange app views to share space on the same monitor, meaning that

any given view can be sized down to 500 horizontal pixels or even 320px if the app indicates such

support in its manifest. (Resizing is accomplished using touch/mouse gestures or the Windows+.

[period] and Windows+> [shift+period] keystrokes.) And finally, an app can create multiple

independent views that the user can place on separate monitors, where each monitor can again have

different display characteristics.

You definitely want to test each view of your app with all of these variances: view sizes, orientations,

display resolutions, and pixel densities. Different app sizes can be tested directly on any given machine,

but for the others you’ll need access to a variety of hardware or you can use the Visual Studio simulator

and the Device tab of Blend to simulate the most canonical conditions. But however you test these

variations, the big question is how to write an app that can handle them.

Layout performance tips The Managing layout efficiently topic in the documentation has some

helpful tips to improve layout performance in your app. One is to recognize that accessing and setting

certain properties and styles—specifically those that affect placement and visibility of an element—will

trigger a layout pass. As such, it helps to write code such that these changes are batched together. The

second recommendation is to create and initialize elements before adding them to the DOM, or, if

that’s unavoidable, to hide the element by setting the display: none style rather than setting visibility

or opacity. Only display: none will remove an element from layout passes.

Variable View Sizing and Orientations

We already got an introduction to view sizing in Chapter 1, “The Life Story of a Windows Store App”

(see Figure 1-6), and we encountered the basics in Chapter 2. To review what we’ve learned and fill out

http://msdn.microsoft.com/library/windows/apps/hh781220.aspx

427

the story, here are the conditions that affect view size and the basic guidelines for responding to them:

 Regardless of width, views always span the full height of the display, in either orientation. The

minimum height is always 768px.

 When the device is in portrait mode, meaning the physical display’s aspect ratio is taller than it

is wide, only one view can appear on the screen at a time (implying that multiple views is for

landscape and multimonitor scenarios). Portrait mode is very common with small tablet

devices, which are often called portrait first devices.

 When the device is in landscape mode, multiple views from multiple apps can share the

horizontal screen space. The number is determined by the total width and the minimum size

of the views involved.

 By default, views can be sized down to 500px wide. This value allows two 500px-wide views to

run side-by-side on a 1024x768 display (the smallest on which Windows will run), with a 24px

gutter between them. Views should always be fully functional down to 500px—that is, all of its

features are still accessible, though an app can collapse command structures, remove labels, or

otherwise tighten up the UI as needed.

 With a minimum 768px height, resizing a view to a width narrower than 768px will change the

effective aspect ratio from landscape to portrait. The app decides, though, at what width it

might change its layout from a landscape-oriented model (horizontally panning) to a portrait-

oriented model (vertically panning).

 If an app has the Minimum Width in its manifest set to 320px, the user can size views down to

that narrower size. Use this optional setting only if a narrow width makes sense for your app

as a whole (and it’s appropriate to display reduced functionality at this width). At the same

time, supporting the narrow width increases the likelihood that a user will keep the view

visible alongside others, especially on larger displays. You can also consider using extra vertical

space to display other content when the primary content does not fill the space. For example,

a video app could show additional information and recommendations that wouldn’t be shown

when playing the video in full screen landscape.

 Views can be sized up from these minimums to the full extent of the current display, which

can be very large. Views need to adapt themselves to more space by reflowing content,

showing more content, and/or scaling content to larger sizes.

 Apps can be launched directly into different widths at the request of other apps (affecting the

initial size of the primary view).

 An app does not have programmatic control over view width. The user always controls

resizing.70

70 The tryUnsnap API that existed in Windows 8 is deprecated in Windows 8.1 and does nothing.

428

 An app can specify Supported Rotations in the manifest—these specifically affect whether an

app can be launched without affecting the device rotation and how the app is notified when

rotations happen. Apps can also lock the orientation at run time to prevent device orientation

changes while that app is in the foreground.

As a result of these conditions, every page of an app, in each view—including an extended splash

screen—must be prepared to handle arbitrary sizes and aspect ratios down to the app’s supported

minimum. Repeat this like a mantra because it’s easy to forget when you’re just developing and testing

an app on a single device. And make sure your designers are thinking about it too, because when your

app gets out to thousands of customers, they will certainly be exercising all the possibilities! (For more

design details, especially about reducing functionality in narrow views, see Guidelines for resizing

windows to tall and narrow layouts.)

It should also be obvious that resizing a view never changes the mode of the app in that view or

causes it to navigate to another page. That is, always maintain the state of the view across size

boundaries. Otherwise users will become very confused about where they are in your app experience!

Let’s now go into the details of a few areas. First we’ll explore how to handle size changes, we’ll

compare adaptive and fixed layout strategies, and then we’ll see how we work with device orientations.

Later on we’ll talk about scaling considerations, but as those factors come back to the app as an

effective view size, they aren’t directly important for layout decisions. The same goes fo r creating and

managing views, which are again just additional page containers where each page has the same layout

concerns as we’re discussing here.

Sidebar: View Properties in the ApplicationView Object

The ApplicationView object in the Windows.UI.ViewManagement namespace provides a

number of interesting properties for any given view. You obtain this object by calling its static

getForCurrentView method:

var view = Windows.UI.ViewManagement.ApplicationView.getForCurrentView();

Each view as an id used to identify it when an app uses multiple views (see “Multiple Views”

later on), as well as a title that Windows will show when switching between views. The

isFullScreen, isOnLockScreen, and isScreenCaptureEnabled flags serve obvious purposes,

the latter being important when an app displays rights-protected content. Two other Boolean

flags, adjacentToLeftDisplayEdge and adjacentToRightDisplayEdge tell you where the view

is specifically located on the screen, allowing you to make specific layout decisions for those

cases if needed. The orientation property (a value from the ApplicationViewOrientation

enumeration) can be landscape and portrait. This along with the full screen and edge

properties are demonstrated in the Application Views sample, if you’re interested.

The view object has one other member, the consolidated event, that is fired when the view

is closed, as when the user executes a close gesture (a swipe down or Alt+F4).

http://msdn.microsoft.com/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/library/windows/apps/hh465371.aspx
http://code.msdn.microsoft.com/windowsapps/Application-Views-98825022

429

Handling Size Changes

Designing an app for different sizes, as noted previously, is a matter of thinking through the user

experience for full screen landscape and portrait views, partial landscape views (landscape aspect ratio),

partial portrait views (narrow views down to 500px with a portrait aspect ratio), and possibly narrow

views below 500px. We did this in Chapter 2 with the Here My Am! app. Once you get to the

implementation details, however, handling size changes in each view of an app is very much the same

story as responsive design for web pages and generally doesn’t need to be more complicated than that.

Responsive design has two parts. First are those things you can handle declaratively in CSS:

 Place all size-independent and default styles outside of any media queries. Apps typically

specify styles for their preferred full screen orientation, such as landscape, as the default.

 For size-specific styles, use media queries with appropriate combinations of orientation, min-

width, max-width, min-height, and max-height media features to isolate different layout

cases. For example:

/* Default styles here */

@media screen and (orientation: landscape) and (max-width: 1024px) {

 /* Styling for smaller landscape layouts */

}

@media screen and (orientation: portrait) and (min-width: 500px) {

 /* Styling for portrait aspect ratios (width/height < 1)*/

}

@media screen and (orientation: portrait) and (max-width: 499px) {

 /* Styling for narrow portrait aspect ratios (width/height < 1)*/

}

@media screen and (orientation: landscape)

and (min-width: 1600px) and (min-height: 1200px) {

 /* Styling for landscape layouts on larger displays */

}

@media screen and (orientation: portrait)

and (min-width: 1200px) and (min-height: 1600px) {

 /* Styling for portrait layouts on larger displays */

}

 The CSS for each size typically changes placement of elements within CSS grids, the flow

directions within a CSS flexbox, and element display styles (to show or hide those elements).

 In CSS there are also variables for the viewport height and viewport width: vh and vw. You can

prefix these with a percentage number—for example, 100vh is 100% of the viewport height,

and 3.5vw is 3.5% of the viewport width. These variables can also be used in CSS calc

expressions.

Remember when styling your app in Blend that there’s a visual affordance in the Style Rules pane

430

that lets you control the exact insertion point of any new CSS styles in the given stylesheet. This is very

helpful when working with the specific media queries:

Tip With media queries you might be tempted to use <link media=> tags in page headers to keep

styles separate. Except for printing, this doesn’t typically work because you’re not reloading the page

when a size change happens and the media-specific stylesheets won’t be loaded.

The second part of responsive design involves those things that you can change only from

JavaScript. For example, to change the panning direction of a ListView or Hub control, you need to

change its appropriate orientation property (or switch a ListView from a GridLayout to a

ListLayout). You might also change a list of buttons to a single drop-down select element to offer

the same functionality through a more compact UI. These things can’t be done through CSS. (Note that

some controls like the WinJS.UI.AppBar handle size changes automatically, as we’ll see in Chapter 9.)

There are two main events you can use to trigger such layout changes. First is window.onresize, of

course (as well as resize events that controls like the Hub and ListView raise), where you can obtain

exact dimensions of the current view through the window.innerWidth and window.innerHeight

properties. The document.body.clientWidth and document.body.clientHeight properties will be

the same, as will be the clientWidth and clientHeight properties of any element (like a div) that

occupies 100% of the document body. Within the window.onresize event, the

args.view.outerWidth and args.view.outerHeight properties are also available.

Tip When the user initiates resizing, the active app will receive the window.onblur event. Games often

use this event to pause themselves while resizing takes place.

The other event comes from the standard Media Query Listener API in JavaScript. This interface (part

of the W3C CSSOM View Module, see http://dev.w3.org/csswg/cssom-view/) allows you to add event

handlers for media query state changes, such as:

http://dev.w3.org/csswg/cssom-view/

431

var mql = window.matchMedia("(orientation: portrait)");

mql.addListener(styleForPortrait);

function styleForPortrait() {

 if (mql.matches) {

 //...

 }

}

You can see that the media query strings you pass to window.matchMedia are the same as used in

CSS directly, and in the handler you can, of course, perform whatever actions you need from JavaScript.

And yet another tip You might find cases where you want to check your layout on the resuming

event, as display characteristics might have changed while an app was suspended. You’ll get a resize

event when a view is resumed to a different size, of course, but if the app is resumed to the same size

as before, you won’t see the event.

Adaptive and Fixed Layouts

As just described, app design has to consider sizes from 500px wide (or 320px wide) by 768px high, all

the way up to 3200px by 1800px QHD displays. How does one approach this wide range of

possibilities? A design typically starts with a baseline experience for the common 1366x768 size. Here

each view should be fully functional, of course, and display enough content to be really engaging.

Going down from there to smaller sizes, a view need to retain its functionality to the 500px width,

collapsing and/or changing some of the UX controls along the way. If it goes down to a 320px width, it

can design a more focused experience on the assumption that the view will occupy a narrow space

alongside a number of other apps. In such cases you might elect to hide some functionality.

Going up from the baseline is a different story. Of course the view will continue to be fully

functional, but now the question becomes, “What do you do with more space?” On this subject, I

recommend you read the Guidelines for scaling to screens, which has good information on the kinds of

display sizes your app might encounter as well as guidance on what to do with additional real estate

when you have it.71

The first part of the answer is “Fill the view!” Nothing looks more silly than an app running on a 27”

monitor that was designed and implemented with only 1366x768 in mind, because it will occupy only a

quarter to half of the screen at best. As I’ve said a number of times, imagine the kinds of reviews and

ratings your app might be given in the Windows Store if you don’t pay attention to details like this!

The second part of the answer depends on your app’s content for the view in question. If you have

only fixed content, which is common with games, you’ll want to use a fixed layout that scales up (and

down) to the window size. If you have variable content, meaning that you should show more when

71 Another good resource is session 2-150 from the //build 2013 conference, entitled “Beautiful apps at any size screen,”

and the Mail app, used as a demo in that session, provides a strong example of dynamic adaptation.

http://msdn.microsoft.com/library/windows/apps/hh780612.aspx
http://channel9.msdn.com/Events/Build/2013/2-150

432

there’s more screen space, you want to use an adaptive layout.

To implement a fixed layout, start by designing around a minimum size and a fixed aspect ratio,

such as 1024x768 (a 4:3 aspect ratio) or 1366x768 (a 16:9 aspect ratio).72 You then code against these

fixed coordinate systems regardless of actual view size. That is, wrap your content into a div that’s

styled to your fixed dimensions. I’ve also added a body background color here to see the letterboxing:

<!-- In markup -->

<div id="viewbox" class="fixedlayout">

 <p>Content goes here</p>

</div>

/* In CSS */

body {

 background-color: #8e643c;

}

.fixedlayout {

 height: 768px;

 width: 1024px;

}

Then add a listener for window.onresize events and apply a CSS 2D scaling transform to the root

element based on the difference between the reference size and the actual size:

window.onresize = resizeLayout;

function resizeLayout(e) {

 var viewbox = document.getElementById("viewbox");

 var w = window.innerWidth;

 var h = window.innerHeight;

 var bw = viewbox.clientWidth;

 var bh = viewbox.clientHeight;

 var wRatio = w / bw;

 var hRatio = h / bh;

 var mRatio = Math.min(wRatio, hRatio);

 var transX = Math.abs(w - (bw * mRatio)) / 2;

 var transY = Math.abs(h - (bh * mRatio)) / 2;

 viewbox.style["transform"] =

 "translate(" + transX + "px," + transY + "px) scale(" + mRatio + ")";

 viewbox.style["transform-origin"] = "top left";

}

This preserves the aspect ratio and works to scale the contents up as well as down. The translation

included with the transform makes sure the body background shows around any part that the fixed

content doesn’t occupy.

72 Some apps might be able to adjust their aspect ratio and fill the window, but more commonly the ratio remains fixed and
extra space is filled with letterboxing. Note also that WinJS 1.0 provided a ViewBox control that does what I’m showing

here, but it was removed in WinJS 2.0 because it was seldom used and is very simple to replicate.

433

You can find an example of this in the FixedLayout project in the companion content. This app

draws a 4x3 grid of circles on a canvas, as shown in Figure 8-4, to match the 1024x768 layout size. On a

1366x768 display or larger with a 16:9 aspect ratio, we get letterboxing on the sides; in the 320px

narrow view (as set in the manifest), we get letterboxing on the top.

FIGURE 8-4 Fixed layout scaling with a simple CSS transform, showing letterboxing on a full-screen 16:9 ratio

display (left) and in a narrow 320px view (right).

Sidebar: Raster Graphics and Fixed Layouts

If you use raster graphics within a fixed layout, size them according to the maximum 2560x1440

resolution so that they’ll look good on the largest screens and they’ll still scale down to smaller

ones (rather than being stretched up). Alternately, you can load different graphics (through

different img.src URIs) that are better suited for the most common screen size.

Note that resolution scaling (discussed later in this chapter) will still be applicable. If you’re

running on a high-density 10.6” 2560x1440 display (180% scale), the app and thus the fixed

content will still see smaller screen dimensions. But if you’re supplying a graphic for the native

device resolution, it will look sharp when rendered on the screen.

In contrast to a fixed layout, where you always see the same content, an adaptive layout is one in

which a view shows more stuff when more screen space is available. Such a layout is most easily

achieved with a CSS grid where proportional rows and columns will automatically scale up and down;

elements within grid cells will then find themselves resized accordingly. This is demonstrated in the

Visual Studio/Blend project templates, especially the Grid App project. On a typical 1366x768 display

you’ll see a few items on a screen, as shown at the top of Figure 8-5. Switch over to a 27” 2560x1440

and you’ll see a lot more, as you can see at the bottom of the figure.

434

FIGURE 8-5 Adaptive layout in the Grid App project template shown for a 1366x768 display (top) and a 2560x1440

display (bottom).

To be honest, the Grid App project template doesn’t do anything particularly special for view sizes.

Because it uses CSS grids and proportional cells, the cell containing the ListView control automatically

becomes bigger. The ListView control is listening for window.onresize on its own, and it reflows itself

to show more items when it has more space; we don’t need to instruct it directly. In any case, the Grid

App template does demonstrate the basic strategy:

 Use a CSS grid (or flexbox) where possible to handle adaptive layout automatically.

 Listen for window.onresize as necessary to reposition and resize elements manually, such as an

HTML canvas element.

 Have controls listen to window.onresize to adapt themselves directly.

435

As another reference point, refer to the Adaptive layout with CSS sample, which takes the same

approach as the Grid App project template, relying on controls to resize themselves. In the sample, you

will see that the app isn’t doing any direct calculations based on view size.

Hint If you have an adaptive layout and want a background image specified in CSS to scale to its

container (rather than being repeated), style background-size to either contain or 100% 100%.

Finally, let me again recommend the Guidelines for scaling to screens topic in the documentation,

which goes into many more design questions, such as:

 Which regions of a view are fixed and which are adaptive?

 How do adaptive regions make use of available space, including the directions in which that

region adapts?

 How do adaptive and fixed regions relate in the wireframe?

 How does the view’s layout overall make use of space—that is, how does whitespace itself

expand so that content doesn’t become too dense? This can mean collapsing some areas of the

UI in narrower views to lighten the density when there’s less room.

 How does the view make use of multicolumn text?

Answering these sorts of questions will help you understand how the layout should adapt.

Handling Orientations

If you’ve worked with any kind of accelerometer-equipped device, you know that one of the most

natural things to do is rotate it 90 degrees in some direction to reorient an app. On other systems, the

user can change orientation manually through PC Settings > PC & Devices > Display > Orientation:

When this happens, an app receives a window.onresize event and is expected to update its view

accordingly. A key point here is that landscape orientations support multiple side-by-side views, but

portrait does not. In fact, Windows locks the orientation when you have multiple apps showing side by

side. To switch to portrait, an app must be running full screen by itself.

If you structure your CSS appropriate for different view states and handle resize events as needed,

you typically don’t care about the actual physical orientation of the device—you care about only the

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2
http://msdn.microsoft.com/library/windows/apps/hh780612.aspx

436

size of the view in which you need to lay out your content. Still, you can determine the physical

orientation a number of ways. One is through the ApplicationView.orientation property that was

noted earlier in “Sidebar: View Properties in the ApplicationView Object.” It has possible values of

portrait and landscape.

A more specific value comes from the Windows.Graphics.Display.DisplayInformation class

(obtained via DisplayInformation.getForCurrentView()) and its currentOrientation property.

This identifies one of the four rotation quadrants that are possible for a device relative to its native

orientation: landscape, portrait, landscapeFlipped, and portraitFlipped. There’s also an

orientationchanged event if you need it (see scenario 3 of the Display orientation sample for usage

of this event).

Thirdly, the APIs in Windows.Devices.Sensors—specifically, the SimpleOrientationSensor and

OrientationSensor classes—can provide more information from the hardware itself, including exact

rotation angles. These are covered in Chapter 12, “Input and Sensors.”

Note Internet Explorer 11 and the app host for Windows 8.1 also support the W3C orientation

standards for orientation on the screen object through the msOrientation property, the

onmsorientationchange event, and the msLockOrientation and msUnlockOrientation methods.

Some apps, of course, would prefer to not have their views resized in response to accelerometer-

induced rotation. A full screen video player, for example, wants to remain in landscape irrespective of

the device orientation, allowing you to watch videos while laying sideways on a couch with a tablet

propped up on a chair!73

Locking the orientation can be done in two places. First, you can specify the orientations the app

supports in the app manifest on the Supported Rotations on the Application tab:

By default, all these options are unchecked which means the app will be resized (and thus redrawn)

when the device orientation changes (and checking all of them means the same thing). When you

check a subset of the options, the following effects apply:

 If the device is not in a supported rotation when the app is launched, the app is launched in the

nearest supported rotation. For example, if you check the Portrait and Landscape-flipped

rotations (I have no idea why you’d choose that combination!) and the device is in Landscape

mode, the app will launch into Portrait.

73 Apps like movie players, aside from locking the orientation, typically need to keep the screen on even when the user

hasn’t interacted with the system for a long time. For this, see the Windows.System.Display.DisplayRequest API.

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.orientation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.currentorientation.aspx
http://code.msdn.microsoft.com/windowsapps/Display-Orientation-Sample-19a58e93
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx

437

 When the app is in the foreground, rotating the device to a nonsupported orientation has no

effect on the app.

 When the user switches away from the app, the device orientation is restored unless the new

foreground app also has preferences. Of course, it’s likely that the user will have rotated the

device to match the app’s preference, in which case that’s the new device orientation.

 When the user switches back to the app, it will switch to the nearest supported rotation.

 In all cases, when the app’s preference is in effect, system edge gestures work relative to that

orientation—that is, the left and right edges are relative to the app’s orientation.

You can achieve the same effects at run time—changing preferences dynamically and overriding the

manifest—by setting the autoRotationPreferences property of the aforementioned

DisplayInformation class. The preference values come from the DisplayOrientations enumeration

and can be combined with the bitwise OR (|) operator. For example, here are the bits of code to set a

Portrait preference and the combination of Portrait and Landscape-flipped:

var wgd = Windows.Graphics.Display;

wgd.DisplayInformation.autoRotationPreferences = wgd.DisplayOrientations.portrait;

wgd.DisplayInformation.autoRotationPreferences =

 wgd.DisplayOrientations.portrait | wgd.DisplayOrientations.landscapeFlipped;

Note Orientation preferences set in the manifest and through the autoRotationPreferences

property do not work with nonaccelerometer hardware, such as desktop monitors and also the Visual

Studio simulator (they are ignored). The rotations that the simulator performs happen on the level of

the display driver, which is different than the WinRT display orientation. To test these preferences, in

other words, you’ll need a real accelerometer-equipped device.

To play around with these settings, refer to the Device auto rotation preferences sample. Its different

scenarios set one of the orientation preferences so that you can see the effect when the device is

rotated; scenario 1 for its part clears all preferences and restores the usual behavior for apps. You can

also change rotation settings in the manifest to see their effects, but those are again overridden as

soon as you change the preferences through any of the scenarios.

For a live demonstration of this sample, see Video 8-1. This is definitely one feature that you just

can’t show in static images!

Screen Resolution, Pixel Density, and Scaling
I don’t know about you, but when I first read that the minimum view widths were always 500 and 320

pixels—real pixels, not a percentage of the screen width—it set me wondering. Wouldn’t that give a

significantly different user experience on different monitors? The answer is actually no. Consider the

narrow 320px width. 320 pixels is about 25% of the baseline 1366x768 target display, which means that

the remaining 75% of the screen is a familiar 1024x768 . And on a 10-inch screen, it means that this

http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.autorotationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayorientations.aspx
http://code.msdn.microsoft.com/windowsapps/Auto-Rotation-Preferences-87ae2902

438

narrow width is about the 2.5 physical inches wide. So far so good.

With a large monitor, on the other hand, let’s say a 2560x1440 monster, those 320 pixels would only

be 12.5% of the width, so the layout of the whole screen looks quite different. However, given that such

monitors are in the 24-inch range, those 320 pixels still end up being about 2.5 physical inches wide,

meaning that the narrow view gives essentially the same visual experience as before, just now with

much more vertical space to play with and much more remaining screen space for other app views.

This now brings up the question of pixel density—what happens if your app ends up on a really

small screen that also has a very high resolution, like a 7” 1920x1200 (323dpi) screen? Obviously, 320

pixels on the latter display would be barely an inch wide. Anyone got a magnifying glass? And as new

and even higher density displays are produced in the years ahead, it seems like the problem will just

get harder to deal with.

Fortunately, this isn’t anything a Store app has to worry about…almost. The main user benefit for

such displays is greater sharpness, not greater density of information. Touch targets need to be the

same size on any size display no matter how many pixels it occupies, because human fingers don’t

change with technology! To accommodate this, Windows automatically scales down the effective

resolution that’s reported to apps, which is to say that whatever coordinates you use within your app

(in HTML, CSS, and JavaScript) are automatically scaled up to the necessary device resolution when the

UI is actually rendered. This happens within the low-level HTML/CSS rendering engine in the app host

so that everything is drawn directly against native device pixels for maximum sharpness.

As for the “almost” above, the one place where you do need to care about pixel density is with

raster graphics, as we discussed in Chapter 3, “App Anatomy and Performance Fundamentals,” for your

splash screen and tiles. We’ll return to this shortly in “Graphics that Scale Well” below.

Display sizes and pixel densities can both be tested again using the Visual Studio simulator or the

Device tab in Blend. The latter, shown in Figure 8-6, indicates the applicable DPI and scaling factor.

100% scale means the device resolution is reported directly to an app. 140% and 180%, on the other

hand, indicate that scaling is taking place. Doing a little math, you can see that the effective resolution

that the app sees is generally near the standard 1366x768 or 1024x768 sizes:

Display Size Physical Resolution Scaling Effective Resolution

7” 1920x1200 140% (1.4) 1371x857 (1920/1.4 by 1200/1.4)

7.5” 1440x1080 140% (1.4) 1028x771

10.6” 1920x1080 140% (1.4) 1371x771

10.6” 2560x1440 180% (1.8) 1422x800

In all these cases, layouts designed for 1024x768 and 1366x768 are quite sufficient. Of course, you’ll

need to adapt to the exact pixel dimensions and to the larger 100% resolutions, but you don’t have to

worry about resizing touch targets and such based on pixel density—all that happens transparently.

439

FIGURE 8-6 Options for display sizes and pixel densities in Blend’s Device tab.

Scaling can also happen on 100% displays if the user goes to PC Settings > PC & Devices > Display

and sets the Larger option in the control shown below. This sets the scaling to 140% and is enabled

only for larger monitors where the effective resolution would not fall below 1024x768.

As noted earlier, the effective/scaled resolution is what you’ll see for a view in the

window.innerWidth and window.innerHeight properties, the document.body.clientWidth and

document.body.clientHeight properties, and the clientWidth and clientHeight properties of any

element that occupies 100% of the body. Within window.onresize, you can also use these (or the

args.view.outerWidth and args.view.outerHeight properties) to adjust the app’s layout for

changes in the overall display. Of course, if you’re using something like the CSS grid with fractional

rows and columns to do your layout, much of that will be handled automatically.

In all cases, these dimensions will already reflect automatic scaling for pixel densities, so they are the

dimensions against which to do layout. If you want to know the physical display dimensions, on the

other hand, you’ll find these in the window.screen.width and window.screen.height properties.

Other aspects of the display can be found in the DisplayInformation class (in Windows.Graphics.-

Display) as we used before for orientation. The properties of interest here are logicalDPI and the

current resolutionScale. The latter is a value from the ResolutionScale enumeration, one of

scale100Percent, scale140Percent, and scale180Percent. The actual values of these identifiers are

100, 140, and 180 so that you can use resolutionScale directly in calculations. Also, the

logicaldpichanged event tells you when the scaling factor changes, as when the user changes the

app’s size option in PC Settings or switches to a different display.

http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.resolutionscale.aspx

440

Sidebar: A Good Opportunity for Remote Debugging

Working with different device capabilities provides a great opportunity to work with remote

debugging as described on Running Windows Store apps on a remote machine. This will help

you test your app on different displays without needing to set up Visual Studio on each one, and

it also gives you the benefit of multimonitor debugging. You only need to install and run the

remote debugging tools on the target machine and make sure it’s connected to the same local

network as your development machine. The Remote Debugging Monitor running on the remote

machine will announce itself to Visual Studio running on your development machine. Note that

the first time you run the app remotely, you’ll be prompted to obtain a developer license for that

machine, so it will need to be connected to the Internet during that time.

Graphics That Scale Well

In addition to layout, variable view sizes and pixel densities present a challenge to apps in making sure

that graphical assets always look their best. You can certainly draw graphics directly with the HTML5

canvas, but oftentimes that’s not possible and you have to use predrawn assets of some kind.

HTML5 scalable vector graphics (SVGs) are very handy here. You can include inline SVGs in your

HTML (including page fragments), or you can keep them in separate files and refer to them in an

img.src attribute. One of the easiest ways to use an SVG is to place an img element inside a

proportionally sized cell of a CSS grid and set the element’s width and height styles to 100%. The SVG

will then automatically scale to fill the cell, and since the cell will resize with its container, everything is

handled automatically.

One caveat with this approach is that the SVG will be scaled to the aspect ratio of the containing

grid cell, which isn’t always what you want. To control this behavior, make sure the SVG has viewBox

and preserveAspectRatio attributes where the viewBox aspect ratio matches that defined by the

SVG’s width and height properties:

<svg

 xmlns:svg="http://www.w3.org/2000/svg"

 xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 version="1.0"

 width="300"

 height="150"

 viewBox="0 0 300 150"

 preserveAspectRatio="xMidYMid meet">

Of course, you don’t always have nice vector graphics. Bitmaps that you include in your app

package, pictures you load from files, and raster images you obtain from a service won’t be so easily

scalable. In these cases, you’ll need to be aware of and apply the current scaling factor appropriately.

For assets in your app package, we already saw how to work with varying pixel densities in Chapter

3 through the .scale-100, .scale-140, and .scale-180 file name suffixes (the Here My Am! App has such

http://msdn.microsoft.com/library/windows/apps/hh441469.aspx

441

variants). These work for any and all graphics in your app, just as they do for the splash screen, tile

images, and other images referenced by the manifest. So, if you have a raster graphic named

banner.png, you’ll create three graphics in your app package called banner.scale-100.png,

banner.scale-140.png, and banner.scale-180.png. You then just refer to the base name as in <img src=

"images/banner.png"> and background-image: url('images/banner.png'), and the Windows

resource loader will magically load the appropriately scaled graphic automatically. (If files with .scale -*

suffixes aren’t found, it will look for banner.png directly.) We’ll see even more such magic in Chapter

19, “Apps for Everyone, Part 1,” when we also include variants for different languages and contrast

settings that introduce additional suffixes of their own.

If your developer sensibilities object to this file-naming scheme, know that you can also use similarly

named folders instead. That is, create scale-100, scale-140, and scale-180 folders in your images folder

and place appropriate files with unadorned names (like banner.png) therein.

Tip If you have an app with a fixed layout, you can address pixel density issues by simply using

graphical assets that are scaled to 200% of your standard design. This is because a fixed layout can be

scaled to arbitrary dimensions, so a 200% image scales well in all cases. Such an app does not need to

provide 100%, 140%, and 180% variants of its images.

In CSS you can also use media queries with max-resolution and min-resolution settings to

control which images get loaded. Remember, however, that CSS will see the logical DPI, not the

physical DPI, so the approximate cutoffs for each scaling factor are more or less as follows:

@media all and (max-resolution: 133dpi) {

 /* 100% scaling */

}

@media all and (min-resolution: 134dpi) {

 /* 140% scaling */

}

@media all and (min-resolution: 172dpi) {

 /* 180% scaling */

}

As explained in the Guidelines for scaling to pixel density, such media queries are especially useful

for images you obtain from a remote source, where you might need to amend the specific URI or the

URI query string. See “Using Local and Web Images” in Chapter 16, “Alive with Activity,” for how tile

updates handle this for scale, contrast, and language.

The “more or less” part is that the cutoff numbers here are not that exact. What I show above comes

from empirical tests, even though the documentation suggest 134, 135, and 174 dpi, respectively. Still,

it’s the best we can do in CSS at present. One ramification of this is that you should never refer to scale-

specific graphics (using .scale-nnn in filenames). This is because the Windows Store will download only

those scale graphics that are needed on the device (see Package Bloat? below), and if there’s a

mismatch between your media queries and what the system actual reports, you can end up referring to

http://msdn.microsoft.com/library/windows/apps/hh465362.aspx

442

images that aren’t present.

Package bloat? When providing multiple variations of graphics for scales, languages, and contrasts,

the natural concern is that they will cause your app package to get bigger and bigger, to the point

where those assets dwarf the rest of the app code. It’s actually not anything to worry about. Sure, when

you create a package in Visual Studio and upload it to the Windows Store, it will contain all those

assets together. However, if you structure resources with the appropriate folder names and/or file

suffixes for the variations, the Store automatically breaks out those resources into separate packs so

that your customers download only the resources that they actually need for their configuration.

Programmatically, you can again obtain logicalDpi and resolutionScale properties from the

DisplayInformation object. Its logicaldpichanged event (a WinRT event) can also be used to check

for changes in the resolutionScale, since the two are always coupled.

If your app manages a cache of graphical assets, by the way, especially those downloaded from a

service, organize them according to the resolutionScale for which that graphic was obtained. This

way you can obtain a better image if and when necessary, or you can scale down a higher resolution

image that you already obtained. It’s also something to be aware of with any app settings you might

roam, because the pixel density and screen size may vary between a user’s devices.

Note img elements on a page that have scale variations in the app’s resources are not automatically

reloaded when the scale changes, as when moving a view between monitors with different DPI. The

Scaling according to DPI sample recommends using the WinJS.Resources.oncontextchanged event

instead, which fires for conditions that change what resources are loaded—contrast, language, and

scale. For details, see js/scenario1.js in the sample, especially the comments in the refresh method.

Multiple Views
Many years ago, when I was very actively giving presentations at many developer conferences, I so

much wished that Microsoft PowerPoint could present my slides on the main display for the audience

while I got a view on my display that showed the next slide as well as my notes. You might be laughing

because PowerPoint has had this feature for quite some time (I wasn’t the only one who made the

request!). The point, though, is that likely app scenarios include a single app managing multiple

independent views, possibly and oftentimes on separate monitors, and the user rearranging and

resizing those views, which includes dragging them between monitors. Any one view, though, is limited

to a single display (that is, a view cannot span displays).

Projection scenarios like PowerPoint are clearly one of the primary uses for multiple views; a game

might also use a second view for various controls and output windows so they don’t interfere with the

main display. A different kind of use is where an app has several independent (or loosely coupled)

functions that can operate independently and can benefit from being placed side by side with views

from other apps (multitasking at its best!). A customer-management system for a mobile sales rep

might have one view for appointments and contacts, another for data entry forms, and a third for

managing presentations and media. Although these functions could be part of the same layout within a

http://code.msdn.microsoft.com/windowsapps/Scaling-sample-cf072f4f

443

single app view, they don’t need to be. Having them as separate views—which means they operate on

different threads and can share data only via the file system—allows the user to place them in relation

to other apps such as a web browser (for customer research) and an email app.

The caveat with multiple views is that they run on separate threads and therefore each have their

own script context. Views can only communicate with each other through postMessage calls (like we

use to communicate between the local and web contexts), but they can exchange data also via appdata

settings and/or files, which they share in common.

A view is created through the MSApp.createNewView API, provided by the app host and not WinRT

because it’s specific to apps written in HTML and JavaScript. The one argument you give to this method

is a string with the ms-appx URI of an in-package HTML page to use for the new view (only ms-appx

URIs are allowed, meaning the view runs in the local context). That HTML file can, of course, reference

whatever own stylesheets and script (including WinJS) that it needs. All of this will be loaded as part of

the createNewView call, even though the view is not yet visible. The usual DOM events like

DOMContentLoaded will be raised in the process, and you can use the WinJS.Application events as

always (provided that you call app.start() to drain the queue).

The MSAppView object that createNewView returns will have a unique viewId property to identify it,

along with postMessage and close methods. The latter is what the app clearly uses to close the view.

The secondary view receives messages through the window.onmessage event, as usual. The new view

can also call window.close to close itself, and the user can also close the view with touch/mouse

gestures or Alt+F4. As for sending data back to the app, the view calls MSApp.getViewOpener to obtain

the MSAppView object for the app’s primary view—its postMessage method will raise a

window.onmessage event in the primary view. These relationships are shown in Figure 8-7.

FIGURE 8-7 A primary view creates a secondary view through MSApp.createNewView. The secondary view retrieves

a reference to the primary view through MSApp.getViewOpener. The result in both cases is an MSAppView object

whose postMessage call sends a message to the other view.

http://msdn.microsoft.com/library/windows/apps/dn252339.aspx

444

Let me note up front that if a secondary view closes itself with window.close, the app won’t receive

any kind of event. Typically, then, the secondary view will use postMessage to inform the app that it’s

closing. This is also where the view should subscribe to the ApplicationView.onconsolidated event

to detect when the user closes it directly, and post a message to the app. We’ll see an example shortly.

Now creating a new view doesn’t actually make it visible—the view’s HTML, CSS, and JavaScript are

all loaded and run, but nothing will have appeared on the screen. For that you need to use one of two

APIs: the ProjectionManager or the ApplicationViewSwitcher, both of which are in Windows.UI.-

ViewManagement.

The ProjectionManager is meant for full-screen scenarios and works with a single secondary view.

Its projectionDisplayAvailable property, first off, tells you whether projection is possible and, along

with the projectiondisplayavailablechanged event, is what you use to enable a projection feature

in an app. To make the view visible you pass its viewId to startProjectingAsync along with the ID of

the primary view (the one from ApplicationView.getForCurrentView().id). Later on, call

stopProjectingAsync to close the view and swapDisplaysForViewsAsync to do what it implies.

For a simple example, refer to the SimpleViewProjection example in this chapter’s companion

content. On startup it gets the primary view and the ProjectionManager (js/default.js):

var view = vm.ApplicationView.getForCurrentView();

var projMan = vm.ProjectionManager;

The Start button in the example is itself enabled or disabled according to the ProjectionManager.

btnStart.addEventListener("click", startProjection);

projMan.onprojectiondisplayavailablechanged = function () {

 checkEnableProjection();

}

function checkEnableProjection() {

 btnStart.disabled = !projMan.projectionDisplayAvailable;

}

When you click Start, the app creates the view and starts projecting, using the id’s of both views:

viewProjection = MSApp.createNewView("ms-appx:///projection/projection.html");

projMan.startProjectingAsync(viewProjection.viewId, view.id).done(function () {

 // enable/disable buttons

});

Other buttons will call stopProjectingAsync and swapDisplaysForViewAsync, and other code

handles selectively enabling the UI as needed. There’s also a button to do a postMessage to the

projection with the current time.

function sendMessage() {

 var date = new Date();

 var timeString = date.getHours() + ":" + date.getMinutes() + ":" + date.getSeconds()

 + ":" + date.getMilliseconds();

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.projectionmanager.aspx

445

 var msgObj = { text: timeString };

 viewProjection.postMessage(JSON.stringify(msgObj),

 document.location.protocol + "//" + document.location.host);

}

The projection page is in projection/projection.html with associated .css and .js files. Within its

activated handler it retrieves the opener view and listens for the consolidated event (js/projection.js):

var opener = MSApp.getViewOpener();

var thisView = Windows.UI.ViewManagement.ApplicationView.getForCurrentView();

thisView.onconsolidated = function () {

 sendCloseMessage();

}

where sendCloseMessage is a function that just does a postMessage with a “close” indicator so the

main app can reset its UI. The same thing happens when you click the Close button in the projection,

after which it calls window.close.

For another demonstration, refer to the Projection sample in the SDK. It basically does the same

thing as the simple example above, adding a little more to set view properties like the title. I’m not

showing any code from the sample, however, because it buries the basic API calls like createNewView

and getViewOpener deep inside helper classes called ProjectionView.ViewManager (for the primary

view) and ProjectionView.ViewLifeTimeControl (for the secondary view). These classes (in

js/viewLifetimeControl.js) provide a mini-framework around the various events like consolidated and

visibility changes, and creates a message protocol between the primary and secondary views. It also

does reference counting on secondary views to control their lifetime, and makes sure that the primary

view is notified when a secondary view is closed. It’s the kind of stuff you’d write if you started using

multiple views, but it’s a little too complicated to use as an introduction to the API!

This same mini-framework is also used in the SDK’s Multiple Views sample, which demonstrates the

methods of the ApplicationViewSwitcher class. Those methods—with some verbose names!—are:

Method Description

switchAsync(id)

(3 overloads)
Switches to a given view in the same space as the calling one. If the target view is

already visible elsewhere on the screen, however, this will simply change focus to

that view. A value from ApplicationViewSwitchingOptions can be used to

customize the transition: default (standard transition), skipAnimation (no

transition), or consolidateViews (closes the calling view).

tryShowAsStandaloneAsync
(3 overloads)

Shows the new view adjacent to the calling view, with options from

ViewSizePreference to determine the desired state of the new and calling views:

default, useLess, useHalf, useMore, useMinimum, useNone. You can experiment

with these variations in scenario 1 of the sample.

disableShowingMainViewOnActivation Prevents the primary view of the app from showing on subsequent activations,

that is, when it’s appropriate to activate the app directly into a secondary view.

Showing the primary view is always the default unless this method is called. This is

shown in scenario 2 of the sample, with the actual call in js/default.js.

http://code.msdn.microsoft.com/windowsapps/Projection-sample-526b3c1d
http://code.msdn.microsoft.com/windowsapps/Multiple-Views-Sample-2582fcf3
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationviewswitcher.aspx

446

prepareForCustomAnimatedSwitchAsync Tells the views whether to run default animations on a switch; by specifying the

skipAnimation option, you can attach a completed handler to this promise to

perform custom animations. See scenario 3 of the sample.

Because the details and variations of these APIs get rather complex, I’ll leave it to you to explore the

sample directly. Note that in the main scenarios of the app you won’t find any calls to switchAsync—

these are made in the secondary view (js/secondaryView.js) to switch back to the primary view. In each

case the view closes itself as part of the switch, which isn’t a required behavior, of course.

To show the basic switching behavior, I’ve made a few small modifications to a copy of this sample

in the companion content. First, the button in the secondary view to switch back to the main view does

not close the secondary one. Then I’ve added a button to scenario 1 of the main app to call

switchAsync on the selected secondary view. You’ll see how it brings that view up in the same space

as the original one, rather than alongside. If you switch back from the secondary view, the main view

will appear in that space.

Things get interesting when you create an adjacent view first and then in the main app switch to a

secondary view in the space. You’ll see two secondary views at once. If you switch to the main app in

either, you’ll find that the Switch to Main View button in the other secondary view just changes focus

to the already-visible app. Otherwise you’d be seeing the main app view twice, which would be very

confusing!

Pannable Sections and Styles

In Chapter 7, “Collection Controls,” we spent a little time looking at when a ListView control was the

right choice and when it wasn’t. One of the primary cases where developers have inappropriately

attempted to use a ListView is to implement a home or hub page that contains a variety of distinct

content groups arranged in columns, as shown in Figure 8-8 and explained on Navigation design for

Windows Store apps. At first glance this might look like a ListView, but because the data it’s

representing isn’t actually a collection, just a layout of fixed content, it makes sense to use other

options for the job. One option is the WinJS.UI.Hub control, which works great for layouts like that in

Figure 8-8, and we’ll see that control fairly soon. The other option, which I want to discuss first, is to

simply use tried-and-true HTML and CSS for the job!

I point this out because with all the great controls that WinJS provides, it’s easy to forget that

everything you know about HTML and CSS still applies in Store apps. After all, those controls are in

themselves just blocks of HTML and CSS with some additional methods, properties, and events. So let’s

look at how we might create a hub page directly, as it gives us an opportunity to learn about a few

features that controls like the Hub employ.

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx

447

FIGURE 8-8 The layout of a typical home or hub page of a Store app with a fixed header (1), a horizontally pannable

section (2), and content sections or categories (3).

Laying Out the Hub
Let’s start by asking how we’d use straight HTML and CSS to implement the whole pannable area of the

hub page in Figure 8-8. Referring first to Laying out an app page, we know that the padding between

groups or sections should be four units of 20px each, or 80px. Let’s say that each section should be

square, except for the second one which is only half the width. On a baseline 1366x768 display, the

height of each section would be 768px minus 128px (for the header) minus the minimum 50px on the

bottom, which leaves 590px (if we add headings for each section, subtract another 40px).

Thus, a square section on the baseline display would be 590px wide (we’d set the actual height to

100% of its containing grid cell). The total width of the pannable area will be:

(590 * 4 full-size sections) + (295 * 1 half-width section) + (80 * 4 for the separator gaps)

This equals 2975px. To this we’ll add border columns of 120px on the left (according to the silhouette)

and 80px on the right, for a total of 3175px.

To create the whole region with exactly this layout, we can use a CSS grid within a block element. To

demonstrate this, run Blend and create a new project with the Navigation App template (so we just get

a basic page with the silhouette and not all the secondary pages). Within the section element of

pages/home/home.html, create another div element and give is a class of hubSections:

<section aria-label="Main content" role="main">

 <div class="hubSections">

 </div>

</section>

In pages/home/home.css, add a few style rules. Give overflow-x: auto to the section element,

and lay out the grid in the hubSections div, using added columns on the left and right for spacing

(removing the margin-left: 120px from the section and adding it as the first column in the div):

.homepage section[role=main] {

 overflow-x: auto;

}

.homepage .hubSections {

 width: 2975px;

http://msdn.microsoft.com/library/windows/apps/hh872191.aspx

448

 height: 100%;

 display: -ms-grid;

 -ms-grid-rows: 1fr 50px;

 -ms-grid-columns: 120px 2fr 80px 1fr 80px 2fr 80px 2fr 80px 2fr 80px;

}

With just these styles we can see the layout taking shape in Blend by zooming out in the artboard:

Now let’s create the individual sections, each one starting as a div in pages/home/home.html:

<section aria-label="Main content" role="main">

 <div class="hubSections">

 <div class="hubSection1"></div>

 <div class="hubSection2"></div>

 <div class="hubSection3"></div>

 <div class="hubSection4"></div>

 <div class="hubSection5"></div>

 </div>

</section>

and styled into their appropriate grid cells with 100% width and height. I’m showing hubSection1

here; the others are the same with just a different column number (4, 6, 8, and 10, respectively):

.homepage .hubSection1 {

 -ms-grid-row: 1;

 -ms-grid-column: 2; /* 4 for hubSection2, 6 for hubSection3, etc. */

 width: 100%;

 height: 100%;

}

All of this is implemented in the HubPage example in this chapter’s companion content.

Laying Out the Sections

Now we can look at the contents of each section. Depending on your content and how you want those

sections to interact, you can again just use layout (CSS grids or perhaps flexbox) or controls like

Repeater or ListView. hubSection3 and hubSection5 have gaps at the end, so they might be collection

controls with variable items. Note that if we created lists with more than 9 or 6 items, respectively, we’d

want to adjust the column size in the overall grid and make the section element width larger, but let’s

assume the design calls for a maximum of 9 and 6 items in those sections.

449

Let’s also say that we want each section to be interactive, where tapping an item would navigate to

a details page. (Not shown in this example are group headers to navigate to a group page.) We’ll just

use a ListView in each, where each ListView has a separate data source. For hubSection1 we’ll need to

use cell spanning, but the rest of the groups can just use a simple GridLayout. The key consideration

with all of these is to style the items so that they fit nicely into the basic dimensions we’re using. And

referring again back to the silhouette, the spacing between image items should be 10px and the

spacing between columns of mixed content (hubSection4 and hubSection5) should be 40px (which can

be set with appropriate CSS margins).

Hint If you need to make certain areas of your content unselectable, use the -ms-user-select

attribute in CSS for a div element. Refer to the Unselectable content areas with -ms-user-select CSS

attribute sample. How’s that for a name?

Panning Styles and Railing

To make an element pannable, you use the standard CSS overflow-x (horizontal), overflow-y

(vertical), or overflow (bi-directional) styles where the values can be visible (the default, where

content visible overflows its element boundaries), scroll (content is clipped to the element and

scrollbars are always visible), hidden (content is clipped and cannot be panned), and auto (content is

clipped and panning is enabled when necessary). Most often, as in the HubPage example we just saw,

you’ll use auto so that an element pans with auto-hiding scrollbars.

If an element is pannable, you can control the appearance of the scrollbar with –ms-overflow-

style. Its default setting, auto, provides the auto-hiding scrollbar (-ms-autohiding-scrollbar does

the same). Other options include scrollbar (always visible) and none (never visible). Using none is

what creates a pannable region that never shows any kind of scrollbar, which is certainly appropriate

when you don’t want anything interfering with the content. The one caveat is that panning with the

mouse requires a mousewheel—if you want drag-to-pan behavior, you’ll need to handle pointer events

directly (see Chapter 12). And speaking of the mouse wheel, the –ms-scroll-translation style allows

you to translate vertical mousewheel events to horizontal panning.

By default, when an element is styled panning in both vertical and horizontal directions, panning via

touch (or the touchpad) follows the movement of the touchpoint in both directions together. This

doesn’t work well, however, for content that the user will typically want to pan in only one dimension.

For this you can use railing to lock panning (again, only for touch and touchpad) along the axis that the

user is panning most, as shown in Figure 8-9. And once panning is locked in that dimension, it stays in

effect until the touch point is released, meaning that arbitrary movements will not change the lock. If

the user does happen to pan evenly in both directions (a narrow 45-degree line in each quadrant), bi-

directional panning can go into effect, but the user would have to deliberately try to make this happen.

http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://msdn.microsoft.com/library/windows/apps/hh996931.aspx
http://msdn.microsoft.com/library/windows/apps/hh996917.aspx

450

FIGURE 8-9 The concept of rails, where the white areas indicate regions where the touch point is moved equally

along both axes and bi-directional panning can happen. Note that railing is determined along 45-degree lines from

the touch point and has nothing to do with the shape of the region itself.

Setting up railing is quite simple, as demonstrated in scenario 1 of the HTML scrolling, panning, and

zooming sample. Assuming that the panning area (a div containing an image in this case) allows bi-

directional panning (overflow: auto), rails are added with –ms-scroll-rails: railed

(js/panning.js):

.Railed {

 overflow: auto;

 -ms-scroll-rails: railed;

}

and they are removed by setting –ms-scroll-rails: none:

.Unrailed {

 overflow: auto;

 -ms-scroll-rails: none;

}

At present it isn’t possible to adjust the rail thresholds nor to set vertical and horizontal rails

independently. In any case, the effects of rails are shown in Video 8-2.

A related style for touch is touch-action, which sets allowable panning directions, allowable

zooming gestures, and allowable cross-slide gestures, a few of which are shown in scenario 6 of the

sample.

http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://msdn.microsoft.com/library/windows/apps/hh767313.aspx

451

Parallax panning A parallax effect is when you see multiple layers of a page panning at different

speeds, thereby giving a sense of visual depth. The Windows Start screen itself does this, where the

tiles pan faster than the background. Such an effect is possible through HTML and CSS, and it’s easy to

find guidance on the subject. Be specifically mindful of the properties you’re animating for the effect. If

you use CSS transforms exclusively, those animations will run “independently” in the GPU. If you

animate any other positional properties, the animations will run on the UI thread and likely perform

poorly on lower-end hardware.

Panning Snap Points and Limits

If you run the HubPage example and pan around a bit using inertial touch gestures (that is, those that

continue panning after you’ve released your finger, explained more in Chapter 12), you’ll notice that

panning can stop in any position along the way. You or your designers might like this, but it also makes

sense in many scenarios to automatically stop on a section or group boundary. This can be

accomplished for touch interactions using CSS styles for snap points as described in the following table.

These are styles that you add to a pannable element alongside overflow styles, otherwise they have no

effect. Documentation for these (and some others) can be found on the CSS reference for Touch:

Zooming and Panning. Be clear that snap points are a touch-only feature (including touchpads); if you

want to provide the same kind of behavior with mouse and/or keyboard input, you’ll need to do such

work manually along the lines of how the FlipView control handles transition between items.

Style Description Value Syntax
-ms-scroll-snap-points-x Defines snap points along the x-axis snapInterval(start<length>,

step<length>) |

snapList(list<lengths>)

-ms-scroll-snap-type Defines what type of snap points should be used for the

element: none turns off snap points, mandatory always

adjusts panning to land on a snap-point (which includes

ending inertial panning), and proximity changes the

panning only if a panning motion naturally ends “close

enough” to a snap point. Using mandatory, then, will

enforce a one-section/item-at-a-time panning behavior,

whereas proximity would pan past interim snap points if

enough inertia is applied. Note also that dragging with a

finger (not using an inertia gesture) will allow the user to

pan directly past snap points.

none | proximity | mandatory

-ms-scroll-snap-x Shorthand to combine -ms-scroll-snap-type and -ms-
scroll-snap-points-x

<-ms-scroll-snap-type> <-ms-

scroll-snap-points-x>

-ms-scroll-snap-y Shorthand to combine -ms-scroll-snap-type and -ms-

scroll-snap-points-y

<-ms-scroll-snap-type> <-ms-

scroll-snap-points-y>

In the table, <length> is a floating-point number, followed by an absolute units designator (cm, mm,

in, pt, or pc) or a relative units designator (em, ex, or px).

To add snap points for each of our hub sections in the Hub Page example, we only need to add two

snap points styles after overflow-x:

http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh466031.aspx
http://msdn.microsoft.com/library/windows/apps/hh466057.aspx
http://msdn.microsoft.com/library/windows/apps/hh466066.aspx
http://msdn.microsoft.com/library/windows/apps/hh466078.aspx

452

.homepage section[role=main] {

 overflow-x: auto;

 -ms-scroll-snap-type: mandatory;

 -ms-scroll-snap-points-x: snapList(0px, 670px, 1045px, 1715px, 2385px, 3055px);

}

Note that the snap points indicated here include the 120px left border so that each one aligns the

section underneath the header text. The 0px point thus snaps to the first section, with the box being

120px in so that it alights to the header. The 670px point for the second reflects that 120px plus the

590px width of the first section. 1045 is 670 plus a half-width section (295px) plus 80px, and so on. We

also set snap points all the way to what would be the position past the last section—that is, the

rightmost panning point. This makes sure that you can fully pan into the last section in narrow views.

With these changes you’ll now find that panning around stops nicely (with animations) on the

section boundaries—see Video 8-3. For a hub page like this, proximity snapping is usually more

appropriate. Mandatory snap points are intended more for items that can’t be interacted with or

consumed without seeing their entirety, such as flipping between pictures, articles, and so on. (The

FlipView control uses these.)

Additional demonstrations of snap points can be found in scenario 2 of the HTML scrolling,

panning, and zooming sample. Snap points are not presently supported on the ListView control, as they

are intended for use with your own layout.

Related to snap points are the styles that set minimum and maximum extents for panning: -ms-

scroll-limit-x-[min | max], -ms-scroll-limit-y-[min | max], and the shorthand combined

style –ms-scroll-limit. These specifically limit the values of the element’s scrollLeft (x axis) and

scrollTop (y axis).

The –ms-scroll-chaining style is also important when limits are in effect (whether set explicitly or

by the size of the content). By default, if you pan content to its limit within an element and continue

panning outside the boundaries of that element, the element’s contents will compress a little and then

bounce back to normal size when you release the pointer. By setting this style to chained, a pan that

goes outside the boundary of one element picks up and pans the next nearest pannable element, and

no bounce effect occurs. Scenarios 4 and 5 of the sample demonstrates some of this, and you can read

more about chaining in Guidelines for panning.

Zooming Snap Points and Limits
While we’re on the subject and looking at the HTML scrolling, panning, and zooming sample, I should

mention the -ms-content-zoom-* styles that are also in the CSS reference for Touch: Zooming and

Panning, a few of which are used in scenario 3 of the sample:

Style Description Value Syntax
-ms-content-zooming Indicates whether zooming is enabled for an

element.

none | zoom

-ms-content-zoom-limit-min

-ms-content-zoom-limit-max

Specifies minimum and maximum zoom

extents, typically in terms of percentages.

<number>%

http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://msdn.microsoft.com/library/windows/apps/hh996918.aspx
http://msdn.microsoft.com/library/windows/apps/hh465310.aspx
http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/library/windows/apps/hh441251.aspx
http://msdn.microsoft.com/library/windows/apps/hh441251.aspx
http://msdn.microsoft.com/library/windows/apps/hh996914.aspx
http://msdn.microsoft.com/library/windows/apps/hh996913.aspx

453

-ms-content-zoom-limit Shorthand to combine -ms-content-zoom-

limit-min and -max.

<min>% <max>%

-ms-content-zoom-snap-points Defines zooming snap points. snapInterval(start<zoom %>, step<zoom

%>) | snapList(list<zoom %>)

-ms-content-zoom-snap-type Determines what type of snap points should be

used for the element. See the description in the

previous section for panning snap types.

none | proximity | mandatory

-ms-content-zoom-snap Shorthand to combine snap points and type. <-ms-zoom-snap-type> <-ms-zoom-snap-

points>

-ms-content-zoom-chaining

Specifies whether zoom behavior carries over to

the nearest zoomable parent once limits are

reached for an element.

none | chained

The Hub Control and Hub App Template

Although it’s certainly possible, as seen previously, to create any layout you want for an app with

straight HTML and CSS (and to enable panning and zooming behaviors), WinJS helps out hub page

design quite a bit through the WinJS.UI.Hub control (which isn’t available on Windows Phone, use

WinJS.UI.Pivot instead)). The control is organized much like the raw layout we saw earlier: the root

div for the control plays hosts to any number of sections but has the added feature that it supports a

large “hero” image on the left side, as we’ll see, along with both horizontal and vertical layouts. The

Hub also supports semantic zoom, meaning that you can host it within a semantic zoom control and

use either another Hub or a ListView for the zoomed-out view. All in all, then, it’s a good control to use

unless you have layout needs that it can’t accommodate.

Each section in the Hub is defined by a WinJS.UI.HubSection control. Each section can have an

invocable header and can host whatever other content you want, including templates, repeaters, and

ListView controls. That content can be expressed as however many child elements you like, as the

HubSection will always create another div container for them alongside one that it creates for the

header.

Apart from the usual suspects like addEventListener, the following methods and properties are

found on the Hub control:

Member Description

headerTemplate (property) Gets or sets a template or rendering function for the header.

indexOfFirstVisible
(property)

Gets or sets the index of the first visible section (leftmost for left-to-right languages,

rightmost for right-to-left languages). The section need only be partially visible.

indexOfLastVisible (property) Gets or sets the index of the last visible section (rightmost for left-to-right languages,

leftmost for right-to-left languages). The section need only be partially visible.

loadingState (property)

loadingstatechanged (event)

Property contains “loading” if the Hub is still rendering section, “complete”; the event is fired

when the property changes (with the new state in eventArgs.detail.loadingState).

orientation Gets or sets the orientation from the WinJS.UI.Orientation enumeration, either

“horizontal” or “vertical”.

scrollPosition (property) Gets or sets the panning position of the entire Hub. This is useful when navigating to other

pages and back again; by saving the position when navigating away you can reset that

position when navigating back.

sectionOnScreen (property) Gets or sets the index of the first fully visible section.

http://msdn.microsoft.com/library/windows/apps/hh996912.aspx
http://msdn.microsoft.com/library/windows/apps/hh441259.aspx
http://msdn.microsoft.com/library/windows/apps/hh441264.aspx
http://msdn.microsoft.com/library/windows/apps/hh441255.aspx
http://msdn.microsoft.com/library/windows/apps/hh441243.aspx
http://msdn.microsoft.com/library/windows/apps/dn255137.aspx
http://msdn.microsoft.com/library/windows/apps/dn255127.aspx

454

sections (property) Gets or sets a Binding.List of the HubSection objects inside the hub.

zoomableView (property) Returns an object with IZoomableView to support semantic zoom.

contentanimating (event) Raised when the hub is about to play an animation effect. The eventArgs.detail object

contains the type of animation, the index of the animated section, and that section control.

headerinvoked (event) Fired when an interactive header is clicked or tapped, or when the header has the focus and

the spacebar or Enter key is pressed. The eventArgs.detail object contains the index of the

header and the section object to which it belongs.

You can find reference code for the Hub in two places: the HTML Hub control sample and the Hub

App project template in Visual Studio. The project template is in many ways similar to the Grid App

project—it uses the same data source (in js/data.js once you create a project with it) and navigates

between hub, section, and item pages that correspond to the Grid App template’s groupedItems,

groupDetail, and itemDetail pages; the latter two in both templates are virtually the same.

Here, let’s look at the control through the lens of the sample because it isolates the Hub’s

capabilities more clearly. Once we’ve done that, you should be able to look through the Hub App

project template and understand what’s going on.

When you run the sample, you’ll see that each scenario has a Launch Full Screen Sample button

because the Hub is definitely meant to occupy an entire page. When you look through the project

structure, all the pages with the Hub control are found in the pages folder—the individual scenarios

just navigate to those pages, which then provide a back button to return to the sample’s home page.

(Of course, if you use the Hub on your own home page, like the Hub App project template, you

certainly wouldn’t have a back button! You could also take it as an exercise to convert the navigation in

the sample to using multiple views, as described earlier in this chapter.)

Scenario 1 navigates to pages/basichub.html whose full layout is shown in Figure 8-10. Four sections

labeled Images, ListView, Video, and Form Controls describe exactly what kind of content that section

contains. In this particular case, the headers are static and do not include a hero image—we’ll see those

shortly. The video, though, is playing inline so that you can see the media controls for i t. Again note

that a typical app would not have a back button on its home page!

FIGURE 8-10 The full layout for scenario 1 of the HTML Hub Control sample.

http://code.msdn.microsoft.com/windowsapps/HTML-Hub-control-sample-a15e5c2d

455

In pages/basichub.html, the Hub control and its sections are hosted in div elements. Omitting the

content of each section (especially the <select> element in the form with <option> elements for all

fifty United States!), we can see the overall structure clearly:

<div data-win-control="WinJS.UI.Hub">

 <div class="section1" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Images', isHeaderStatic: true}">

 </div>

 <div id="list" class="section2" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'ListView', isHeaderStatic: true}">

 </div>

 <div class="section3" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Video', isHeaderStatic: true}">

 </div>

 <div class="section4" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Form Controls', isHeaderStatic: true}">

 </div>

</div>

As you can see, each HubSection control has a header property (read-write) to provide its header

text and an isHeaderStatic property (read-write) to indicate whether that header is inert (true) or

can be clicked or tapped (false, the default). In the latter case, a chevron character > will be appended

to the header text and clicking a header will raise a headerinvoked event on the overall Hub control,

not the section.

The section control, in fact, has only one other property, contentElement (read-only), which will be

the div that the HubSection creates to contain whatever child elements you declare for the control.

Speaking of child elements, here’s that markup for the first three sections (slightly condensed; I’m

omitting section 4 because its full markup takes two pages!):

<div data-win-control="WinJS.UI.Hub">

 <div class="section1" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Images', isHeaderStatic: true}">

 <div class="imagesFlexBox">

 <!-- And so on for nine total images -->

 </div>

 </div>

 <div id="list" class="section2" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'ListView', isHeaderStatic: true}">

 <div id="listView" class="win-selectionstylefilled"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemTemplate: smallListIconTextTemplate,

 itemDataSource: select('.pagecontrol').winControl.myData.dataSource,

 selectionMode: 'none', tapBehavior: 'none', swipeBehavior: 'none' }">

 </div>

 </div>

456

 <div class="section3" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Video', isHeaderStatic: true}">

 <video class="promoVideo" src="images/cycle.mp4" controls></video>

 </div>

 <!-- section4 omitted -->

</div>

Tip Do you see the select('.pagecontrol').winControl.myData.dataSource reference for the

ListView’s itemDataSource property in section 2? The pageControl class identifies the page control

element defined in html/basichub.js. That element’s winControl property gets you to the object

defined with WinJS.UI.Pages.define, wherein you’ll find the myData property that returns a

Binding.List.

The item template for the ListView is, of course, defined earlier in html/basichub.html. Styles are

pulled in from pages/commonstyles.css, which we’ll look at soon after we finish up with the other Hub

control features.

Scenario 2 of the sample now adds a hero image at the beginning of the Hub, the full result of

which is shown in Figure 8-11 and the limited 1366x768 view in Figure 8-12. In reality, the hero image

is not actually a concept of the Hub control at all—it’s simply another HubSection that’s been added

to the top of the list (pages/heroimage.html):

<div data-win-control="WinJS.UI.Hub">

 <div class="hero" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Hero'}"></div>

 <div class="section1" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Images', isHeaderStatic: true}">

where the styling for the hero class in pages/heroimage.css sets the image, the width, and margins, and

hides the section header (using the win-hub-section-header selector):

.hero {

 background-image: url(/images/circle_hero.jpg);

 background-size: cover;

}

.win-hub-horizontal .hero {

 width: 944px;

 margin-left: -80px;

 margin-right: 80px;

}

.win-hub-section.hero .win-hub-section-header {

 visibility: hidden;

}

No magic here—just straight CSS, although it’s important to note that the HubSection control

extends fully top to bottom within the Hub, so the background image bleeds to the edges.

457

FIGURE 8-11 The full layout for scenario 2 of the HTML Hub Control sample. The hero image is just another

HubSection added to the beginning of the Hub control, where the image, width, and margins are defined in CSS.

The header for that section is also hidden via CSS.

FIGURE 8-12 The appearance of the hero image of scenario 2 on a 1366x768 display.

Scenario 3 enables interactive headers for the ListView and Video sections simply by removing the

isHeaderStatic options from the markup (defaulting to false; pages/interactiveheaders.html):

<div id="list" class="section2" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'ListView'}">

 <!-- ... -->

</div>

<div class="section3" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Video'}">

 <video class="promoVideo" src="images/cycle.mp4" controls></video>

</div>

This makes it possible to navigate to the header with the Tab key, and it adds chevrons to the

header text (circled in red):

458

Invoking a header (click, tap, spacebar, or Enter key) then raises the Hub’s headerinvoked event.

This scenario’s code picks them up as follows to navigate to subsidiary pages. The section’s index and

element are included in the eventArgs.detail object (pages/interactiveheaders.js):74

// Inside the page control

ready: function (element, options) {

 this._hub = element.querySelector(".win-hub").winControl;

 this._onHeaderInvokedBound = this.onHeaderInvoked.bind(this);

 this._hub.addEventListener("headerinvoked", this._onHeaderInvokedBound);

},

//navigate to deeper levels by invoking interactive headers

onHeaderInvoked: function (ev) {

 var index = ev.detail.index; //Section index

 var section = ev.detail.section; //Section element

 //check that the correct section is invoked

 if (index === 2) {

 WinJS.Navigation.navigate("/pages/listview.html");

 }

 if (index === 3) {

 WinJS.Navigation.navigate("/pages/video.html");

 }

},

unload: function () {

 this._hub.removeEventListener("headerinvoked", this._onHeaderInvokedBound);

},

Supporting semantic zoom, which is shown in scenario 4, is nothing new—the sample

(pages/semanticzoom.html) just places the Hub control as the first child of a WinJS.UI.SemanticZoom

control and declares a ListView for the zoomed-out view that just navigates to the sections:

74 The sample actually uses window.addEventListener, which works only because the otherwise unhandled event bubbles

up to the window level. Adding it on this._hub as shown in the code here is more direct.

459

Scenario 5 (pages/verticallayout.html) takes one more step to handle a narrow 320px view by

switching the Hub control into a vertical orientation (with appropriate styles in pages/vertical-

layout.css). When vertical, the Hub simply lays out the sections vertically, and the sample also handles

semantic zoom in this state are well. To illustrate all this, Figure 8-13 shows the 500px wide view of the

app, where it still uses the horizontal orientation, then the 320px narrow view, and then the narrow

zoomed-out view.

FIGURE 8-13 Scenario 5 at 500px wide (left), 320px wide (middle) with the vertical Hub layout, and 320px wide

zoomed out (right) with a vertical ListView.

The only bit of code needed to handle this is the updateHubLayout function that’s called on

window.onresize (pages/verticallayout.js; the arguments to the function are the Hub and the

zoomed-out ListView control, respectively):

function updateHubLayout(hub, listview) {

 if (document.body.clientWidth < 500) {

 if (hub.orientation !== WinJS.UI.Orientation.vertical) {

 hub.orientation = WinJS.UI.Orientation.vertical;

 listview.layout = new WinJS.UI.ListLayout();

 }

 }

 else {

 if (hub.orientation !== WinJS.UI.Orientation.horizontal) {

 hub.orientation = WinJS.UI.Orientation.horizontal;

 listview.layout = new WinJS.UI.GridLayout();

 }

 }

}

The code here changes orientation whenever the view width falls below 500px. In many cases you

might want to make the switch when the aspect ratio goes to a portrait orientation, which can be done

460

simply by changing the if statement to compare with document.body.clientHeight and changing

the CSS media query to check for an orientation change rather than widths:

// pages/verticallayout.js

if (document.body.clientWidth < document.body.clientHeight)

/* pages/verticallayout.css */

/* Original was @media (min-width: 320px) and (max-width:499px) */

@media (orientation: portrait)

Hub Control Styling

Styling the hub control is a matter of styling its various parts, like we’ve seen in earlier chapters with the

ListView, the FlipView, and the ItemContainer controls. To lay the div structure out clearly, a bit of

markup like this:

<div data-win-control="WinJS.UI.Hub">

 <div class="hero" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Hero'}"></div>

 <div class="section1" data-win-control="WinJS.UI.HubSection"

 data-win-options="{header: 'Images', isHeaderStatic: true}"></div>

</div>

turns into a deeper div hierarchy with various win-hub-* classes assigned (and a few other elements):

<!-- The root element (win-vertical if vertically oriented) -->

<div class="win-hub win-horizontal">

 <!-- The panning region with snap points for the sections -->

 <div class="win-hub-viewport">

 <!-- The container for sections -->

 <div class="win-hub-surface">

 <!-- hero section -->

 <div class="hero win-hub-section">

 <!-- header -->

 <div class="win-hub-section-header">

 <button class="win-hub-section-header-tabstop

 win-hub-section-header-interactive"></button>

 <h2 class="win-hub-section-header-content">Hero</h2>

 </div>

 <!-- content -->

 <div class="win-hub-section-content">

 </div>

 </div>

 <!-- section1 -->

 <div class="section1 win-hub-section">

 <!-- same structure for header and content but without

 win-hub-section-header-interactive for non-invocable header -->

 </div>

 </div>

 </div>

</div>

461

The most common classes to style differently than the defaults are win-hub-section, win-hub-

section-header, and win-hub-section-content to change margins and/or padding. The win-hub-

section-header-tabstop class identifies the button element in the header, regardless of whether it’s

interactive.

Because the win-hub-surface background is transparent by default, you can set a background

color on win-hub-viewport to have it show through or you can use a background image that will stay

fixed behind the sections. Typically you’d use a low-contrast image (like those on the Start screen) to

not distract from the rest of the content.

Beyond that, the content within your sections is, of course, under your complete control, so you can

style all that however you wish.

Using the CSS Grid

Starting back in Chapter 2, we’ve already been employing CSS grids for many purposes. Personally, I

love the grid model because it so effortlessly allows for relative placement of elements and scaling

easily to different screen sizes.

Because the focus of this book is on the specif ics of the Windows platform, I’ll leave it to the W3C

specs on http://www.w3.org/TR/css3-grid-layout/ and http://dev.w3.org/csswg/css3-grid-align/ to

explain all the details. These specs are essential references for understanding how rows and columns

are sized, especially when some are declared with fixed sizes, some are sized to content, and others are

http://www.w3.org/TR/css3-grid-layout/
http://dev.w3.org/csswg/css3-grid-align/

462

declared such that they fill the remaining space. The nuances are many!

Because the specs themselves are still in the draft stages as of this writing, it’s good to know exactly

which parts of those specs are actually supported by the HTML/CSS engine used for Store apps.

For the element containing the grid, the supported styles are simple. First use the -ms-grid and

-ms-inline-grid display models (the display: style). We’ll come back to -ms-inline-grid later.

Second, use -ms-grid-columns and -ms-grid-rows on the grid element to define its arrangement.

If left unspecified, the default is one column and one row. The repeat syntax such as

-ms-grid-columns: (1fr)[3]; is supported, which is most useful when you have repeated series of

rows or columns, which appear inside the parentheses. As examples, all the following are equivalent:

-ms-grid-rows:10px 10px 10px 20px 10px 20px 10px;

-ms-grid-rows:(10px)[3] (20px 10px)[2];

-ms-grid-rows:(10px)[3] (20px 10px) 20px 10px;

-ms-grid-rows:(10px)[2] (10px 20px)[2] 10px;

How you define your rows and columns is the interesting part, because you can make some fixed,

some flexible, and some sized to the content using the following values. Again, see the specs for the

nuances involving max-content, min-content, minmax, auto, and fit-content specifiers, along with

values specified in units of px, em, %, and fr. Windows Store apps can also use vh (viewport height) and

vw (viewport width) as units.

Within the grid now, child elements are placed in specific rows and columns, with specific alignment,

spanning, and layering characteristics using the following styles:

 -ms-grid-column identifies the 1-based column of the child in the grid.

 -ms-grid-row identifies the 1-based row of the child in the grid.

 -ms-grid-column-align and -ms-grid-row-align specify where the child is placed in the

grid cell. Allowed values are start, end, center, and stretch (default).

 -ms-grid-column-span and -ms-grid-row-span indicate that a child spans one or more

rows/columns.

 -ms-grid-layer controls how grid items overlap. This is similar to the z-index style as used for

positional element. Since grid children are not positioned directly with CSS and are instead

positioned according to the grid, -ms-grid-layer allows for separate control.

Be very aware that row and column styles are 1-based, not 0-based. Re-program your JavaScript-

oriented mind to remember this, as you’ll need to do a little translation if you track child elements in a

0-based array.

Also, when referring to any of these -ms-grid* styles as properties in JavaScript, drop the hyphens

and switch to camel case, as in msGrid, msGridColumns, msGridRowAlign, msGridLayer, and so on.

463

Overall, grids are fairly straightforward to work with, especially within Blend where you can

immediately see how the grid is taking shape. Let’s now take a look at a few tips and tricks that you

might find useful.

Overflowing a Grid Cell
One of the great features of the grid, depending on your point of view, is that overflowing content in a

grid cell doesn’t break the layout at all—it just overflows. (This is very different from tables!) What this

means is that you can, if necessary, offset a child element within a grid cell so that it overlaps an

adjacent cell (or cells). Besides not breaking the layout, this makes it possible to animate elements

moving between cells in the grid, if desired.

A quick example of content that extends outside its containing grid cell can be found in the

GridOverflow example with this chapter’s companion content. For the most part, it creates a 4x4 grid of

rectangles, but this code at the end of the doLayout function (js/default.js), places the first rectangle

well outside its cell:

children[0].style.width = "350px";

children[0].style.marginLeft = "150px";

children[0].style.background = "#fbb";

This makes the first element in the grid wider and moves it to the right, thereby making it appear

inside the second element’s cell (the background is changed to make this obvious). Yet the overall

layout of the grid remains untouched.

I’ll cast a little doubt on this being a great feature because you might not want this behavior at

times, hoping instead that the grid would resize to the content. For that behavior, use an HTML table.

Centering Content Vertically

Somewhere in your own experience with CSS, you’ve probably made the bittersweet acquaintance with

the vertical-align style in an attempt to place a piece of text in the middle of a div, or at the

bottom. Unfortunately, it doesn’t work: this particular style works only for table cells and for inline

content (to determine how text and images, for instance, are aligned in that flow).

As a result, various methods have been developed to do this, such as those discussed in

http://blog.themeforest.net/tutorials/vertical-centering-with-css/. Unfortunately, just about every

technique depends on fixed heights—something that can work for a website but doesn’t work well for

the adaptive layout needs of a Windows Store app. And the one method that doesn’t use fixed heights

uses an embedded table. Urk.

Fortunately, both the CSS grid and the flexbox (see “Item Layout” later on) easily solve this problem.

With the grid, you can just create a parent div with a 1x1 grid and use the -ms-grid-row-align:

center style for a child div (which defaults to cell 1, 1):

http://blog.themeforest.net/tutorials/vertical-centering-with-css/

464

<!-- In HTML -->

<div id="divMain">

 <div id="divChild">

 <p>Centered Text</p>

 </div>

</div>

/* In CSS */

#divMain {

 width: 100%;

 height: 100%;

 display: -ms-grid;

 -ms-grid-rows: 1fr;

 -ms-grid-columns: 1fr;

}

#divChild {

 -ms-grid-row-align: center;

 -ms-grid-column-align: center;

 /* Horizontal alignment of text also work with the following */

 /* text-align: center; */

}

The solution (below) is even simpler with the flexbox layout, where flex-align: center handles

vertical centering, flex-pack: center handles the horizontal, and a child div isn’t needed at all. You

can use this styling for any centering needs, such as placing content in the middle of a fixed layout.

<!-- In HTML -->

<div id="divMain">

 <p>Centered Text</p>

</div>

/* In CSS */

#divMain {

 width: 100%;

 height: 100%;

 display: -ms-flexbox;

 -ms-flex-align: center;

 -ms-flex-direction: column;

 -ms-flex-pack: center;

}

Code for both these methods can be found in the CenteredText example for this chapter, with the

Grid method commented out in css/default.css. (This example also demonstrates the use of ellipses

later on, so there’s more text in the markup.)

Scaling Font Size
One particularly troublesome area with HTML is figuring out how to scale a font size with an adaptive

layout. I’m not suggesting you do this with the standard typography recommended by Windows app

design as we saw earlier in this chapter. It’s more a consideration when you need to use fonts in some

465

other aspect of your app such as large letters on a tile in a game.

With an adaptive layout, you typically want certain font sizes to be proportional to the dimensions

of its parent element. (It’s not a concern if the parent element is a fixed size, because then you can fix

the size of the font.) Unfortunately, percentage values used in the font-size style in CSS are based on

the default font size (1em), not the size of the parent element as happens with height and width.

What you’d love to be able to do is something like font-size: calc(height * .4), but, well, the

value of other CSS styles on the same element are just not available to calc.

One exception to this is the vh value (which can be used with calc). If you know, for instance, that

the text you want to scale is contained within a grid cell that is always going to be 10% of the viewport

height and if you want the font size to be half of that, you can just use font-size: 5vh (5% of

viewport height).

Another method is to use an SVG for the text, wherein you can set a viewBox attribute and a font-

size relative to that viewBox. Scaling the SVG to a grid cell will effectively scale the font:

<svg viewBox="0 0 600 400" preserveAspectRatio="xMaxYMax">

 <text x="0" y="150" font-size="200" font-family="Verdana">

 Big SVG Text

 </text>

</svg>

You can also use JavaScript to calculate the desired font size programmatically based on the

clientHeight property of the parent element. If that element is in a grid cell, the font size (and line

height) can be some percentage of that cell’s height, thereby allowing the font to scale with the cell.

Item Layout

So far in this chapter we’ve explored page-level layout, which is to say, how top-level items are

positioned on a page, typically with a CSS grid. Of course, it’s all just HTML and CSS—you can use

tables, line breaks, and anything else supported by the rendering engine so long as you adapt well to

view sizes.

It’s also important to work with item layout in the flexible areas of your page. That is, if you set up a

top-level grid to have a number of fixed-size areas (for headings, title graphics, control bars, etc.), the

remaining area can vary greatly in size as the window size changes. Let’s look now at some of the tools

we have within those specific regions: CSS transforms, flexbox, nested and inline grids, multicolumn

text, CSS figures, and CSS connected frames.

I don’t intend to teach you all the details of CSS, so let me give you a few other resources. A general

reference for these and all other CSS styles that are supported for Windows Store apps (such as

background, borders, and gradients) can be found on the Cascading Style Sheets topic (note the

border-image style that’s available in Windows 8.1 and Internet Explorer 11). Also check out CSS for

Windows 8 App Development, by Jeremy Foster (APress, 2013). The CSS specifications themselves can

http://msdn.microsoft.com/library/windows/apps/hh996828.aspx
http://msdn.microsoft.com/library/windows/apps/dn308258.aspx

466

be found on http://www.w3.org/; specifically start with the HTML & CSS standards reference. I also

highly recommend the well-designed and curated resources from Smashing Magazine for learning the

many nuances of CSS, which I must admit still seems mysterious to me at times!

CSS 2D and 3D Transforms
It’s quite impossible to think about layout for elements without taking CSS transforms into

consideration. Transforms are very powerful because they make it possible to change the display of an

element without actually affecting the document flow or the overall layout. This is very useful for

animations and transitions; transforms are used heavily in the WinJS animations library that provides

the Windows look and feel for all the built-in controls. As we’ll explore in Chapter 14, “Purposeful

Animations,” and as we’ve seen with the ExtendedSplashScreen example in the companion content, you

can make direct use of this library as well.

CSS transforms can be used directly, of course, anytime you need to translate, scale, or rotate an

element. Both 2D and 3D transforms (http://dev.w3.org/csswg/css3-2d-transforms/ and

http:/www.w3.org/TR/css3-3d-transforms/) are supported for Windows Store apps, specifically these

styles:75

CSS Style JavaScript Property (element.style.)

backface-visibility backfaceVisibility

perspective, perspective-origin perspective, perspectiveOrigin

transform, transform-origin, and

transform-style

transform, transformOrigin, and transformStyle

Full details can be found on the Transforms reference. Know also that because the app host uses the

same underlying engines as Internet Explorer, transforms enjoy all the performance benefits of

hardware acceleration. Be aware when doing animations and transitions, however, that hardware

acceleration only happens for transform and opacity styles, not for perspective.

Flexbox

Just as the grid is magnificent for solving many long-standing problems with page layout, the CSS

flexbox module, documented at http://www.w3.org/TR/css3-flexbox/, is excellent for handling variable-

sized areas wherein the content wants to “flex” with the available space. To quote the W3C

specification:

In [this] box model, the children of a box are laid out either horizontally or vertically, and

unused space can be assigned to a particular child or distributed among the children by

assignment of ‘flex’ to the children that should expand. Nesting of these boxes (horizontal inside

vertical, or vertical inside horizontal) can be used to build layouts in two dimensions.

The specific display styles for Store apps are display: -ms-flexbox (block level) and display: -

75 At the time of writing, the -ms-* prefixes on these styles were no longer needed but are still supported.

http://www.w3.org/
http://www.w3.org/standards/webdesign/htmlcss
http://www.smashingmagazine.com/
http://dev.w3.org/csswg/css3-2d-transforms/
http://www.w3.org/TR/css3-3d-transforms/
http://msdn.microsoft.com/library/windows/apps/hh453377.aspx
http://www.w3.org/TR/css3-flexbox/

467

ms-inline-flexbox (inline). For a complete reference of the other supported properties, see the

Flexible Box (“Flexbox”) Layout documentation:76

CSS Style JavaScript Property

(element.style.)

Values

-ms-flex-align msFlexAlign start | end | center | baseline | stretch

-ms-flex-direction msFlexDirection row | column | row-reverse | column-reverse | inherit

-ms-flex-flow msFlexFlow <direction> <pack> where <direction> is an -ms-flex-

direction value and <pack> is an -ms-flex-pack value.

-ms-flex-order msFlexOrder <integer> (ordinal group)

-ms-flex-pack msFlexPack start | end | center | justify

-ms-flex-wrap msFlexWrap none | wrap | wrap-reverse

As with all styles, Blend is a great tool in which to experiment with different flexbox styles because

you can see the effect immediately. It’s also helpful to know that flexbox is used in a number of places

around WinJS. The ListView control in particular takes advantage of it, allowing more items to appear

when there’s more space. The FlipView uses flexbox to center its items, and the Ratings, DatePicker, and

TimePicker controls all arrange their inner elements using an inline flexbox. It’s likely that your own

custom controls will do the same.

Nested and Inline Grids
Just as the flexbox has both block level and inline models, there is also an inline grid: display: -ms-

inline-grid. Unlike the block level grid, the inline variant allows you to place several grids on the

same line. This is shown in the InlineGrid example for this chapter, where we have three div elements

in the HTML that can be toggled between inline (the default) and block level models:

//Within the activated handler

document.getElementById("chkInline").addEventListener("click", function () {

 setGridStyle(document.getElementById("chkInline").checked);

});

setGridStyle(true);

//Elsewhere in default.js

function setGridStyle(inline) {

 var gridClass = inline ? "inline" : "block";

 document.getElementById("grid1").className = gridClass;

 document.getElementById("grid2").className = gridClass;

 document.getElementById("grid3").className = gridClass;

}

76 If you’re accustomed to the -ms-box* styles for flexbox, Microsoft aligned to the W3C specifications as they existed at

that time for Windows 8 and Internet Explorer 10. As of Windows 8.1 and Internet Explorer 11 and this writing, the [-]ms
prefixes are apparently no longer needed, but they are still what’s recognized by Visual Studio’s IntelliSense, so I’m

showing them as such here.

http://msdn.microsoft.com/library/windows/apps/hh453474.aspx

468

/* default.css */

.inline {

 display: -ms-inline-grid;

}

.block {

 display: -ms-grid;

}

When using the inline grid, the elements appear as follows:

When using the block level grid, we see this instead:

Fonts and Text Overflow
As discussed earlier, typography is an important design element for Store apps, and for the most part

the standard font styles using Segoe UI are already defined in the default WinJS stylesheets. The very

helpful CSS typography JS sample in the Windows SDK compares the HTML header elements and the

win-type-* styles, demonstrating font fallbacks and how to use bidirectional fonts (left to right and

right to left directions).

Speaking of fonts, custom font resources using the @font-face rule in CSS are allowed in Store

apps. For local context pages, the src property for the rule must refer to an in-package font file (that is,

a URI that begins with / or ms-appx:///). Pages running in the web context can load fonts from

remote sources. Blend for Visual Studio 2013 supports this directly. First import a font into your project

http://code.msdn.microsoft.com/windowsapps/typography-JS-sample-e2df9eb4

469

in Blend: right-click a project folder in the Project tab and select Add Existing Item, navigate to your

font file, and press OK. As soon as you do so, Blend will bring up a series of two dialog boxes asking if

you’d like to create an @font-face rule:

Completing these dialogs (such as adding multiple font files in the second dialog) will add the

appropriate CSS to your stylesheet. For a single font it looks like this:

@font-face {

 src: url('/images/assets/JoyCards.ttf') format('truetype');

 font-family: JoyCards;

 font-style: normal;

 font-weight: 500;

 font-stretch: normal;

 font-variant: normal;

}

which makes the font available in the CSS Properties pane alongside all other installed fonts.

Another piece of text and typography is dealing with text that overflows its assigned region. You can

use the CSS text-overflow: ellipsis; style to crop the text with a …, and the WinJS stylesheets

contain the win-type-ellipsis class for this purpose. In addition to setting text-overflow, this class

470

also adds overflow: hidden (to suppress scrollbars) and white-space: nowrap. It’s basically a style

you can add to any text element when you want the ellipsis behavior.

The W3C specification on text overflow, http://dev.w3.org/csswg/css3-ui/#text-overflow, is a helpful

reference as to what can and cannot be done here. One of the limitations of the current spec is that

multiline wrapping text doesn’t work with ellipsis. That is, you can word-wrap with the word-wrap:

break-word style, but it won’t cooperate with text-overflow: ellipsis (word-wrap wins). I also

investigated whether flowing text from a multiline CSS region (see next section) into a single-line

region with ellipsis would work, but text-overflow doesn’t apply to regions. If you want to do the

work, you can use complex CSS approaches or you can just shorten the text and insert ellipses manually

if it spans multiple lines. An MSDN forum post on multiline ellipses shows some options.

For a demonstration of ellipsis and word-wrapping, see the CenteredText example for this chapter.

By default, the example shows ellipsis. To see word wrapping, remove the win-type-ellipsis class

from the divChild element in default.html and add word-wrap: break-word to the .textbox class in

css/default.css.

Multicolumn Elements and Regions

Translating the multicolumn flow of content that we’re so accustomed to in print media has long been

a difficult proposition for web developers. While it’s been easy enough to create elements for each

column, there was no inherent relationship between the content in those columns. As a result,

developers have had to programmatically determine what content could be placed in each element,

accounting for variations like font size or changing the number of columns based on the screen width

or changes in device orientation.

CSS3 provides for doing multicolumn layout within an element (see http://www.w3.org/TR/css3-

multicol). With this, you can instruct a single element to lay out its contents in multiple columns, with

specific control over many aspects of that layout. The specific styles supported for Windows Store apps

(with no pesky little vendor prefixes!) are as follows:

CSS Styles JavaScript Property (element.style.)

column-width and column-count (columns is the shorthand) columnWidth, columnCount, and columns

column-gap, column-fill, and column-span columnGap, columnFill, and columnSpan

column-rule-color, column-rule-style, and column-rule-width

(column-rule is the shorthand for separators between columns)

columnRuleColor, columnRuleStyle, and

columnRuleWidth (columnRule is the shorthand)

break-before, break-inside, and break-after breakBefore, breakInside, and breakAfter

overflow: scroll (to display scrollbars in the container) overflow

The reference documentation for these can be found on Multi-column layout, and Blend, of course,

provides a great environment to explore how these different styles work. If you’re placing a

multicolumn element within a variable-size grid cell, you can set column-width and let the layout

engine add and remove columns as needed, or you can use media queries or JavaScript to set column-

count directly.

http://dev.w3.org/csswg/css3-ui/#text-overflow
http://social.msdn.microsoft.com/Forums/windowsapps/en-US/70786dd7-661c-4b72-b6fd-a318f0595df4/multiline-text-with-ellipses-in-winjs?forum=winappswithhtml5
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://msdn.microsoft.com/library/windows/apps/hh441204.aspx

471

CSS3 multicolumn again only applies to the contents of a single element. While highly useful, it does

impose the limitation of a rectangular element and rectangular columns (spans aside). Certain apps like

magazines need something more flexible, such as the ability to flow content across multiple elements

with more arbitrary shapes, and columns that are offset from one another.

To support irregular columns, CSS Regions (see http://dev.w3.org/csswg/css3-regions/) are

supported in Store apps (see Regions reference). Regions allow arbitrarily (that is, absolutely) positioned

elements like images to interact with inline content.

The key style for a positioned element is the float: -ms-positioned style which should

accompany position: absolute. Basically that’s all you need to do: drop in the positioned element,

and the layout engine does the rest. It should be noted that CSS Hyphenation, yet another module,

relates closely to all this because doing dynamic layout on text immediately brings up such matters.

Fortunately, Store apps support the –ms-hyphens and the -ms-hyphenation-* styles (and their

equivalent JavaScript properties). The hyphenation spec is located at http://www.w3.org/TR/css3-text/;

documentation for Store apps is found on the Text styles reference.

The second part of the story consists of named flows and region chains (which are also part of the

Regions spec). These provide the ability for content to flow across multiple container elements, as

shown in Figure 8-14. Region chains can also allow the content to take on the styling of a particular

container, rather than being defined at the source. Each container, in other words, gets to set its own

styling and the content adapts to it, but commonly all the containers share similar styling for

consistency.

FIGURE 8-14 CSS region chains to flow content across multiple elements.

How this all works is that the source content is defined by an iframe that points to an HTML file

(and the iframe can be in the web or local context, of course). It’s then styled with -ms-flow-into:

<element> (msFlowInfo in JavaScript) where <element> is the id of the first container:

<!-- HTML -->

<iframe id="s1-content-source" src="/html/content.html"></iframe>

<div class="s1-container"></div>

http://dev.w3.org/csswg/css3-regions/
http://msdn.microsoft.com/library/windows/apps/hh453722.aspx
http://www.w3.org/TR/css3-text/
http://msdn.microsoft.com/library/windows/apps/hh453722.aspx

472

<div class="s1-container"></div>

<div class="s1-container"></div>

/* CSS */

#s1-content-source {

 -ms-flow-into: content;

}

Note that -ms-flow-into prevents the iframe content from displaying on its own.

Container elements can be any nonreplaced element—that is, any element whose appearance and

dimensions are not defined by an external resource, such as img—and can contain content between its

opening and closing tabs, like a div (the most common) or p. Each container is styled with -ms-flow-

from: <element> (msFlowFrom in JavaScript) where the <element> is the first container in the flow.

The layout then happens in the order elements appear in the HTML (as above):

.s1-container {

 -ms-flow-from: content;

 /* Other styles */

}

This simple example was taken from the Static CSS regions sample (Windows 8), which also provides

a few other scenarios; the Dynamic CSS regions sample (Windows 8) is also helpful. (Note: these are

Windows 8 samples and will need to be retargeted for Windows 8.1; they were not updated for 8.1, but

they work just fine.) In all cases, though, be aware that styling for regions is limited to properties tha t

affect the container and not the content—content styles are drawn from the iframe HTML source. This

is why using text-overflow: ellipsis doesn’t work, nor will font-color and so forth. But styles like

height and width, along with borders, margin, padding, and other properties that don’t affect the

content can be applied.

What We’ve Just Learned

 Layout that is consistent with Windows design principles—specifically the silhouette and

typography—helps users focus immediately on content rather than having to figure out each

specific app.

 The principle of “content before chrome” allows content to use 75% or more of the display

space rather than 25% as is common with chrome-heavy desktop or web applications.

 An app can create and manage multiple views that can be displayed on separate monitors or

adjacent to one another on the same monitor (in landscape mode).

 The user is always in control of view size and placement. All views can be sized down to 500px

wide by the height of the display, and an app can optionally support a 320px narrow view.

 Every page of an app (including an extended splash screen) can encounter all view sizes, so an

app design must show how those views are handled. Media queries and the Media Query

http://code.msdn.microsoft.com/windowsapps/Static-Regions-sample-b2083043
http://code.msdn.microsoft.com/windowsapps/Dynamic-Regions-sample-9e23d264

473

Listener API, along with window.onresize, can be used to handle view sizing declaratively and

programmatically.

 Apps can specify a preferred orientation in their manifest and also lock the orientation at run

time.

 Handling varying screen sizes is accomplished either through a grid-based adaptive layout or a

fixed layout utilizing CSS transforms to scale of its content.

 The chief concern with pixel density is providing graphics that scale well. This means either

using vector graphics or providing scaled variants of each raster graphic.

 Pannable HTML sections can use snap points to automatically stop panning at particular

intervals within the content and can use railing to limit panning to one dimension at a time.

Snap points are also available for zooming.

 The WinJS.UI.Hub control supports creating a home or hub page of an app with varied and

content that does not come from a single collection. Straight HTML/CSS layout can also be used

to achieve this.

 Windows Store apps can take advantage of a wide range of CSS 3 options, including the grid,

flexbox, transforms, multicolumn text, and regions. The CSS grid is a highly useful mechanism

for adaptive page-level layout, and it can also be used inline. The CSS flexbox is most useful for

inline content, though it has uses at the page level as well, as for centering content vertically

and horizontally.

474

Chapter 9

Commanding UI

For consumers coming anew to Windows 8, Windows 8.1, and Windows Store apps, one of their first

reactions might be “Where are the menus? Where is the ribbon? How do I tell this app to do

something with the items I selected from a list?” This will be a natural response until users become

more accustomed to where commands live, giving another meaning, albeit a mundane one, to the

dictum “Blessed are those who have not seen, and yet believe!”

With the design principle of “content before chrome,” UI elements that exist solely to invoke actions

and don’t otherwise contain meaningful content fall into the category of “chrome.” As such, they are

generally kept out of sight until needed, as are system-level commands like the Charms bar. The user

indicates his or her desire for those commands through an appropriate gesture. A swipe on the top or

bottom edge of the display, a right mouse button click, or the Win+Z key combination brings up app-

specific commands at the top and bottom. A swipe on the left edge of the display, a mouse click on the

upper left corner, or Win+Tab allows for switching between apps. And a swipe on the right edge of the

display, a mouse click on the upper-right or lower-right corner, or Win+C reveals the Charms bar.

(Win+Q, Win+H, and Win+i open the Search, Share, and Settings charms directly.) An app responds to

the different charms through particular contracts, as we’ll see in a number of the chapters that follow.

App-specific commands, for their part, are provided through an app bar control: WinJS.UI.AppBar.

In many ways, the app bar is the equivalent of a menu and ribbon for Windows Store apps, because

you can create all sorts of UI within it and even show menu elements. Menus, supplied by the

WinJS.UI.Menu control, can also pop up from specific points on the app’s main display, such as a

menu attached to a header. There is also a special case app bar for navigation: WinJS.UI.NavBar.

The app/nav bar and menus are specific instances of the more generic WinJS.UI.Flyout control,

which is used directly for messages or actions that the user can cancel or ignore; such flyouts are

dismissed simply by clicking or tapping outside the flyout’s window. (This is like pressing a Cancel

button.) For important messages that require action—that is, where the user must choose between a

set of options—apps employ Windows.UI.Popups.MessageDialog. Dialog boxes are a familiar

concept from the world of desktop applications and have long been used for co llecting all kinds of

information and adjusting app settings. In Windows Store app design, however, dialog boxes are used

only to ask a question and get a simple answer, or just to inform the user of some condition that did

not arise directly from user interaction. Settings are specifically handled through the Settings charm, as

we’ll see in Chapter 10, “The Story of State, Part 1.”

An important point with all of these command controls is that they don’t participate in page layout:

they instead “fly out” and remain on top of the current page. This means we thankfully don’t need to

worry about their impact on layout…with one small exception that I’ll keep secret for now.

475

To begin with, though, let’s take a step back to think about an app’s commands as a whole and

where those commands are ideally placed.

Where to Place Commands

The placement of commands is really quite central to app design. Unlike the guidelines—or lack

thereof!—for desktop application commands, which has resulted in quite a jumble, the Windows

Developer Center offers two rather extensive topics on this subject: Commanding design and Laying

out your UI. These are must-reads for any designer working on an app, because they describe the

different kinds of commanding UI and how to gain the best smiling accolades from Windows design

pundits. These are also good topics for developers because they can give you some idea of what you

might expect from your designers. Let’s review that guidance, then, as an introductory tour to the

various options:

 The user should be able to complete their most important scenarios using just the app canvas,

so commands that are essential to a workflow should appear directly on-screen. The overall

purpose here is to minimize the distraction of unnecessary commands. Nonessential commands

should be kept out of view, except for navigation options where a single navigation command

uses a forward chevron (below left) and those with multiple options use a down chevron and a

drop-down menu (below right):

 Use Charms for common app commands where possible. That is, instead of supplying individual

commands to share with specific targets such as email apps, your contacts, social network apps,

and the like, use the Share charm. Instead of supplying your own Print commands, rely on the

Device charm. And instead of creating pages within your navigation hierarchy for app settings,

Help, About, permissions, license agreements, privacy statements, and login/account

management, simplify your life and use the Settings charm! (Refer also to “Sidebar: Logins and

License Agreements.”) Examples of the charms are shown in the image below, which al so

illustrates that many app commands can leverage the Charms bar, which means less clutter in

the rest of your commanding UI. Again, we’ll cover how to respond to Charms events in later

chapters.

An exception to this guidance for charms is Search, which typically is placed on the app canvas

with the WinJS.UI.SearchBox control, but an app can also use the Search contract to work

http://msdn.microsoft.com/library/windows/apps/hh761499
http://msdn.microsoft.com/library/windows/apps/hh465304.aspx
http://msdn.microsoft.com/library/windows/apps/hh465304.aspx

476

with the Search Charm. We’ll learn about search in Chapter 15, “Contracts.”

 Commands that can’t be placed in Charms and don’t need to be on the app canvas are then

placed within the nav bar and app bar, as shown below in the Travel app. Both bars are invoked

together by swiping in from either the top or bottom edges and are the closest analogies to

traditional menus:

 The top bar should contain navigation commands.

 The bottom app bar contains all other commands that are sensitive to the context or

selection, as well as global (nonselection) commands. Context and global commands are

placed on different sides of the app bar.

 App bar and nav bar commands can display menus to group related commands to reduce

clutter; below, the Destinations button in the nav bar opens up the secondary list.

477

 Context menus can provide specific commands for particular content or a selection. For

example, selected text typically provides a context menu for clipboard commands, as shown

here in the Mail app.

 Confirmations and other questions (including collecting information) that you need to display in

response to a user action should use a flyout control; see Guidelines and checklist for Flyouts.

Tapping or clicking outside the control (or pressing ESC) is the same as canceling. Here’s an

example from the OneDrive app when using the Delete button:

 For blocking events that are not related to a user command but that affect the whole app, use a

message dialog. A message dialog disables the rest of the app until you pay attention to it! A

good example of this is a loss of network connectivity, where the user needs to be informed

that some capabilities may not be available until connectivity is restored. User consent prompts

for capabilities like geolocation, as shown below from the Maps app, is another place you see

http://msdn.microsoft.com/library/windows/apps/hh465341

478

message dialogs. Note that a message dialog is used only when the app is in the foreground.

Toast notifications, as we’ll see in Chapter 16, “Alive with Activity,” are how background apps

and tasks get the user’s attention.

 Finally, other errors that don’t require user action can be displayed either inline (on the app

canvas) or through flyouts. See Laying out your UI: errors for full details; we’ll see some

examples later on as well.

Where the app bar (on the bottom) is concerned, it’s also important to organize your commands

into sets, as this streamlines implementation as we’ll see in the next section. For full guidance I

recommend Guidelines or app bars and Commanding Design in the documentation, which provide

many specifics on placement, spacing, and grouping. That guidance can be summarized as follows:

 First, make two groups of commands: one with those commands that appear throughout the

entire app, regardless of context, and another with those that show only on certain pages. The

app bar control is fairly simple to reconfigure at run time for different groups.

 Next, create command sets, such as those that are functionally related, those that toggle view

types, and those that apply to selections. Remember that an app bar command can display a

popup menu, as shown below, to provide a list of options and/or additional controls, including

longer labels, drop-down lists, checkboxes, radiobuttons, and toggle switches. In this way you

can combine closely related commands into a single one that gets more room to play than its

little space on the app bar proper.

 For placement, put persistent commands on the right side of the app bar and the most

common context-specific commands on the left. After that, populate additional commands

toward the middle. This recommendation comes from the ergonomic realities of human hands:

fingers and thumbs—even on the largest hands of basketball players!—grow only so long and

can reach only so far on the screen without having to move one’s hand. The most commonly

used commands are best placed nearest to where a person’s thumbs will be when holding a

http://msdn.microsoft.com/library/windows/apps/hh465304.aspx#errors
http://msdn.microsoft.com/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/library/windows/apps/hh761499.aspx

479

device, as indicated in the image below (from the Touch interaction design topic in the docs).

Those spots are easier to reach (especially by those of us that can’t grip a large ball with one

hand!) and thus make the whole user experience more comfortable.

 The nav bar and app bar are always available in all views, regardless of size; in narrower views

you can limit app bar commands to around 10 so that they fit into one or two rows, and also

omit labels and tighten up the hit targets. The WinJS app bar does this automatically.

 Know too that the app bar is not limited to circular command buttons: you can create whatever

custom layout you like, which is how the nav bar is implemented. With any custom layout, make

sure that your elements are appropriately sized for touch interaction. More on this—including a

small graphic of the aforementioned finger of a basketball player—can again be found on

Guidelines for app bars as well as Touch interaction design under “Touch targets.”

Sidebar: Logins and License Agreements

As noted above, Microsoft recommends that login/account management and license

agreements/terms-of-use pages are accessed through the Settings charm, where an app adds

relevant commands to the Settings pane that appears when the charm is invoked. These

commands invoke subsidiary pages with the necessary controls for each functions. Of course,

sometimes logins and license agreements need some special handling. For example, if your app

requires a login or license agreement on startup, such controls can be shown on the app’s first

page, through the Web Authentication Broker (see Chapter 4, “Web Content and Services”), or in

enterprise scenarios through the Credential Picker UI (see Appendix C, “Additional Networking

Topics”). If the user provides a login and/or agrees to the terms of service, the app can continue

to run. Otherwise, the app should show a page that indicates that a login or agreement is

necessary to do something more interesting than stare at error messages.

If a login is recommended but not required, perhaps to enable additional features, you can

place those controls directly on the canvas. When the user logs in, you can replace those controls

with bits of profile information (user name and picture, for example, as on the Windows Start

screen). If, on the other hand, a login is entirely optional, keep it within Settings.

http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture
http://msdn.microsoft.com/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx

480

In all cases, commands to view the license agreement, manage one’s account or profile, and

log in or out should still be available within Settings. Other app bar or on-canvas commands can

invoke Settings programmatically, as we’ll see in Chapter 10.

The App Bar and Nav Bar

After placing essential commands on the app canvas, most of your app’s commands will be placed in

the app bar and navigation-specific commands in the top nav bar. Again, both bars are automatically

brought up in response to various user gestures, such as a top or bottom edge swipe, Win+Z, or a right

mouse button click. Whenever you perform one of these gestures, Windows looks for suitable controls

on the current page and invokes them—you don’t need to process any input events yourself. (Similarly,

a click/tap outside the control or the ESC key dismisses them.)

Tip To prevent the app/nav bar from appearing, you can do one of two things. First, to prevent an

app bar or nav bar from appearing at all (for any gesture), set the control’s disabled property to true.

Second, if you want to prevent it for, say, a right-click on a particular element (such as a canvas), listen

to the contextmenu (right click) event for that element and call eventArgs.preventDefault() within

your handler.

For apps written in HTML and JavaScript, the app bar control is implemented as a WinJS control,

WinJS.UI.AppBar, and the nav bar with WinJS.UI.NavBar. As with all other WinJS controls, you

declare either or both controls in HTML and instantiate them with a call to WinJS.UI.process or

WinJS.UI.processAll. For a first example, we don’t need to look any farther than some of the Visual

Studio/Blend project templates like the Grid App project, where a placeholder app bar is included in

default.html (initially commented out):

<div id="appbar" data-win-control="WinJS.UI.AppBar">

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmd', label:'Command', icon:'placeholder'}"></button>

</div>

The super-exciting result of this markup, using the WinJS ui-dark.css stylesheet, is as follows:

Because the app bar is declared in default.html, which is the container for all other page controls,

this same app bar will apply to all the pages in the app. With this approach you can declare all your

commands within a single app bar and assign different classes to the commands that allow you to

easily show and hide command sets as appropriate for each page. This also centralizes those

commands that appear on multiple pages, and you can wire up event handlers for them in your app’s

primary activation code (such as that in default.js).

Alternately, you can declare app/nav bars within the markup for individual page controls. Because

http://msdn.microsoft.com/library/windows/apps/br229670.aspx
http://msdn.microsoft.com/library/windows/apps/dn301893.aspx

481

the controls will be in the DOM, the Windows gestures will invoke it on each particular page. In the

Grid App project, for example, you can move the markup above from default.html into

groupedItems.html, groupDetail.html, and itemDetail.html with whatever modifications you like for

each page. This might be especially useful if your app’s pages don’t share many commands in common.

In these cases, each page’s ready method should take care of wiring up the commands on its

particular app/nav bars. Note also that you can add handlers within a page’s ready method even for

central app/nav bars; it’s just a matter of calling addEventListener on the appropriate child element

within those controls. If it’s in the DOM, you can add a listener!

Let’s look now at how all this works through the HTML AppBar control sample and the HTML

NavBar control sample. We’ll look at app bars first, starting with the basics and the standard command-

oriented configuration; then we’ll look at how to display menus for some of those commands and see

how to create custom layouts as is used for a top navigation bar. The WinJS NavBar control, in fact, is a

derivative of a custom layout app bar, so we’ll come to that at the end of this section.

Hint Technically speaking, you can declare as many app/nav bars as you want in whatever pages you

want, and they’ll all be present in the DOM. However, the last one that gets processed in your markup

will be the one that’s topmost in the z-index by default and therefore the one to receive events.

Windows does not make any attempt to combine app/nav bars, so because page controls are inserted

into the middle of a host page like default.html, an app bar in default.html that’s declared after the

page control host element will appear on top. At the same time, if the page control’s nav bar is larger

than that in default.html, a portion of it might be visible. The bottom line: declare app/nav bars either

in the host page or in a page control, but not both.

App Bar Basics and Standard Commands
As I just mentioned, an app bar can be declared once for an app in a container page like default.html

or can be declared separately for each individual page control. The HTML AppBar control sample does

the latter, because it provides very distinct app bars for its various scenarios.

Scenario 1 of the sample (html/create-appbar.html) declares an app bar with four commands and a

separator:

<div id="createAppBar" data-win-control="WinJS.UI.AppBar" data-win-options="">

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdAdd',

 label:'Add', icon:'add', section:'global', tooltip:'Add item'}"></button>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdRemove',

 label:'Remove', icon:'remove', section:'global', tooltip:'Remove item'}"></button>

 <hr data-win-control="WinJS.UI.AppBarCommand" data-win-options="{type:'separator',

 section:'global'}" />

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdDelete',

 label:'Delete', icon:'delete', section:'global', tooltip:'Delete item'}"></button>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdCamera',

 label:'Camera', icon:'camera', section:'selection', tooltip:'Take a picture'}"></button>

</div>

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9

482

This appears in the app as follows, using the WinJS ui-light.css stylesheet, in which we can also see a

tooltip, a focus rectangle, and a hover effect on the Add command (I placed my mouse over the

command to see all this):

In the markup, the app bar control is declared like any other WinJS control (this is becoming a

habit!) using some containing element (a div) with data-win-control="WinJS.UI.AppBar". Each

page in this sample is loaded with WinJS.UI.Pages.render that conveniently calls WinJS.UI.-

processAll to instantiate the app bar. (It is also allowable, as with other controls, to create an app bar

programmatically using the new operator.)

This example doesn’t provide any specific options for the app bar in its data-win-options, but

there are a number of possibilities:

 disabled, if set to true, creates an initially disabled app bar; the default is false.

 layout (a string) can be commands (the default) or custom, as we’ll see in the “Custom App

Bars” section later.

 placement (a string) can be either top or bottom (the default). The top option is the default for

a nav bar.

 sticky changes the light-dismiss behavior of the app bar. With the default of false, the app

bar will be dismissed when you click or tap outside of it. If this is set to true, the app bar will

stay on the screen until either you change sticky to false and tap outside or you

programmatically relieve the control from its duties with its hide method.

So, if you wanted a sticky nav bar with a custom layout to appear at the top of the screen, you’d use

markup like this:

<div id="navBar" data-win-control="WinJS.UI.AppBar"

 data-win-options="{layout:'custom', placement:'top', sticky: true}">

Note that having two app bars in a page with different placement values will not interfere with each

other. (Again, the NavBar derives from the AppBar and uses a custom layout and top placement by

default, so you don’t have use markup like the above.) Also, the sticky property for each placement

operates independently. So if you want to implement an appwide top nav bar, you could declare that

within default.html (or whatever your top-level page happens to be), and declare bottom app bars in

each page control. Again, they’re all just elements in the DOM!

As you can see, an app bar control can contain any number of child elements for its commands,

each of which must be a WinJS.UI.AppBarCommand control within a button or hr element or else the

app bar won’t instantiate.

http://msdn.microsoft.com/library/windows/apps/hh700497.aspx

483

The properties and options of an app bar command are as follows:

 id The element identifier, which you can use with document.getElementById or the app

bar’s getCommandById method to wire up click handlers.

 type (a string) One of button (the default), separator (which creates a vertical bar), flyout

(which triggers a popup specified with the flyout property; see “Command Menus” later),

toggle (which creates a button with on/off states), and content (which allows for arbitrary

controls as commands; see “Custom App Bars” later on). With toggle, the selected property of

a command can also be used to set the initial value and to retrieve the state at run time.

 label The text shown below for the command button. You always want to use this instead of

providing text for the button element itself, because such text won’t be aligned properly in the

control. (Try it and you’ll see!) The app bar will also automatically hide labels in narrow views.

Also, note that this property, along with tooltip below, is often localized using data-win-res

attributes. We’ll cover this in Chapter 19, “Apps for Everyone, Part 1,” but for the time being you

can look at the html/localize-appbar.html file in the sample (scenario 8) to see how it works.

 tooltip The (typically localized) tooltip text for the command, using the value of label as

the default. Note that this is just text that gets passed to the element’s title attribute, so

using a full HTML-based WinJS.UI.Tooltip control here is not supported.

 icon Specifies the glyph that’s shown in the command. Typically, this is one of the strings

from the WinJS.UI.AppBarIcon enumeration, which contains 150 different options from the

Segoe UI Symbol font. If you look in the ui.strings.js resource file of WinJS you can see how

these are defined using codes like \uE109—the enumeration, in fact, simply provides friendly

names for character codes \uE100 through \uE1E9. But you’re not limited by these. For one

thing, you can use any other Unicode escape value '\uXXXX' from the Segoe UI Symbol font.

(Note the single quotes.) You can also use a different font or use your own graphics as

described in “Custom Icons” later.77

 section (a string) Controls the placement of the command. For left-to-right languages (such

as English), the default value of selection places the command on the left side of the app bar

and global places it on the right. For right-to-left languages (such as Hebrew and Arabic), the

sides are swapped. These simple choices encourage consistent placement of these two

categories of commands (and using any other random value here defaults to selection). This

trains users’ eyes to look for the most constant commands on one side and selection-specific

commands on the other. Note that the commands in each section are laid out left-to-right (or

right-to-left) in the order they appear in your markup.

77 Three notes: First, within data-win-options the Unicode escape sequence can also be in the HTML form of &#xNNNN; I

prefer the JSON form because it has less ceremony and is less prone to error. Second, you can use the Character Map
desktop applet (charmap.exe) to examine all the symbols within any particular font. Third, if you need to localize an icon,

you can specify the icon property in the data-win-res string because the icon property ultimately resolves to a string.

http://msdn.microsoft.com/library/windows/apps/hh770557.aspx

484

 firstElementFocus, lastElementFocus For commands of type content, gets or sets the

element within that command’s DOM tree that should receive the focus with the Home and End

keys, respectively, and the arrow keys.

 onclick Can be used to declaratively specify a click handler; remember that any function

named here in markup must be marked safe for processing. (See Chapter 5, “Controls and

Control Styling,” in the “Strict Processing and processAll Functions” section.) Click handlers

can also be assigned programmatically with addEventListener, in which case the mark is not

needed.

 disabled Sets the disabled state of a command if true; the default is false.

 extraClass Specifies one or more CSS classes that are attached to the command. These can

be used to individually style command controls as well as to create sets that you can easily show

and hide, as explained in the “Showing, Hiding, Enabling, and Updating Commands” section

later.

If you want to generate commands at run time (not using the content type), you can do so by

setting the app bar’s commands property with an array of JSON AppBarCommand descriptors any time the

app bar isn’t visible (that is, when its hidden property is true). An array of such descriptors for the

scenario 1 app bar in the sample would be as follows (this is provided in the modified sample included

with this chapter; see js/create_appbar.js):

//Set the app bar commands property to populate it

var commands = [

 { id: 'cmdAdd', label: 'Add', icon: 'add', section: 'global', tooltip: 'Add item' },

 { id: 'cmdRemove', label: 'Remove', icon: 'remove', section: 'global',

 tooltip: 'Remove item' },

 { type: 'separator', section: 'global' },

 { id: 'cmdDelete', label: 'Delete', icon: 'delete', section: 'global',

 tooltip: 'Delete item' },

 { id: 'cmdCamera', label: 'Camera', icon: 'camera', section: 'selection',

 tooltip: 'Take a picture' }

];

appBar.commands = commands;

When the app bar is created, it will iterate through the commands array and create AppBarCommand

controls for each item. If type isn’t specified or if it’s set to button, flyout, or toggle, then the

command is a button element. A type of separator creates an hr element. The content type will

create an empty div. Note that you should localize the label, tooltip, and possibly icon fields in

each command declaration rather than using explicit text as shown here.

You can also use such an array directly within declarative markup, but this form cannot be localized

and is thus discouraged (though I include comments that show how in the modified sample). At the

same time, because the value of commands in markup is just a string, you can assign its value through

data binding with an attribute like this in the app bar element:

data-win-bind="{ winControl.commands: Data.commands }"

485

where Data.commands can refer to a localized data source. In this case Data must be a global variable

(like a namespace), and you must call WinJS.Binding.processAll on the app bar element (with no

specific context) within a completed handler for WinJS.UI.processAll to make sure the app bar has

been created first. Alternately, you can pass Data as the second argument to Binding.processAll and

just use commands for the source in the data-win-bind string.

Note also that this approach does not work with the data-win-res attribute (as we’ll see in Chapter

19 and which is also shown in scenario 8 of the sample) because the resource string won’t be converted

to JSON as part of the resource lookup. Attempting to play such a trick would be more trouble than it’s

worth anyway, so it’s best to use either the HTML declarative form or a localized commands array at

run time.

Also, be aware that commands is a rare example of a write-only property: you can set it, but you

cannot retrieve the array from an app bar. The app bar uses this array only to configure itself and the

array is discarded once all the elements are created in the DOM. At run time, however, you can use the

app bar’s getCommandById method to retrieve a particular command element.

Command Events

Speaking of the command elements, an app bar’s AppBarCommand controls (other than separators) are

all just button elements and thus respond to the usual events. Because each command element is

assigned the id you specify, you can use getElementById as a prelude to addEventListener, but the

more direct means is the app bar’s getCommandById method. In scenario 1 of the HTML App Bar

control sample, for instance, this code appears in the page’s ready method (js/create-appbar.js):

var appBar = document.getElementById("createAppBar").winControl;

appBar.getCommandById("cmdAdd").addEventListener("click", doClickAdd, false);

appBar.getCommandById("cmdRemove").addEventListener("click", doClickRemove, false);

appBar.getCommandById("cmdDelete").addEventListener("click", doClickDelete, false);

appBar.getCommandById("cmdCamera").addEventListener("click", doClickCamera, false);

Of course, if you specify a handler for each command’s onclick property in your markup (with each

one having its supportedForProcessing property true), you can avoid all of this entirely!

It should also be obvious that you can wire up events from anywhere in your app, and you can

certainly listen to any other events you want to, especially when doing custom app bar layouts with

other UI. Also, know that the click event conveniently handles touch, mouse, and keyboard input

alike, so you don’t need to do any extra work there. In the case of the keyboard, by the way, the app

bar lets you move between commands with the Tab key and the arrow keys; Enter or Spacebar will

invoke the click handler.

App Bar Events and Methods

In addition to the app bar’s getCommandById method we just saw, the app bar has several other

methods and a handful of events. First, the methods:

 show displays an app bar if its disabled property is false; otherwise the call is ignored.

486

 hide dismisses the app bar.

 showCommands, hideCommands, and showOnlyCommands are used to manage command sets as

described in the next section, “Showing, Hiding, Enabling, and Updating Commands.”

As for events, there are a total of four that are common to the overlay-style UI controls in WinJS

(that is, those that don’t participate in layout):

 beforeshow occurs before a flyout becomes visible. For an app bar, this is when you could set

the commands property depending on the state of the app at the moment or enable/disable

specific commands.

 aftershow occurs immediately after a flyout becomes visible. For an app bar, if its sticky

property is true, you can use this event to adjust the app’s layout if you have a scrolling

element that might be partially covered otherwise—see below.

 beforehide occurs before a flyout is hidden. For an app bar, you’d use this event to hide any

supplemental UI created with the app bar and to readjust layout around a sticky app bar.

 afterhide occurs immediately after a flyout is hidden. For an app bar, this again could be a

time to readjust the app’s layout.

You can find an example of using the show method along with the aftershow and beforehide

events in scenario 5 of the HTML AppBar control sample.

The matter with app layout identified above (and what I kept secret in the introduction to this

chapter) arises because an app bar overlays and obscures the bottom portion of the page. If that page

contains a scrolling element, an app bar with sticky set to true will, for mouse users, partly cover a

vertical scrollbar and will make a horizontal scrollbar wholly inaccessible. If you’re using a sticky app bar

with such a page—and because Windows Store policy does not look kindly upon discrimination against

mouse users!—you should use aftershow to reduce the scrolling element’s height by the

offsetHeight or clientHeight of the app bar control, thereby keeping the scrollbars accessible.

When the app bar is hidden and afterhide fires, you can then readjust the layout. Always use a

runtime value like clientHeight in these calculations as well, because it accommodates different view

sizes and because the height of an app bar can vary with the number of commands and with view size.

To show this, scenario 7 of the sample has a horizontally panning ListView control that normally

occupies most of the page; a scrollbar will appear along the very bottom when the mouse is used. If

you select an item, the app bar is made sticky and then shown (see the doSelectItem function in

js/appbar-listview.js):

appBar.sticky = true;

appBar.show();

The show method triggers both beforeshow and aftershow events. To adjust the layout, the

appropriate event to use is aftershow, which makes sure the height of the app bar is valid. The sample

handles this event in function called doAppBarShow (also in js/appbar-listview.js):

487

function doAppBarShow() {

 var listView = document.getElementById("scenarioListView");

 var appBarHeight = appBar.offsetHeight;

 // Move the scrollbar into view if appbar is sticky

 if (appBar. sticky) {

 var listViewTargetHeight = "calc(100% - " + appBarHeight + "px)";

 var transition = {

 property: 'height',

 duration: 367,

 timing: "cubic-bezier(0.1, 0.9, 0.2, 0.1)",

 to: listViewTargetHeight

 };

 WinJS.UI.executeTransition(listView, transition);

 }

}

Note The SDK sample uses beforeshow instead of aftershow, with the result that sometimes the app

bar still has a zero height and the layout is not adjusted properly. To guarantee that the app bar has its

proper height for such calculations, use the aftershow event as demonstrated in the modified sample

included with this chapter’s companion content.

Here you can see that the appBar.offsetHeight value is simply subtracted from the ListView’s

height with an animated transition. (See Chapter 14, “Purposeful Animations.”) The operation is

reversed in doAppBarHide where the ListView height is simply reset to 100% with a similar animation.

In this case, the event handler doesn’t depend on the app bar’s height at all, so it can use either

beforehide or afterhide events. If, on the other hand, you need to know the size of the app bar for

your own layout, use the beforehide event.

As an exercise, run scenario 8 of the SDK sample. Notice how the bottom part of the text region’s

vertical scrollbar is obscured by the sticky app bar. Try taking the code from scenario 7 to handle

aftershow and beforehide to adjust the text area’s height to accommodate the app bar and keep the

scrollbar completely visible (they show and hide the app bar to see the scrollbar adjust). And no, I won’t

be grading you on this quiz: the solution is provided in the modified sample with this chapter.

Showing, Hiding, Enabling, and Updating Commands

In the previous section I mentioned using the beforeshow event to configure an app bar’s commands

property such that it contains those commands appropriate to the current page and the page state.

This might include setting the disabled property for specific commands that are, for example,

dependent on selection state. This can be done through the commands array, in markup, or again by

using the app bar’s getCommandById method:

appBar.getCommandById("cmdAdd").disabled = true;

Let me reiterate that the commands that appear on an app bar are specific to each page; it’s not

necessary to try to maintain a consistent app bar structure across pages. That is, if a command would

always be disabled for a particular page, don’t bother showing it at all. What’s more important is that

the app bar for a page is consistent, because it’s a really bad idea to have commands appea r and

488

disappear depending on the state of the page. That would leave users guessing at how to get the page

in the right state for certain commands to appear!

Speaking of changes, it is entirely allowable to modify or update a command at run time, which can

eliminate the need to create multiple commands that your alternately show or hide. Because each

command on the app bar is just a DOM element, you can really make any changes you want at any

time. An example of this is shown in scenario 3 of the sample where the app bar is initially created with

a Play button (html/custom-icons.html):

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdPlay', label:'Play', icon:'play', tooltip:'Play this song'}">

</button>

This button’s click handler uses the doClickPlay function in js/custom-icons.js to toggle between

states:

var isPaused = true;

function doClickPlay() {

 var cmd = appBar.getCommandById('cmdPlay');

 if (!isPaused) {

 isPaused = true; // paused

 cmd.icon = 'play';

 cmd. label = 'Play';

 cmd. tooltip = 'Play this song';

 } else {

 isPaused = false; // playing

 cmd. icon = 'pause';

 cmd. label = 'Pause';

 cmd. tooltip = 'Pause this song';

 }

}

You can use something similar with a command to pin and unpin a secondary tile, as we’ll see in

Chapter 16. And again, the button is just an element in the DOM and updating any of its properties,

including styles, will update the element on the screen once you yield control to the UI thread.

Now using beforeshow for the purpose of adjusting your commands is certainly effective, but you

can accomplish the same goal in other ways. The strategy you use depends on the architecture of your

app as well as personal preference. From the user’s point of view, so long as the appropriate commands

are available at the right time, it doesn’t really matter how the app gets them there!

Thinking through your approach is especially important when dealing with narrow views, because

the recommendation is that you limit your commands so that the app bar fits on one or two rows. This

means that you will want to think through how to adjust the app bar for different view sizes, perhaps

combining multiple commands into a popup menu on a single button.

One approach is to have each page in the app declare and handle its own app bar, which includes

pages that create app bars on the fly within their ready methods. This makes the relationship between

489

the page content and the app bar very clear and local to the page. The downside is that common

commands—those that appear on more than one page—end up being declared multiple times,

making them more difficult to maintain and certainly inviting small inconsistencies like ants to sugar.

Nevertheless, if you have very distinct content in your various pages and few common commands, this

approach might be the right choice. It is also necessary if your app uses multiple top-level pages rather

than one page with page controls, as we discussed in Chapter 3, “App Anatomy and Performance

Fundamentals,” because each top-level HTML page has to declare its own app bar anyway.

For apps using page controls, another approach is to declare a single app bar in the top-level page

and set its commands property within each page control’s ready method. The drawback here is that

because commands is a write-only property, you can’t declare your common commands in HTML and

append your page-specific commands later on, unless you go through the trouble of creating each

individual AppBarCommand child element within each ready method. This kind of code is both tedious

to write and to maintain.

Fortunately, there is a third approach that allows you to define a single app bar in your top-level

page that contains all of your commands, for all of your pages, and then selectively show certain sets of

those commands within each page’s ready method. This is the purpose of the app bar’s showCommands,

hideCommands, and showOnlyCommands methods.

All three of these methods accept an array of commands, which can be either AppBarCommand

objects or command id’s. showCommands makes those commands visible and can be called multiple

times with different sets for a cumulative result. On the opposite side, hideCommands hides the

specified commands in the app bar, again with cumulative effects. The basic usage of these methods is

demonstrated in scenario 5 of the sample.

showOnlyCommands then combines the two, making specific commands visible while hiding all

others. If you declare an app bar with all your commands, you can use showOnlyCommands within each

page’s ready method to quickly and easily adjust what’s visible. The trick is obtaining the appropriate

array to pass to the method. You can, of course, hard-code commands into specific arrays, as scenario 5

of the sample does for showCommands and hideCommands. However, if you’re thinking that this is A

Classic Bad Idea, you’re thinking like I’m thinking! Such arrays mean that any changes you make to app

bar must happen in both HTML and JavaScript file, meaning that anyone having to maintain your code

in the future will surely curse your name!

A better path to happiness and long life is thus to programmatically obtain the necessary arrays

from the DOM, using each command’s extraClass property to effectively define command sets. This

enables you to call querySelectorAll to retrieve those commands that belong to a particular set.

Consider the following app bar definition, where for the sake of brevity I’ve omitted properties like

label, icon, and section, as well as any other styling classes:

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options="{

 commands:[

 {id:'home', extraClass: 'menuView gameView scoreView'},

 {id:'play', extraClass: 'menuView gameView scoreView'},

490

 {id:'rules', extraClass: 'menuView gameView scoreView'},

 {id:'scores', extraClass: 'menuView gameView scoreView'},

 {id:'newgame', extraClass: 'gameView gameNarrowView'},

 {id:'resetgame', extraClass: 'gameView gameNarrowView'},

 {id:'loadgame', extraClass: 'gameView gameNarrowView'},

 {id:'savegame', extraClass: 'gameView gameNarrowView'},

 {id:'hint', extraClass: 'gameView gameNarrowView'},

 {id:'timer', extraClass: 'gameView gameNarrowView'},

 {id:'pause', extraClass: 'gameView gameNarrowView'},

 {id:'replaygame', extraClass: 'scoreView'},

 {id:'resetscores', extraClass: 'scoreView'}

]}">

</div>

In the extraClass properties we’ve defined four distinct sets: menuView, gameView, gameNarrow-

View, and scoreView. With these in place, a simple call to querySelectorAll provides exactly the array

we need for showOnlyCommands. A generic function like the following can then be used from within

each page’s ready method (or elsewhere) to activate commands for a particular view:

function updateAppBar(view) {

 var appbar = document.getElementById("appbar").winControl;

 var commands = appbar.element.querySelectorAll("." + view); // The . is essential

 appbar.showOnlyCommands(commands);

}

With this approach, credit for which belongs to my colleague Jesse McGatha, the app bar is wholly

defined in a single location, making it very easy to manage and maintain.

App Bar Styling
The extraClass property for commands can, of course, be used for styling purposes as well as

managing command sets. It’s very simple: whatever classes you specify in extraClass are added to the

AppBarCommand controls created for the app bar.

There are also seven WinJS style classes utilized by the app bar, as described in the following table,

where the first two apply to the app bar as a whole and the other five to the individual commands:

CSS class (app bar) Description
win-appbar Styles the app bar container; typically this style is used as a root for more specific selectors.

win-commandlayout Styles the app bar commands layout; apps generally don’t modify this style at all.

win-reduced Automatically added when the app bar is too narrow to accommodate full size commands;

this has the effect of removing labels and making the command buttons narrower.

CSS class (commands) Description

win-command Styles the entire AppBarCommand.

win-commandicon Styles the icon box for the AppBarCommand.

win-commandimage Styles the image for the AppBarCommand.

win-commandring Styles the icon ring for the AppBarCommand.

win-label Styles the label for the AppBarCommand.

491

Hint To get an app bar to show up in Blend for Visual Studio, right-click its element in the Live DOM

and select the Activate AppBar menu, which will keep it up for as long as you need it. You can also

invoke it within Interactive Mode and then switch back to Design Mode and it will remain. In Visual

Studio’s DOM Explorer and debugger, on the other hand, an app bar will be dismissed when you

click/tap outside of it. To be able to access it, make it sticky or add a call to show in your page’s

ready method or your app’s activated event.

Generally speaking, you don’t need to override the win-appbar or win-commandlayout styles;

instead, create selectors for a custom class related to these and then style the particular pieces you

need. This can include pseudo-selectors like button:hover, button:active, and so forth.

Scenario 2 of the HTML Appbar Control sample shows many such selectors in action, in this case to

set the background of the app bar and its commands to blue and the foreground color to green (a

somewhat hideous combination, but demonstrative nonetheless).

As a basis, scenario 2 (html/custom-color.html) adds a CSS class customColor to the app bar:

<div id="customColorAppBar" data-win-control="WinJS.UI.AppBar" class="customColor" ...>

In css/custom-color.css it then styles selectors based on .win-appbar.customColor. The following

rules, for instance, set the overall background color, the label text color, and the color of the circle

around the commands for the :hover and :active states:

.win-appbar.customColor {

 background-color: rgb(20, 20, 90);

}

.win-appbar.customColor .win-label {

 color: rgb(90, 200, 90);

}

.win-appbar.customColor button:hover .win-commandring,

.win-appbar.customColor button:active .win-commandring {

 background-color: rgba(90, 200, 90, 0.13);

 border-color: rgb(90, 200, 90);

}

To help accommodate narrow layouts, the app bar automatically checks whether the total width of

all the commands together is greater than the width of the app bar control in whatever view it’s in.

When this happens, it adds the win-reduced class to the app bar (and removes it when the app bar is

again wider). In the WinJS stylesheets, win-reduced hides the labels, shrinks the margins, and

otherwise tightens up the layout. For example, in the modified HTML AppBar control sample in the

companion content, I’ve added a number of extra buttons to scenario 1 so that we can see the effect.

With full size command buttons, the app bar appears like this:

And when win-reduced is in effect, they look like this (same scale):

492

To compare the two sizes, here’s a reduced app bar command (with a color outline) overlaid on the

full size command:

Note For the automatic size reduction to work properly, avoid setting the margin, border, or padding

styles of AppBarCommand elements.

All of this styling, by the way, applies only to the standard command-oriented layout; that is, the

various style classes are those that the AppBar control adds only when using the command layout. If

you’re using a custom layout, the app bar just contains whatever elements you want with whatever

style classes you want, so you just handle styling as you would any other HTML.

Custom Icons

Earlier we saw that the icon property of an AppBarCommand typically comes from the Segoe UI Symbol

font. Although this is suitable for most needs, you might want at times to use a character from a

different font (some of us just can’t get away from Wingdings!) or to provide custom graphics. The app

bar supports both.

To use a different font for the whole app bar, simply add a class to the app bar and create a rule

based on win-appbar:

win-appbar.customFont {

 font-family: "Wingdings";

}

To change the font of a specific command button, add a class to its extraClass property (such as

customButtonFont) and create a rule with the following selector (as used in scenario 1 of the modified

sample that will show if you add extraClass: 'otherFont' to a button):

button.otherFont .win-commandimage {

 font-family: "Wingdings";

}

To provide graphics of your own, do the following for a 100% resolution scale:

 Create a 160x80 pixel PNG sprite image with a transparent background, saving the file with the

.scale-100 suffix in the filename.

493

 This sprite is divided into two rows of four columns—that is, 40x40 pixel cells. The top row is for

the light styling theme, and the bottom is for the dark theme.

 Each row has four icons for the following button states, in this order from left to right: default

(rest), hover, pressed (active), and disabled.

 Each image is centered in its respective 40x40 cell, but remember that a ring will be drawn

around the icon, so generally keep the image in the 20–30 pixel range vertically and

horizontally. It can be wider or taller in the middle areas, of course, where the ring is widest.

For other resolution scales, multiple the sizes by 1.4 (140%) and 1.8 (180%) and use the .scale-140

and .scale-180 suffixes in the image filename.

To use the custom icon, point the command’s icon property to the base image URI (without the

.scale-1x0 suffixes)—for instance, icon: 'url(images/icon.png)'.

Scenario 3 of the HTML Appbar Control sample uses custom icon graphics for an Accept button:

The icon comes from a file called accept.png, which appears something like this—I’ve adjusted the

brightness and contrast and added a border so that you can see each cell clearly:

The declaration for the app bar button then appears as follows (some properties omitted for

brevity):

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdAccept', label:'Accept', icon:'url(images/accept.png)' }">

Note that although the sample doesn’t have variations of the icon for resolution scales, it does

provide variants for high contrast themes, an important accessibility consideration that we’ll come back

to in Chapter 19. For this reason, the button element includes style="-ms-high-contrast-

adjust:none" to override automatic adjustments for high contrast.

494

Command Menus
The next aspect of an app bar we need to explore in a little more depth are those commands whose

type property is set to flyout. In this case the command’s flyout property must identify a

WinJS.UI.Flyout object or a WinJS.UI.Menu control (which is a flyout). As noted before, flyout or

popup menus like this are used when there are too many related commands cluttering up the basic

app bar, or when you need other types of controls that aren’t quite appropriate on the app bar itself.

It’s said, though, that if you’re tempted to use a button labeled “More”, “Advanced”, or “Other Stuff”

because you can’t figure out how to organize the commands otherwise, it’s a good sign that the app

itself is too complex! Seek ways to simplify the app’s purpose so that the app bar doesn’t just become a

repository for randomness.

We’ll be covering flyouts more fully a little later in this chapter, but let’s see how to use one in an

app bar, as demonstrated in scenario 6 of the HTML flyout control sample (not the app bar sample,

mind you!):

In html/appbar-flyout.html of this sample we see the app bar button declared as follows:

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'respondButton', label:'Respond', icon:'edit', type:'flyout',

 flyout:select('#respondFlyout') }">

The respondFlyout element identified here is defined earlier in html/appbar-flyout.html; note that

such an element must be declared prior to the app bar to make sure it’s instantiated before the app bar

is created:

<div id="respondFlyout" data-win-control="WinJS.UI.Menu">

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'alwaysSaveMenuItem',

 label:'Always save drafts', type:'toggle', selected:'true'}"></button>

 <hr data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'separator', type:'separator'}" />

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'replyMenuItem', label:'Reply'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'replyAllMenuItem', label:'Reply All'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3

495

 data-win-options="{id:'forwardMenuItem', label:'Forward'}"></button>

</div>

It should come as no surprise by now that the menu is just another WinJS control, WinJS.UI.Menu,

where its child elements define the menu’s contents. As all these elements are, once again, just

elements in the DOM; their click events are wired up in js/appbar-flyout.js with the ever-present

addEventListener. (By the way, the sample uses document.getElementById to obtain the elements

in order to call addEventListener; you can use the app bar’s getCommandById method instead.)

Each menu item, as you can see, is a MenuCommand object, and we’ll come back to the details later—

for the time being, you can see that those items have an id, a label, and a type, very similar to

AppBarCommand objects.

That’s pretty much all there is to it—the one added bit is that when a menu item is selected, you’ll

want to dismiss the menu and perhaps also the app bar (if it’s not sticky). This is shown in the sample

within js/appbar-flyout.js in a function called hideFlyoutAndAppBar:

function hideFlyoutAndAppBar() {

 document.getElementById("respondFlyout").winControl.hide();

 document.getElementById("appBar").winControl.hide();

}

Custom App Bars

All this time we’ve been looking at the standard commands layout of the app bar, which is of course

the simplest way to use the control. There will be times, however, when the standard commands layout

isn’t sufficient. Perhaps you want to place more interesting controls on the app bar, especial ly custom

controls (like a color selector). For this you have two options.

The first is to place different controls alongside standard command buttons with the app bar’s

layout property set to commands. Here you must still have AppBarCommand controls for each child of

the app bar, but those with type: "content" can contain any elements you’d like, though the root

element must be a div. This way they act like standard commands and participate in keyboard

navigation but aren’t just circles and labels. Scenario 4 of the HTML AppBar control sample provides an

example (html/custom-content.html):

<div id="customContentAppBar" data-win-control="WinJS.UI.AppBar">

 <div data-win-control="WinJS.UI.AppBarCommand" data-win-options="{ id: 'list',

 type: 'content', section: 'selection',

 firstElementFocus: select('.dessertType'), lastElementFocus:select('.dessertType') }">

 <select class="dessertType">

 <option>Baked</option>

 <option>Fried</option>

 <option>Frozen</option>

 <option>Chilled</option>

 </select>

 </div>

 <div tabindex="-1" data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{ id: 'banana', type: 'content', section: 'selection' }">

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9

496

 </div>

 <div data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{ id: 'search', type: 'content', section: 'selection' }">

 <input type="text" value="Search for desserts." />

 </div>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{ id: 'cmdAdd',

 label: 'Add', icon: 'add', tooltip: 'Add a recipe' }"></button>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{ id: 'cmdFavorites',

 label: 'Favorites', icon: 'favorite', tooltip:'Favorites' }"></button>

</div>

The result (combined with a slight bit in css/custom-content.css) is as follows:

The other option is to set the app bar’s layout to custom and place whatever HTML you want within

the app bar control, styling it with CSS, and wiring up whatever events you need in JavaScript. As

mentioned before, the WinJS NavBar control is just an app bar with a custom layout and top

placement; if you implement a navigation bar of your own, you’d do the same.

Scenario 6 of the HTML AppBar control sample provides an example, though in this case the result is

not something I’d recommend for your own app design: it creates a page header and a backbutton

(html/custom-layout.html):

<div id="customLayoutAppBar" data-win-control="WinJS.UI.AppBar" aria-label="Navigation Bar"

 data-win-options="{layout:'custom', placement:'top'}">

 <header aria-label="Navigation bar" role="banner">

 <button id="cmdBack" class="win-backbutton" aria-label="Back"></button>

 <div class="titleArea">

 <h1 class="win-type-xx-large" tabindex="0">

 Page Title

 </h1>

 </div>

 </header>

</div>

The result of this example is as follows (focus rectangles included!):

The point, though, is that a custom layout app bar is essentially nothing more than a container for

whatever arbitrary content you want to place there, and that content is entirely under your control. The

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9

497

app bar in these cases is just taking care of showing and hiding that content at appropriate times and

firing relevant events.

A custom layout app bar is typically what you’d use to implement a completely custom nav bar,

using a placement of top. Before going down that road, however, let’s check out the WinJS NavBar

control that provides a lot of functionality in this department already.

Nav Bar Features
Navigation with page controls, as we know from Chapter 3, is just a matter of calling WinJS.Naviga-

tion.navigate at the appropriate times with the appropriate target page. Assuming there’s some

piece of code like the PageControlNavigator to pick up the navigation events and take care of the

page loading, an app can wire whatever controls it sees fit to navigate calls. This includes a top

placement app bar that can have whatever design you would like to use, typically with a custom layout.

With the flat navigation pattern, this app bar can contain just a horizontally-panning ListView (using

ListLayout) with the relevant pages. With a hierarchical system, on the other hand, the

implementation gets trickier as you want to have one list that opens up a secondary list and potentially

has even a third level of options.

Fortunately, the WinJS NavBar control steps in to support this pattern, which you can see

demonstrated in the inbox Travel app. Let’s see some of the variations to understand what the control

provides for us. For starters, here’s the nav bar at full width:

Tapping the down arrow next to Destinations or Flights opens up the second level in the navigation

hierarchy, where again we see all the options when the screen is wide enough:

Notice how the down arrow by Destinations changed to an up arrow to indicate that this second level

can be collapsed back to its previous state.

So far so good. Now if we resize the app to a narrower view, we’ll clearly need a way to pan the

commands left and right. In this case the NavBar provides panning arrows a’la FlipView (circled on the

right side), as well as page indicators to show where you are in the list (circled in the middle):

http://msdn.microsoft.com/library/windows/apps/dn263196.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx

498

Narrowing the view still further (down to 500px), we see that more indicators appear and that the

flipping arrows appear on both sides of the list:

And we get the same effect on the second level navigation commands when we tap the down arrow

by Destinations:

The WinJS.UI.NavBar control makes it straightforward to implement these kinds of patterns, as

well as vertical layout, by leveraging much of what we already know of the app bar. The NavBar, in fact,

derives directly from the AppBar and thus shares many of the same properties, methods, and events,

499

such as sticky, show/hide, showOnlyCommands, aftershow, etc. As noted before, the NavBar’s default

placement is top, but it also supports bottom (check out Internet Explorer for a bottom navigation bar

design). The layout property, however, is always custom (thus, the commands property is ignored), and

the NavBar adds one event, childrenprocessed, to inform you when the NavBar has constructed itself

fully. This event exists because processing NavBar children is done at “idle” priority, as explained in

Chapter 3: the NavBar isn’t typically visible when the page containing it first appears, so it’s appropriate

to do that processing only after other UI work is complete. Of course, if you invoke the NavBar, it will

reprioritize this processing so that it completes more quickly.

Because the NavBar is a custom layout AppBar, you can place any controls on it that you like. More

often, however, you’ll want collection-like behavior for multiple navigation targets, perhaps with

multiple levels. For this there’s a special control, the WinJS.UI.NavBarContainer, whose children are

instances of the NavBarCommand class, the latter of which has properties like label and icon to control

its display just like the AppBarCommand.

Let’s see two brief examples from the HTML NavBar control sample. First, here’s the simple markup

from scenario 1 (html/1-CreateNavBar.html):

<div id="createNavBar" data-win-control="WinJS.UI.NavBar">

 <div data-win-control="WinJS.UI.NavBarContainer">

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Home', icon: 'url(../images/homeIcon.png)' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Favorite', icon: 'favorite' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Your account', icon: 'people' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Music', icon: 'audio' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Video', icon: 'video' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Photos', icon: 'camera' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Settings', icon: 'settings' }"></div>

 </div>

</div>

The result of this, in a view that’s narrow enough to see the page indicators, is as follows:

You can clearly see that the default shape of a NavBarCommand is a rectangle with the icon on the left

and a label on the right (reversed for right-to-left languages, as is the paging direction). You can

choose icons from the AppBarIcon enumeration or provide one of your own, and the labels act just

like those on the AppBar where localization is concerned.

The second example is found in scenario 5, which uses the same markup as above plus a

http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://msdn.microsoft.com/library/windows/apps/hh770557.aspx

500

WinJS.UI.SearchBox outside the NavBarContainer (see html/5-UseSearchControl.html):

<div id="useSearch" data-win-control="WinJS.UI.NavBar">

 <div class="globalNav" data-win-control="WinJS.UI.NavBarContainer">

 <!-- ... -->

 </div>

 <div class="SearchBox" data-win-control="WinJS.UI.SearchBox"></div>

</div>

With this the SearchBox appears to the right of the command container, and the container has

adjusted itself to a smaller width by making more pages of commands:

In most of the sample’s scenarios, note that the buttons don’t actually navigate because none of the

commands have a location property—this is the URI string that you want the command to pass to

WinJS.Navigation.navigate, such as:

<div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Home', icon: 'url(../images/homeIcon.png)',

 location: '/pages/home/home.html' }">

</div>

Scenario 4 is the only part of the sample that actually navigates, and it does so between the

different scenarios simply through the location property.

Besides label, icon, and location, the NavBarCommand has these additional properties:

 tooltip The typically localized tooltip text for the command, using the value of label as the

default. As with the app bar, only text is supported here (not HTML or a Tooltip control)

because it just passes on to the element’s title attribute.

 state An app-provided object that is passed with the location to Navigation.navigate (in

the initialState argument). If you want to dynamically customize this state—such as storing

selection information from the current page to pass to the target page—update the object

within a handler for the either the WinJS.Navigation.onbeforenavigate event or the

NavBarContainer.oninvoked event (see below).

 splitButton If true, adds a down arrow or “split button” to the command.

 splitOpened Indicates (true or false) whether the split button is open on this command. By

setting this flag you’ll trigger the container’s splitToggle event.

We’ll come back to the split button operation in a bit, because it’s necessary to learn a little more

about the NavBarContainer beforehand. This control is what we use to organize commands—

NavBarCommand controls, that is—into meaningful groups, and it provides for page indicators, paging

arrows, and opening another NavBarContainer for to a split button.

http://msdn.microsoft.com/library/windows/apps/br229837.aspx

501

Tip There’s nothing in the NavBarContainer that says it has to exist inside a NavBar; you can use the

control by itself wherever you like. Just be aware that it will still call WinJS.Navigation.navigate!

A NavBar can contain multiple NavBarContainer controls as its immediate children, in which case

they are stacked vertically. In the earlier examples from the Travel app, the Travel group of commands

is in one container and the Featured group is in another. This is why they have separate page indicators

and page navigation arrows. Scenario 2 of the sample shows a similar result:

In this case, as with scenarios 1 and 5, the upper NavBarContainer is declared without any options

and all its commands are declared inline. Of course, because the NavBarContainer is itself a kind of

collection control, it would make perfect sense to hand it a WinJS.Binding.List to describe its

contents, which would be especially useful if you have a dynamic navigation hierarchy or just a large

list of commands, as in the lower container above. This is the purpose of the data property.

To use the data property, build a List of options objects for the NavBarCommand controls you want:

each object in the List is just passed to the NavBarCommand constructor as the options argument. Then

you can just declare the NavBar like so (html/2-UseData.html):

<div class="categoryNav" data-win-control="WinJS.UI.NavBarContainer"

 data-win-options="{ data: Data.categoryList, maxRows: 3 }"></div>

where you also see the maxRows property that limits the vertical height of the container.

Data.categoryList is defined in the page’s init method (see js/2-UseData.js):

WinJS.Namespace.define("Data");

var categoryNames = ["Picks for you", "Popular", "New Releases", "Top Paid", "Top Free",

 "Games", "Social", "Entertainment", "Photo", "Music & Video",

 "Sports", "Books & Reference", "News & Weather", "Health & Fitness", "Food & Dining",

 "Lifestyle", "Shopping", "Travel", "Finance", "Productivity",

 "Tools", "Security", "Business", "Education", "Government"];

var categoryItems = [];

for (var i = 0; i < categoryNames.length; i++) {

 categoryItems[i] = {

 label: categoryNames[i]

 };

}

502

Data.categoryList = new WinJS.Binding.List(categoryItems);

Tip When declaratively referring to a Binding.List that you generate within a page control, be sure

to create that list within the page’s init method rather than ready. This is because init is called prior

to WinJS.UI.processAll, which instantiates the NavBarContainer, whereas ready is called after. By

creating the List within init, you make sure it exists before the container’s data-win-options is

processed.

Take note that the NavBarContainer works directly with a Binding.List (not its dataSource) and

is thus limited to in-memory collections.

The NavBarContainer also supports these additional members:

 template (Property) Gets or sets a WinJS.BindingTemplate or rendering function that

creates the DOM for each item in the data collection. The template must render a single root

element but can otherwise contain whatever controls you’d like.

 layout (Property) A value from the WinJS.UI.Orientation enumeration, either horizontal

(the default) or vertical. The horizontal layout works with paging, as we’ve seen, with the

maxRows property (default is 1) controlling the layout in each page. The vertical layout pans

continuously without page indicators or arrows and ignores maxRows.

 currentIndex (Property) Gets or sets the index of the item with the keyboard focus.

 fixedSize (Property) When true, the width of each command in the container is determined

by its styling, which means there could be gaps on the sides. When false (the default), the

container will size the commands so that they fill the horizontal width of the container.

 forceLayout (Method) As with other collection controls, call this when making the control

visible again after changing its display style to something other than none.

 invoked (Event) Fired when a command in the container has been invoked in response to a

click, tap, or the Space or Enter keys being pressed. The eventArgs.detail object contains the

index and navbarcommand object of the command that was invoked, along with the data item

that was used to create the command. Note that navigation to the command’s location will

have already started when this event is fired.

 splitToggle (Event) Fired when a command with splitButton: true changes its

splitOpen state. The eventArgs.detail object contains the same properties as invoked above

plus the new state in the opened property. You use this to show or hide a secondary

NavBarContainer.

 The layout and fixedSize properties are demonstrated in scenario 3 of the HTML NavBar

control sample. By default it uses dynamic width, so both containers fill the width:

http://msdn.microsoft.com/library/windows/apps/dn301906.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a

503

Click the Switch To Fixed Width button, and you’ll see that at certain view widths you get a gap on

the right side (or left in right-to-left languages):

If you size the view all the way down to 500px (and it must be 500px, because the manifest isn’t set

for anything smaller!), the sample changes the layout to vertical with the following result:

As for implementing additional levels of navigation hierarchy, this is where we make use of the

splitButton option for a command along with the splittoggle event on the container. As shown in

scenario 6, a command with splitButton: true (html/6-UseSplitButton.html):

<div data-win-control="WinJS.UI.NavBarCommand" data-win-options="{ label: 'Favorite',

 icon: 'favorite', splitButton: 'true' }"></div>

appears with a down arrow (if in the closed state, left) or an up arrow (if in the open state , right):

504

By itself, a split button just makes this one visual change when you invoke it, updates its splitOpen

property, and—as a result—causes its container to fire a splitToggle event. This latter event is then

where you then show or hide whatever additional controls you want to attach to it. Note that I didn’t

specifically say a NavBarContainer—though you’ll probably want to use a NavBarContainer to

implement the expected UI pattern, this is not required by any means.

The key here is to make those other controls appear as an overlay within the NavBar, which is

exactly what the generic WinJS.UI.Flyout control is meant for (and which we’ll learn about right after

we talk NavBar styling). Simply said, a flyout is a separate piece of transient UI that won’t appear until

you call its show method. In scenario 6, the flyout for the Favorite button above is, in fact, declared

separately from the NavBar itself (html/6-UseSplitButton.html):

<div id="useSplit" data-win-control="WinJS.UI.NavBar">

 <div class="globalNav" data-win-control="WinJS.UI.NavBarContainer">

 <div data-win-control="WinJS.UI.NavBarCommand" data-win-options="{ label: 'Home',

 icon: 'url(../images/homeIcon.png)' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand" data-win-options="{ label: 'Favorite',

 icon: 'favorite', splitButton: 'true' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Your account', icon: 'people' }"></div>

 </div>

</div>

<div id="contactFlyout" data-win-control="WinJS.UI.Flyout"

 data-win-options="{ placement: 'bottom' }">

 <div id="contactNavBarContainer" data-win-control="WinJS.UI.NavBarContainer" }">

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Family' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Work' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Friends' }"></div>

 <div data-win-control="WinJS.UI.NavBarCommand"

 data-win-options="{ label: 'Blocked' }"></div>

 </div>

</div>

The sample then implements a handler for the container’s splitToggle event to show or hide this

flyout as needed (js/6-UseSplitButton.js):

setupNavBarContainer: function () {

 var navBarContainerEl = document.body.querySelector('#useSplit .globalNav');

 navBarContainerEl.addEventListener("splittoggle", function (e) {

 var flyout = document.getElementById("contactFlyout").winControl;

 var navbarCommand = e.detail.navbarCommand;

 if (e.detail.opened) {

505

 flyout.show(navbarCommand.element);

 var subNavBarContainer = flyout.element.querySelector('.win-navbarcontainer');

 if (subNavBarContainer) {

 // Switching the navbarcontainer from display none to display block requires

 // forceLayout in case there was a pending measure.

 subNavBarContainer.winControl.forceLayout();

 // Reset back to the first item:

 subNavBarContainer.currentIndex = 0;

 }

 flyout.addEventListener('beforehide', go);

 } else {

 flyout.removeEventListener('beforehide', go);

 flyout.hide();

 }

 function go() {

 flyout.removeEventListener('beforehide', go);

 navbarCommand.splitOpened = false;

 }

 });

Notice the use of the flyouts beforehide event here to make sure the command’s splitOpened

flag is set to false when the flyout is dismissed. This is necessary because the flyout can be dismissed

independently of the split button.

Because showing and hiding the flyout is under your complete control, the splitToggle event is

also where you can perform animations for your subsidiary navigation controls.

Nav Bar Styling

In the previous section, as we looked at NavBar examples from both the Travel app and the HTML

NavBar control sample, you’ll have easily noticed some styling differences other than the basic light or

dark theme (which you can switch in the sample, by the way). The Travel app, for example, definitely

uses its own template for the top-level commands and adds some color theming along the top and in

the page indicators:

These appearances are easy to control, as the NavBar, NavBarContainer, and NavBarCommand classes

506

all provide the usual win-* style hooks for their different parts.

Hint As with the app bar, to keep it visible in Blend for Visual Studio, right-click its element and select

Activate NavBar, or activate it in Interactive Mode and switch back to Design Mode. You can also make

the nav bar sticky or add a call to show in an appropriate place, if you need to keep it visible within

Visual Studio’s debugger and DOM Explorer.

The NavBar as a whole has just one relevant class, win-navbar, that’s added to the control’s root

element. This is where you can add something like the Travel app’s top color border—try this in

css/scenario1.cs:

#createNavBar.win-navbar {

 border-top: 10px solid #008299;

}

Within the NavBar, any of your own child elements (like the TRAVEL and FEATURED labels in the Travel

app) have whatever classes you assign to them. If you have NavBarContainer elements, those are

composed of a considerable hierarchy of parts:

To color the page indicators like the Travel app, for example, uses these rules:

#createNavBar .win-navbarcontainer-pageindicator {

 background-color: #636363;

}

#createNavBar .win-navbarcontainer-pageindicator-current {

 background-color: #008299;

}

507

The viewport and pageindicator-box (if I may drop the win-navbarcontainer- prefix) are

sibling elements, each of which has its own portion within the container where you can style

background colors, margins/padding, etc.

Within the viewport we then have the pannable surface area alongside the left and right

navigation arrows. The navarrow style specifically styles the arrow inside the buttons; the navleft and

navright selectors (including pseudo-styles) affect the surrounding controls.

Within the win-navbarcontainer-surface element is where you’ll find the NavBarCommand

elements, each of which has this hierarchy of elements and classes, through which you can specifically

address whichever part you want:

<div class="win-navbarcommand">

 <div class="win-navbarcommand-button">

 <div class="win-navbarcommand-button-content">

 <div class="win-navbarcommand-icon"></div>

 <div class="win-navbarcommand-label"></div>

 </div>

 <div class="win-navbarcommand-splitbutton"></div>

 </div>

</div>

Alternately, you might find it easier to provide a template for the command items so that you can

control the elements that are built up for each one.

As for the little triangle that you see on the secondary flyout in the Travel app (to point up to the

Destinations button), that’s just a little element in the Flyout that uses a background-image; it’s not

part of the NavBarContainer with the list of items.

Flyouts and Menus

Going back to our earlier discussion about where to place commands, a flyout control—WinJS.UI.-

Flyout—is used for confirmations, collecting information, and otherwise answering questions in

response to a user action. The menu control—WinJS.UI.Menu—is then a particular kind of flyout that

contains WinJS.UI.MenuCommand controls rather than arbitrary HTML. In fact, Menu is directly derived

from Flyout using WinJS.Class.define, so they share much in common. As flyouts, they also share

some feature in common with the app bar and nav bar, as all of them, in fact, derive from a common

internal base class (WinJS.UI._Overlay).

Tip In addition to the Flyout control that you’ll employ in an app, there is also a system flyout that

appears in response to some API calls, such as creating or removing a secondary tile (see Chapter 16—

specifically Figure 16-3 and the “Secondary Tiles” section). Although visually the same, the system

flyout will trigger a blur event to the app whereas the WinJS flyout, being part of the app, does not.

As a result, a system flyout will cause a non-sticky app bar to be dismissed. To prevent this, it’s

necessary to set the appbar’s sticky property to true before calling APIs with system flyouts. This is

demonstrated in scenario 7 of the Secondary tiles sample.

http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178

508

Styling in Blend As with app bars and nav bars, you can right-click a flyout element in Blend’s Live

DOM and select Activate Flyout to make it visible for styling, or you can activate it in Interactive Mode

and switch back to Design Mode. To work with it in Visual Studio’s debugger or the DOM Explorer,

you’ll need to make it sticky, otherwise switching to Visual Studio will dismiss it.

Before we look at the details, let’s see a number of visual examples from the HTML flyout control

sample in which we already saw a popup menu on an app bar command. The Flyout controls used in

scenarios 1–4 are shown in Figure 9-1. Notice the variance of content in the flyout itself and how the

flyout is always positioned near the control that invoked it, such as the Buy, Login, and Format output

text buttons and the Lorem ipsum hyperlink text. These examples illustrate that a flyout can contain a

simple message with a button (scenario 1, for warnings and confirmations), can contain fields for

entering information or changing settings (scenarios 2 and 3), and can have a title (scenario 4).

Scenario 5, for its part, contains the example of a popup header menu with Menu that we’ll see a little

later.

Figure 9-1 Examples of flyout controls from the HTML flyout control sample.

There are two key characteristics of flyout controls, including menus. One is that flyouts can be

dismissed programmatically, like an app bar, when an appropriate control within the flyout is invoked.

This is the case with the Complete Order button of scenario 1 and the Login button of scenario 2.

The second characteristic, also shared with the app bar, is the light dismiss behavior: clicking or

tapping outside the control dismisses it, as does the ESC key, which means light dismiss is the

equivalent of pressing a Cancel or Close button in a traditional dialog box. The benefit here is that we

don’t need a visible button for this purpose, which helps simplify the UI. At the same time, notice in

scenario 3 of Figure 9-1 that there is no OK button or other control to confirm changes you might

http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3
http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3

509

make in the flyout. With this particular design, changes are immediately applied such that dismissing

the flyout does not reverse or cancel them. If you don’t want that kind of behavior, you can place

something like an Apply button on the flyout and not make changes until that button is pressed. In this

case, dismissing the flyout would cancel the changes.

I’ll again encourage you to read the Guidelines for Flyouts topic that goes into detail about how and

when to use the different designs that are possible with this control. It also outlines when not to use the

control: for example, don’t use flyouts to surface errors not related to user action (use a message dialog

instead), don’t use them for primary commands (use the app bar), don’t use them for tex t selection

context menus, and avoid them for UI that is part of a workflow and should be directly on the app

canvas. These guidelines also suggest keeping a flyout small and focused (omitting unnecessary

controls) and making sure a flyout is positioned close to the object that invoked it. Let’s now see how

that works in the code.

WinJS.UI.Flyout Properties, Methods, and Events

Most of the properties, methods, and events of the WinJS.UI.Flyout control are exactly the same as

we’ve already seen for the app bar. The show and hide methods control its visibility, a hidden property

indicates its visible state, and same the beforeshow, aftershow, beforehide, and afterhide events

fire as appropriate. The afterhide event is typically used to detect dismissal of the flyout.

Like the app bar, the flyout also has a placement property, but it has different values that are only

meaningful in the context of the flyout’s own alignment and anchor properties. In fact, all three

properties are optional parameters to the show method because they determine where, exactly, the

flyout appears on the screen; the default placement and alignment can also be set on the control

itself because these are optional with show. (Note also that if you don’t specify an anchor in the show

method; the anchor property must already be set on the control or show will throw an exception.)

The anchor property identifies the control that invokes the flyout or whatever other operation

might bring up a flyout (as for confirmation). The placement property (a string) then indicates how the

flyout should appear in relation to the anchor: top, bottom, left, right, or auto (the default).

Typically, you use a specific placement only if you don’t want the flyout to possibly obscure important

content. Otherwise, you run the risk of the flyout element being shrunk down to fit the available space.

The flyout’s content will remain the same size, mind you, so it means that—ick!—you’ll get scrollbars!

So, unless you have a really good reason and a note from your doctor, stick with auto placement so

that the control will be placed where it can be shown full size. Along these same lines, if you’re

supporting the 320px minimum width, limit your flyouts also to that size.

The alignment property, for its part (also a string), when used with a placement of top or bottom,

determines how the flyout aligns to the edge of the anchor: left, right, or center (the default). The

content of the flyout itself is aligned through CSS as with any other HTML.

If you need to style the flyout control itself, you can set styles in the win-flyout class, like fonts,

default alignments, margins, and so on. As with other WinJS style classes like this, use win-flyout as a

http://msdn.microsoft.com/library/windows/apps/hh465341.aspx
http://msdn.microsoft.com/library/windows/apps/br211726.aspx

510

basis for more specific selectors unless you really want to style every flyout in the app. Typically you

also exclude win-menu from the rule so that menu flyouts aren’t affected by such styling. For example,

most of the scenarios in the HTML flyout control sample have rules like this:

.win-flyout:not(.win-menu) button,

.win-flyout:not(.win-menu) input[type="button"] {

 margin-top: 16px;

 margin-left: 20px;

 float: right;

}

Finally, if for some reason you need to know when a flyout is loaded, listen to the DOMNodeInserted

method on document.body:

document.body.addEventListener("DOMNodeInserted", insertionHandler, false);

Flyout Examples

A flyout control is created like any other WinJS control with data-win-control and data-win-

options attributes and processed by WinJS.UI.process/processAll. Flyouts with relatively fixed

content will typically be declared in markup where you can use data binding on specific properties of

the elements within the flyout. Flyouts that are very dynamic, on the other hand, can be created

directly from code by using new WinJS.UI.Flyout(<element>, <options>) , and you can certainly

change its child elements at any time. It’s all just part of the DOM! (Am I repeating myself?)

Like I said before (apparently I am repeating myself), a Flyout control can contain arbitrary HTML,

styled as always with CSS. The flyout for scenario 1 in the sample appears as follows in html/confirm-

action.html (condensed slightly):

<div id="confirmFlyout" data-win-control="WinJS.UI.Flyout"

 aria-label="{Confirm purchase flyout}">

 <div>Your account will be charged $252.</div>

 <button id="confirmButton">Complete Order</button>

</div>

The login flyout in scenario 2 is similar, and it even employs an HTML form to attach the Login

button to the Enter key (html/collect-information.html):

<div id="loginFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Login flyout}">

 <form onsubmit="return false;">

 <p>

 <label for="username">Username
</label>

 <input type="text" id="username" />

 </p>

 <p>

 <label for="password">Password
</label>

 <input type="password" id="password" />

 </p>

 <button id="submitLoginButton">Login</button>

511

 </form>

</div>

The flyout is displayed by calling its show method. In scenario 1, for instance, the button’s click

event is wired to the showConfirmFlyout function (js/confirm-action.js), where the Buy button is given

as the anchor element. Handling the Complete Order button just happens through a click handler

attached to that element, and here we want to make sure to call hide to programmatically dismiss the

flyout. Finally, the afterhide event is used to detect dismissal:

var bought;

var page = WinJS.UI.Pages.define("/html/confirm-action.html", {

 ready: function (element, options) {

 document.getElementById("buyButton").addEventListener("click",

 showConfirmFlyout, false);

 document.getElementById("confirmButton").addEventListener("click",

 confirmOrder, false);

 document.getElementById("confirmFlyout").addEventListener("afterhide",

 onDismiss, false);

 }

function showConfirmFlyout() {

 bought = false;

 var buyButton = document.getElementById("buyButton");

 document.getElementById("confirmFlyout").winControl.show(buyButton);

}

// When the Buy button is pressed, hide the flyout since the user is done with it.

function confirmOrder() {

 bought = true;

 document.getElementById("confirmFlyout").winControl.hide();

}

// On dismiss of the flyout, determine if it closed because the user pressed the buy button.

// If not, then the flyout was light dismissed.

function onDismiss() {

 if (!bought) {

 // (Sample displays a dismissal message on the canvas)

 }

}

Tip To create a default button in a flyout, use an <input type="submit"> element. Just be sure that

it doesn’t steal Enter key behavior from other buttons when the flyout isn’t showing.

Handling the login controls in scenario 2 is pretty much the same, with some added code to make

sure that both a username and password have been given. If not, the Login button handler displays an

inline error and sets the focus to the appropriate input field:

512

As the flyout of scenario 2 is a little larger, the default placement of auto on a 1366x768 display (as

in the simulator) makes it appear below the button that invokes it. There isn’t quite enough room

above that button. So try setting placement to top in the call to show:

function showLoginFlyout() {

 // ...

 document.getElementById("loginFlyout").winControl.show(loginButton, "top");

}

Then you can see how the flyout gets scrollbars because the overall control element is too short:

What was that word I used before? “Ick”?

To move on, scenario 3 again declares a flyout in markup, where it contains some label, select,

and input controls. In JavaScript, though, it listens for change events on the latter and applies those

new values to the output element on the app canvas:

var page = WinJS.UI.Pages.define("/html/change-settings.html", {

 ready: function (element, options) {

 // ...

 document.getElementById("textColor").addEventListener("change", changeColor, false);

 document.getElementById("textSize").addEventListener("change", changeSize, false);

 }

513

 });

// Change the text color

function changeColor() {

 document.getElementById("outputText").style.color =

 document.getElementById("textColor").value;

}

// Change the text size

function changeSize() {

 document.getElementById("outputText").style.fontSize =

 document.getElementById("textSize").value + "pt";

}

If this flyout had an Apply button rather than applying the changes immediately, its click handler

would obtain the current selection and slider values and use them like changeColor and changeSize.

Finally, in scenario 4 we see a flyout with a title, which is just a piece of larger text in the markup; the

flyout control itself doesn’t have a separate notion of a header:

<div id="moreInfoFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{More info flyout}">

 <div class="win-type-x-large">Lorem Ipsum</div>

 <div>

 Lorem Ipsum is text used as a placeholder by designers...

 </div>

</div>

The point of this last example is to show that unlike traditional desktop dialog boxes, flyouts don’t

often need a title because they already have context within the app itself. Dialog boxes in desktop

applications need titles because that’s what appears in task-switching UI alongside other apps.

Hint If you find that beforeshow, aftershow, beforehide, or afterhide events triggered from a

flyout are getting propagated to a containing app bar or nav bar, which shares the same event names,

include a call to eventArgs.stopPropagation() inside your flyout’s handler.

Menus and Menu Commands

What distinguishes a WinJS.UI.Menu control from a more generic Flyout is that a menu expects that

all its child elements are WinJS.UI.MenuCommand objects, similar to how the standard command layout

of the app bar expects AppBarCommand objects (and won’t instantiate if you declare something else).

Other common characteristics between the menu control and other flyouts include:

 show and hide methods.

 getCommandById, showCommands, hideCommands, and showOnlyCommands, along with the

commands property, meaning that you can use the same strategies to manage commands as

discussed in “Showing, Hiding, Enabling, and Updating Commands” in the app bar section,

including specifying commands using a JSON array rather than discrete elements.

 beforeshow, aftershow, beforehide, and afterhide events.

http://msdn.microsoft.com/library/windows/apps/hh700879.aspx

514

 anchor, alignment, and placement properties.

The menu also has two styles for its appearance—win-menu and win-command—that you use to

create more specific selectors, as we’ve seen, for the entire menu and for the individual text commands.

MenuCommand objects are also very similar to AppBarCommand objects. Both share many of the same

properties: id, label, type (a string: button, toggle, flyout, or separator), disabled, extraClass,

flyout, hidden, onclick, and selected. Menu commands do not have icons, sections, and tooltips

but you can see from type that menu items can be buttons (including just text items), checkable items,

separators, and also another flyout. In the latter case, the secondary menu will replace the first rather

than show up alongside, and to be honest, I’ve yet to see secondary menus used in a real app. Still, it’s

supported in the control!

We’ve already seen how to use a flyout menu from an app bar command, which is covered in

scenario 6 of the HTML flyout control sample (see the earlier “Command Menus” section). Another

primary use case is to provide what looks like drop-down menu from a header element, covered in

scenario 5. Here (see html/header-menu.html), the standard design is to place a down chevron symbol

() at the end of the header:

<header aria-label="Header content" role="banner">

 <button class="win-backbutton" aria-label="Back"></button>

 <div class="titlearea win-type-ellipsis">

 <button class="titlecontainer">

 <h1>

 Music

 

 </h1>

 </button>

 </div>

</header>

Notice that the whole header is wrapped in a button, so its click handler can display the menu

with show:

document.querySelector(".titlearea").addEventListener("click", showHeaderMenu, false);

function showHeaderMenu() {

 var title = document.querySelector("header .titlearea");

 var menu = document.getElementById("headerMenu").winControl;

 menu.anchor = title;

 menu.placement = "bottom";

 menu.alignment = "left";

 menu.show();

}

The flyout (defined as headerMenu in html/header-menu.html) appears when you click anywhere on

the header (not just the chevron, as that’s just a character in the header text):

515

The individual menu commands are just button elements themselves, so you can attach click

handlers to them as you need. As with the app bar, it’s best to use the menu control’s getCommandById

to locate these elements because it’s more direct than document.getElementById (as the SDK sample

uses…sigh).

To see a secondary menu in action, try adding the following secondaryMenu element in

html/header-menu.html before the headerMenu element and adding a button within headerMenu

whose flyout property refers to secondaryMenu:

<div id="secondaryMenu" data-win-control="WinJS.UI.Menu">

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command1', label:'Command 1'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command2', label:'Command 2'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command3', label:'Command 3'}"></button>

</div>

<div id="headerMenu" data-win-control="WinJS.UI.Menu">

 <!-- ... -->

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'showFlyout', label:'Show secondary menu',

 type:'flyout', flyout:'secondaryMenu'}"></button>

</div>

Also, go into css/header-menu.css and adjust the width style of #headerMenu to 200px. With these

changes, the first menu will appear as follows where the color change in the header is the hover effect:

When you select Show secondary menu, the first menu will be dismissed and the secondary one will

appear in its place:

516

Another example of a header flyout menu can be found in the Adaptive layout with CSS sample we

saw in Chapter 8, “Layout and Views.” It’s implemented the same way we see above, with the added

detail that it actually changes the page contents in response to a selection.

Context Menus

Besides the flyout menu that we’ve seen so far, there are also context menus as described in Guidelines

for context menus. These are specifically used for commands that are directly relevant to a selection of

some kind, like clipboard commands for text, and are invoked with a right mouse click on that

selection, a tap-and-hold gesture, or the context menu key on the keyboard. Text and hyperlink

controls already provide such menus by default. Context menus are also good for providing commands

on objects that cannot be selected (like parts of an instant messaging conversation), because app bar

commands can’t be contextually sensitive to such items. They’re also recommended for actions that

cannot be accomplished with a direct interaction of some kind. However, don’t use them on page

backgrounds—that’s what the app bar is for because the app bar will automatically appear with a

right-click gesture.

Hint If you process the right mouse button click event for an element, be aware that the default

behavior to show the app/nav bar will be suppressed over that element. Therefore, use the right-click

event judiciously, because users will become accustomed to right-clicking around the app to bring up

the app/nav bar. Note also that you can programmatically invoke the app bar using its show method.

The Context menu sample gives us some context here—I know, it’s a bad pun! In all cases, you need

only listen to the HTML contextmenu event on the appropriate element; you don’t need to worry

about mouse, touch, and keyboard separately. Scenario 1 of the sample, for instance, has a

nonselectable attachment element on which it listens for the event (html/scenario1.html):

document.getElementById("attachment").addEventListener("contextmenu",

 attachmentHandler, false);

In the event handler, you then create a Windows.UI.Popups.PopupMenu object (which comes from

WinRT, not WinJS!), populate it with Windows.UI.Popups.UICommand objects (that contain an item

label and click handler) or UICommandSeparator objects, and then call the menu’s showAsync method

(js/scenario1.js):

function attachmentHandler(e) {

 var menu = new Windows.UI.Popups.PopupMenu();

 menu.commands.append(new Windows.UI.Popups.UICommand("Open with", onOpenWith));

 menu.commands.append(new Windows.UI.Popups.UICommand("Save attachment",

 onSaveAttachment));

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2
http://msdn.microsoft.com/library/windows/apps/hh465308.aspx
http://msdn.microsoft.com/library/windows/apps/hh465308.aspx
http://code.msdn.microsoft.com/windowsapps/Context-menu-sample-40840351
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.popupmenu.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommand.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommandseparator.aspx

517

 menu.showAsync({ x: e.clientX, y: e.clientY }).done(function (invokedCommand) {

 if (invokedCommand === null) {

 // The command is null if no command was invoked.

 }

 });

}

Notice that the results of the showAsync method78 is the UICommand object that was invoked; you

can examine its id property to take further action. Also, the parameter you give to showAsync is a

Windows.Foundation.Point object that indicates where the menu should appear relative to the

mouse pointer or the touch point. The menu is placed above and centered on this point.

The PopupMenu object also supports a method called showForSelectionAsync, whose first

argument is a Windows.Foundation.Rect that describes the applicable selection. Again, the menu is

placed above and centered on this rectangle. This is demonstrated in scenario 2 of the sample in

js/scenario2.js:

//In the contextmenu handler

menu.showForSelectionAsync(

 clientToWinRTRect(window.getSelection().getRangeAt(0).getBoundingClientRect()))

 .done(function (invokedCommand) {

//...

// Converts from client to WinRT coordinates, which take scale factor into consideration.

function clientToWinRTRect(rect) {

 var zoomFactor = document.documentElement.msContentZoomFactor;

 return {

 x: (rect.left + document.documentElement.scrollLeft - window.pageXOffset) * zoomFactor,

 y: (rect.top + document.documentElement.scrollTop - window.pageYOffset) * zoomFactor,

 width: rect.width * zoomFactor,

 height: rect.height * zoomFactor

 };

}

This scenario also demonstrates that you can use a contextmenu event handler on text to override

the default commands that such controls otherwise provide.

Two final notes for context menus. First, even though the menus are created with WinRT APIs, they

do not cause a blur event for the app as a whole, unlike system flyouts like the message dialog.

Second, because context menus originate in WinRT, they don’t exist in the DOM and are not DOM-

aware, which explains the use of other WinRT constructs like Point and Rect rather than plain

JavaScript objects. Message dialogs, our final subject for this chapter, share this characteristic.

78 The sample actually calls then and not done here. If you’re wondering why such consistencies exist, it’s because the done

method was introduced mid-way during the production of Windows 8 when it became clear that we needed a better

mechanism for surfacing exceptions within chained promises. As a result, a few SDK samples and code in the
documentation still use then instead of done when handling the last promise in a chain. It still works; it’s just that

exceptions in the chain will be swallowed, thus hiding possible errors.

http://msdn.microsoft.com/library/windows/apps/windows.foundation.point.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.rect.aspx

518

Message Dialogs

Our last piece of commanding UI for this chapter is the message dialog. Like the context menu, this

flyout element comes not from WinJS but from WinRT via the Windows.UI.Popups.MessageDialog

API. Again, this means that the message dialog simply appears on top of the current page and doesn’t

participate in the DOM. Message dialogs automatically dim the app’s current page and block input

events from the app until the user responds to the dialog. They will also cause a window.onblur event

in the app.

The Guidelines for message dialogs topic explains the use cases for this UI:

 To display urgent information that the user must acknowledge to continue, especially

conditions that are not related to a user command of some kind.

 Errors that apply to the overall app, as opposed to a workflow where the error is better surfaced

inline on the app canvas. Loss of network connectivity is a good example of this.

 Questions that require user input and cannot be light dismissed like a flyout. That is, use a

message dialog to block progress when user input is essential to continue.

The interface for message dialogs is very straightforward. You create the dialog object with a new

Windows.UI.Popups.MessageDialog. The constructor accepts a required string with the message

content and an optional second string containing a title. The dialog also has content and title

properties that you can use independently. In all cases the strings support only plain text (not HTML).

You then configure the dialog through its commands, options, defaultCommandIndex (the

command tied to the Enter key), and cancelCommandIndex (the command tied to the ESC key).

The options come from the MessageDialogOptions enumeration where there are only two

members: none (the default, for no special behavior) and acceptUserInputAfterDelay (which causes

the message dialog to ignore user input for a short time to prevent possible clickjacking; this exists

primarily for Internet browsers loading arbitrary web content and isn’t typically needed for most apps).

The commands property then contains up to three UICommand objects, the same ones used in context

menus. Each command again contains an id, a label, and an invoked property to which you assign

the handler for the command. Note that the defaultCommandIndex and cancelCommandIndex

properties work on the indices of the commands array, not the id properties of those commands. Also, if

you don’t add any commands of your own, the message dialog will default to a single Close command.

Finally, once the dialog is configured, you display it with a call to its showAsync method. Like the

context menu, the result is the selected UICommand object that’s given to the completed handler you

provide to the promise’s then/done method. Typically, you don’t need to obtain that result because the

selected command will have triggered the invoked handler you associated with it.

http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.messagedialog.aspx
http://msdn.microsoft.com/library/windows/apps/hh738363.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommand.aspx

519

Note If the Search, Share, Devices, or Settings charm is invoked while a message dialog is active, or if

an app is activated to service a contract, a message dialog will be dismissed without any command

being selected. The completed handler for showAsync will be called, however, with the result set to the

default command. Be aware of his if you’re using the completed handler to process such commands.

The Message dialog sample—one of the simplest samples in the whole Windows SDK!—

demonstrates various uses of this API. Scenario 1 displays a message dialog with a title and two

command buttons, setting the second command (index 1) as the default. This appears as follows:

Scenario 2 shows the default Close command with a message and no title:

Scenario 3 is identical to scenario 1 but uses the completed handler of the showAsync().done

method to process the selected command. You can use this to see the effect of invoking a charm while

the dialog is shown.

Finally, scenario 4 assigns the first command to be the default and marks the second as the cancel

command, so the message is dismissed with that command or the ESC key:

And that’s really all there is to it!

Improving Error Handling in Here My Am!

To complete this chapter and bring together much of what we’ve discussed, let’s make some changes

to Here My Am!—last seen in Chapter 4—to improve its handling of various error conditions. As it

stands right now, Here My Am! doesn’t behave very well in a few areas:

 If the Bing Maps control script fails to load from a remote source, the code in html/map.html

just throws an exception and the app terminates.

 If we’re using the app on a mobile device and have changed our location, there i sn’t a way to

http://code.msdn.microsoft.com/windowsapps/Message-dialog-sample-00c928f5

520

refresh the location on the map other than dragging the pin; that is, the geolocation API is used

only on startup.

 When WinRT’s geolocation API is trying to obtain a location without a network connection, a

several-second timeout period occurs, during which the user doesn’t have any idea what’s

happening.

 If our attempt to use WinRT’s geolocation API fails, typically due to timeout or network

connectivity problems, but also possibly due to a denial of user consent, there isn’t any way to

try again.

 If the app’s view is smaller than 500px, the camera capture UI will not appear.

The Here My Am! (9) app for this chapter addresses these concerns. First, I’ve added code to

html/map.html to generate a placeholder image for the Location area just like we have in

pages/home/home.js for the Photo area. This way a failure to load the Bing maps script will display that

message in place of the map (the display style of none is removed in that case):

I’ve also added a click handler to the image that reloads the webview contents with document.-

location.reload(true). With this in place, we prevent the exceptions that were previously raised

when the map couldn’t be created, which caused the app to be terminated. Here’s how it looks now if

the map can’t be created:

To test this, you need to disconnect from the Internet, uninstall the app (to clear any cached map

script; otherwise, it will continue to load!), and run the app again. It should hit the error case at the

beginning of the init method in html/map.html, which shows the (dynamically-generated) error

image by removing the default display: none style and wiring up the click handler. Then reconnect

the Internet and click the image, and the map should reload, but if there are continued issues the error

message will again appear.

521

The second problem—adding the ability to refresh our location—is easily done with an app bar. I’ve

added such a control to default.html with one command:

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options="">

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdRefreshLocation', label:'Refresh location',

 icon:'globe', section:'global', tooltip:'Refresh your location'}"></button>

</div>

This command is wired up within pages/home/home.js in the page control’s ready method:

var appbar = document.getElementById("appbar").winControl;

appbar.getCommandById("cmdRefreshLocation").addEventListener("click",

this.tryRefresh.bind(this));

where the tryRefresh handler, also in the page control, hides the app bar and calls another new

method, refreshPosition, where I moved the code that obtains the geolocation and updates the

map:

tryRefresh: function () {

 //Hide the app bar and retry

 var appbar = document.getElementById("appbar").winControl.hide();

 this.refreshPosition();

},

I also needed to tweak the pinLocation function within html/map.html. Without a location refresh

command, this function was only ever called once on app startup. Because it can now be called

multiple times, we need to remove any existing pin on the map before adding one for the new

location. This is done with a call to map.entities.pop prior to the existing call to map.entities.-

push that pins the new location.

The app bar now appears as follows, and we can refresh the location as needed. (If you aren’t on a

mobile device in your car, try dragging the first pin to another location and then refreshing to see the

pin return to your current location.)

For the third problem—letting the user know that geolocation is trying to happen—we can show a

small flyout message just before attempting to call the WinRT geolocator’s getGeopositionAsync call.

The flyout is defined in pages/home/home.html (our page control) to be centered along the bottom of

the map area itself:

<div id="retryFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Trying geolocation}"

 data-win-options="{anchor: 'map', placement: 'bottom', alignment: 'center'}">

 <div class="win-type-large">Attempting to obtain geolocation...</div>

</div>

522

The refreshPosition function that we just added to pages/home/home.js makes a great place to

display the flyout just before calling getGeopositionAsync:

refreshPosition: function () {

 document.getElementById("retryFlyout").winControl.show();

 locator.getGeopositionAsync().done(function (position) {

 //...

 //Always hide the flyout

 document.getElementById("retryFlyout").winControl.hide();

 //...

 }, function (error) {

 //...

 //Always hide the flyout

 document.getElementById("retryFlyout").winControl.hide();

 });

},

Note that we want to hide the flyout inside the completed and error handlers so that the message

stays visible while the async operation is happening. If we placed a single call to hide outside these

handlers, the message would flash only very briefly before being dismissed, which isn’t what we want.

As we’ve written it, the user will have enough time to see the notice along the bottom of the map

(subject to light dismiss):

The next piece is to notify the user when obtaining geolocation fails. We could do this with another

flyout with a Retry button, or with an inline message as below. We would not use a message dialog in

this case, however, because the message could appear in response to a user-initiated refresh action. A

message dialog might be allowable on startup, but with an inline message combined with the flyout we

already added we have all the bases covered.

For an inline message, I’ve added a floating div that’s positioned about a third of the way down on

top of the map. It’s defined in pages/home/home.html as follows, as a sibling of the map webview:

<div id="locationSection" class="subsection" aria-label="Location section">

 <h2 class="group-title" role="heading">Location</h2>

 <iframe id="map" class="graphic" src="ms-appx-web:///html/map.html"

 aria-label="Map"></iframe>

 <div id="noLocation" class="errorOverlay win-type-x-large">

 Unable to obtain geolocation;
use the app bar to try again.

 </div>

</div>

523

The styles for the .errorOverlay and #noLocation rules in pages/home/home.css provide for its

placement in the same grid cell as the map, with a semitransparent background; most of the styling is

placed in the .errorOverlay rule, so we can use it for a camera capture message too:

.errorOverlay {

 display: block;

 -ms-grid-column: 1;

 -ms-grid-row: 2;

 width: 100%;

 text-align: center;

 background-color: rgba(128, 0, 0, 0.75);

 opacity: 0.9999;

}

#noLocation {

 -ms-grid-row-align: start;

 margin-top: 20%;

}

Important When overlaying any element on top of a webview, you must follow the rules for

independent composition that normally apply to animation, otherwise the webview will render as

black. As demonstrated here in the .errorOverlay rule, the key piece is that you set the opacity style

to something other than 1.0 or 0.0; those values will fail “layer candidacy” and cause the webview to go

black. In this case I’m using an RGBA background-color for the semitransparent red overlay and

opacity: 0.9999 (effectively solid, but different from 1.0). Alternately, I could use background-

color: rgb(128, 0, 0) and set opacity: 0.75, though in that case the white text also becomes

partly transparent with the rest of the element, reducing contrast.

This message will appear if the user denies geolocation consent at startup or allows it but later uses

the Settings charm to deny the capability. You can use these variations to test the appearance of the

message. It’s also possible, if you run the app the first time without network connectivity, for this

message to appear on top of the map error image; this is why I’ve positioned the geolocation error

toward the top so that it doesn’t obscure the message in the image. But if you’ve successfully run the

app once and then lose connectivity, the map should still get created because the Bing maps script will

have been cached.

http://msdn.microsoft.com/library/jj680148.aspx
http://msdn.microsoft.com/library/jj680148.aspx

524

With display:block in the CSS, the error message is initially visible, so we make sure to hide it on

startup, setting display: none. If we get to the error handler for getGeolocationAsync, we set

style.display to block again, which reveals the element:

document.getElementById("noLocation").style.display = "block";

We again hide the message within the tryRefresh function, which is again invoked from the app

bar command, so that the message stays hidden unless the error persists:

tryRefresh: function () {

 document.getElementById("noLocation").style.display = "none";

 //...

},

We can reuse the .errorOverlay class to add a similar message on top of the Photo area when the

view width falls below 500px. In this case we need another element in the photoSection div:

<div id="cannotCapture" class="errorOverlay win-type-x-large">

 Widen the view to capture a photo.

</div>

In home.css we can make this initially hidden and then show it automatically through the media

query for max-width: 499px:

#cannotCapture {

 -ms-grid-row-align: end;

 margin-bottom: 15%;

 display: none;

}

@media screen and (orientation: portrait) and (max-width: 499px) {

 /* Other styles omitted */

 #cannotCapture {

 display: block;

 }

}

This shows a small message on top of the Photo in narrow views:

A little code added to the top of the capturePhoto function also prevents calls to the camera

capture UI for narrow widths (this prevents excess debug output too):

if (window.innerWidth < 500) {

 return;

}

One more piece that could be added, if desired, is a message dialog if connectivity is lost and we

can’t update our position. I’ve not done this in the app because it’s simply relying on the geolocation

525

APIs directly, which on some devices might not depend on network connectivity at all. In any case, if

this is an appropriate scenario for your app, use the NetworkInformation.onnetworkstatuschanged

event we met in Chapter 4. This is a case where a message dialog is appropriate because such a

condition does not arise from direct user action.

Also, it’s worth noting that if we used the Bing Maps SDK control in this app, the script we’re

normally loading from a remote source would instead exist in our app package, thereby eliminating the

first error case altogether. We’ll make this change in the next revision of the app.

What We’ve Just Learned

 In Windows Store app design, commands that are essential to a workflow should appear on the

app canvas or on a popup menu from an element like a header. Those that can be placed on

the Setting charm should also go there; doing so greatly simplifies the overall app

implementation. Those commands that remain typically appear on an app bar or nav bar, which

can contain flyout menus for some commands. Context menus (Windows.UI.Popups.-

PopupMenu) can also be used for specific commands on content.

 The app bar is a WinJS control (WinJS.UI.AppBar) on which you can place standard commands

or other command controls, using the commands layout, or any HTML of your choice, using the

custom layout. Custom icons are also possible, using different fonts or custom graphics. An app

can have both a top and a bottom app bar, where the top is typically used for navigation and

can employ the WinJS.UI.NavBar control or a custom layout. App bars and nav bars can be

sticky to keep them visible instead of being light-dismissed.

 The app/nav bar’s showCommands, hideCommands, and showOnlyCommands methods, along with

the extraClass property of commands, make it easy to define an app bar in a single location in

the app and to selectively show specific command sets by using querySelectorAll with a class

that represents that set.

 The NavBar, being a custom layout AppBar, can host arbitrary HTML but is designed to host

NavBarContainer controls that provide a paging UI for collections of NavBarCommand objects.

A container can use a WinJS.Binding.List as a data source for commands and also supports

vertical layout for narrow views.

 The WinJS.UI.Flyout control is used for confirmations and other questions in response to user

action; they can also just display a message, collect additional information, or provide controls

to change settings for some part of the page. Flyouts are light-dismissed, meaning that clicking

outside the control or pressing ESC will dismiss it, which is the equivalent of canceling the

question.

 Message dialogs (Windows.UI.Popups.MessageDialog) are used to ask questions that the user

must answer or acknowledge before the app can proceed; a message dialog disables the rest of

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx

526

the app. Message dialogs are best used for errors or conditions that affect the whole app; error

messages that are specific to page content should appear inline.

 Command menus, as appear from an app bar command or an on-canvas control of some kind,

are implemented with the WinJS.UI.Menu control.

 As an example of using many of these features, the Here My Am! app is updated in this chapter

to greatly improve its handling of various error conditions.

527

Chapter 10

The Story of State, Part 1: App Data

and Settings

Imagine when you travel if every hotel room you stayed in was automatically configured exactly how

you like it—the right pillows and sheets, the right chairs, and the right food in the minibar rather than

atrociously expensive and obscenely small snack tins. If you’re sufficiently wealthy, of course, you can

send people ahead of you to arrange these things, but such luxury remains naught but a dream for

most of us.

Software isn’t so bound by these limitations, fortunately. Sending agents on ahead doesn’t involve

booking airfare for them, providing for their income and healthcare, and contributing to the ir

retirement plans. All it takes is a little connectivity, some cloud services, and—voila!—all of your

settings can automatically travel with you—that is, between the different devices you’re using.

This experience of statefulness, as it’s called, is built right into Windows. You automatically expect

that systemwide settings persist from session to session, so you don’t have to reconfigure your profile

picture, start screen preferences, Internet favorites, desktop theme, saved credentials, wireless network

connections, printers, and so forth. But statefulness is not limited to one device. When you use a

Microsoft account to log into Windows on a trusted PC, these settings are securely stored in the cloud

and automatically transferred to other trusted devices where you use the same account (you can

control them through PC Settings > OneDrive > Sync Settings). I was pleasantly surprised during the

development of Windows 8 that I no longer needed to manually transfer all this data when I updated

my machine from one release preview to another! Indeed, I was very pleased when I got a new laptop,

turned it on for the first time at my in-law’s house, and found that it had already connected to their

WiFi access point using automatically roamed information.

With such an experience in place for system settings, users expect similar stateful behavior from

apps. To continue the analogy, when we travel to new places and stay in hotels, most of us accept that

we’ll spend a little time upon arrival unpacking our things and setting up the room to our tastes. On

the other hand, we expect the complete opposite from our homes: we expect continuity, which is to

say, statefulness. Having moved twice in one year myself while writing the first edition of this book

(once to a temporary home while our permanent home was being completed), I deeply appreciate the

virtues of statefulness. Imagine that everything in your home got repacked into boxes every time you

left, such that you had to spend hours, days, or weeks unpacking it all again! No, home is the place

where we expect things to stay put, even if we do leave for a time. (I think this is exactly why many

people enjoy traveling in a motor home.)

528

Windows Store apps should maintain a sense of continuity across sessions, across devices , and across

process lifecycle events such as when an app is suspended, terminated by the system, and later

restarted. In this way, apps feel more like a home than a temporary resting place; they become a place

where users come to relax with the content they care about. And the less work users need to do to

enjoy that experience, the better.

For stateful behavior across devices, a consistent experience means that app-specific settings on one

device will appropriately roam to the same app installed on other devices. I say “appropriately” because

some settings don’t make sense to roam, especially those that are particular to the hardware in the

device. On the other hand, if I configure email accounts in an app on one machine, I would certainly

hope those show up on others! (I can’t tell you how many times I’ve had to repeatedly set up my four

active email accounts in Outlook on the desktop—ack!) In short, as a user I want my transition between

devices—on the system level and with apps—to be both transparent and seamless, such that even

newly installed apps that I’ve used on another device start up in an already-initialized state.

Managing statefulness in an app means a number of things. It means deciding what information is

local to a device and what roams between devices. It means understanding when state is restored and

when an app starts afresh. It means understanding the difference between app data—settings and

configurations that are tied to the existence of an app—and user data—which lives independently. It

also includes knowing how best to save certain kinds of state (such as credentials and file access

permissions) and how to use state to provide a good offline experience and to improve performance

through caching. We’ll explore all of these aspects in this chapter, and the effort you invest in these can

make a real difference in how users perceive your app and the ratings and reviews they’ll give it in the

Windows Store.

Many such settings will be completely internal to an app’s code, but others can and should be

directly configurable by the user. In the past, user configuration has given rise to an oft-bewildering

array of nested dialog boxes with multiple tabs, each of which is adorned with buttons, popup menus,

and long hierarchies of check boxes and radio buttons. As a result, there’s been little consistency in

configuration UI. Even the simple matter of where such options are located on menus has varied

between Tools/Options, Edit/Preferences, and File/Info commands, among others!

Fortunately, the designers of Windows 8 recognized that most apps have settings of some kind—in

fact, Windows guarantees this for all apps you acquire from the Windows Store. Thus they included

Settings on the Charms bar alongside the other near-ubiquitous Search, Share, and Devices charms. For

one thing, the Settings charm eliminates the need for users to remember where a particular app’s

settings are located, and app designers don’t need to wonder how, exactly, to integrate settings into

their overall content flow and navigation hierarchy. By being placed in the Settings charm, settings are

effectively removed from an app’s content structure, thereby simplifying the app’s overall design. The

app needs only to provide distinct pages or panes that are displayed when the user invokes the charm.

Clearly, an app’s state and its Settings UI are intimately connected, as we’ll see in this chapter. Along

the way, we’ll also have the opportunity to look a bit at the storage and file APIs in WinRT, along with

some of the WinJS file I/O helpers and other storage options. Working with files, though, is much more

529

relevant to user data, so we’ll wait to complete the subject in Chapter 11, “The Story of State, Part 2:

User Data, Files, and OneDrive.”

The Story of State

An app’s state—by which I mean persistent local and roaming state together—is clearly the kingpin of

a stateful experience. State has a much longer lifetime than the app itself: it remains persistent, as it

should, when an app isn’t running and persists across different versions of the app. The state version is,

in fact, managed separately from the app version, and roaming state will also persist in the cloud for

some time even if the user doesn’t have the app installed on any of their devices.

For all these reasons, it’s helpful when telling the story of stateful apps to take the perspective of the

state itself and ask questions like these:

 What kinds of state do we need to concern ourselves with?

 Where does state live?

 What affects and modifies that state?

To clearly understand the first question, let’s first briefly revisit user data again. User data like

documents, pictures, drawings, designs, music, videos, playlists, and so forth are things that a user

creates and consume with an app but are not dependent on the app itself. User data implies that any

number of apps might be able to load and manipulate it, and such data always remains on a system

irrespective of the existence of apps. For this reason, user data is not part of an app’s state. For example,

while the paths or URIs of documents and other files might be remembered in a list of favorites or

recently opened documents, the actual contents of those files are separate from that state.

User data doesn’t have a strong relationship to app lifecycle events either: it’s typically saved

explicitly through a user-invoked command or implicitly on events like visibilitychange, rather than

within a suspending handler. Again, the app might remember which file is currently loaded as part of

its session state during suspending, but the file contents itself should be saved outside of this event,

especially considering that you have only five seconds to complete whatever work is necessary!

Excluding whatever falls into the category of user data, whatever is left that’s needed for an app to

run and maintain its statefulness is what we refer to as app state. Such state is maintained on a per-user

basis, is tied to the existence of a specific app, and is accessible by that app exclusively. As we’ve seen

earlier in this book, app state is typically stored in user-specific folders that are wholly removed from

the file system when an app is uninstalled (though of course roaming state still persists in the cloud and

is downloaded again if the app is reinstalled). For this reason, never store anything in app state that the

user might want outside your app. Similarly, avoid using document and media libraries to store state

that wouldn’t be meaningful to the user if the app is uninstalled.

530

App state falls into three basic categories:

 Transient session state State that normally resides in memory but is saved when the app is

suspended in order to restore it after a possible termination. This includes unsaved form data,

page navigation history, selection state, and so forth (but not window size, as that’s always

refreshed when an app is reactivated). As we saw in Chapter 3, “App Anatomy and Performance

Fundamentals,” being restarted after suspend/terminate is the only case in which an app

restores transient session state. Session state is typically saved incrementally (as the state

changes) or within the suspending or checkpoint events.

 Local state State that is typically loaded when an app is launched and that is specific to a

device (and therefore not roamed). Local state includes lists of recently viewed items, temporary

files and caches, and various behavioral settings that appear in the Settings panel like display

units, preferred video formats, device-specific configurations, and so on. Local state is typically

saved when it’s changed because it’s not directly tied to lifecycle events.

 Roaming state State that is shared between the same app running on multiple Windows

devices where the same user is logged in, such as favorites, viewing position within videos,

account configurations, game scores and progress, URIs for important files on cloud storage

locations, perhaps some saved searches or queries, etc. Like local state, these might be

manipulated through the Settings panel, but roaming state is subject to an overall quota (and,

when exceeded, behaves like local state). Roaming state is also best saved when values are

changed; we’ll see more details on how this works later.

All this state is stored in the app data folders created when your app package is installed (roaming

state is synced to the cloud from there). In these folders you can use settings containers for key-value

properties (through the Windows.Storage.ApplicationData APIs) or create files with whatever

structure you want (using the WinJS or Windows.Storage APIs).

At the same time, some types of state live elsewhere in the system, specifically those managed by

other APIs. System-managed HTML5 features like IndexedDB and AppCache don’t necessarily use your

app data folders but are automatically cleaned up when the app is uninstalled. Permissions to

programmatically access files and folders is another case. By default, an app can access only those files

and folders in its app data or in those libraries for which it has declared a capabil ity in its manifest. For

all other arbitrary locations, permission is obtained only through user interaction with the file picker,

because that implies user consent. To preserve programmatic access across app sessions, however, you

need to save those permissions along with the file path, which is the purpose of the Windows.-

Storage.AccessCache APIs. Your app’s section of the access cache, in other words, is considered part

of your overall local state. (File pickers and the access cache are covered in Chapter 11.)

The other concern are credentials that you’ve collected from a user and would like to retrieve in the

future. Never directly save credentials in your app data. Instead, use the credential locker API in

Windows.Security.Credentials.PasswordVault, which we’ve already seen in Chapter 4, “Web

Content and Services.” The contents of the locker are isolated between apps and are roamed between a

user’s trusted PCs, so this constitutes part of roaming state. (Users can elect to not roam credentials by

http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://msdn.microsoft.com/library/windows/apps/hh767297.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx

531

turning off PC Settings > OneDrive > Sync Settings > Other Settings > Passwords, in which case the

credential locker still maintains them locally.)

Taken altogether, the different APIs I’ve just mentioned are those that you (or a third-party library)

use to save, modify, and manage state, both from the running app and from background tasks.

Beyond this, two other events not under an app’s control (that is, outside of the running app or a

background task) can affect app state:

 Disk Cleanup If the user runs this tool and elects to clean up Temporary Files, older f iles in the

app’s TemporaryFolder might be deleted if disk space is low. The exact policy for when files get

deleted is not documented, but the idea is that an app should always be ready to regenerate

temp files if they’ve disappeared. Windows does this kind of lazy cleanup to avoid just blowing

away newer and smaller app caches when it’s not really necessary to reclaim the space.

 Roaming from the cloud If newer roaming state has been uploaded to the cloud from

another device and then synced with the local device (in the app data RoamingState folder), a

running app will receive a Windows.Storage.ApplicationData.ondatachanged event.

To bring all of this together, Figure 10-1 illustrates the different kinds of state, where they are

located, what affects them, and the app lifecycle boundaries across which they persist. The APIs that we

use to work with these forms of state is what makes up the bulk of this chapter. A good portion of this

chapter, starting with “Settings Pane and UI,” is concerned with how to surface those parts of your state

that are user-configurable.

FIGURE 10-1 Different forms and locations of app data, how they persist across app lifecycle events, and the APIs

that modify them.

532

App Data Locations
Now that we understand what kinds of information make up app state, let’s delve deeper into the

question, “Where does state live?” To review, when Windows installs an app for a user (and all Windows

Store apps are accessible to only the user who installed them), it automatically creates a folder for the

app in the current user’s AppData folder (the one that gets deleted when you uninstall an app). It then

creates LocalState, TempState, and RoamingState folders within that app folder. On the file system, if

you point Windows Explorer to %localappdata%\packages, you’ll see a bunch of folders for the

different apps on your system. If you navigate into any of these, you’ll see these folders along with one

called “Settings,” as shown in Figure 10-2 for the built-in Sports app. The figure also shows the varied

contents of these folders.

In the LocalState folder of Figure 10-2 you can see a file named _sessionState.json. This is the file

where WinJS saves and loads the contents of the WinJS.Application.sessionState object, as we

saw in Chapter 3. Because it’s just a text file in JSON format, you can easily open it in Notepad o r some

other JSON viewer to examine its contents. In fact, if you look at this file for the Sports app (that is, at

the JSON file shown in the figure), you’ll see a value like {"lastSuspendTime":1340057531501}. The

Sports, News, Weather, and other apps show time-sensitive content, so they save when they were

suspended and check elapsed time when they’re resumed. If that time exceeds their refresh intervals,

they can go get new data from their associated service. In the case of the Sports app, one of its Settings

specifically lets the user set the refresh period.

FIGURE 10-2 The Sports app’s AppData folders and their contents.

Note If you look carefully at Figure 10-2, you’ll see that all the app data–related folders, including

RoamingState, are in the user’s overall AppData/Local folder. There is also a sibling AppData/Roaming

folder, but this applies only to roaming user account settings on intranets, such as when a domain-

joined user logs in to another machine on a corporate network. This AppData/Roaming folder has no

relationship to the AppData/Local…/RoamingState folder for Windows Store apps.

533

Programmatically, you refer to these locations in several ways. First, you can use the

ms-appdata:/// URI scheme as we saw in Chapter 3, where ms-appdata:///local, ms-

appdata:///roaming, and ms-appdata:///temp refer to the individual folders and their contents.

(Note the triple slashes: it’s a shorthand allowing you to omit the package name.) You can also use the

object returned from the Windows.Storage.ApplicationData.current method, which contains all

the APIs you need to work with state, as we’ll see.

By the way, you might have some read-only state directly in file in your app package. You can

reference these with URIs that just start with / (meaning ms-appx:///). You can also get to them

through the StorageFolder object from the Windows.ApplicationModel.Package.current.-

installedLocation property. We’ll come back to the StorageFolder class a little later.

App Data APIs (WinRT and WinJS)

We’ve answered the questions of “What kinds of state do we need to concern ourselves with?” and

“Where does state live?” Now we can answer the third question, “What affects and modifies that

state?”—a subject that will occupy the next 25 pages!

Much of the answer begins with the ApplicationData object that you get from the

Windows.Storage.ApplicationData.current property, which is completely configured for your

particular app. This object contains the following, where other object types are also found in the

Windows.Storage namespace:

 localFolder, temporaryFolder, and roamingFolder Each of these properties is a

StorageFolder object that allows you to create whatever files and additional folder structures

you want in these locations (but note the roamingStorageQuota below).

 localSettings and roamingSettings These properties are ApplicationDataContainer

objects that provide for managing a hierarchy of key-value settings pairs or composite groups

of such pairs. All these are stored in the AppData/Settings folder in the settings.dat file.

 roamingStorageQuota This property contains the number of kilobytes that Windows will

automatically roam for the app (typically 100). If the total data stored in roamingFolder and

roamingSettings exceeds this amount, roaming will be suspended until the amount falls below

the quota. You have to track how much data you store yourself if you think you might risk

exceeding the quota.

 dataChanged An event indicating the contents of the roamingFolder or roamingSettings

have been synchronized from the cloud, in which case an app should re-read its roaming state.

It also indicates that some other part of the app (running code or a background task) has called

the signalDataChanged method. (Note: dataChanged is a WinRT event; use removeEvent-

Listener as described in Chapter 3 in “WinRT Events and removeEventListener.”)

http://msdn.microsoft.com/library/windows/apps/br241587.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatacontainer.aspx

534

 signalDataChanged A method that triggers a dataChanged event. This allows you to

consolidate local and roaming updates in a single handler for the dataChanged event, including

changes that occur in background tasks (that is, calling this method from a background task will

trigger the event in the app if the app is not currently suspended.)

 version property and setVersionAsync method These provide for managing the version

stamp on your app state. This version applies to the whole of your app state (local, temp, and

roaming together); there are not separate versions for each. Note again that state version is a

separate matter from app version, because multiple versions of an app can all use the same

version of its state (which is to say, the same state structure).

 clearAsync A method that clears out the contents of all AppData folders and settings

containers. Use this when you want to reinitialize your default state, which can be especially

helpful if you’ve restarted the app because of corrupt state.

 clearAsync(<locality>) A variant of clearAsync that is limited to one locality (local, temp,

or roaming), specified by a value from the ApplicationDataLocality enumeration, such as

ApplicationDataLocality.local. In the case of local and roaming, the contents of both the

folders and settings containers are cleared; temp affects only the TempState folder.

Let’s now see how to use the APIs here to manage the different kinds of app data, which includes a

number of WinJS helpers for the same purpose.

Hint App state APIs generate events in the Event Viewer if you’ve enabled the channel as described in

Chapter 3 in “Debug Output, Error Reports, and the Event Viewer.” To summarize, make sure that View

> Show Analytics and Debug Logs menu item is checked. Then navigate to Application and Services

Log, expand Microsoft/Windows/AppModel-State, and you’ll find Debug and Diagnostic groups. Right-

click either or both of these and select Enable Log to record those events.

Settings Containers
For starters, let’s look at the localSettings and roamingSettings properties, which are typically

referred to as settings containers. You work with these through the ApplicationDataContainer API,

which is relatively simple. Each container has four read-only properties: a name (a string), a locality

(again from ApplicationDataLocality, with local and roaming being the only values here), and

collections called values and containers.

The top-level containers have empty names; the property will be set for child containers that you

create with the createContainer method (and remove with deleteContainer). Those child

containers can have other containers as well, allowing you to create a whole settings hierarchy. That

said, these settings containers are intended to be used for small amounts of data, like user

configurations; any individual setting is limited to 8K and any composite setting (see below) to 64K.

With these limits, going beyond about a megabyte of total settings implies a somewhat complex

hierarchy, which will be difficult to manage and will certainly slow to access. So don’t be tempted to

http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatalocality.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatacontainer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatalocality.aspx

535

think of app data settings as a kind of database; other mechanisms like IndexedDB and SQLite are

much better suited for that purpose, and you can write however much data you like as files in the

various AppData folders (remembering the roaming quota when you write to roamingFolder).

For whatever container you have in hand, its containers collection is an MapView object through

which you can enumerate its contents. The values collection, on the other hand, is a WinRT

PropertySet object that you can more or less treat as an array. (For details on both of these types,

refer to Chapter 6, “Data Binding, Templates, and Collections,” in “Maps and Property Sets.”) The

values property in any container is itself read-only, meaning that you can’t assign some other arbitrary

array or property set to it but you can still manipulate its contents however you like.

We can see this in the Application data sample, which is a good reference for many of the core app

data operations. Scenario 2, for example (js/settings.js), shows the simple use of the

localSettings.values array:

var localSettings = Windows.Storage.ApplicationData.current.roamingSettings;

var settingName = "exampleSetting";

var settingValue = "Hello World";

function settingsWriteSetting() {

 roamingSettings.values[settingName] = settingValue;

}

function settingsDeleteSetting() {

 roamingSettings.values.remove(settingName);

}

Many settings, like that shown above, are just simple key-value pairs, but other settings will be

objects with multiple properties. This presents a particular challenge: although you can certainly write

and read the individual properties of that object within the values array, what happens if a failure

occurs with one of them? That would cause your state to become corrupt.

To guard against this, the app data APIs provide for composite settings, which are groups of

individual properties (again limited to 64K) that are guaranteed to be managed as a single unit. It’s like

the perfect group consciousness: either we all succeed or we all fail, with nothing in between! That is, if

there’s an error reading or writing any part of the composite, the whole composite fails; with roaming,

either the whole composite roams or none of it roams.

A composite object is created using Windows.Storage.ApplicationDataCompositeValue, as

shown in scenario 4 of the Application data sample (js/compositeSettings.js):

var roamingSettings = Windows.Storage.ApplicationData.current.roamingSettings;

var settingName = "exampleCompositeSetting";

var settingName1 = "one";

var settingName2 = "hello";

function compositeSettingsWriteCompositeSetting() {

 var composite = new Windows.Storage.ApplicationDataCompositeValue();

 composite[settingName1] = 1; // example value

 composite[settingName2] = "world"; // example value

http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatacompositevalue.aspx

536

 roamingSettings.values[settingName] = composite;

 }

function compositeSettingsDeleteCompositeSetting() {

 roamingSettings.values.remove(settingName);

}

function compositeSettingsDisplayOutput() {

 var composite = roamingSettings.values[settingName];

 // ...

}

The ApplicationDataCompositeValue object has, as you can see in the documentation, some

additional methods and events to help you manage it, such as clear, insert, and mapchanged.

Composites are, in many ways, like their own kind of settings container, but they just cannot contain

additional containers. It’s important to not confuse the two. Child containers within settings are used

only to create a hierarchy (refer to scenario 3 in the sample, js/settingsContainer.js). Composites, on the

other hand, specifically exist to create more complex groups of settings that act like a single unit, a

behavior that is not guaranteed for settings containers themselves.

As noted earlier, these settings are all written to the settings.dat file in your app data Settings folder.

It’s also good to know that changes you make to settings containers are automatically saved, though

some built-in batching occurs to prevent excessive disk activity when you quickly change a number of

values. In any case, you don’t need to worry about the details—the system will make sure they’re

always saved before an app is suspended, before the system is shut down, and before roaming settings

get synced to the cloud.

State Versioning

As a whole, everything you create in your local, roaming, and temp folders, as well as local and

roaming settings, all constitute a version of your app’s state structure. If you change that structure,

you’ve created a new version of it.

The version of your state structure is set with ApplicationData.setVersionAsync, the value of

which you can retrieve through ApplicationData.version (a read-only property). Windows primarily

uses this version especially to manage copies of your app’s roaming state in the cloud—it specifically

maintains copies of each version separately, because the user could have different versions of the app

that each use a distinct version of the state.79

As I mentioned before, though, remember that state version (controlled through setVersionAsync)

is entirely separate from app version (as set in the manifest). You can have versions 1.0.0.0 through

4.3.9.3 of the app use version 1.0.0.0 of app data, or maybe version 3.2.1.9 of the app shifts to version

79 You can maintain your own versioning system within particular files or settings, but I recommend against doing this with
roaming data because it’s hard to predict how Windows will manage synchronizing slightly different structures. Even with

local state, trying to play complex versioning games is, well, rather complex and probably best avoided altogether.

http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.setversionasync.aspx

537

1.0.1.0 of the app data, and version 4.1.1.3 moves to 1.2.0.0 of the app data. It doesn’t really matter, so

long as you keep it all straight and can migrate old versions of the app data to new versions!

Migration happens as part of the setVersionAsync call, whose second parameter is a function to

handle the conversion. That is, when an updated app is first activated, it must check the version of its

state because the contents of the app data folders and settings containers will have been carried

forward from the previous app version. If the app finds an older version of state than it expects, it

should call setVersionAsync with its conversion function. That function receives a

SetVersionRequest object that contains currentVersion and desiredVersion properties, thereby

instructing your function as to what kind of conversion is actually needed. Your code then goes

through all your app state and migrates the individual settings and files accordingly. Once you return

from the conversion handler, Windows will assume the migration is complete, meaning that it can

resync roaming settings and files with the cloud. Of course, because the migration process will often

involve asynchronous file I/O operations, you have a deferral mechanism like that we’ve seen with

activation. Call the SetVersionRequest.getDeferral method to obtain the deferral object (a

SetVersionDeferral), and call its complete method when all your async operations are done.

Examples of this can be found in scenario 9 of the Application data sample.

It is also possible to migrate app data as soon as an app update has been installed. For this you use

a background task for the servicingComplete trigger. See Chapter 16, “Alive with Activity,” specifically

“Background Tasks and Lock Screen Apps.”

Folders, Files, and Streams

The local, roaming, and temp folders of your app data are where you can create whatever

"unstructured" state you want, which means creating files and folders with whatever information you

want to maintain. It’s high time, then, that we start looking more closely at the file I/O APIs for

Windows Store apps, bits and pieces of which we’ve already seen in earlier chapters. Here we'll round

out the basics, and then Chapter 11 will provide the rest of the intricate deta ils.

First, know that some APIs like URL.createObjectURL—which work with what are known as blobs—

make it possible to do many things in an app without having to descend to the level of file I/O at all!

We’ve already seen how to use this to set the src of an img element, and the same works for other

elements like audio and video. The file I/O operations involved with such elements are encapsulated

within createObjectURL. You can use blobs in other ways as well. You can convert a canvas element

with canvas.msToBlob into something you can assign to an img element; similarly, you can obtain a

binary blob from an HTTP request, save it to a file, and then source an img from that. We’ll see some

more of this in Chapter 13, “Media,” and you can refer to the Using a blob to save and load content

sample for more. Also, see “Q&A on Files, Buffers, Streams, and Blobs” later in this chapter.

http://msdn.microsoft.com/library/windows/apps/windows.storage.setversionrequest.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e

538

For working directly with files, let’s get a bearing on what we have at our disposal. The core WinRT

APIs for files live within the Windows.Storage namespace. The key players are the StorageFolder and

StorageFile classes, which clearly represent folder and file entities, respectively. These have a number

of very important aspects:

 Both classes are best understood as rich abstractions for pathnames. Wherever you’d normally

think to use a pathname to refer to some file system entity, you’ll typically use one of these

objects instead.

 As abstractions for pathnames, neither class maintains any kind of open file handles or such.

Reading from or writing to a file requires a stream object instead, and it is the existence of a

stream, not a StorageFile, that holds a file open and enforces access and sharing permissions.

 StorageFolder and StorageFile both derive from IStorageItem, a generic interface that

defines common members like name, path, dateCreated, and attributes properties and

deleteAsync and renameAsync methods. For this reason, both classes together are generically

referred to as “storage items.”

 Both classes include static methods alongside their instance-specific methods, specifically those

that return StorageFolder or StorageFile instances for specific pathnames or URIs.

The key reason why we have these abstractions is that the “file system” in Windows includes

anything that can appear as part of the file system. This includes cloud storage locations, removable

storage, and even other apps that present their contents in a file system–like manner, especially

through the file picker. Pathnames by themselves simply cannot refer to entities that don’t exist on a

physical file system device, so we need objects like StorageFolder and StorageFile to represent

them. Such abstractions allow the file and folder pickers to reach outside the file system and also make

it possible to share such references between apps, as through the Share contract. We’ll see more of this

in later chapters.

The basic operations of StorageFolder and StorageFile objects are shown in Figure 10-3. As

you’d expect, a StorageFolder has methods to create, retrieve, and enumerate folders; methods to

create, retrieve, and enumerate files; methods to enumerate files and folders together; and methods to

delete or rename itself. A StorageFile, similarly, has methods to move, copy, delete, and or rename

itself. Most important, though, are those methods that open a file—resulting in a stream—through

which you can then read or write data.

Tip Some file extensions are reserved by the system and won’t be enumerated, such as .lnk, .url, and

others; a complete list is found on the How to handle file activation topic. Also note that the ability to

access UNC pathnames requires the Private Networks (Client & Server) and Enterprise Authentication

capabilities in the manifest along with declarations of the file types you want to access.

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.istorageitem.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx

539

FIGURE 10-3 Core properties and methods of the StorageFolder and StorageFile classes and the objects they

produce.

Given the relationship between the StorageFolder and StorageFile classes, nearly all file I/O in a

Windows Store app starts by obtaining a StorageFolder object and then acquiring a StorageFile

from it. Obtaining that first StorageFolder happens through one of the methods below (in a few cases

you can also get to a StorageFile directly):

 In-package contents Windows.ApplicationModel.Package.current.installedLocation

gets a StorageFolder through which you can load data from files in your package (all files

therein are read-only).

 App data folders Windows.Storage.ApplicationData.current.localFolder,

roamingFolder, or temporaryFolder provides StorageFolder objects for your app data

locations (read-write).

 Arbitrary file system locations An app can allow the user to select a folder or file directly

using the file pickers invoked through Windows.Storage.Pickers.FolderPicker plus

FileOpenPicker and FileSavePicker. This is the preferred way for apps that don’t need to

enumerate contents of a library (see next bullet). This is also the only means through which an

app can access safe (nonsystem) areas of the file system without additional declarations in the

manifest. Alternately, a user can launch a file directly from Windows Explorer from any location,

and the default app associated with that file type receives the StorageFile upon activation.

 Libraries Windows.Storage.KnownFolders provides StorageFolder objects for the Pictures,

Music, and Videos libraries, as well as Removable Storage. Given the appropriate capabilities in

your manifest, you can work with the contents of these folders. (Attempting to obtain a folder

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.package.installedlocation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.folderpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.fileopenpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filesavepicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx

540

without the correct capability will throw an Access Denied exception.)

 Downloads The Windows.Storage.DownloadsFolder object provides a createFolderAsync

method through which you can obtain a StorageFolder in that location. It also provides a

createFileAsync method to create a StorageFile directly. You would use this API if your app

manages downloaded files directly. Note that DownloadsFolder itself provides only these two

methods; it is not a StorageFolder in its own right, to prevent apps from interfering with one

another’s downloads.

 Arbitrary paths The static method StorageFolder.getFolderFromPathAsync returns a

StorageFolder for a given pathname if and only if your app already has permissions to access

it; otherwise, you’ll get an Access Denied exception. A similar static method exists for files called

StorageFile.getFileFromPathAsync, with the same restrictions; the static method

StorageFile.getFileFromApplicationUriAsync opens files with ms-appx:// (package) and

ms-appdata:/// URIs. Other schema are not supported.

 Access cache Once a folder or file object is obtained, it can be stored in the AccessCache

that allows an app to retrieve it sometime in the future with the same programmatic

permissions. This is primarily needed for folders or files selected through the pickers because

permission to access the storage item is granted only for the lifetime of that in-memory

object—we’ll see more in Chapter 11. The short of it is that you should always use this API, as

demonstrated in scenario 7 of the File access sample, where you’d normally think to save a file

path as a string. Again, StorageFolder.getFolderFromPathAsync and StorageFile.get-

FileFromPathAsync will throw Access Denied exceptions if they refer to any locations where

you don’t already have permissions. Also, pathnames will typically not work for files provided by

another app through the file picker, because the StorageFile object might not, in fact, refer to

any kind of file system entity.

Beyond just enumerating a folder’s contents, you often want only a partial list filtered by certain

criteria (like file type), along with thumbnails and other indexed file metadata (like music album and

track info, picture titles and tags, etc.) that you can use to group and organize the files. This is the

purpose of file, folder, and item queries, as well as extended properties and thumbnails. We already saw

a little with the FlipView app we built using the Pictures Library in Chapter 7, “Collection Controls,” and

we’ll return to the subject in Chapter 11.

In the end, of course, we usually want to get to the contents of a particular file. This is the purpose of

the StorageFile.open* methods, each variant providing a different kind of access. The result in each

case is some kind of stream, an object that’s backed by a series of bytes and transparently

accommodates the flow of those bytes between storage systems with different latencies, such as

memory and disk, disk and network, memory and network, and so on. Each stream type has certain

characteristics based its means of access:

 openAsync and openReadAsync provide random-access byte streams for read/write and read-

only, respectively. The streams are objects with the IRandomAccessStream and

IRandomAccessStreamWithContentType interfaces, respectively, both in the

http://msdn.microsoft.com/library/windows/apps/windows.storage.downloadsfolder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getfolderfrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getfilefrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getfilefromapplicationuriasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.openasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.openreadasync.aspx
http://msdn.microsoft.com/library/windows/apps/hh438400.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx

541

Windows.Storage.Streams namespace. The first of these works with a pure binary stream; the

second works with data+type information, as would be needed with an http response that

prepends a content type to a data stream.

 openSequentialReadAsync provides a read-only Windows.Storage.Streams.IInputStream

object through which you can read file contents in blocks of bytes but cannot skip back to

previous locations. You should always use this method when you need only to consume (read)

the stream as it has better performance than a random access stream (the source can optimize

for sequential reads).

 openTransactedWriteAsync provides a Windows.Storage.StorageStreamTransaction that’s

basically a helper object around an IRandomAccessStream with commitAsync and close

methods to handle transactions. This is necessary when saving complex data to make sure that

the whole write operation happens atomically and won’t result in corrupted files if interrupted.

Scenario 5 of the File access sample shows this.

The StorageFile class also provides these static methods: createStreamedFileAsync,

createStreamedFileFromUriAsync, replaceWithStreamedFileAsync, and replaceWithStreamed-

FileFromUriAsync. These provide a StorageFile that you typically pass to other apps through

contracts, as we’ll see in Chapter 15, “Contracts.” The utility of these methods is that the underlying file

isn’t accessed at all until data is first requested from it, if such a request ever happens.

Pulling all this together, here’s a bit of code using the raw API we’ve seen thus far to create and

open a “data.tmp” file in our temporary AppData folder and to write a given string to it. This bit of

code is in the RawFileWrite example for this chapter. Let me be clear that what’s shown here utilizes

low-level APIs in WinRT and is not what you typically use, as we’ll see in the next section. It’s instructive

nonetheless, as you might occasionally need to exercise precise control over the process:

var fileContents = "Congratulations, you're written data to a temp file!";

writeTempFileRaw("data.tmp", fileContents);

function writeTempFileRaw(filename, contents) {

 var ws = Windows.Storage;

 var tempFolder = ws.ApplicationData.current.temporaryFolder;

 var outputStream;

 //Promise chains, anyone?

 tempFolder.createFileAsync(filename, ws.CreationCollisionOption.replaceExisting)

 .then(function (file) {

 return file.openAsync(ws.FileAccessMode.readWrite);

 }).then(function (stream) {

 outputStream = stream.getOutputStreamAt(0);

 var writer = new ws.Streams.DataWriter(outputStream);

 writer.writeString(contents);

 return writer.storeAsync();

 }).done(/* Completed handler if necessary */);

}

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.opensequentialreadasync.aspx
http://msdn.microsoft.com/library/windows/apps/br241718.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.opentransactedwriteasync.aspx
http://msdn.microsoft.com/library/windows/apps/hh996767.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597

542

Good thing we learned about chained async operations a while back! Starting with a

StorageFolder from the ApplicationData object, we call its createFileAsync to get a

StorageFile. Then we open that file to obtain a random access stream. At this point the file is open

and locked, so no other apps can access it.

Now a random access stream itself doesn’t have any methods to read or write data. For that we use

the DataReader and DataWriter classes in Windows.Storage.Streams. The DataReader takes an

IInputStream object, which you obtain from IRandomAccessStream.getInputStreamAt(<offset>).

The DataWriter, as shown here, takes an IOutputStream similarly obtained from IRandomAccess-

Stream.getOutputStreamAt(<offset>).

The DataReader and DataWriter classes then offer a number of methods to read or write data,

either as a string (as shown above with writeString), as binary (for instance, DataReader.loadAsync),

or as specific data types. With the DataWriter, we have to end the process with a call to its

storeAsync, which commits the data to the backing store. With both DataReader and DataWriter,

discarding the objects will close the files and invalidate the streams.

Two tips First, if you use a transacted output stream, you also need to call its flushAsync method in

the chain after DataWriter.storeAsync. Second, the DataReader and DataWriter constructors do

not validate their backing streams. That happens only during loadAsync, storeAsync, and other

read/write operations, which will throw confusing exceptions if the backing stream is invalid. When in

doubt, double-check the stream passed to the constructor.

Now, you might be saying, “You’ve got to be kidding me! Four chained async operations just to

write a simple string to a file! Who designed this API?” Indeed, when we started building the first Store

apps within Microsoft, this is all we had and we asked these questions ourselves! After all, doing some

basic file I/O is typically the first thing you add to a Hello World app, and this was anything but simple.

To make matters worse, at that time we didn’t yet have promises for async operations in JavaScript, so

we had to write the whole thing with raw nested async operations. Such were the days.

Fortunately, simpler APIs were already available and more came along shortly thereafter. These are

the APIs you’ll typically use when working with files, as we’ll see in the next section. It is nevertheless

important to understand the structure of the low-level code above because the DataReader and

DataWriter classes are very important mechanisms for working with a variety of different I/O streams

and are essential for data encoding processes. Having control over the fine details also supports

scenarios such as having different components in your app that are all contributing to the file structure.

So it’s good to take a look at the DataReader/DataWriter reference documentation along with the

Reading and writing data sample to familiarize yourself with the capabilities.

Tip You don’t see any reference to a close method on the file or stream in the RawFileWrite example

because that’s automatically taken care of in the DataWriter (the DataReader does it as well). A

stream does, in fact, have a close method that will close its backing file, which is what the DataReader

and DataWriter objects call when they’re disposed. If, however, you separate a stream from these

objects through their detachStream methods, you must call the stream’s close yourself.

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datawriter.aspx
http://code.msdn.microsoft.com/windowsapps/Reading-and-writing-data-75ea10a3

543

When you’re developing apps that write to files and you see errors indicating that the file is still open,

check whether you’ve properly closed the streams involved. For more on this, see “Q&A on Files,

Streams, Buffers, and Blobs” a little later in this chapter.

FileIO, PathIO, and WinJS Helpers (plus FileReader)

Simplicity is a good thing where file I/O is concerned, and the designers of WinRT made sure that the

most common scenarios didn’t require a long chain of async operations like we saw in the previous

section. The Windows.Storage.FileIO and PathIO classes provide such a streamlined interface—and

without having to muck with streams! The only difference between the two is that the FileIO methods

take a StorageFile parameter whereas the PathIO methods take a pathname string, the latter

assuming that you already have programmatic access to that path. Beyond that, both classes offer the

same methods called [read | write]BufferAsync (these work with byte arrays), [append | read |

write]LinesAsync (these work with arrays of strings), and [append | read | write]TextAsync

(these work with singular strings). With strings, WinJS.Application simplifies matters even further for

your appdata folders: its local, roaming, and temp properties, which implement an interface called

IOHelper, provide readText and writeText methods that relieve you from even having to touch a

StorageFile object.

Using the FileIO class, the code in the previous section can be reduced to the following, which can

also be found in the RawFileWrite example (js/default.js):

function writeTempFileSimple(filename, contents) {

 var ws = Windows.Storage;

 var tempFolder = ws.ApplicationData.current.temporaryFolder;

 tempFolder.createFileAsync(filename, ws.CreationCollisionOption.replaceExisting)

 .then(function (file) {

 ws.FileIO.writeTextAsync(file, contents);

 });

}

And here’s the same thing written with WinJS.Application.temp.writeText, which is an async

call and returns a promise if you need it:

WinJS.Application.temp.writeText(filename, fileContents);

Additional examples can be found in Scenario 3 of the File access sample. One other option you

have—provided the file already exists—is using the PathIO.writeTextAsync method with an ms-

appdata URI like so:

Windows.Storage.PathIO.writeTextAsync("ms-appdata:///temp/" + filename, contents);

Reading text from a file through the async readText method is equally simple, and WinJS provides

two other methods through IOHelper: exists and remove.80 That said, these WinJS helpers are

80 If you’re curious why async methods like readText and writeText don’t have Async in their names, this was a conscious

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pathio.aspx
http://msdn.microsoft.com/library/windows/apps/hh700820.aspx
http://msdn.microsoft.com/library/windows/apps/hh701151.aspx
http://msdn.microsoft.com/library/windows/apps/hh701395.aspx
http://msdn.microsoft.com/library/windows/apps/br211764.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597

544

available for only your AppData folders and not for the file system more broadly. For areas outside app

data, you must use the FileIO and PathIO classes.

You also have the HTML5 FileReader class available for use in Windows Store apps, which is part of

the W3C File API specification. As its name implies, it’s suited only for reading files and cannot write

them, but one of its strengths is that it can work both with files and blobs. Some examples of this are

found in the Using a blob to save and load content sample.

Encryption and Compression

WinRT provides two capabilities that might be helpful to your state management: encryption and

compression. Encryption is provided through the Cryptography and Cryptography.Core API, both

part of the Windows.Security namespace. Cryptography contains methods for basic encoding and

decoding (base64, hex, and text formats); Cryptography.Core handles encryption according to various

algorithms. As demonstrated in the Secret saver encryption sample, you typically encode data in some

manner with the Cryptography.CryptographicBuffer.convertStringToBinary method and then

create or obtain an algorithm and pass that with the data buffer to Cryptography.Core.Crypto-

graphicEngine.encrypt. Methods like decrypt and convertBinaryToString perform the reverse.

Compression is a little simpler in that it’s just a built-in API through which you can make your data

smaller (say, to decrease the size of your roaming data). The Windows.Storage.Compression API for

this is composed of Compressor and Decompressor classes, both of which are demonstrated in the

Compression sample. Although this API can employ different compression algorithms, including one

called MSZIP, it does not provide a means to manage .ZIP files and the contents therein. For this

purpose either employ a third-party JavaScript library or write a WinRT component in C++ that utilizes

a higher-performance library (see Chapter 18, “WinRT Components”).

Both the encryption and compression APIs utilize a WinRT structure called a buffer, which is another

curious beast like the random access stream in that it doesn’t have its own methods to manipulate it.

Here again you use the DataReader and DataWriter classes, as described in the next section.

Q&A on Files, Streams, Buffers, and Blobs
As we’ve started to see in this chapter, the APIs for working with files and state begin to involve a

plethora of object types and interfaces, all of which deal with managing and manipulating piles of data

in some manner. Here’s the complete roster I’m referring to:

 File system entities, represented by the StorageFolder and StorageFile classes and the

IStorageItem interface, all in the Windows.Storage namespace of WinRT.

 Streams, represented by classes in Windows.Storage.Streams. Here we find a veritable

choice on the part of the WinJS designers to follow existing JavaScript conventions where such a suffix isn’t typically used.

The WinRT API, on the other hand, is language-independent and thus has its own convention with the Async suffix.

http://www.w3.org/TR/FileAPI/#dfn-filereader
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://msdn.microsoft.com/library/windows/apps/br241404.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.core.aspx
http://code.msdn.microsoft.com/windowsapps/Secret-Saver-f8a69623
http://msdn.microsoft.com/library/windows/apps/windows.storage.compression.aspx
http://code.msdn.microsoft.com/windowsapps/Compression-sample-9d57900f
http://msdn.microsoft.com/library/windows/apps/windows.storage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.aspx

545

pantheon of types: FileInputStream, FileOutputStream, FileRandomAccessStream,

IInputStream, IOutputStream, IRandomAccessStream, InMemoryRandomAccessStream,

InputStreamOverStream, OutputStreamOverStream, RandomAccessStream, and

RandomAccessStreamOverStream.

 Buffers, also in Windows.Storage.Streams, limited here to the Buffer class and the IBuffer

interface.

 Blob and MSStream objects, which come from the app host via the HTML API and serve to

bridge gaps between the HTML5 world and WinRT.

In this section I want to bring all of these together, because you often encounter one or more of

these types at an inconvenient point in your app development, like where you’re just trying to

complete a seemingly simple task but end up getting lost in a jungle, so to speak. And I haven’t found

a topic in the documentation that makes sense of them all. But instead of boring you with every last

detail, I’ve reduced matters down to a few key questions, the answers to which have, for me, made

much better sense of the landscape. So here goes.

Question #1: Why on earth doesn’t the StorageFile class have a close method?

Answer: As noted earlier, StorageFolder and StorageFile are abstractions for pathnames and

thus only represent entities on the extended/virtual file system but not the contents of those entities

(which is what streams are for). If you’re even asking this question, it means you need to update your

mental model. After all, one of the first things we tinker with when learning to code is file I/O. We learn

to open a file, read its contents, and close the file, thus establishing a basic mental model at a young

age for anything with the name of “file.” Indeed, if you learned this through the C runtime library (OK,

so I’m dating myself), you used a function like fopen with a pathname to open a file and get a handle.

Then you called fread with that handle to read data, followed by fclose. All those methods nicely site

next to each other in the API reference.

Coming to WinRT, you see StorageFile.openAsync quickly enough but then can’t find the read

and close equivalents anywhere nearby, which breaks the old mental model. What gives? The main

difference is that whereas fopen and its friends are synchronous, WinRT is an asynchronous API. In that

asynchronous world, the request to open a StorageFile produces some result later on. So, technically,

the file isn’t actually “open” until that result is delivered.

That result, to foreshadow the next question, is some kind of stream, which is the analog to a file

handle. That stream is what manages access to the file ’s contents, so when you want to read from “the

file” à la fread you actually read from a stream that’s connected to the file contents. When you want

to “close the file” in the way that you think of with fclose, you close and dispose of the stream

through its own close method. This is why the StorageFile object does not have a close: it’s the

stream that holds the backing entity open, so you must close the stream.

Again, all of this is important because many file-like entities actually have no pathname at all thanks

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.aspx
http://msdn.microsoft.com/library/windows/apps/hh453178.aspx
http://msdn.microsoft.com/library/windows/apps/hh441076.aspx

546

to the unification of local-, cloud-, and app-based entities. This means that whatever thingy a

StorageFile represents might not be local to the device or even exist as a real file anywhere in the

known universe—backing data for a StorageFile can, in fact, be generated on the fly and fed into the

stream. Lots of work might be involved, then, in getting a stream through which you can get to that

entity’s contents, and that’s the complexity that the WinRT API is handling on your behalf. Be grateful!

And to repeat another point from earlier, the APIs in Windows.Storage.FileIO and PathIO classes

shield you from streams altogether (see Question #4).

Question #2: My God, what are all those different stream types about?

Answer: Trust me, I feel your pain! Let's sort them out.

A stream is just an abstraction for a bit bucket. Streams don't make any distinction about the data in

those buckets, only about how you can get to those bits. Streams are used to access file contents, pass

information over sockets, talk to devices, and so forth.

Streams come in two basic flavors: original and jalapeño. Oops! I'm writing this while cooking

dinner…sorry about that. They come in two sorts: sequential and random access. This differentiation

allows for certain optimizations to be made in the implementation of the stream:

 A sequential stream can assume that data is accessed (read or written) once, after which it no

longer needs to be cached in memory. Sequential streams do not support seeking or

positioning. When possible, it's always more memory-efficient to use a sequential stream.

 A random access stream needs to keep that data around in case the consuming code wants to

rewind or fast-forward (seek or position).

As mentioned with Question #1, all streams have a close method that does exactly what you think.

If the stream is backed by a file, it means closing the file. If the stream is backed by memory, it means

freeing that memory. If it’s backed by a socket, it means clos ing the socket. You get the idea.

In the sequential group there is a further distinction between "input" streams, which support reading

(but not writing), and "output" streams, which support writing (but not reading). These reflect the

reality that communication with many kinds of backing stores is inherently unidirectional—for example,

downloading or uploading data through HTTP requests.

The primary classes in this group are FileInputStream and FileOutputStream. Also, the

IInputStream and IOutputStream interfaces serve as the basic abstractions. (Don’t concern yourself

with InputStreamOverStream and OutputStreamOverStream, which are wrappers for lower-level

COM IStream objects.)

An input stream has a method readAsync that copies bytes from the source into a buffer (an

abstraction for a byte array, see Question #3). An output stream has two methods, writeAsync, which

copies bytes from a buffer to the stream, and flushAsync, which makes sure the data is written to the

547

backing entity before it deems the flushing operation is complete. When working with such streams,

you always want to call flushAsync, using its completed handler for any subsequent operations (like a

copy) that are dependent on that completion.

Now for the random access group. Within Windows.Storage.Streams we find the basic types:

FileRandomAccessStream, InMemoryRandomAccessStream, and RandomAccessStream, along with the

abstract interfaces IRandomAccessStream. (RandomAccessStreamOverStream again builds on the low-

level COM IStream and isn't something you use directly.)

The methods of IRandomAccessStream are common among classes in this group. It provides:

 Properties of canRead, canWrite, position, and size.

 Methods of seek, cloneStream (the clone has an independent position and lifetime),

getInputStreamAt (returns an IInputStream), and getOutputStreamAt (returns an

IOutputStream).

The getInputStreamAt and getOutputStreamAt methods are how you obtain a sequential stream

for some section of the random access stream, allowing more efficient read/write operations. You often

use these methods to obtain a sequential stream for some other API that requires them.

If we now look at FileRandomAccessStream and InMemoryRandomAccessStream (whose backing

data sources I trust are obvious), they have everything we've seen already (properties like position

and canRead, and methods like close and seek) along with two more methods, readAsync and

writeAsync, which behave just like their counterparts in sequential input and output streams (using

those buffers again).

As for the RandomAccessStream class, it's a curious beast that contains only static members—you

never have an instance of this one. It exists to provide the generic helper methods copyAsync (with two

variants) and copyAndCloseAsync that transfer data between input and output streams. This way other

classes like FileRandomAccessStream don't need their own copy methods. To copy content from one

file into another, you call FileRandomAccessStream.getInputStreamAt on the source (for reading)

and FileRandomAccessStream.getOutputStreamAt on the destination (for writing), and then you

pass those to RandomAccessStream.copyAsync (to leave those streams open) or copyAndCloseAsync

(to automatically do a flushAsync on the destination and close on both).

The other class to talk about here, RandomAccessStreamReference, also supplies other static

members. When you read "reference," avoid thinking about reference types or pointers or anything like

that—it's more about having read-only access to resources that might not be writable, like something

at the other end of a URI. Its three static methods are createFromFile (which takes a StorageFile),

createFromStream (which takes an IRandomAccessStream), and createFromUri (which takes a

Windows.Foundation.Uri that you construct with a string). What you then get back from each of

these static methods is an instance of RandomAccessStreamReference (how's that for confusing?).

That instance has just one method, openReadAsync, whose result is an IRandomAccessStream-

WithContentType (the same thing as an IRandomAccessStream with an extra string property

548

contentType to identify its data format).

To sum up, remember the difference between sequential streams (input or output) and random

access streams, and remember that streams are just ways to talk to the bits (or bytes) that exist in some

backing entity like a file, memory, or a socket. When a stream exists, its backing entity is "open" and

typically locked (depending on access options) until the stream is closed or disposed.

Question #3: So now what do I do with these buffer objects, when neither the Buffer class nor the

IBuffer interface have any methods?

Answer: I totally agree that this one stumped me for a while , which is one reason I’ve included this

Q&A in this book!

As in question #2, straightforward stream object methods like readAsync and writeAsync result in

this odd duck called a Buffer instead of just giving us a byte array. The problem is, when you look at

the reference docs for Buffer and IBuffer, all you see are two properties: length and capacity.

"That's all well and good," you say (and I have said too!), "but how the heck do you get at the data

itself?" After all, if you just opened a file and read its contents from an input stream into a buffer, that

data exists somewhere, but this buffer thing is just a black box as far as you can see!

Indeed, looking at the Buffer itself, it's hard to understand how one even gets created in the first

place, because the object itself also lack methods for storing data (the constructor takes only a

capacity argument). This gets confusing when you need to provide a buffer to some API, like

ProximityDevice.PublishBinaryMessage (for near-field communications): you need a buffer to call

the function, but how do you create one?

To make things clear, first understand that a buffer is just an abstraction for an untyped byte array,

and it exists because marshaling byte arrays between Windows and language-specific environments

like JavaScript and C# is a tricky business. Having an abstract class makes such marshaling easier to

work with in the API.

Next, when you are about to call FileRandomAccessStream.readAsync, you do, in fact, create an

empty buffer with new Buffer(), which readAsync will populate. On the other hand, if you need to

create a new buffer with real data, there are two ways to go about it:

 One way is our friend Windows.Storage.Streams.DataWriter. Create an instance with new

DataWriter(), and use its write* methods to populate it with whatever you want (including

writeBytes, which takes an array). Once you've written those contents, call its detachBuffer

and you have your populated Buffer object.

 The other way is super-secret or maybe just unintentional, but nonetheless it’s useful here . You

have to look way down in Windows.Security.Cryptography.—wait for it!—Cryptographic-

Buffer.createFromByteArray. This API has nothing to do with cryptography per se and

simply creates a new buffer with a byte array you provide. This is simpler than using

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.buffer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.ibuffer.aspx
http://msdn.microsoft.com/library/windows/apps/br208154.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.cryptographicbuffer.createfrombytearray.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.cryptographicbuffer.createfrombytearray.aspx

549

DataWriter if you have a byte array; DataWriter is better, though, if you have data in any

other form, such as a string.

How, then, do you get data out of a buffer? With the Windows.Storage.Streams.DataReader

class. Create an instance of DataReader with the static method DataReader.fromBuffer, after which

you can call methods like readBytes, readString, and so forth.81

In short, the methods that you would normally expect to find on a class like Buffer are found

instead within DataReader and DataWriter, because these reader/writer classes also work with

streams. That is, instead of having completely separate abstractions for streams and byte arrays with

their own read/write methods for different data types, those methods are centralized within the

DataReader and DataWriter objects that are themselves initialized with either a stream or a buffer.

DataReader and DataWriter also take care of the details of closing streams for you when appropriate.

In the end, this reduces the overall API surface area once you understand how they relate.

Question #4: Now doesn't all this business with streams and buffers make simple file I/O rather

complicated?

Answer: Yes and no, and for the most part we’ve already answered this question earlier in “FileIO,

PathIO, and WinJS Helpers” with the RawFileWrite code examples. To reiterate, the low-level API gives

you full control over the details; the higher-level APIs to simplify common scenarios.

Indeed, we can go even one step lower than our writeTempFileRaw function. In that code we used

DataWriter.storeAsync, which is itself just a helper for the truly raw process that involves buffers.

Here is the lowest-level implementation for writing a file (see js/default.js in the example):

var fileContents = "Congratulations, you're written data to a temp file!";

writeTempFileReallyRaw("data-raw.tmp", fileContents);

function writeTempFileReallyRaw(filename, contents) {

 var ws = Windows.Storage;

 var tempFolder = ws.ApplicationData.current.temporaryFolder;

 var writer;

 var outputStream;

 //All the control you want!

 tempFolder.createFileAsync(filename, ws.CreationCollisionOption.replaceExisting)

 .then(function (file) {

 //file is a StorageFile

 return file.openAsync(ws.FileAccessMode.readWrite);

 }).then(function (stream) {

81 If you use new with DataReader, you provide an IInputStream argument instead—with buffers you have to use the static

method. The reason for this is that JavaScript cannot differentiate overloaded methods by arity only (number of
arguments), thus the designers of WinRT have had to make a few oddball choices like this where the more common

usage employs the constructor and a static method is used for the less common option.

http://msdn.microsoft.com/library/windows/apps/br208119.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.frombuffer.aspx

550

 //Stream is an RandomAccessStream. To write to it, we need an IOuputStream

 outputStream = stream.getOutputStreamAt(0);

 //Create a buffer with contents

 writer = new ws.Streams.DataWriter(outputStream);

 writer.writeString(contents);

 var buffer = writer.detachBuffer();

 return outputStream.writeAsync(buffer);

 }).then(function (bytesWritten) {

 console.log("Wrote " + bytesWritten + " bytes.");

 return outputStream.flushAsync();

 }).done(function () {

 writer.close(); //Closes the stream too

 });

}

Again, within this structure, you have the ability to inject any other actions you might need to take

at any level, such as encrypting the contents of the buffer or cloning a stream. But if you don’t need to

see the buffers you can cut that part out by using DataWriter.storeAsync. If you don't need to play

with the streams directly, you can use the FileIO class to hide those details. And if you have

programmatic access to the desired location on the file system, you can even forego using Storage-

File by instead using the PathIO class or the WinJS.Application.local, roaming, and temp helpers.

So, yes, file I/O can be complicated but only if you need it to be. The APIs are designed to give you

the control you need when you need it but not burden you when you don't.

Question #5: What are MSStream and Blob objects in HTML5, and how do they relate to the WinRT

classes?

Answer: To throw another stream into the river, so to speak, when working with the HTML5 APIs,

specifically those in the File API section, we encounter MSStream and Blob types. (See the W3C File API

and the Blob section therein for the standards.) As an overview, the HTML5 File APIs—as provided by

the app host to Store apps written in JavaScript—contain a number of key objects that are built to

interoperate with WinRT APIs:

 Blob A piece of immutable binary data that allows access to ranges of bytes as separate blobs.

It has size, type, and msRandomAccessStream properties (the latter being a WinRT

IRandomAccessStream). It has two methods: slice (returning a new blob from a subsection)

and msClose (releases a file lock).

 MSStream Technically an extension of this HTML5 File API that provides interop with WinRT. It

lives outside of WinRT, of course, and is thus available to both the local and web contexts in an

app. The difference between a blob and a stream is that a stream doesn't have a known size and

can thus represent partial data received from an in-process HTTP request. You can create an

MSStreamReader object and pass an MSStream to its readAsBlob method to get the blob once

the rest is downloaded.

 URL Creates and revokes URLs for blobs, MSStream, IRandomAccessStreamWithContentType,

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.aspx
http://msdn.microsoft.com/library/windows/apps/hh767327.aspx
http://msdn.microsoft.com/library/windows/apps/hh441076.aspx
http://msdn.microsoft.com/library/windows/apps/hh453178.aspx
http://www.w3.org/TR/FileAPI
http://www.w3.org/TR/FileAPI/#dfn-Blob
http://msdn.microsoft.com/library/windows/apps/hh441088.aspx

551

IStorageItem, and MediaCapture. It has only two methods: createObjectURL and

revokeObjectURL. (Make note that even if you have a oneTimeOnly URL for an image, it's

cached, so it can be reused.)

 File Derived from Blob, has name and lastModifiedDate properties. A File in HTML5 is just

a representation of a Blob that is known to be a file. Access to contents is through the HTML5

FileReader or FileReaderSync objects, with readAs* methods: readAsArrayBuffer,

readAsDataURL, readAsText.

 MSBlobBuilder Used only if you need to append blobs together, with its append method, and

then the getBlob method to obtain the result.

The short of it is that when you get MSStream or Blob objects from some HTML5 API (like an

XmlHttpRequest with responseType of "ms-stream," as when downloading a file or video, or from the

canvas' msToBlob method), you can pass those results to various WinRT APIs that accept IInputStream

or IRandomAccessStream as input. To use the canvas example, if you call canvas.msToBlob, the

msRandomAccessStream property of that blob can be fed directly into the Windows.Graphics.-

Imaging APIs for transform or transcoding. A video stream can be similarly manipulated using the APIs

in Windows.Media.Transcoding. You might also just want to write the contents of a stream to a

StorageFile (especially when the backing store isn’t local) or copy them to a buffer for encryption.

The aforementioned MSStreamReader object, by the way, is where you find methods to read data

from an MSStream or blob. Do be aware that these methods are synchronous and will block the UI

thread if you're working with large data sets. But MSStreamReader will work just fine in a web worker.

On the flip side of the WinRT/HTML5 relationship, the MSApp object in JavaScript provides methods

to convert from WinRT types to HTML5 types. One such method, createStreamFromInputStream,

creates an MSStream from an IInputStream, allowing to take data from a WinRT source and call

URL.createObjectURL, assigning the result to something like an img.src property. Similarly,

MSApp.createBlobFromRandomAccessStream creates an MSStream from an IRandomAccessStream,

and MSApp.createFileFromStorageFile converts a WinRT StorageFile object into an HTML5 File

object.

Let me reiterate that URL.createObjectURL, which is essential to create a URI you can assign to

properties of various HTML elements, can work with both HTML objects (blobs and MSStream) and

WinRT objects (IRandomAccessStreamWithContentType, IStorageItem, and MediaCapture). In some

cases you'll find that you don't need to convert a WinRT stream into an MSStream or Blob explicitly—

URL.createObjectURL does that automatically. This is what makes it simple to take a video preview

stream and display it in a <video> element, as we’ll see in Chapter 13. You just set up the

MediaCapture object in WinRT, assign the result from URL.createObjectURL on that object to

video.src, and call video.play() to stream the video preview directly into the element.

http://msdn.microsoft.com/library/windows/apps/windows.media.capture.mediacapture.aspx
http://msdn.microsoft.com/library/windows/apps/hh767332.aspx
http://msdn.microsoft.com/library/windows/apps/hh767330.aspx
http://msdn.microsoft.com/library/windows/apps/hh767329.aspx
http://msdn.microsoft.com/library/windows/apps/hh831249.aspx

552

Using App Data APIs for State Management

Now that we’ve seen the nature of state-related APIs, let’s see how they’re used to manage for different

kinds of state and any special considerations that come into play.

Transient Session State
As described before, transient session state is whatever an app saves when being suspended so that it

can restore itself to that state if it’s terminated by the system and later restarted. Being terminated by

the system is again the only time this happens, so what you include in session state should always be

scoped to giving the user the illusion that the app was running the whole time. In some cases, as

described in Chapter 3, you might not in fact restore this state, especially if it’s been a long time since

the app was suspended and it’s unlikely the user would remember where they left off. That’s a decision

you need to make for your own app regarding the experience you want to provide for your customers.

Session state should be saved within the AppData localFolder or the localSettings object. It

should not be saved in a temp area because the user could run the Disk Cleanup tool while your app is

suspended or terminated in which case session state might be deleted (see next section). And because

this type of state is specific to a device, you would not use roaming areas for it.

Regardless of what information you save as session state, be sure that it is completely saved by the

time you return from any suspending event handler, using deferrals of course if you need to do async

work (also described in Chapter 3). Remember that you have only a few seconds to complete this task,

so apps often save session state incrementally while the app is running rather than wait for the

suspending event specifically.

As we saw in Chapter 3, it’s a good idea to just maintain your session variables directly in the WinJS

sessionState object so that it’s always current with your state. WinJS then automatically saves the

contents of sessionState in its own handler for WinJS.Application.oncheckpoint (a wrapper for

suspending). It does this by calling JSON.stringify(sessionState) and writing the resulting text to

a file called _sessionState.json within the localFolder.

If you need to store additional values within sessionState just before it’s written, do that in your

own checkpoint handler. A good example of such data is the navigation stack for page controls, which

is available in WinJS.Navigation.history; you could also copy this data to sessionState within the

PageControlNavigator.navigated method (in navigator.js as provided by the project templates). In

any case, WinJS will always call its own checkpoint handler after yours is done to make sure any

changes to sessionState are saved.

When an app is restarted after being terminated, WinJS also automatically loads _sessionState.json

into the sessionState object, so everything will be there when your own activation code is run.

If you don’t use the WinJS sessionState object and just manage your state directly (in settings

containers and other files), you can save your session variables whenever you like (including within

553

checkpoint). You then restore them directly within your activated event for previousExecutionState

== terminated.

It’s also a good practice to build some resilience into your handling of session state: if what gets

loaded doesn’t seem consistent or has some other problem, revert to default session values. Remember

too that you can use the localSettings container with composite settings to guarantee that groups

of values will be stored and retrieved as a unit. You might also find it helpful during development to

give yourself a simple command to clear your app state in case things get fouled up, but just

uninstalling your app will clear out all that as well. At the same time, it’s not necessary to provide your

users with a command to clear session state: if your app fails to launch after being terminated, the

previousExecutionState flag will be notRunning the next time the user tries, in which case you

won’t attempt to restore the state.

Similarly, if the user installs an update after an app has been suspended and terminated and the app

data version changes, the previousExecutionState value will be reset. If you don’t change the state

version for an app update, your session state can carry forward. (This is a behavioral change between

Windows 8 and Windows 8.1—the former resets previousExecutionState when an app update is

installed, but the latter does not.)

Sidebar: Using HTML5 sessionStorage and localStorage

If you prefer, you can use the HTML5 localStorage object for both session and other local state;

its contents get persisted to the AppData localFolder. The contents of localStorage are not

loaded until first accessed and are limited to 10MB per app; the WinRT and WinJS APIs, on the

other hand, are limited only by the capacity of the file system.

As for the HTML5 sessionStorage object, it’s not really needed when you’re using page

controls and maintaining your script context between app pages—your in-memory variables

already do the job. However, if you’re actually changing page contexts by using <a> links or

setting document.location, then sessionStorage can still be useful. You can also encode

information into URIs, as is commonly done with web apps.

Both sessionStorage and localStorage are also useful within iframe or webview elements

running in the web context, as the WinRT APIs are not available. At the same time, you can load

WinJS into a web context page (this is supported) and the WinJS.Application.local, roaming,

and temp objects still work using in-memory buffers instead of the file system.

Local and Temporary State

Unlike session state that is restored only in particular circumstances, local app state is composed of

those settings and other values that are always applied when an app is launched. Anything that the

user can set directly falls into this category, unless it’s a lso part of the roaming experience, in which

case it is still loaded on app startup. Any other cached data, saved searches, display units, preferred

554

media formats, and device-specific configurations also fall into this bucket. In short, if it’s not pure

session state and not part of your app’s roaming experience, it’s local or temporary state. (Remember

that credentials should be stored in the Credential Locker instead of in your app data and that recent

file lists and frequently used file lists should use Windows.Storage.AccessCache.)

All the same APIs we’ve seen also work for this form of state, including all the WinRT APIs, the

WinJS.Application.local and temp objects, and HTML localStorage. You can also use the HTML5

IndexedDB APIs, SQLite, and the HTML AppCache—these are just other forms of local state even

though they aren’t necessarily stored in your AppData folders.

It’s very important to version-stamp your local and temp state because it will always be preserved

across an app update (unless temp state has been cleaned up in the meantime). With any app update,

be prepared to load old versions of your state or migrate it with setVersionAsync, or simply decide

that a version is too old and purge it (Windows.Storage.ApplicationData.current.clearAsync)

before setting up new defaults. As mentioned before, it’s also possible to migrate state from a

background task. (See Chapter 16.)

Generally speaking, local and temp app data are the same—they have mostly the same APIs and are

stored in parallel folders. Temp, however, doesn’t support settings and settings containers. The other

difference, again, is that the contents of your temp folder (along with the HTML5 app cache) are

subject to the Windows Disk Cleanup tool when Temporary Files is selected. This means that your temp

data could disappear at any time when the user wants to free up some disk space. You could also

employ a background task with a maintenance trigger for doing cleanup on your own (again see

Chapter 16, in “Tasks for Maintenance Triggers”).

For these reasons, temp should be used for storage that optimizes your app’s performance but not

for anything that’s critical to its operation. For example, if you have a JSON file in your package that

you parse or decompress on first startup such that the app runs more quickly afterwards, and if you

don’t make any changes to that data from the app, you might elect to store that in temp. The same is

true for graphical resources that you might have fine-tuned for the specific device you’re running on;

you can always repeat that process from the original resources, so it’s another good candidate for temp

data. Similarly, if you’ve acquired data from an online service as an optimization (that is, so that you

can just update the local copy incrementally), you can always reacquire it. This is especially helpful for

providing an offline experience for your app, though in some cases you might want to let the user

choose to save it in local instead of temp (an option that would appear in Settings along with the

ability to clear the cache).

Sidebar: HTML5 App Cache

Store apps can employ the HTML 5 app cache as part of an offline/caching strategy. It is most

useful in iframe and webview elements (running in the web context) where it can be used for

any kind of content. For example, an app that reads online books can show such content in a

webview, and if those pages include app cache tags, they’ll be saved and ava ilable offline. In the

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx

555

local context, the app cache works for nonexecutable resources like images, audio, and video but

not for HTML or JavaScript.

IndexedDB, SQLite, and Other Database Options
Many forms of local state are well suited to being managed in a database. In Windows Store apps, the

IndexedDB API is available through the window.indexedDB and worker.indexedDB objects. For

complete details on using this feature, I’ll refer you to the W3C specifications, the Indexed Database API

reference for Store apps, and the IndexedDB sample. (Aaron Powell’s db.js wrapper for IndexedDB

might also be of interest.)

It’s very important to understand that some app and systemwide limits are imposed on IndexedDB

because there isn’t a means through which the app or the system can shrink a database file and reclaim

unused space:

 IndexedDB has a 250MB limit per app and an overall system limit of 375MB on drives smaller

than 32GB, or 4% (to a maximum 20GB) for drives over 32GB. So it could be true that your app

might not have much room to work with anyway, in which case you need to make sure you

have a fallback mechanism. (When the limit is exceeded the APIs will throw a Quota Exceeded

exception. And if you want to use a third-party tool to explore the database contents, you can

find the .edb files in %localappdata%/Microsoft/Internet Explorere/Indexed DB .)

 IndexedDB as provided by the app host does not support complex key paths—that is, it does

not presently support multiple values for a key or index (multientry).

 By default, access to IndexedDB is granted only to HTML pages that are part of the app package

and those declared as content URIs. (See “App Content URIs” in Chapter 4.) Random web pages

you might host in a webview will not be given access, primarily to preserve space within the

250MB limit for those pages you really care about in your app. However, you can grant access

to arbitrary pages by including the following tag in your home page and not setting the

webview’s contents until the DOMContentLoaded or activated event has fired:

<meta name="ms-enable-external-database-usage" content="true" />

Besides IndexedDB a few other database options for Store apps exist. For a local relational database,

the most popular option is SQLite, which you can install as a Visual Studio extension from the SQLite

for Windows Runtime page.82 Full documentation and other downloads can be found at

http://sqlite.org, and Tim Heuer’s blog on SQLite provides many details for Windows Store apps. The

key thing for apps written in JavaScript is that you can’t talk directly to a compiled SQLite DLL, so a

little more work is necessary.

One solution that’s emerged in the community is a WinRT wrapper component for the DLL called

SQLite3-WinRT, available on GitHub, which provides a familiar promise-oriented async API for your

82 It’s a very robust solution—it’s apparently used to operate commercial airliners like the massive Airbus A380.

http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://dvcs.w3.org/hg/IndexedDB/
http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af
https://github.com/aaronpowell/db.js
http://visualstudiogallery.msdn.microsoft.com/1d04f82f-2fe9-4727-a2f9-a2db127ddc9a
http://visualstudiogallery.msdn.microsoft.com/1d04f82f-2fe9-4727-a2f9-a2db127ddc9a
http://sqlite.org/
http://timheuer.com/blog/archive/2012/08/07/updated-how-to-using-sqlite-from-windows-store-apps.aspx
https://github.com/doo/SQLite3-WinRT

556

database work. There is also a version called SQL.js, which is SQLite compiled to JavaScript via

Emscripten. This gives you more of the straight SQLite API, but be mindful that as JavaScript it’s always

going to be running on the UI thread.

Another local, nonrelational database option are the Win32 “Jet” or Extensible Storage Engine (ESE)

APIs (on which the IndexedDB implementation is built). For this you’ll need to write a WinRT

Component wrapper in C++ (the general process for which is in Chapter 18), because JavaScript cannot

get to those APIs directly.

There’s also LINQ for JavaScript, a project on CodePlex that allows you to use SQL-like queries

against JavaScript objects. (LINQ stands for Language INtegerated Queries, a concept introduced with

.NET languages that has proven very popular and convenient.) If your data is small enough to be

loaded into memory from serialized JSON, this could make a suitable database for your app.

An alternate possibility for searchable file-backed data is to use the system index by creating a folder

named “Indexed” in your local and/or roaming AppData folder. The contents of the files in this folder,

including metadata (properties), will be indexed by the system indexer and can be queried using

Advanced Query Syntax (AQS). (The general query APIs are explained in “Custom Queries” in Chapter

11; content indexing is covered in Chapter 15 in “Indexing and Searching Content.”) You can also do

property-based searches for Windows properties, making this approach a simple alternative to

database solutions.

You can probably find other third-party libraries that would fulfill your needs for local data storage,

perhaps just using the file system with JSON or XML. I haven’t investigated any specific ones, however,

so I can't make recommendations here. (If a library uses Win32 APIs under the covers, make sure that

they use only those listed on Win32 and COM for Windows Store apps.)

If you’re willing to work with online databases, you have a couple of additional technologies to

choose from. First, Windows Azure Mobile Services makes it very easy to create and manage online

tables (stored in an online SQL Server database), which you can query through simple client-side

libraries. For more, see Get started with data in Mobile Services. Note that if you’re planning to use

push notifications in your app, a subject that we’ll return to in Chapter 16, you’ll likely want to use

tables in Mobile Services for that purpose, so you might as well get started now.

Speaking of online SQL Server databases, you can work with them directly through the OData

protocol, provided that you have configured the necessary data services on the server side (a REST

interface). When that’s in place, you can use the client-side OData Library for JavaScript or the datajs

library to do all your work, because they handle the details of making the necessary HTTP requests.

Finally, OneDrive is an option for working with cloud-based files. We’ll talk more about OneDrive in

Chapter 11, but you can refer to the Live Connect Developer Center in the meantime.

Roaming State
The automatic roaming of app state between a user’s devices (up to 81 of them!) is one of the most

http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://msdn.microsoft.com/library/windows/apps/br205753.aspx
http://msdn.microsoft.com/library/windows/apps/br205753.aspx
http://jslinq.codeplex.com/
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://www.windowsazure.com/develop/mobile/tutorials/get-started-with-data-js/
http://www.odata.org/libraries#JavaScript
http://datajs.codeplex.com/
http://datajs.codeplex.com/
http://msdn.microsoft.com/live/dn195579

557

interesting and enabling features introduced for Windows Store apps. Seldom does such a small piece

of technology like this so greatly reduce the burden on app developers!

It works very simply. First, your AppData roamingFolder and your roamingSettings container

behave exactly like their local counterparts. As long as their combined size is less than the

roamingStorageQuota (in Windows.Storage.ApplicationData.current), Windows will copy that

data to the cloud (where it maintains a copy for each discrete version of your state) and then from the

cloud to other devices where the same user is logged in and has the same app installed. In fact,

Windows attempts to copy roaming data for an app during its installation process so that it’s there

when the app is first launched on that device.

If the app is running simultaneously on multiple devices, the last writer of any particular file or

setting always wins. When roaming state gets synced from the latest copy on the cloud, apps will

receive the Windows.Storage.ApplicationData.ondatachanged event. So an app should always

read the appropriate roaming state on startup and refresh that state as needed within datachanged.

You should always employ this strategy too in case Windows cannot bring down roaming state for a

newly installed app right away (such as when the user installed the app and lost connectivity). As soon

as the roaming state appears, you’ll receive the datachanged event. Scenario 5 of the Application data

sample provides a basic demonstration of this.

Tip Roaming state is meant to keep multiple apps synchronized to state in the cloud. It is not

intended as a message-passing system—that is, having one app write to a file and having the app on

another device clearing out that file once it "receives" the data. If you need to pass messages, use

another service of your own.

Deciding what your roaming experience looks like is really a design question more than a

development question. It’s a matter of taking all app settings that are not specific to the device

hardware (that is, those not related to screen size, video capabilities, the presence of particular

peripherals or sensors, etc.), and thinking through whether it makes sense for each setting to be

roamed. A user’s favorites, for example, are appropriate to roam if they refer to data that isn’t local to

the device. That is, favorite URIs or locations on a cloud storage service like OneDrive or Flickr are

appropriate to roam; favorites and recently used files in a user’s local libraries are not. The viewing

position within a cloud-based video, like a streaming movie, would be appropriate to roam, as would

be the last reading position in a magazine or book. But again, if that content is local, then maybe not.

Account configurations like email settings are often good candidates so that the user doesn’t have to

configure the app again on other devices.

At the same time, you might not be able to predict whether the user will want to roam certain

settings. In this case, the right choice is to give the user a choice! That is, include options in your

Settings UI to allow the user to customize the roaming experience to their liking, especially as a user

might have devices for both home and work where they want the same app to behave differently. For

instance, with an RSS Reader the user might not want notifications on their work machine whenever

new articles arrive but would want real-time updates at home. The set of feeds itself, on the other

http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2

558

hand, would probably always be roamed, but then again the user might want to keep separate lists.

To minimize the size of your roaming state and stay below the quota, you might employ the

Windows.Storage.Compression API for file-based data, as described earlier. For this same reason,

never use roaming state for user data. Instead, use an online service like OneDrive to store user data in

the cloud, and then roam URIs to those files as part of the roaming experience. Put another way, think

in terms of roaming references to content, not content itself. Also consider putting caps on otherwise

open-ended data sets (like favorites) to avoid exceeding the quota.

By now you probably have a number of other questions forming in your mind about how roaming

works: “How often is data synchronized?” “How do I manage different versions?” “What else should I

know?” These are good questions, and fortunately there are good answers!

 Assuming there’s network connectivity, an app’s roaming state is roamed within 30 minutes on

an active machine. It’s also roamed immediately when the user logs on or locks the machine.

Locking the machine is always the best way to force a sync to the cloud. Note that if the cloud

service is aware of only a single device for a user (that is, for any given a Microsoft account),

synchronization with the cloud service happens only about once per day. When the service is

aware that the user has multiple machines, it begins synchronizing within the 30-minute period.

If the app is uninstalled on all but one machine, synchronization reverts to the longer period.

 When saving roaming state, you can write values whenever you like, such as when those

settings are changed. Don’t worry about grouping your changes: Windows has a built-in

debounce period to combine changes together and reduce overall network traffic.

 If you have a group of settings that must be roamed together, manage these as a composite

setting in your roamingSettings container.

 Files you create within the roamingFolder are not be roamed so long as you have the file open

for writing (that is, as long as you have an open stream). For this reason it’s a good idea to make

sure that all streams are closed when the app is suspended.

 Windows allows each app to have a “high priority” setting that is roamed within one minute,

thereby allowing apps on multiple devices to stay much more closely in sync. This one setting—

which can be a composite setting—must exist in the root of your roamingSettings with the

name HighPriority—that is, roamingSettings.values["HighPriority"]. That setting must

also be 8K or smaller to maintain the priority. If you exceed 8K, it roams with normal priority.

(And note that the setting must be a single or composite setting; a settings container with the

same name roams with normal priority.) See scenario 6 of the Application data sample for a

demonstration.

 On a trusted PC, systemwide user settings like the Start page configuration are automatically

roamed independent of apps. This includes encrypted credentials saved by apps in the

credential locker (if enabled in PC Settings); apps should never attempt to roam passwords.

Apps that create secondary tiles (as we’ll see in Chapter 16) can indicate whether such tiles

559

should be copied to a new device when the app is installed.

 When multiple state versions are in use by different versions of an app, Windows manages each

version of the state separately, meaning that newer state won’t be roamed to devices with apps

that use older state versions. In light of this, it’s a good idea to not be too aggressive in

versioning your state because it breaks the roaming connection between apps.

 The cloud service retains multiple versions of roaming state so long as multiple versions are in

use by the same Microsoft account. Only when all instances of the app have been updated or

uninstalled will older versions of the roaming state be eligible for deletion.

 When an updated app encounters an older version of roaming state, it should load it according

to the old version but call setVersionAsync to migrate to the new version.

 Avoid using secondary versioning schemes within roaming state such that you introduce

structural differences without changing the state version through setVersionAsync. Because

the cloud service is managing the roaming state by this version number, and because the last

writer always wins, a version of an app that expects to see some extra bit of data, and in fact

saved it there, might find that it’s been removed because a slightly older version of the app

didn’t write it.

 Even if all apps are uninstalled from a user’s devices, the cloud service retains roaming state for

“a reasonable time” (maybe 30 days) so that if a user reinstalls the app within that time period

they’ll find that their settings are still intact. To avoid this retention and explicitly clear roaming

state from the cloud, use the clearAsync method.

 To debug roaming state, check out the Roaming Monitor Tool available in the Visual Studio

Gallery. It provides status information on the current sync state, a Sync Now button to help with

testing, and a browser for roaming state and a file editor. (At the time of writing, however, this

tool is only available for Visual Studio 2012 for Windows 8 and has not been updated for

Windows 8.1; it might appear directly in Visual Studio and not as an extension.)

For additional discussion, refer to Guidelines for roaming app data.

Settings Pane and UI

We’ve now seen all the different APIs that an app can use to manage its state where storage is

concerned. The question that remains is how to present settings that a user can configure directly. That

is, within the whole of an app’s state, there will be some subset that you allow a user to control directly,

as opposed to indirectly through other actions. Many bits of state are tracked transparently or, like a

navigation history, might reflect user activity but aren’t otherwise explicitly shown to or configurable by

the user. Other pieces of state—like preferences, accounts, profile pictures, and so forth—can and

should be exposed directly to the user. This is the purpose of the Settings charm.

http://visualstudiogallery.msdn.microsoft.com/3ccf8c24-5e72-4ba0-b3e9-d822ca345fd0
http://visualstudiogallery.msdn.microsoft.com/3ccf8c24-5e72-4ba0-b3e9-d822ca345fd0
http://msdn.microsoft.com/library/windows/apps/hh465094.aspx

560

When the user invokes the Settings charm (which can also be done directly with the Win+i key),

Windows displays the Settings pane, a piece of UI that is populated with various settings commands as

well as system functions along the bottom. Some examples are shown in Figure 10-4.

FIGURE 10-4 Examples of commands on the top-level settings pane. Notice that the lower section of the pane

always has system settings and the app name and publisher always appear at the top. Permissions and Rate And

Review are added automatically for apps acquired from the Store. Rate And Review is not included for side-loaded

apps (nor the Store app itself).

What appears in the Settings charm for an app should be those settings that affect behavior of the

app as a whole and are adjusted only occasionally, or commands like Feedback and Support that

simply navigate to a website. Options that apply only to particular pages or workflows should not

appear in Settings: place them directly on the page (the app canvas) or in the app bar. Of course, such

options are still part of your app state—just not part of the Settings charm UI!

Details and options that typically appear in the Settings charm include the following:

 Display preferences like units, color themes, alignment grids, and defaults.

 Roaming preferences that allow the user to control exactly what settings get roamed, such as to

keep configurations for personal and work machines separate.

 Account and profile configurations, along with commands to log in, log out, and otherwise

manage those accounts and profiles. Passwords should never be stored directly or roamed,

however; use the Credential Locker instead.

 Behavioral settings like online/offline mode, auto-refresh, refresh intervals, preferred

video/audio streaming quality, whether to transfer data over metered network connections, the

561

location from which the app should draw data, and so forth.

 A feedback link where you can gather specific information from the user, or you can use a

feedback panel that records data to telemetry you collect and upload separately.

 Additional information about the app, such as Help, About, a copyright page, a privacy

statement, license agreements, and terms of use. Oftentimes these commands will take the user

to a separate website, which is perfectly fine.

I highly recommend that you run the apps that are built into Windows and explore their use of the

Settings charm. You’re welcome to explore how Settings are used by other apps in the Store as well,

but those might not always follows the design guidelines as consistently—and consistency is essential

to settings!

Speaking of which, apps can add their own commands to the Setting pane but they are not

obligated to do so. Windows guarantees that something always shows up for the app in this pane: it

automatically displays the app name and publisher, a Rate And Review command that takes you to the

Windows Store page for the app, an Update command if an update is available from the Store (and

auto-update is turned off), and a Permissions command if the app has declared any capabilities in its

manifest that are subject to user consent (such as Location, Camera, Microphone, etc.). Note that Rate

And Review and Update won’t appear for apps you run from Visual Studio or for side-loaded apps,

because they weren’t acquired from the Store.

One of the beauties of the Settings charm is that it appears as a flyout on top of the app, meaning

you never need to incorporate settings pages into your app’s navigation hierarchy. Furthermore, the

Settings charm is always available no matter where you are in the app, so you don’t need to think

about having such a command on your app bar, nor do you ever need a general settings command on

your app canvas. That said, you can invoke the Settings charm programmatically, such as when you

detect that a certain capability is turned off and you prompt the user about that condition. You might

ask something like “Do you want to turn on geolocation for this app?” and if the user says Yes, you can

invoke the Settings charm. This is done through the settings pane object returned from

Windows.UI.ApplicationSettings.SettingPane.getForCurrentView, whose show method

displays the UI (or throws a kindly exception if the app doesn’t have the focus). The edge property of

the settings pane object also tells you if it’s on the left or right side of the screen, depending on the

left-to-right or right-to-left orientation of the system as a whole (a regional variance).

And with that we’ve covered all the methods and properties of this object! Yet the most interesting

part is how we add our own commands to the settings pane. But let’s first look at a few design

considerations as described on Guidelines for app settings.

Design Guidelines for Settings
Beyond the commands that Windows automatically adds to the settings pane, an app can provide up

to eight others, typically around four; anything more than eight will throw an exception. Because

settings are global to an app, the commands you add are always the same: they are not sensitive to

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.getforcurrentview.aspx
http://msdn.microsoft.com/library/windows/apps/hh770544.aspx

562

context. To say it another way, the only commands that should appear on the settings pane are those

that are global to the app (refer back to Figure 10-4 for examples); commands that apply only to

certain pages or contexts within a page should appear on the app bar or app canvas.

Each app-supplied command can do one of two things. First, a command can simply be a hyperlink

to a web page. Some apps use links for their Help, Privacy Statement, Terms of Use, License

Agreements, and so on, which will open the linked pages in a browser. The other option is to have the

command invoke a secondary flyout panel with more specific settings controls or simply a webview to

display web-based content. You can provide Help, Terms of Use, and other textual content in both

these ways rather than switch to the browser.

Note As stated in the App certification requirements, section 4.1.1, apps that collect personal

information in any way, or even just use a network, must have a privacy policy or statement. This must

be included on the app’s product description page in the Store and must also be accessible through a

command in your Settings pane.

Secondary flyouts are created with the WinJS.UI.SettingsFlyout control; some examples are

shown in Figure 10-5. Notice that the secondary settings panes can be sized however needed, but they

should fall between 346px and 646px. You should style the flyout header (using the win-header class)

to use your app’s primary color for the background and style the entire flyout with a border color that’s

20% darker. Also note that the Permissions flyout, shown on the left of Figure 10-5, is provided by

Windows automatically, is configured according to capabilities declared in your manifest, and uses the

system colors to specifically differentiate system settings. Some capabilities like geolocation are

controlled in this pane; other capabilities like Internet and library access are simply listed because the

user is not allowed to turn them on or off.

FIGURE 10-5 Examples of secondary settings panes in the Travel, Weather, News, and Music apps. The first three are

346px wide; the fourth is 646px. Notice that each app-provided pane is appropriately branded and provides a back

button to return to the main Settings pane. The Permissions pane is provided by the system and thus reflects the

system theme (that is, it cannot be customized).

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx

563

A common group of settings are those that allow the user to configure their roaming experience—a

group of settings that determine what state is roamed (you see this on PC Settings > OneDrive > Sync

Settings). It is also recommended that you include account/profile management commands within

Settings, as well as login/logout functionality. As noted in Chapter 9, “Commanding UI,” logins and

license agreements that are necessary to run the app at all should be shown upon launch. For ongoing

login-related functions, and to review license agreements and such, create the necessary commands

and panes within Settings. Refer to Guidelines for login for more information on this subject. Guidelines

for a Help command can also be found on Quickstart: add app help.

Behaviorally, settings panes are light-dismiss (returning to the app) and have a back button to

return to the primary settings pane with all the commands. Because of the light-dismiss behavior,

changing a setting on a pane applies the setting immediately: there is no OK or Apply button or other

such UI. If the user wants to revert a change, she should just restore the original setting.

For this reason it’s a good idea to use simple controls that are easy to switch back, rather than

complex sets of controls that would be difficult to undo. The recommendation is to use toggle switches

for on/off values (rather than check boxes), a button to apply an action (but without closing the

settings UI), hyperlinks (to open the browser), text input boxes (which should be set to the appropriate

type such as email address, password, etc.), radio buttons for groups of up to five mutually exclusive

items, and a listbox (select) control for four to six text-only items.

In all your settings, think in terms of “less is more.” Avoid having all kinds of different settings,

because if the user is never going to find them, you probably don’t need to surface them in the first

place! Also, while a settings pane can scroll vertically, try to limit the overall size such that the user has

to pan down only once or twice, if at all (that is, three pages on a 768px vertical display).

Some other things to avoid with Settings:

 Don’t use Settings for workflow-related commands. Those belong on the app bar or on the app

canvas, as discussed in Chapter 9.

 Don’t use a top-level command in the Settings pane to perform an action other than linking to

another app (like the browser). Top-level commands should never execute an action within the

app.

 Don’t use settings commands to navigate within the app.

 Don’t use WinJS.UI.SettingsFlyout as a general-purpose control.

And on that note, let’s now look at the steps to use Settings and the SettingsFlyout properly!

Populating Commands

The first part of working with Settings is to provide your specific commands when the Settings charm is

invoked. Unlike app bar commands, these should always be the same no matter the state of the app; if

you have context-sensitive settings, place commands for those in the app bar.

http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh465062.aspx

564

The two ways to implement this process in an app written in HTML and JavaScript are using WinRT

directly or using the helpers in WinJS. Let’s look at these for a simple Help command.

To know when the charm is invoked through WinRT, obtain the settings pane object through

Windows.UI.ApplicationSettings.SettingsPane.getForCurrentView and add a listener for its

commandsrequested event (this is a WinRT event, so be sure to remove the listener if necessary):

// The n variable here is a convenient shorthand

var n = Windows.UI.ApplicationSettings;

var settingsPane = n.SettingsPane.getForCurrentView();

settingsPane.addEventListener("commandsrequested", onCommandsRequested);

Within your event handler, create SettingsCommand objects for each command, where each

command has an id, a label, and an invoked function that’s called when the command is tapped or

clicked. These can all be specified in the constructor:

function onCommandsRequested(e) {

 // n is still the shortcut variable to Windows.UI.ApplicationSettings

 var commandHelp = new n.SettingsCommand("help", "Help", helpCommandInvoked);

 e.request.applicationCommands.append(commandHelp);

}

A command is added to the Settings pane by adding it to the e.request.applicationCommands

vector; above we use the vector’s append method, but you could also use insertAt. You’d make such a

call for each command, or you can pass an array of such commands to the vector’s replaceAll

method. What then happens within the invoked handler for each command is the interesting part, and

we’ll come back to that soon.

You can also prepopulate the applicationCommands vector outside of the commandsrequested

event; this is perfectly fine because your settings commands should be constant for the app anyway.

Here’s an example, which also shows the vector’s replaceAll method:

var n = Windows.UI.ApplicationSettings;

var settingsPane = n.SettingsPane.getForCurrentView();

var vector = settingsPane.applicationCommands;

//Ensure no settings commands are currently specified in the settings charm

vector.clear();

var commands = [new settingsSample.SettingsCommand("Custom.Help", "Help", OnHelp),

 new n.SettingsCommand("Custom.Parameters", "Parameters", OnParameters)];

vector.replaceAll(commands);

This way, you don’t actually need to register for or handle commandsrequested directly.

Now because most apps will likely use settings in some capacity and will typically employ flyouts for

each command, WinJS provides some shortcuts to this whole process. First, instead of listening for the

WinRT event, simply assign a handler to WinJS.Application.onsettings (which is a wrapper for

commandsrequested):

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.getforcurrentview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx

565

WinJS.Application.onsettings = function (e) {

 // ...

};

In your handler, create a JSON object describing your commands and store that object in

e.detail.applicationcommands. Mind you, this is different from the WinRT object—just setting this

property accomplishes nothing. What comes next is passing the now-modified event object to the

static WinJS.UI.SettingsFlyout.populateSettings method as follows (taken from scenario 2 of the

App settings sample, js/2-AddFlyoutToCharm.js):

WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands =

 { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } };

 WinJS.UI.SettingsFlyout.populateSettings(e);

};

The populateSettings method traverses the e.details.applicationcommands object and calls

the WinRT applicationCommands.append method for each item. This gives you a more compact

means to accomplish what you’d do with WinRT, and it also simplifies the implementation of settings

commands, as we’ll see in a moment.

Tip The populateSettings method is just a helper function and isn’t anything you’re required to use.

You can easily see its implementation in the WinJS ui.js file and even make a copy of the code to

customize it however you like.

As you can see above, the JSON in e.detail.applicationcommands has this format:

{ <command id>: { title: <command label>, href: <path to in-package flyout markup> }}

The href property here must refer to an in-package HTML file that describes the content of the

SettingsFlyout that WinJS will invoke for that command. That is, you cannot use href to specify an

arbitrary URI to launch a browser, as commonly employed for Terms of Service, Privacy Statement, and

other such commands.

To intermix external URI commands with flyouts, you need to use a combination of both the WinJS

and WinRT APIs (or you can just bring the external content into a flyout with a webview). Fortunately,

within WinJS.Application.onsettings, the event args for the original WinRT commandsrequested

event is available in the e.detail.e property. That is, within the WinJS event, e.detail.e.request.-

applicationCommands is the WinRT vector. Thus, you can call WinJS.UI.SettingsFlyout.-

populateSettings for those commands that use flyouts and then create and add other commands

through e.detail.e.request.applicationCommands.append or insertAt. You’d use insertAt,

clearly, if you want to place a command at a specific point in the list rather than add it to the end.

Caveat You can call populateSettings only once, because WinJS internally stores the list of

commands in another internal object. Any subsequent call with a different list of commands will cause

any previous commands to be visible but unresponsive. In short, don’t do it.

http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49

566

Implementing Commands: Links and Settings Flyouts
Technically speaking, you can do anything you want within the invoked function for a settings

command. Truly! Of course, as described in the design guidelines earlier, recommendations exist for

how to use settings and how not to use them. For example, settings commands shouldn’t act like app

bar commands that affect content, nor should they navigate within the app itself. Ideally, a settings

command does one of two things: launch a hyperlink (to open a browser) or display a secondary

settings pane.

In the first case, launching a hyperlink uses the Windows.System.Launcher.launchUriAsync API as

follows:

function onCommandsRequested(e) {

 // n is still the shortcut variable to Windows.UI.ApplicationSettings

 var commandHelp = new n.SettingsCommand("help", "Help", helpCommandInvoked);

 e.request.applicationCommands.append(commandHelp);

}

function helpCommandInvoked(e) {

 var uri = new Windows.Foundation.Uri("http://example.domain.com/help.html");

 Windows.System.Launcher.launchUriAsync(uri).done();

}

In the second case, settings panes are implemented with the WinJS.UI.SettingsFlyout control.

Again, technically speaking, you’re not required to use this control: you can display any UI you want

within the invoked handler. The SettingsFlyout control, however, supplies enter and exit animations

and fires events like [before | after][show | hide]83. And because the flyout automatically

handles vertical scrolling with any HTML you place within it, including other controls (almost), there’s

no reason not to use it.

Note The one limitation is that nesting flyouts is not presently supported in WinJS, so you cannot

have a secondary flyout appear in the context of a settings flyout.

Because it’s a WinJS control, you can declare a SettingsFlyout for each one of your commands in

markup (making sure WinJS.UI.process/processAll is called, which handles any other controls in

the flyout). For example, scenario 2 of the App settings sample defines the following flyout for its Help

command (html/2-SettingsFlyout-Help.html, omitting the text content and reformatting a bit); the

result of this is shown in Figure 10-6:

<div data-win-control="WinJS.UI.SettingsFlyout" id="helpSettingsFlyout"

 aria-label="Help settings flyout" data-win-options="{settingsCommandId:'help'}">

 <!-- Use either 'win-ui-light' or 'win-ui-dark' depending on the contrast between the

 header title and background color; background color reflects app's personality -->

 <div class="win-ui-dark win-header" style="background-color:#00b2f0">

83 How’s that for a terse combination of four event names? It’s also worth noting that the

document.body.DOMNodeInserted event will also fire when a flyout appears.

http://msdn.microsoft.com/library/windows/apps/hh701480.aspx
http://msdn.microsoft.com/library/windows/apps/hh701253.aspx
http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49

567

 <button type="button" id="backButton" class="win-backbutton"></button>

 <div class="win-label">Help</div>

 </div>

 <div class="win-content ">

 <div class="win-settings-section">

 <h3>Settings charm usage guidelines summary</h3>

 <!-- Other content omitted -->

 For more in-depth usage guidance, refer to the

 App settings UX guide.

 </div>

 </div>

</div>

As always, the SettingsFlyout control has options (just one, settingsCommandId for obvious

purpose) as well as a few applicable win-* style classes: win-settingsflyout, which styles the whole

control, most especially for width and your border color, and win-ui-light and win-ui-dark, which

apply a light or dark theme to the contents of the flyout. In this example, we use the dark theme for the

header while the rest of the flyout uses the default light theme, which is inherited from the app’s global

stylesheet (that is, default.html pulls in ui-light.css).

FIGURE 10-6 The Help settings flyout (truncated vertically) from scenario 2 of the App settings sample. Notice the

hyperlink on the bottom.

In any case, you can see that everything within the control is just markup for the flyout contents,

nothing more, and you can wire up events to controls in the markup or in code. You’re free to use

hyperlinks here, such as to launch the browser to open a fuller Help page. You can also use a webview

to host web content within a settings flyout; for an example, see the Here My Am! example in this

chapter’s companion content, specifically html/privacy.html.

Tip If you load any stylesheets in settings flyouts, they will be added into the global stylesheet and can

possibly affect the rest of the app. Make sure, then, to avoid conflicts by scoping your selectors

specifically to elements inside the flyout.

568

So, how do we get a flyout to show when a command is invoked on the top-level settings pane? The

easy way is to let WinJS take care of the details using the information you provide to WinJS.UI.-

SettingsFlyout.populateSettings. When you specify a reference to the flyout’s markup, like we

saw earlier (from js/2-AddFlyoutToCharm.js):

WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands =

 { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } };

 WinJS.UI.SettingsFlyout.populateSettings(e);

};

then WinJS will automatically invoke a flyout with that markup when the command is invoked, calling

WinJS.UI.processAll along the way. This is why in most of the scenarios of the sample you don’t see

any explicit calls to showSettings, just a call to populateSettings. But you can use showSettings to

programmatically invoke a flyout, as we’ll now see.

Programmatically Invoking Settings Flyouts

In addition to being a control that you use to define a specific flyout, WinJS.UI.SettingsFlyout has a

couple of other static methods beyond populateSettings: show and showSettings. The show

method specifically brings out the top-level Windows settings pane—that is, Windows.UI.-

ApplicationSettings.SettingsPane. A call to show is what you typically wire up to a flyout’s back

button so that you return to the main Settings pane.

Note Although it’s possible to programmatically invoke your own settings panes, you cannot do so

with the system-provided Permissions command. If you have a condition for which you need the user

to change a permission, such as enabling geolocation, the recommendation is to display an error

message that instructs the user to use the Permissions command (as Here My Am! in this chapter does)

and that perhaps opens the main Setting pane. You cannot invoke the Rate And Review settings

command either, but you can launch the ms-windows-store:REVIEW?PFN=<package_family_name>

URI to achieve that end. See “Connecting Your Website and Web-Mapped Search Results” in Chapter

20, “Apps for Everyone, Part 2.”

The showSettings method, for its part, shows a specific settings flyout that you define in your app.

The signature of the method is showSettings(<id> [, <page>]) where <id> identifies the flyout

you’re looking for and the optional <page> parameter identifies an HTML document to look in if a

flyout with <id> isn’t found in the current document. That is, showSettings always starts by looking in

the current document for a SettingsFlyout element that has a matching settingsCommandId

property or a matching HTML id attribute. If such a flyout is found, that UI is shown.

If the markup in the previous section (with Figure 10-7) was contained in the same HTML page

that’s currently loaded in the app, the following line of code will show that flyout:

WinJS.UI.SettingsFlyout.showSettings("help");

http://msdn.microsoft.com/library/windows/apps/hh701277.aspx
http://msdn.microsoft.com/library/windows/apps/hh770581.aspx

569

In this case you could also omit the href part of the JSON object passed to populateCommands, but

only again if the flyout is contained within the current HTML document already.

It usually makes more sense to separate your settings flyouts from the rest of your markup and then

use the page parameter to showSettings, passing a URI for a page in your app package. The App

settings sample uses this to place the flyout for each scenario into a separate HTML file. You can also

place all your flyouts in one HTML file, so long as they have unique ids. Either way, showSettings loads

the flyout’s HTML into the current page using WinJS.UI.Pages.load (which calls WinJS.UI.-

processAll), scans that DOM tree for a matching flyout with the given <id>, and shows it. Failure to

locate the flyout will throw an exception.

Scenario 4 of the App settings sample shows this form of programmatic invocation. This is also a

good example (see Figure 10-7) of a vertically scrolling flyout (js/4-ProgrammaticInvocation.js):

WinJS.UI.SettingsFlyout.showSettings("defaults", "/html/4 -SettingsFlyout-Settings.html");

FIGURE 10-7 The settings flyout from scenario 4 of the App settings sample, showing how a flyout supports vertical

scrolling; note the scrollbar positions for the top portion (left) and the bottom portion (right).

A call to showSettings is thus exactly what you use within any particular command’s invoked

handler; it’s what WinJS sets up within populateCommands. But it also means you can call

showSettings from anywhere else in your code when you want to display a particular settings pane.

For example, if you encounter an error condition in the app that could be rectified by changing an app

setting, you can provide a button in a message dialog or notification flyout that calls showSettings to

open that particular pane. And for what it’s worth, the hide method of that flyout will dismiss it; it

doesn’t affect the top-level settings pane for which you must use Windows.UI.Application-

http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49

570

Settings.SettingsPane.getForCurrentView().hide.

You might use showSettings and hide together, in fact, if you need to navigate to a third-level

settings pane. One of your own settings flyouts could contain a command that calls hide on the

current flyout and then calls showSettings to invoke another. The back button of that subsidiary

flyout (and it should always have a back button) would similarly call hide on the current flyout and

showSettings to make its second-level parent reappear. That said, we don’t recommend making your

settings so complex that third-level flyouts are necessary, but the capability is there if you have a

particular scenario that demands it.

Knowing how showSettings tries to find a flyout is also helpful if you want to create a

SettingsFlyout programmatically. So long as such a control is in the DOM when you call

showSettings with its id, WinJS will be able to find it and display it like any other. It would also work,

though I haven’t tried this and it’s not in the sample, to use a kind of hybrid approach. Because

showSettings loads the HTML page you specify as a page control with WinJS.UI.Pages.load, that

page can also include its own script wherein you define a page control object with methods like

processed and ready. Within those methods you could then make specific customizations to the

settings flyout defined in the markup.

Sidebar: Changes to Permissions

A common question is whether an app can receive events when the user changes settings within

the Permissions pane. The answer is no, which means that you discover whether access is

disallowed only by handling Access Denied exceptions when you try to use the capability. To be

fair, though, you always have to handle denial of a capability gracefully because the user can

always deny access the first time you use the API. When that happens, you again display a

message about the disabled permission (as shown with the Here My Am! app) and provide some

UI to reattempt the operation. But the user still needs to invoke the Permissions settings

manually. Refer to the Guidelines for devices that access personal data for more details,

specifically in the “What if access to a device is turned off?” section.

Here My Am! Update

To bring together some of the topics we’ve covered in this chapter, the companion content includes

another revision of the Here My Am! app with the following changes and additions (mostly to

pages/home/home.js unless noted):

 It now incorporates the Bing Maps SDK so that the control is part of the package rather than

loaded from a remote source. This eliminates the webview we’ve been using to host the map, so

all the core code from html/map.html can move into js/default.js and we can eliminate the code

needed to communicate between the app and the webview. Note that to run this sample in

Visual Studio you need to download and install the SDK yourself (be sure to choose the version

http://msdn.microsoft.com/library/windows/apps/Hh768223.aspx
http://msdn.microsoft.com/library/hh846481.aspx

571

for Windows 8.1).

 Instead of copying pictures taken with the camera to app data, those are now copied to a

HereMyAm folder in the Pictures library. The Pictures Library capability has been declared.

 Instead of saving a pathname to the last captured image file, which is used when the app is

terminated and restarted, the StorageFile is saved in Windows.Storage.AccessCache to

guarantee future programmatic access.

 An added appbar command allows you to use the File Picker to select an image to load instead

of relying solely on the camera. This also allows you to use a camera app, if desired. Note that

we use a particular settingsIdentifier with the picker in this case to distinguish from the

picker for recent images. We’ll again learn about the file pickers in Chapter 11.

 Another appbar command allows you to choose from recent pictures from the camera. This

defaults initially to the Pictures library but uses a different settingsIdentifier so that

subsequent invocations will default to the last viewed location.

 Additional commands for About, Help, and a Privacy Statement are included on the Settings

pane using the WinJS.Application.onsettings event (see js/default.js). The first two display

content from within the app whereas the third pulls down web content in a webview; all the

settings pages are found in the html folder of the project, with styles in css/default.css.

What We’ve Just Learned

 Statefulness is important to Windows Store apps, to maintain a sense of continuity between

sessions even if the app is suspended and terminated.

 App data is session, local, temporary, and roaming state that is tied to the existence of an app; it

is accessible only by that app.

 User data is stored in locations other than app data (such as the user’s music, pictures, and

videos libraries, along with removable storage) and persists independent of any given app.

Multiple apps might be able to open and manipulate user files.

 The StorageFolder and StorageFile classes in WinRT are the core objects for working with

folders and files. All programmatic access to the file system begins, in fact, with a

StorageFolder. The Windows.Storage.FileIO and PathIO classes simplify file access, as do

helpers in WinJS.Application.

 WinRT offers encryption services through Windows.Security.Cryptography, as well as a built-

in compression mechanism in Windows.Storage.Compression.

 Streams are the objects through which you general access file contents. Blobs and buffers

interact with streams to handle different interchange needs between WinRT and the app host.

572

 App data is accessed through the Windows.Storage.ApplicationData API and accommodates

both structured settings containers as well as file-based data. Additional APIs like IndexedDB

and HTML5 localStorage are also available. Third-party libraries, such as SQLite and the

OData Library for JavaScript, provide other options.

 It is important to version app state, especially where roaming is concerned, because versioning

is how the roaming service manages what app state gets roamed to which devices based on

what version apps are looking for.

 The size of roaming state is limited to a quota (provided by an API), otherwise Windows will not

roam the data. Services like OneDrive can be used to roam larger files, including user data.

 The typical roaming period is 30 minutes or less. A single setting or composite named

“HighPriority,” so long as it’s under 8K, will be roamed within a minute.

 To use the Settings pane, an app populates the top-level pane provided by Windows with

specific commands. Those commands map to handlers that either open a hyperlink (in a

browser) or display a settings flyout using the WinJS.UI.SettingsFlyout control. Those

flyouts can contain any HTML desired, including webview elements that load remote content.

 Settings panes can be invoked programmatically when needed.

573

Chapter 11

The Story of State, Part 2: User Data,

Files, and OneDrive

Every week I receive an email advertisement from a well-known electronics retailer (I did opt in) that

typically highlights items across a variety of categories, like PCs, tablets, TVs, audio equipment, external

hard drives, software, home security, and so forth. I’ve found it interesting over the couple of years I’ve

been receiving these emails to observe how large a hard drive (or now SSD) you can get for around

US$80. This is easy as the retailer seems to highlight items around that price point. I’ve watched how

the same US$80 that bought about 320 gigabytes of storage two years ago will now acquire on the

order of 2 terabytes or more (and may increase yet further by the time you read this).

What we call user data, a term we defined in Chapter 10, “The Story of State, Part 1,” is the driving

force behind the ever-growing need for storage. (Just hand a video camera to a six-year-old and—

presto!—you have another gig of video files that you just can’t bring yourself to delete.) The vast

majority of what populates storage devices nowadays is all the stuff that we’ll likely haul around with us

across app changes, operating system changes, and device changes—or simply keep it away from all

such concerns in the cloud. By its nature, user data is generally independent from the apps that create

it. Any number of apps can manipulate that data (and associate themselves with the file types in

question), and those apps can come and go while the data remains.

At the same time, the more user data expands the more we need great apps to efficiently manage it

and present it in meaningful ways. There are many creative ways to present and interact with a user’s

pictures, videos, and music, regardless of where those files are stored. The same is true for all other

types of data (like designs, drawings, and other documents), because you can easily query a folder to

retrieve those files that match all sorts of different criteria, thereby helping the user sort through all

their data more easily.

One of the key characteristics of the Windows platform is that the “file system” as it’s presented to

the user isn’t merely a local phenomenon: it seamlessly integrates local, removable, network-based, and

cloud-based locations, and it can even represent file-like or folder-like entities that other apps generate

dynamically. The same is true for apps: the WinRT StorageFolder and StorageFile classes, which we

met in Chapter 10 and will explore fully here, insulate you from the details of where such entities are

physically located, how they are referenced, and how they are accessed. Two of the most important

properties they provide are an availability flag and thumbnail representations, which are the

fundamental building blocks of most types of browsing UI.

574

Speaking of cloud-based storage, we’ll get to know OneDrive (formerly SkyDrive) much more in this

chapter. Users with a Microsoft account get cloud storage on OneDrive for free, and the service is

deeply integrated into the fiber of Windows as a whole. OneDrive is what hosts all the user’s roaming

data (from both apps and the system). Users also automatically see a OneDrive folder on their local

system that is transparently synchronized with their cloud storage, and they can elect to maintain

offline copies of whatever files and folders they choose (hence the matter of availability).

And speaking of properties, we’ll see how the StorageFile class makes all sorts of additional

properties and metadata available for whatever files you’re working with and how the StorageFolder

class makes it possible to query against that metadata.

But let’s not get ahead of ourselves by rushing into details any more than you need to rush out with

your US$80 to buy more storage. Let’s instead take a step back and see how the different aspects of

files, folders, and user data relate.

The Big Picture of User Data

To look at the broad scope of user data, we can ask a few questions of it similar to those we asked of

app data in Chapter 10:

 Where does user data live?

 How does an app get to user data?

 What affects and modifies user data?

 How do apps associate themselves with specific user data formats?

Let’s be clear again that user data, by definition, has no dependency on the existence of particular

apps and is never part of any app’s state. Lists of files and folders can certainly part of such state, such

as recently used files, favorite folder locations, and so forth, but the data in those files is not app state.

(Apps use the Windows.Storage.AccessCache to maintain such lists, because it preserves

programmatic access permissions for StorageFolder and StorageFile objects across app sessions.

We’ll see the details later in this chapter.)

This makes it easy to answer the first question: from an app’s point of view—which is what we care

about in a book about building apps!—user data lives anywhere and everywhere outside your app data

folders and your package folder. That outside realm again stretches from other parts of the local file

system all the way out to the cloud, as illustrated in Figure 11-1.

575

FIGURE 11-1 User data lives anywhere outside the app’s package and app data folders. Access to user data locations

happens through APIs that produce StorageFile, StorageFolder, and related objects, which represent files and

folders regardless of location. Access to some locations like libraries, local networks, and removable storage are

determined through manifest capabilities; the rest are typically accessed through the File Picker API. OneDrive is

integrated as part of the local file system, and other apps can provide access to other cloud back-ends.

Windows makes it easy—seamless, really—for users to navigate across all these locations to select

the files and folders they care about. This includes items served up by other provider apps (the Sound

Recorder is an example), as well as built-in integration with OneDrive.

The right way to think about OneDrive integration is that it’s simply a folder on the local file system

with automatic synchronization with the cloud that’s also aware of considerations like connection cost

on metered networks. You use it like a local folder, meaning that you can programmatically enumerate

the contents of OneDrive folders and get file metadata like thumbnails through the StorageFile

object. All this works because Windows automatically maintains local placeholder or “smart” files that

contain the metadata but not the file contents. The StorageFile.isAvailable property tells you

whether a file’s contents exist locally, which is helpful for visually distinguishing which files in a gallery

view are available offline (a local copy exists) and which are online-only.

Regardless of availability, you can still attempt to open a file and read its contents. Windows will

automatically download a local copy of the file as part of the process (if it has connectivity, of course,

and if current cost policy on a metered network allows it). This doesn’t complicate the programming

model, mind you, because you always have to handle errors even for local files. Anyway, the bottom

line is that it’s super-easy to work with OneDrive in an app—other than using availability to style items

in your UI, you work with the StorageFolder and StorageFile APIs as you would with any other

location. Again, those objects insulate you from having to worry about the underlying details of

576

whatever is providing the item in question—truly convenient!

Using OneDrive directly Although OneDrive is directly integrated with Windows, you can always use

the service directly through its REST API (as you would do with other cloud storage providers). Details

can be found on the OneDrive reference, on the OneDrive core concepts (which includes a list of

supported file types), and in the PhotoSky sample. A backgrounder on this and other Windows Live

services can also be found on the Building Windows 8 blog post entitled Extending "Windows 8" apps

to the cloud with SkyDrive.

This brings us to our second question: how does an app get to an arbitrary user data location in the

first place? That is, how does it acquire a StorageFolder or StorageFile object for stuff outside of its

app data locations? Where user data is concerned, this happens in only three ways:

 Let the user choose a file or folder through the File Picker UI, invoked through one of three

classes in Windows.Storage.Pickers: FolderPicker, FileOpenPicker, and FileSavePicker,

each of which is tailored for its particular purpose.

 Acquire a StorageFolder for a known library, folder, or removable storage, or acquire a

StorageFile from one of these.

 The user launches a file for which the app has declared an association in its manifest.

Let me be very clear up front that the first option—using the File Picker UI—should always be your

first choice if you need to access only a single file at a time. Accessing libraries (and thus declaring the

necessary capabilities) is necessary only if you need to enumerate the contents of a library to create a

gallery/browsing experience directly in the app. Otherwise the File Pickers do a fabulous job of

browsing content across all available locations and don’t require you to declare any capabilities. You

can also instruct the pickers to use a particular library as its default location, making the whole process

even more seamless for your users.

The reason for channeling access through the pickers is that accessing arbitrary locations requires

user consent. That consent is implicit in having the user specifically navigate to a file or folder through

a picker UI, and doing it that way is much more natural for most users than showing a long pathname

in a message dialog! Furthermore, some files and folders—especially those that aren’t on the file

system and those that are generated dynamically—might not even have user-readable names. The

pickers, which we’ll see visually in “The File Picker UI” later, provide a friendly, graphical means to this

end that apps can also extend through picker providers.

Again, the Windows.Storage.AccessCache API is how you save a StorageFolder or StorageFile

object along with the user consent implied by a picker. This is essential to remember. I’ve seen many

developers slip into thinking of files and folders in terms of pathnames and just save those strings in

their app state. This never preserves access, however, so always think in terms of the StorageFolder

and StorageFile abstractions and APIs like the AccessCache that work with them.

When it is appropriate to work with a library directly, the options are quite specific. First you have

http://msdn.microsoft.com/library/live/hh826521.aspx
http://msdn.microsoft.com/library/live/hh826545.aspx
http://code.msdn.microsoft.com/Live-SDK-Windows-Developer-8ad35141/
http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx
http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.folderpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.fileopenpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filesavepicker.aspx

577

the Windows.Storage.KnownFolders object, which contains StorageFolder objects for the Pictures,

Music, and Videos libraries, as well as Removable Storage. Access to each of these requires the

declaration of the appropriate capability in your manifest, as shown in Figure 11-2, without which the

attempt to retrieve a folder will throw an Access Denied exception. With Removable Storage you must

also declare a file type association, also shown in Figure 11-2. (The static methods StorageFolder.-

getFolderFromPathAsync and StorageFile.getFileFromPathAsync can access locations with string

pathnames if the app has programmatic access through manifest capabilities.)

FIGURE 11-2 Capabilities related to user data in the manifest editor (left) and the file type association editor (right).

The red X on the Declarations tab indicates the minimal required fields for an association.

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getfolderfrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getfolderfrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getfilefrompathasync.aspx

578

Where is the Documents library? If you look at the KnownFolders object, you’ll also see that there’s

a documentsLibrary property, but there is no Documents capability in the manifest editor. I call this

out because the capability was visible in Windows 8 (that is, Visual Studio 2012), and declaring that

capability required one or more file type associations as with Removable Storage. The capability still

exists in Windows 8.1 but must be added manually by editing the manifest XML. Declaring it will

trigger a more extensive (and time-consuming) process when you submit the app to the Windows

Store, which includes verifying that you have a company account (not an individual account), verifying

an Extended Validation Certificate, and reviewing your written justifications for using the library. In the

end, few apps used the capability in Windows 8, and most of those that did were better off using the

file pickers in the first place, hence the stringent requirements.

Note also that you call tell the File Picker API to use the Documents library as the default location, in

which case it maps to the user’s OneDrive root. A user can also still navigate to their local Documents

folder through the pickers if they want, which is the recommended approach for most apps.

Another way to access libraries is through the StorageLibrary objects obtained through the static

method Windows.Storage.StorageLibrary.getLibraryAsync.84 The StorageLibrary object is

meant for apps that provide a UI through which a user can manage one of their media libraries. It

contains a folders property (a vector of StorageFolder objects) and two methods: requestAdd-

FolderAsync and requestRemoveFolderAsync. Note that the StorageLibrary object does not give

you a StorageFolder for the library’s root, because you can obtain that through KnownFolders

already.

The other known location is represented by the Windows.Storage.DownloadsFolder object, whose

only methods, createFolderAsync and createFileAsync, allow you to create folders and files,

respectively (but not open or enumerate existing content). The DownloadsFolder object—having only

these two methods—is useful only for apps that download user data files and wouldn’t otherwise

prompt the user for a target location. This is all we’ll say of the object in this chapter.

Now that we know how to get to files and folders, we can answer the third question we posed at the

beginning of this section: “What affects and modifies user data?” This is something of an open question

because user data isn’t tied to any particular app and can thus always be modified independently of

those apps. The user can rename, copy, move, and delete files and folders, of course, and can use any

number of tools to modify file contents (including old-time methods like copy con from the command

prompt!). We’re primarily interested in the answer to this question from an app’s point of view, and

here the answer is simple: access to and modification of user data starts with the StorageFolder and

StorageFile objects. Through these you can modify metadata, for one, as well as open files to get to

their data streams. For the most part, we’ve already seen in Chapter 10 how to get to the data through

methods like StorageFile.openAsync and the kinds of things we can do with the resulting streams,

buffers, and blobs.

84 There is also a documents option for this API that has the same requirements as KnownFolder.documentsLibrary.

http://en.wikipedia.org/wiki/Extended_Validation_Certificate
http://msdn.microsoft.com/library/windows/apps/windows.storage.downloadsfolder.aspx

579

In this chapter, we’ll review a few of those basics and we’ll complete the story with all the other

features of these objects. This includes extended properties for media files, enumerating and filtering

folder contents with file queries (using the Windows.Storage.Search API), and the additional

capabilities offered by the StorageLibrary object, as noted earlier. Of special interest is how to use file

metadata like thumbnails to create gallery experiences, which avoids the expensive overhead (in time

and memory) of opening files and reading their contents for that purpose.

This brings us to the last question—“How do apps associate themselves with specific user data

formats?”—and also the third way an app gets a StorageFile object: through a file association. In this

case the answer is again simple: apps declare such associations in their manifests. By doing so, those

apps appear in the Windows app selector UI when an otherwise unassigned file is launched, and an app

will always be there as an option if the user wants to change the default association through PC

Settings > Search and Apps > Defaults > Choose Default Apps by File Type.

Such launching happens through the Windows Explorer on the desktop or programmatically

through WinRT APIs in Windows.System.Launcher. In either case, the associated app gets activated

with an activation kind of file, and the activation event args will contain the appropriate StorageFile

objects. We’ll see the details toward the end of this chapter.

Sidebar: Enterprise File Protection

The Windows.Security.EnterpriseData.FileRevocationManager APIs are an additional set

of capabilities with the file system, but they are not covered in this book. These help you manage

copy protection for any StorageItem with what is called selective wipe (described in the Security

documentation). This accommodates enterprise users who bring their own mobile devices to

work and use them to access corporate data. IT departments, of course, want to make sure that

such data doesn’t get leaked outside the enterprise environment. Access to files and folders can

be granted in a protected manner through FileRevocation-Manager.protectAsync such that

they can be revoked remotely through a server-issued command. Revoked files are completely

inaccessible even though they still technically exist on the file system.

For use of the API, refer to the File Revocation Manager sample.

Using the File Picker and Access Cache

Although the File Picker doesn’t sound all that glamorous, it’s actually, to my mind, one of the coolest

features in Windows. “Wait a minute!” you say, “How can a UI to pick a file or folder be, well, cool!” The

reason is that this is the place where the users can browse and select from their entire world of data.

That world—as I’ve said several times already—includes locations well beyond what we normally think

of as the local file system (local drives, removable drives, and the local network). Those added locations

are made available by what are called file picker providers: apps that specifically take a library of data

http://msdn.microsoft.com/library/windows/apps/br208106.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.enterprisedata.filerevocationmanager.aspx
http://msdn.microsoft.com/library/windows/apps/bg182886.aspx#seven
http://msdn.microsoft.com/library/windows/apps/bg182886.aspx#seven
http://code.msdn.microsoft.com/windowsapps/File-Revocation-Manager-0d529428

580

that’s otherwise buried behind a web service, within an app’s own database, or even generated on the

fly and make it appear as if it’s part of the local file system.

Think about this for a moment (as I invited you to do way back in Chapter 1, “The Life Story of a

Windows Store App”). When you want to work with an image from a photo service like Flickr or Picasa,

for example, what do you typically have to do? The first step is to download that file to the local file

system within some app that gives you an interface to that service (which might be a web app). Then

you can make whatever edits and modifications you want, after which you typically need to upload the

file back to the service. Well, that’s not so bad, except that it’s time consuming, it forces you to switch

between multiple apps, and eventually it litters your system with a bunch of temporary files, the

relationship of which to your online service is quickly forgotten.

Having a file picker provider that can surface such data directly, both for reading and writing,

eliminates all those intermediate steps and eliminates the need to switch apps. This means that a

provider for a photo service makes it possible for other apps to load, edi t, and save online content as if

it all existed on the local file system. Consuming apps don’t need to know anything about those other

services, and they automatically have access to more services as more provider apps are installed.

What’s more, providers can also make data that isn’t normally stored as files appear as though they are.

For example, the Sound Recorder app that’s built into Windows is a file picker provider that lets you

record a new audio file and return it just as if it had already been present on the file system. All of this

gives users a very natural means to flow in and out of data no matter where it’s stored. Like I said, I

think this is a very cool feature!

In this section, we’ll first look at the File Picker UI so that we know what’s going to appear when we

use the File Picker API in Windows.Storage.Pickers. Then we’ll see the Windows.Storage.Access-

Cache API, because it’s in the context of the file picker that you’ll typically be saving file permissions for

later sessions.

We’ll look more at the question of providers in Appendix D, “Contract Providers.” Our more

immediate concern is how to use these file pickers to obtain a StorageFile or StorageFolder object.

The File Picker UI
When a file picker is invoked, you’ll see a full-screen view like that in Figure 11-3, depending on

whether you want single or multiple selection, whether you’re picking files or folders (or a save

location), and whether you want only specific file types. In the case of Figure 11-3, the picker is invoked

to choose a single image with a thumbnail view (which provides a rich tooltip control when you hover

over an item). In a way, the file picker itself is like an app that’s invoked for this purpose, and it’s

designed (with a dark gray background) to give full attention to the contents of the files. The pickers

also provide semantic zoom capabilities, as you’d expect, and can be invoked in any sized view even

down to the 320px minimum, as shown on the right of the figure.

581

FIGURE 11-3 A single-selection file picker on the Pictures library in thumbnail view mode, with a hover tooltip

showing for one of the items (the head of the Sphinx) and the selection frame showing on another (the Taj Mahal).

The overlay on the right shows the file picker in a narrow 320px view. Bonus points if you can identify the location

of the other ruins in the main view on the left! (And if you’re wondering, these are all my own photos.)

In Figure 11-3, the Pictures heading shows the current location of the picker. The Sort By Name

drop-down lets you choose other sorting criteria, and the This PC header is also a drop-down list that

lets you navigate to different locations, as shown in Figure 11-4, including other areas of the file system

(though never protected areas like the Windows folder or Program Files), network locations, and other

provider apps. When choosing a picture (left side), notice how the list of apps is filtered to show just

those that can provide pictures. When the picker is invoked to choose general files or other types like

music (right side), additional apps like the Sound Recorder can appear.

582

FIGURE 11-4 Selecting other picker locations; notice that OneDrive and apps are listed along with file system

locations. The picker on the left is invoked to select pictures, so only picture-providing apps appear; the picker on

the right is invoked to select any type of file, so additional providers appear.

Choosing another file system or network location navigates there, of course, from which you can

browse into other folders. As OneDrive is built into Windows, it’s treated like another network location,

as shown in Figure 11-5, and it’s also the default location for the file save picker (controlled through PC

Settings > OneDrive > File Storage > Save Documents to OneDrive by Default).

FIGURE 11-5 When picking files from OneDrive, cloud storage appears like any other local or network location.

Selecting an app, on the other hand, launches that app through the file picker provider contract. In

this case it appears within a system-provided—but app-branded—UI like that shown in Figure 11-6

583

and Figure 11-7. In these cases the heading reflects the name of the app but also provides the drop-

down list that lets you navigate to other picker locations (which is important for multiple selections);

the Open and Cancel buttons act as they do for other picker selections. In short, a provider app is just

an extension to the File Picker UI, but it’s a very powerful one. And ultimately such an app just returns

an appropriate StorageFile object that makes its way back to the original app. There’s quite a lot

happening with just a single call to the File Picker API!

FIGURE 11-6 The Windows Phone app invoked through the file picker provider contract to select a single image.

FIGURE 11-7 The Sound Recorder app invoked through the file picker provider contract. This is what appears after a

sound has been recorded, and because the picker is invoked to select multiple files, the user can create and return

multiple recordings at one time.

584

In Figure 11-3, Figure 11-5, and Figure 11-6, the picker is invoked to select a single file. In Figure 11-

7, on the other hand, it is invoked to select multiple files, which can again come from the file system,

network or cloud locations, or other apps—it doesn’t matter! With multiple selection, selected items are

placed into what’s called the basket on the bottom of the screen. You can see this in Figure 11-7 and

also in Figure 11-8 (where the picker is using list view mode rather than thumbnails). The purpose of

the basket is to let you select items from one location, navigate to a new location through the header

drop-down, select a few more, and then navigate to still other locations. In short, the basket holds

whatever items you select from whatever locations. The basket in Figure 11-8 contains the sound

recording from Figure 11-7, a picture from my phone, a picture from OneDrive, an MP3 file from my

Music folder, and a couple videos from the current folder.

FIGURE 11-8 The file picker in multiselect mode with the selection basket at the bottom. The picker’s layout here is

a “list” view mode (not thumbnails) that’s set independently from the selection mode.

The picker can also be used to select a folder, as shown in Figure 11-9 (provider apps aren’t shown

from the heading drop-down in this case), or a save location and filename, as shown in Figure 11-10.

585

FIGURE 11-9 The file picker used to select a folder—notice that the button text changed and the picker shows the

contents of the folder.

FIGURE 11-10 The file picker used to select a save location (defaulting to OneDrive) and filename (at the bottom).

Files that match the specified save type are also shown alongside folders.

The File Picker API

Now that we’ve seen the visual results of the file picker, let’s see how we invoke it from our app code

through the API in Windows.Storage.Pickers (assume this namespace unless indicated). All the

images we just saw came from the File picker sample, so we’ll use that as the source of our code.

http://msdn.microsoft.com/library/windows/apps/br207928.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

586

For starters, scenario 1 of the sample, in its pickSinglePhoto function (js/scenario1.js), uses the picker

to obtain a single StorageFile for opening (reading and writing):

function pickSinglePhoto() {

 // Create the picker object and set options

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.thumbnail;

 openPicker.suggestedStartLocation =

 Windows.Storage.Pickers.PickerLocationId.picturesLibrary;

 // Users expect to have a filtered view of their folders depending on the scenario.

 openPicker.fileTypeFilter.replaceAll([".png", ".jpg", ".jpeg"]);

 // Open the picker for the user to pick a file

 openPicker.pickSingleFileAsync().done(function (file) {

 if (file) {

 // Application now has read/write access to the picked file

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

To invoke the picker, we create an instance of the FileOpenPicker class, configure it, and call its

pickSingleFileAsync method. The result of pickSingleFileAsync as delivered to the completed

handler is a StorageFile object, which will be null if the user canceled the picker. Always check that

the picker’s result is not null before taking further action on the file!

With the configuration, here we’re setting the picker’s viewMode to thumbnail (from the

PickerViewMode enumeration), resulting in the view in Figure 11-3. The only other possibility here is

list, the view shown in Figure 11-8.

We also set the suggestedStartLocation to the picturesLibrary, which is a value from the

PickerLocationId enumeration; other possibilities are documentsLibrary (OneDrive or This PC >

Documents), computerFolder (meaning This PC on Windows 8.1), desktop, downloads, homeGroup,

musicLibrary, and videosLibrary.

No capabilities needed! It’s very important to note that picker locations do not require you to

declare any capabilities in your manifest. By using the picker, the user is giving consent for you to

access whatever location he or she chooses. If you check the manifest in the File pickers sample, in fact,

you’ll see that no capabilities are declared whatsoever and yet you can still navigate anywhere other

than protected system folders, including network locations.

OneDrive or Documents folder? If the user has PC Settings > OneDrive > File Storage > Save to

OneDrive by Default turned on, the file picker will show OneDrive when you specify the

documentsLibrary location (as in Figure 11-10). If the user turns this off, that location will bring up

the user’s local Documents folder instead.

http://msdn.microsoft.com/library/windows/apps/br207847.aspx
http://msdn.microsoft.com/library/windows/apps/br207852.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.pickerviewmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.pickerlocationid.aspx

587

The one other property we set is the fileTypeFilter (a vector/array of strings) to indicate the type

of files we’re interested in (PNG and JPEG). Beyond that, the FileOpenPicker also has a

commitButtonText property, which sets the label of the primary button in the UI (the one that’s not

Cancel), and settingsIdentifier, a means to essentially remember different contexts of the file

picker. For example, an app might use one identifier for selecting pictures, where the starting location

is set to the pictures library and the view mode to thumbnails, and another id for selecting documents

with a different location and perhaps a list view mode.

This sample, as you can also see, doesn’t actually do anything with the file once it’s obtained, but it’s

quite easy to imagine what we might do. We can, for instance, simply pass the StorageFile to

URL.createObjectURL and assign the result to an img.src property for display. The same thing could

be done with audio and video, possibilities that are all demonstrated in scenario 1 of the Using a blob

to save and load content sample I mentioned in Chapter 10. That sample also shows reading the file

contents through the HTML FileReader API alongside the other WinRT and WinJS APIs we’ve seen.

You could also transcode an image (or other media) in the StorageFile to another format (as we’ll see

in Chapter 13, “Media”), retrieve thumbnails as shown in the File and folder thumbnail sample, or use

the StorageFile methods to make a copy in another location, rename the file, and so forth. But from

the file picker’s point of view, its particular job was well done!

Returning now to the File pickers sample, picking multiple files is pretty much the same story as

shown in the pickMultipleFiles function of scenario 2 (js/scenario2.js). Here we’re using the list

view mode and starting off in the documentsLibrary (which goes to either OneDrive or the local

Documents folder depending on the user’s choice in PC Settings). Again, these start locations do not

require capability declarations in the manifest, which is fortunate here because the Documents library

capability has many restrictions on its use!

function pickMultipleFiles() {

 // Create the picker object and set options

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.list;

 openPicker.suggestedStartLocation =

 Windows.Storage.Pickers.PickerLocationId.documentsLibrary;

 openPicker.fileTypeFilter.replaceAll(["*"]);

 // Open the picker for the user to pick a file

 openPicker.pickMultipleFilesAsync().done(function (files) {

 if (files.size > 0) {

 // Application now has read/write access to the picked file(s)

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

When picking multiple files, the result of pickMultipleFilesAsync is an array (technically a vector

view) of StorageFile objects.

Scenario 3 of the sample shows a call to pickSingleFolderAsync defaulting to the desktop, where

http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959

588

the result of the operation is a StorageFolder. Here you must indicate a fileTypeFilter that helps

users pick an appropriate location where some files of that type exist or create a new location

(js/scenario3.js):

function pickFolder() {

 // Create the picker object and set options

 var folderPicker = new Windows.Storage.Pickers.FolderPicker;

 folderPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.desktop;

 folderPicker.fileTypeFilter.replaceAll([".docx", ".xlsx", ".pptx"]);

 folderPicker.pickSingleFolderAsync().then(function (folder) {

 if (folder) {

 // Cache folder so the contents can be accessed at a later time

 Windows.Storage.AccessCache.StorageApplicationPermissions.futureAccessList

 .addOrReplace("PickedFolderToken", folder);

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

You can see here that we save the folder in the access cache, which we’ll come back to shortly. First

let’s look at the final file picker use case in scenario 4, where we use a FileSavePicker object and its

pickSaveFileAsync method (js/scenario4.js), resulting in the UI of Figure 11-10 (assuming OneDrive is

the default save location; I’ve also added the myData variable to illustrate what’s being saved, even

though it isn’t in the sample):

function saveFile(myData) {

 // Create the picker object and set options

 var savePicker = new Windows.Storage.Pickers.FileSavePicker();

 savePicker.suggestedStartLocation =

 Windows.Storage.Pickers.PickerLocationId.documentsLibrary;

 // Drop-down of file types the user can save the file as

 savePicker.fileTypeChoices.insert("Plain Text", [".txt"]);

 // Default file name if the user does not type one in or select a file to replace

 savePicker.suggestedFileName = "New Document";

 savePicker.pickSaveFileAsync().done(function (file) {

 if (file) {

 // Prevent updates to the remote version of the file until we finish making

 // changes and call CompleteUpdatesAsync.

 Windows.Storage.CachedFileManager.deferUpdates(file);

 // write to file

 Windows.Storage.FileIO.writeTextAsync(file, myData).done(function () {

 // Let Windows know that we're finished changing the file so the other app

 // can update the remote version of the file (see Appendix D).

 // Completing updates might require Windows to ask for user input.

 Windows.Storage.CachedFileManager.completeUpdatesAsync(file)

 .done(function (updateStatus) {

 if (updateStatus ===

 Windows.Storage.Provider.FileUpdateStatus.complete) {

 } else {

http://msdn.microsoft.com/library/windows/apps/br207871.aspx

589

 // ...

 }

 }

 });

 });

 } else {

 // The picker was dismissed

 }

 });

}

The FileSavePicker has many of the same properties as the FileOpenPicker, but it replaces

fileTypeFilter with fileTypeChoices (to populate the drop-down list) and includes suggested-

FileName (a string), suggestedSaveFile (a StorageFile), and defaultFileExtension (a string).

What’s interesting (and important!) in the code above are the interactions with the Windows.-

Storage.CachedFileManager API. This object helps file picker providers know when they should

synchronize local and remote files, which is often necessary when a file consumer saves new content.

Technically speaking, use of the CachedFileManager API isn’t required—you can just write to the file

and be done with it, especially for files you know are local and also for a single write as shown here.

However, if you’re doing multiple writes, placing your I/O within calls to deferUpdates and complete-

UpdatesAsync methods will make the process more efficient. For more details on the caching

mechanism, refer to Appendix D.

Access Cache
As we’ve now seen, the File Picker UI allows users to navigate to and select files and folders in many

different locations, and through the File Picker APIs an app gets back the appropriate StorageFile

and StorageFolder objects for those selections. By virtue of the user having selected those files and

folders, an app has full programmatic access through the StorageFile and StorageFolder APIs as it

does for its appdata folders and those libraries declared in its manifest.

This is all well and good within any given app session. But how does an app preserve that same level

of access across sessions (that is, when the app is closed and restarted later on, or across reboots)?

Furthermore, how does an app save references to such files and folders in its state? Remember that the

StorageFile and StorageFolder objects are essentially rich abstractions for pathnames, and they

hide the fact that some entities cannot even be represented by a path to begin with because they use

URIs with custom schema or some other provider-specific naming convention altogether.

These needs are met by the Windows.Storage.AccessCache API, which saves StorageFile and

StorageFolder objects along with their permissions such that you can retrieve those same objects and

permissions in subsequent sessions. Simply said, unless you know for certain that your app already has

programmatic access to a given item and can definitely be represented by a pathname (which basically

means appdata locations), always use the AccessCache API to save file/folder references instead of

saving path strings. Otherwise you’ll see Access Denied errors when you try to open the item again.

When you add a storage item to the cache—and I’ll refer now to files and folders as items for

http://msdn.microsoft.com/library/windows/apps/windows.storage.cachedfilemanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.cachedfilemanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx

590

convenience unless the distinction is important—what you get back is a string token. You save that

token in your app state if you want to get back to a specific item later on, but you can also enumerate

the contents of the cache at any time. What’s also very powerful is that for the local file system, at least,

the token will continue to provide access to its associated item even i f that item is independently

moved or renamed. That is, the access cache does its best to keep the tokens connected to their

underlying files, but it’s not an exact science. For this reason, if you find an invalid token in the cache,

you’ll want to remove it.

The access cache maintains two per-app lists for storage items: a future access list and a recently

used list. You get to these through the AccessCache.StorageApplicationPermissions class and its

futureAccessList and mostRecentlyUsedList properties (it has no others):

var futureList = Window.Storage.AccessCache.StorageApplicationPermissions.futureAccessList;

var mruList = Window.Storage.AccessCache.StorageApplicationPermissions.mostRecentlyUsedList;

Technically speaking, the two are almost identical; their methods and properties come from the

same interface (see table below). You could, in fact, maintain your own recently used lis t by adding

items to the futureAccessList and saving the returned tokens in some collection of your own. But

because a recently used list is a common app scenario, the API’s designers decided to save you the

trouble. The mostRecentlyUsedList is thus limited to 25 items and automatically removes the oldest

items when a new one is added that would exceed that limit. The mostRecentlyUsedList fires its

itemremoved event in this case, which you can use to enumerate the current contents of the list and

update your UI as necessary.

The futureAccessList, on the other hand, is there for any and all other items for which you want

to preserve access. It has an upper limit of 1000 items and will throw an exception when it’s full, so you

have to remove items yourself.

The methods and properties of both lists (which come from the IStorageItemAccessList

interface), as are follows:

Property Description
entries An AccessListEntryView that provides access to the collection of items.

maximumItemsAllowed The maximum number of entries in this list; 1000 for the futureAccessList, 25 for the

mostRecentlyUsedList.

Method Description
add Adds an item in the list, returning a token. A variant method allows you to attach an extra string of

metadata to the entry.

addOrReplace Replaces an existing item in the list, given its token; a variant method allows you to attach a metadata

string. Note that this method has no return value, as the same token is reassigned to the new item.

remove Removes an entry from the list given its token.

clear Removes all entries from the list.

checkAccess Given a StorageItem, returns true if it exists in the list and the app can access it, false otherwise.

containsItem Given a token, returns true if the item exists in the list.

getFileAsync

getFolderAsync

getItemAsync

Retrieve a StorageFile, StorageFolder, or StorageItem object from the list given its token. Variants

of each method also take a combination of AccessCacheOptions values (combined with |) to limit

which items are returned:

 none The default, assuming no other flags.

http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.storageapplicationpermissions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.istorageitemaccesslist.aspx

591

 disallowUserInput Returns an item only if the user need not provide any additional

information to access it, such as credentials.

 fastLocationsOnly Returns an item only if exists in a fast location, like the local file system.

An item that would need to be downloaded first will not be returned.

 useReadOnlyCachedCopy Returns a cached, read-only item that might not be the most

recent (e.g., it’s out of sync with its cloud backend).

 suppressAccessTimeUpdate Preserves the items position in the mostRecentlyUseList and

its access timestamp; does not affect the futureAccessList.

The update to the Here My Am! app we made in Chapter 10 shows some basic use of the access

cache. First, here’s how we save the current image’s StorageFile in the futureAccessList and save

its token in the app’s sessionState (pages/home/home.js):

var list = Windows.Storage.AccessCache.StorageApplicationPermissions.futureAccessList;

if (app.sessionState.fileToken) {

 list.addOrReplace(app.sessionState.fileToken, newFile);

} else {

 app.sessionState.fileToken = list.add(newFile);

}

Notice how we use the list’s addOrReplace method if we already have a token from a previous

session; otherwise we add the item anew and save that token. I will say that when I first wrote this code,

I didn’t realize that addOrReplace does not return the same token you pass in, and I was assigning

undefined to my fileToken variable. Such an assignment is unnecessary because I already have that

token in hand.

Anyway, if the app is suspended and then terminated, we check for the token during activation and

attempt to retrieve its StorageFile, which we use to rehydrate the image element (also in

pages/home/home.js):

if (app.sessionState.fileToken) {

 var list = Windows.Storage.AccessCache.StorageApplicationPermissions.futureAccessList;

 list.getFileAsync(app.sessionState.fileToken).done(function (file) {

 if (file != null) {

 lastCapture = file;

 var uri = URL.createObjectURL(file);

 var img = document.getElementById("photoImg");

 img.src = uri;

 scaleImageToFit(img, document.getElementById("photo"), file);

 }

 });

}

Scenario 7 of the File access sample has additional demonstrations, letting you choose which list to

work with. It shows that you can enumerate the entries collection of either list. As above, entries is

an AccessListEntryView with a size property and first, getAt, getMany, and indexOf methods

http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.accesslistentryview.aspx

592

(basically a derivative of a vector view, which we saw in Chapter 6, “Data Binding, Templates, and

Collections”). This type is projected into JavaScript as an array, so you can also use the [] operator

and methods like forEach as scenario 7 of the sample shows (js/scenario7.hs):

var mruEntries =

 Windows.Storage.AccessCache.StorageApplicationPermissions.mostRecentlyUsedList.entries;

if (mruEntries.size > 0) {

 var mruOutputText = "The MRU list contains the following item(s):

";

 mruEntries.forEach(function (entry) {

 mruOutputText += entry.metadata + "
";

 });

 outputDiv.innerHTML = mruOutputText;

}

Each entry in the AccessListEntryView is a simple AccessListEntry object that contains the

item’s token and a metadata property with the string you can include when adding an item to the list.

StorageFile Properties and Metadata

In Chapter 10 (in “Folders, Files, and Streams”) we began looking at the many methods and properties

of the StorageFile object, limiting ourselves to the basics because many of its features apply primarily

to user data files rather than those you’ll create for your app state. Now we’re ready to delve into all its

details, a topic that will take us quite deep down a few rabbit holes!

Note Many of the properties and methods described here for StorageFile also apply to

StorageFolder object, but for convenience we’ll focus on StorageFile.

Let’s just assume that you’ve obtained a StorageFile object of interest through some means, be it

a file picker, a media library, a file activation, one of the static StorageFile methods like getFile-

FromPathAsync or replaceWithStreamedFileAsync, and so on. As we’ve seen in Chapter 10, you can

open the file (obtaining a stream) through openAsync, openReadAsync, openSequentialReadAsync,

and openTransactedWriteAsync. You can also manage the file on the file system (as you would

through Windows Explorer) with copyAsync, copyAndReplaceAsync, deleteAsync, moveAsync,

moveAndReplaceAsync, and renameAsync. And the purpose of many other properties and methods,

listed below, should be quite apparent from their descriptions, so we won’t cover them here. Refer to

the StorageFile reference and the File access sample for all that.

Property Description
name The simple filename string of the file, including the extension if appropriate.

Path The full pathname string of the file.

displayName The file’s name string as appropriate for UI, typically without the extension.

fileType The file’s extension string. displayName + fileType is the same as name at least on the local file system.

contentType The string MIME type of the file contents (e.g., “audio/wma”).

displayType The content type string as appropriate for UI (e.g., “Windows Media Audio file”).

dateCreated A Date object with the creation timestamp of the file.

Attributes A value containing one of more FileAttributes values such as readOnly.

http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.accesslistentry.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileattributes.aspx

593

folderRelativeId A unique identifier for the file within its parent folder, which distinguished files that nave the same name.

provider A StorageProvider object describing the provider that’s handling this file. The object simply contains id

and displayName properties, such as “computer” and “This PC” or “OneDrive” for both.

Method Description
isOfType Tests whether the item is a file or folder (or just a generic StorageItem). See the StorageItemTypes

enumeration.

getParentAsync Retrieves the StorageFolder that contains this file.

isEqual Tests whether the file and another StorageItem are the same entity, returning true or false.

What’s left are just two properties and three methods that are among the most important to

understand:

 The isAvailable property (described next in “Availability”)

 The getThumbnailAsync and getScaledImageAsThumbnailAsync methods (described in

“Thumbnails”)

 The StorageFile.properties property and the getBasicPropertiesAsync method

(described in “File Properties”)

Availability

First is the isAvailable property that I mentioned earlier. When working with files that might

originate in the cloud, it’s generally unimportant for an app to know where it came from, how it might

be downloaded, and so forth, because the provider that’s behind the StorageFile can take care of all

that transparently like Windows does for OneDrive. What you primarily need to know in an app is

whether you can expect to open that file and get to its contents. The simple isAvailable flag (a

Boolean) tells you that and relieves you from the burden of having to check network connectivity

yourself. This is a big reason why placeholder files are often referred to as “smart” files!

The following table (thanks to Marc Wautier) indicates the different conditions that will set this flag

to true or false:

Location Online Metered Network Offline

Local file true true true

OneDrive file marked “available offline” true true true

OneDrive placeholder file (marked “online only”)* true Based on user setting false

Other network-based file true Based on user setting false

* Opening a placeholder file will download it and mark it “available offline.”

For a metered network, the user settings are found in PC Settings > OneDrive > Metered

Connections, as shown below. These are simple on/off settings regardless of file size.

http://msdn.microsoft.com/library/windows/apps/windows.storage.storageprovider.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storageitemtypes.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.isavailable.aspx

594

Thumbnails
Next we have the getThumbnailAsync and getScaledImageAsThumbnailAsync methods. What’s very

important about these is that they help you more efficiently create gallery or browsing experiences in

apps without having to manually open files and generate your own image from its contents. For one

thing, this is somewhat difficult to do if the file itself is not already an image. In addition, it’s horribly

inefficient to open an image file as a whole just to generate a thumbnail.

For example, let’s say you just want to show the images in the user’s Pictures library. You can easily

obtain its StorageFolder, enumerate all the StorageFile objects therein, pass each one to

URL.createObjectURL, and store the result in a WinJS.Binding.List that you then provide to a

ListView. Simple, yes! But—ouch!—take a look at the app in a memory profiler when your Pictures

library contains a few hundred multi-megabyte images and you’ll be wishing there was another way to

do it. Run the app through other performance analyzers and you’ll see that most of the time in your

app is spent chewing on a bunch of potentially large images just to create small representations on the

order of 150x150 pixels. This is one case where the obvious approach definitely does not yield the best

results!

By using thumbnails, on the other hand, you take advantage of pre-cached image metadata, which

also works for nonimage files (and folders) automatically, so you never need to make the distinction.

Furthermore, thumbnails generally work for files even when isAvailable is false (unless there’s

simply no cached data), whereas the URL.createObjectURL approach—which opens the files and

reads its contents!—will necessitate a download and thus also fail outright when isAvailable isn’t set,

regardless of existing caches.

Think also about your own pictures library and the typical images you probably have from your

camera or phone. What are the native image resolutions? Many of mine are in the 2048x1536 or

3700x2400 range, and that’s because I’m not too concerned with really great image quality. If you’re a

pixel junkie and have one of those 16+ megapixel cameras, your files are likely much larger. Now

compare those sizes to your display resolutions—I have two 24” monitors in front of me right now,

whose resolution is only 1920x1200. What this means is that most of the time, the images you display

in an app—even when full screen—are essentially thumbnails of the original!

For the sake of memory efficiency and performance, then, the only time you should ever be loading

up a full image file is when you need to display the raw pixels in a 1:1 mapping on the display, as when

you’re editing the image. Otherwise, essentially for all consumption scenarios, use a thumbnail.

595

(Remember that we did this to Here My Am! way back in Chapter 2, “Quickstart,” after we initially used

URL.createObjectURL. The Hilo sample app from Microsoft’s Patterns & Practices group also used

thumbnails exclusively.)

The two thumbnail methods, getThumbnailAsync and getScaledImageAsThumbnailAsync, both

accomplish the same ends (a StorageItemThumbnail object). The difference between them is that the

first always draws from a thumbnail cache, whereas the latter will go to the full file image as a fallback.

For this reason, getScaledImageAsThumbnailAsync is primarily used for obtaining a large thumbnail

—even one that’s full screen—although you can also set it to use only cached images as well.

Both methods actually have three variants to accommodate some optional arguments. In all cases

the required argument is a value from the ThumbnailMode enumeration that indicates the type of

thumbnail you want (based on intended use) and the default size:

Mode Use Default Size

documentsView Generic preview of folder contents 40x40 (square aspect)

musicView Preview of music files, which will draw

from album art if available

40x40 (square aspect)

picturesView Image file previews 190x130 (wide aspect)

videosView Preview of videos, using a still 190x130 (wide aspect)

listView Generic ListView display 40x40 (square aspect)

singleItem Preview of a single item At least 256px on the longest side, using original aspect

ratio of the file, if applicable

For in-depth discussion of these options with many examples, refer to Guidelines for thumbnails in

the documentation.

The second optional argument is called requestedSize, an integer that indicates the pixel length of

the thumbnail’s longest edge (width for images that are more wide than tall, height for those that are

more tall than wide). By default, this does not guarantee that the returned image will be exactly this

size. Instead, the APIs use this to determine how best to use existing cached thumbnails, so you might

get back an image that is larger or smaller.

Generally speaking, it’s best to set requestedSize to one of the sizes that the system already caches.

For the square aspect views in the table above, these sizes are 16, 32, 48, 96, 256, 1024, and 1600. (I

don’t honestly know why the defaults are 40x40, but there you are.) For wide aspects, the sizes are 190,

266, 342, 532, and 1026. You’ll find these described on the topic Accessing the file system efficiently,

whose first section is on thumbnails.

The third optional argument is one or more ThumbnailOptions values combined with the bitwise

OR operator (|). These options affect the speed of the request and the resulting image quality:

 none Use default behavior.

 resizeThumbnail Scale the thumbnail to match your requestedSize.

 useCurrentScale Increases requestedSize based on the pixel density of the display (that is,

the scaling factor; see Chapter 8, “Layout and Views”).

http://msdn.microsoft.com/library/windows/apps/jj674095.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.thumbnailmode.aspx
http://msdn.microsoft.com/library/windows/apps/hh465350.aspx
http://msdn.microsoft.com/library/windows/apps/hh781216.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.thumbnailoptions.aspx

596

 returnOnlyIfCached Forces the API to fail if a thumbnail does not exist in the cache nor in

the file itself. This prevents opening the full image file and potential downloads.

You can see some of these variations in action through the File and folder thumbnail sample. Most

of the scenarios (1–5) use getThumbnailAsync for different libraries and ThumbnailMode settings and

other options. In scenario 1, for example, you can choose from the picturesView, listView, and

singleItem view mode (which is in the modes[modeselected] variable in the code below), toggle

whether returnOnlyIfCached is set, and then choose an image for which to generate a ~200px

thumbnail (js/scenario1.js):

var requestedSize = 200,

 thumbnailMode = modes[modeSelected],

 thumbnailOptions = Windows.Storage.FileProperties.ThumbnailOptions.useCurrentScale;

if (isFastSelected) {

 thumbnailOptions |= Windows.Storage.FileProperties.ThumbnailOptions.returnOnlyIfCached;

}

// File picker code omitted--choice is returned in 'file'

// Can also use getScaledImageAsThumbnailAsync here

file.getThumbnailAsync(thumbnailMode, requestedSize,

 thumbnailOptions).done(function (thumbnail) {

 if (thumbnail) {

 outputResult(file, thumbnail, modeNames[modeSelected], requestedSize);

 }

 // Error handling code omitted

});

function outputResult(item, thumbnailImage, thumbnailMode, requestedSize) {

 document.getElementById("picture-thumb-imageHolder").src =

 URL.createObjectURL(thumbnailImage, { oneTimeOnly: true });

 // Close the thumbnail stream once the image is loaded

 document.getElementById("picture-thumb-imageHolder").onload = function () {

 thumbnailImage.close();

 };

 document.getElementById("picture-thumb-modeName").innerText = thumbnailMode;

 document.getElementById("picture-thumb-fileName").innerText = "File used: " + item.name;

 document.getElementById("picture-thumb-requestedSize").innerText =

 "Requested size: " + requestedSize;

 document.getElementById("picture-thumb-returnedSize").innerText = "Returned size: "

 + thumbnailImage.originalWidth + "x" + thumbnailImage.originalHeight;

}

The output for each of the three modes (using the same original image) is as follows:

597

You can see how the picturesView and listView modes automatically crop the image to maintain

the aspect ratio implied by that mode. The singleItem mode, on the other hand, uses the original

aspect ratio, so we see a full representation of the original (portrait) image.

Scenarios 2–5 are all variations on this same theme, showing, for example, how you get an icon

thumbnail for something like an Excel document when using the documentsView mode. The one other

bit to show is the use of getScaledImageAsThumbnailAsync in scenario 6 (js/scenario6.js), which

effectively amounts to replacing getThumbnailAsync with getScaledImageAsThumbnailAsync in the

code above. In fact, you can make this change throughout the sample and you’ll see the same results

for the most part—you just might get those results back more quickly, which is very helpful when

retrieving thumbnails for a ListView.

What we do need to look at a bit more closely is the StorageItemThumbnail object we get as the

result of these operations (in the Windows.Storage.FileProperties namespace). This is a rather rich

object that contains quite a few methods and properties, because it’s actually a derivative of

IRandomAccessStream. The benefit of this is that you can toss this object to our old friend

URL.createObjectURL, as shown in the code above, and it works as you expect. Otherwise, the

members in which you’re usually most interested (the thumbnail-specific ones) are:

 close Always call this when you’re done using the thumbnail. Notice how the sample code

calls this once the img element we’re loading with the thumbnail has finished its work.

 originalHeight, originalWidth The nonscaled pixel dimensions of the thumbnail.

 type A value from ThumbnailType indicating whether it contains a thumbnail image or an

icon representation.

 returnedSmallerCachedSize A Boolean indicating whether the returned thumbnail came

from a cache with a size smaller than the requestedSize.

For the rest, refer to the StorageItemThumbnail documentation.

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.storageitemthumbnail.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.thumbnailtype.aspx

598

Tip As we saw in Chapter 7, “Collection Controls,” the WinJS.UI.StorageDataSource object simplifies

many of the details of setting up file queries over various libraries for use with a ListView control. Its

loadThumbnail method also encapsulates many of the details we’ve seen here to help you easily load

up a thumbnail for items in the collection. Refer to “A FlipView Using the Pictures Library” in Chapter 7

for more.

File Properties

Last but certainly not least is the StorageFile.properties property (say that ten times fast!), along

with the getBasicPropertiesAsync method. To put it mildly, these are just the first of many doors

that open up all kinds of deep information about files and media file in particular, as illustrated in

Figure 11-11, along with the other direct properties and thumbnails. As you can see, alongside the

direct properties of StorageFile, some extended properties are retrieved through

getBasicPropertiesAsync and the media-specific methods of the properties object.

FIGURE 11-1 Relationships between the StorageFile object and metadata objects.

First, all of classes in Figure 11-11 come from the Windows.Storage.FileProperties namespace

(except for StorageFile itself), so assume that is our context unless otherwise noted.

BasicProperties is the first one of interest, as we’ve already seen thumbnails in the previous

section. This is what we get from StorageFile.getBasicPropertiesAsync, and it provides just three

properties: dateModified is the last modified date to complement StorageFile.dateCreated, size

is the size of the file, and itemDate contains the system’s best attempt to find a relevant date for the

file’s contents based on other properties. For example, the relevant date for a picture or video is when it

was taken; for music it’s the release date. This is actually quite convenient because it relieves you from

having to implement similar heuristics of your own and helps promote consistency across apps.

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.basicproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getbasicpropertiesasync.aspx

599

“But still,” you might be saying to yourself, “all this a snoozer! An async call just to get an ob ject with

three properties?” Yes, it looks that way until you see that little retrievePropertiesAsync method—

but let’s come back to that in a moment because it shows up all over the place (as you can see in

Figure 11-11) and is accompanied by another ubiquitous method, savePropertiesAsync (not shown

in the figure).

StorageFile.properties contains a StorageItemContentProperties object that interestingly

enough contains no direct properties! It only contains six methods—four of these retrieve media-

specific properties, which will be described soon and which are especially helpful when creating gallery

experiences over the user’s media libraries or some other arbitrary folder. The other two methods are

our friends retrievePropertiesAsync and savePropertiesAsync (through which you can access the

same properties as the media-specific methods).

Every retrievePropertiesAsync method is capable of retrieving an array of name-value pairs for

all kinds of other metadata related to files. The only argument you provide is an array of the property

names you want where each name is a string that comes from a very extensive list of Windows

Properties, such as System.FileOwner and System.FileAttributes. (Be aware that many of the listed

properties don’t apply to file system entities like System.Devices.BatteryLife.)

Tip To access the most common property names as strings, use the properties of the

Windows.Storage.StorageProperties object, which has the benefit of providing auto-complete

within Visual Studio.

An example of this is found in scenario 6 of the File access sample, which employs both

getBasicPropertiesAsync and retrievePropertiesAsync to show the basic properties along with

the last access date and the file owner (js/scenario6.js, where file is StorageFile):

var dateAccessedProperty = "System.DateAccessed";

var fileOwnerProperty = "System.FileOwner";

file.getBasicPropertiesAsync().then(function (basicProperties) {

 outputDiv.innerHTML += "Size: " + basicProperties.size + " bytes
";

 outputDiv.innerHTML += "Date modified: " + basicProperties.dateModified + "
";

 // Get extra properties

 return file.properties.retrievePropertiesAsync([fileOwnerProperty, dateAccessedProperty]);

}).done(function (extraProperties) {

 var propValue = extraProperties[dateAccessedProperty];

 if (propValue !== null) {

 outputDiv.innerHTML += "Date accessed: " + propValue + "
";

 }

 propValue = extraProperties[fileOwnerProperty];

 if (propValue !== null) {

 outputDiv.innerHTML += "File owner: " + propValue;

 }

}

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.storageitemcontentproperties.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.systemproperties.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597

600

The result of retrievePropertiesAsync, in the extraProperties variable in the code above, is a

simple Map collection. We met maps back in Chapter 6, in “Maps and Property Sets.” A key point about

a map is that you can access its members with the [] operator, as we see above, but a map is not an

array and does not have array methods. If you want to iterate over a map, the best way is to pass the

map to Object.keys and loop over that array. For example, the specific lookup code above could be

replaced with the following:

Object.keys(extraProperties).forEach(function (key) {

 outputDiv.innerHTML += key + ": " + extraProperties[key] + "
";

});

where you could use a separate map object to look up UI labels for the property name in key, of

course.

Note If a requested property is not available on the file, retrievePropertiesAsync will not include

an entry for it in the map but the map’s size property will still reflect the size of the original input

array. For this reason, use Object.keys(<map>).length to determine the actual number of returned

properties.

What’s very useful about this is that the map from retrievePropertiesAsync is directly connected

to the property story of the underlying file. This means you can modify its contents and add new

entries, call savePropertiesAsync (with no arguments), and voila! You’ve just updated those

properties on the file. This assumes, of course, that those properties are writeable and supported for

the file type in question. If they’re supported but read-only, my experience shows that

savePropertiesAsync will ignore them. If they’re not supported, on the other hand, the method will

throw an exception with the message “the parameter is incorrect.”

For example, the sample.dat file that is created in the File access samp le doesn’t support any

writeable properties, so it’s not a good test case. If you use an image file instead (like a JPEG), you can

write properties such as System.Keywords or System.Author. (A good way to check what’s writable is to

right-click a file of some type in Windows Explorer, select Properties, and look at the Details tab to see

what properties can be edited and which ones appear as read-only.)

To show a bit of code, assume that file here points to a JPEG, extraProperties came from a

retrievePropertiesAsync call, and we want to add some keywords:

extraProperties.insert("System.Keywords", "sample keyword");

file.properties.savePropertiesAsync().done(function () {

 console.log("success");

});

If we’d made any other changes within extraProperties, those too would be saved. Alternately,

we can pass savePropertiesAsync a Windows.Foundation.Collections.PropertySet object with

those specific properties we want to set, in this case System.Author:

var propsToAdd = new Windows.Foundation.Collections.PropertySet()

propsToAdd.insert("System.Author", currentAuthor);

http://msdn.microsoft.com/library/windows/apps/br226042.aspx

601

file.properties.savePropertiesAsync(propsToAdd).done(function () {

 console.log("success");

});

Here’s another example showing how to make a file read-only through the System.FileAttributes

property, where we OR in the value of 1 (FILE_ATTRIBUTE_READONLY in the Win32 file API):

var key = "System.FileAttributes";

var FILE_ATTRIBUTES_READONLY = 1; //From the Win32 API

var file;

//Assign some StorageFile to the file variable

file.properties.retrievePropertiesAsync([key]).then(function (props) {

 if (props) {

 props[key] |= FILE_ATTRIBUTES_READONLY;

 } else {

 props = new Windows.Foundation.Collections.PropertySet();

 props.insert(key, FILE_ATTRIBUTES_READONLY);

 }

 return file.properties.savePropertiesAsync(props);

}).done(function () {

 //Any other action

});

We’ll see a third example in the next section with an image file and the ImageProperties object.

Tip Avoid calling savePropertiesAsync when another save is still outstanding, such as running the

second snippet above while the first has not yet completed. Doing so will throw an exception with the

message “A method was called at an unexpected time.” Instead, consolidate your property changes

into a single call, or use a promise chain to run the async operations sequentially.

Media-Specific Properties
Alongside the BasicProperties class in Windows.Storage.FileProperties we also have those

returned by the StorageFile.properties.get*PropertiesAsync methods: ImageProperties,

VideoProperties, MusicProperties, and DocumentProperties. Though we’ve had to dig deep to

find these, they each contain deeper treasure troves of information—and I do mean deep! The tables

below summarize each of these in turn, and each object contains retrievePropertiesAsync and

savePropertiesAsync methods, as we’ve seen, so that you can work with additional properties that

aren’t directly surfaced in the media-specific object.

Note that the links at the top of the table identify the most relevant groups of Windows properties.

602

ImageProperties from StorageFile.properties.getImagePropertiesAsync

Additional properties System.Image, System.Photo, System.Media

Property DataType Applicable Windows Property

title String System.Title

dateTaken Date System.Photo.DateTaken

latitude Double (see below) System.GPS.LatitudeDecimal,

or combination of System.GPS.Latitude,

System.GPS.LatitudeDenominator,

System.GPS.LatitudeNumerator, and

System.GPS.LatitudeRef

longitude Double (see below) System.GPS.LongitudeDecimal,

or combination of System.GPS.Longitude,

System.GPS.LongitudeDenominator,

System.GPS.LongitudeNumerator, and

System.GPS.LongitudeRef

cameraManufacturer String System.Photo.CameraManufacturer

cameraModel String System.Photo.CameraModel

width Number in pixels System.Image.HorizontalSize

height Number in pixels System.Image.VerticalSize

orientation A FileProperties.PhotoOrientation object

containing unspecified, normal,

flipHorizontal, flipVertical, transpose,

transverse, rotate90, rotate180, rotate270

System.Photo.Orientation

peopleNames String vector System.Photo.PeopleNames

keywords String vector System.Keywords

rating Number (1-99 with 0 meaning “no rating”) System.Rating

VideoProperties from StorageFile.properties.getVideoPropertiesAsync

Additional properties System.Video, System.Media, System.Image, System.Photo

Property DataType Applicable Windows Property
title String System.Title

subtitle String System.Media.SubTitle

year Number System.Media.Year

publisher String System.Media.Publisher

rating Number System.Rating

width Number in pixels System.Video.FrameWidth

height Number in pixels System.Video.FrameHeight

orientation A FileProperties.VideoOrientation object

containing normal, rotate90, rotate180,

rotate270

System.Photo.Orientation

duration Number (in 100ns units, i.e., 1/10th milliseconds) System.Media.Duration

bitrate Number (in bits/second) System.Video.TotalBitrate,

System.Video.EncodingBitrate

directors String vector System.Video.Director

producers String vector System.Media.Producer

writers String vector System.Media.Writer

keywords String vector System.Keywords

latitude Double (see below) System.GPS.LatitudeDecimal,

or combination of System.GPS.Latitude,

System.GPS.LatitudeDenominator,

System.GPS.LatitudeNumerator, and

System.GPS.LatitudeRef

http://msdn.microsoft.com/library/windows/desktop/ff521691.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521709.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521738.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521691.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521709.aspx

603

longitude Double (see below) System.GPS.LongitudeDecimal,

or combination of System.GPS.Longitude,

System.GPS.LongitudeDenominator,

System.GPS.LongitudeNumerator, and

System.GPS.LongitudeRef

MusicProperties from StorageFile.properties.getMusicPropertiesAsync

Additional properties System.Music, System.Media

Property DataType Applicable Windows Property
title String System.Title, System.Music.AlbumTitle

subtitle String System.Media.SubTitle

trackNumber Number System.Music.TrackNumber

year Number System.Media.Year

publisher String System.Media.Publisher

artist String System.Music.Artist,

System.Music.DisplayArtist

albumArtist String System.Music.DisplayArtist (read),

System.Music.AlbumArtist (write)

genre String vector System.Music.Genre

composers String vector System.Music.Composer

conductors String vector System.Music.Conductor

rating Number (1-99 with 0 meaning “no rating”) System.Rating

duration Number (in 100ns units, i.e., 1/10th

milliseconds)

System.Media.Duration

bitrate Number (in bits/second) System.Video.TotalBitrate,

System.Video.EncodingBitrate

producers String vector System.Media.Producer

writers String vector System.Media.Writer

DocumentProperties from StorageFile.properties.getDocumentPropertiesAsync

Additional properties System

Property DataType Applicable Windows Property
title String System.Title

Author String vector System.Author

keywords String vector System.Keywords

Comments String System.Comment

Note The latitude and longitude properties for images and video are double types but contain

degrees, minutes, seconds, and a directional reference. The Simple imaging sample (in js/default.js)

contains a helper function to extract the components of these values and convert them into a string:

"convertLatLongToString": function (latLong, isLatitude) {

 var reference;

 if (isLatitude) {

 reference = (latLong >= 0) ? "N" : "S";

 } else {

 reference = (latLong >= 0) ? "E" : "W";

 }

http://msdn.microsoft.com/library/windows/desktop/ff521705.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521735.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

604

 latLong = Math.abs(latLong);

 var degrees = Math.floor(latLong);

 var minutes = Math.floor((latLong - degrees) * 60);

 var seconds = ((latLong - degrees - minutes / 60) * 3600).toFixed(2);

 return degrees + "°" + minutes + "\'" + seconds + "\"" + reference;

}

To summarize, the sign of the value indicates direction. A positive value for latitude means North,

negative means South; for longitude, positive means East, negative means West. The whole number

portion of the value provides the degrees, and the fractional part contains the number of minutes

expressed in base 60. Multiplying this value by 60 gives the whole minutes, with the remainder then

containing the seconds. Although this floating-point value isn’t all that convenient for UI output, as we

see here, it’s what you typically want for coordinate math and talking with various web services.

Speaking of the Simple imaging sample, it’s one of a few samples in the Windows SDK that

demonstrate working with these properties. Scenario 1 (js/scenario1.js) provides the most complete

demonstration because you can choose an image file and it will load and display various properties, as

shown in Figure 11-12. I can verify that the date, camera make/model, and exposure information are all

accurate.

FIGURE 11-12 Image file properties in the Simple imaging sample, which is panned down to show the whole image

and more of the property fields.

The sample’s openHandler method is what retrieves these properties from the file using

StorageFile.properties.getImagePropertiesAsync and ImageProperties.retrieve-

PropertiesAsync for a couple of additional properties not already in ImageProperties. Then

getImagePropertiesForDisplay coalesces these into a single object used by the sample’s UI. Some

lines are omitted in the code shown here:

605

var ImageProperties = {};

function openHandler() {

 // Keep data in-scope across multiple asynchronous methods.

 var file = {};

 Helpers.getFileFromOpenPickerAsync().then(function (_file) {

 file = _file;

 return file.properties.getImagePropertiesAsync();

 }).then(function (imageProps) {

 ImageProperties = imageProps;

 var requests = [

 "System.Photo.ExposureTime", // In seconds

 "System.Photo.FNumber" // F-stop values defined by EXIF spec

];

 return ImageProperties.retrievePropertiesAsync(requests);

 }).done(function (retrievedProps) {

 // Format the properties into text to display in the UI.

 displayImageUI(file, getImagePropertiesForDisplay(retrievedProps));

 });

}

function getImagePropertiesForDisplay(retrievedProps) {

 // If the specified property doesn't exist, its value will be null.

 var orientationText = Helpers.getOrientationString(ImageProperties.orientation);

 var exposureText = retrievedProps.lookup("System.Photo.ExposureTime") ?

 retrievedProps.lookup("System.Photo.ExposureTime") * 1000 + " ms" : "";

 var fNumberText = retrievedProps.lookup("System.Photo.FNumber") ?

 retrievedProps.lookup("System.Photo.FNumber").toFixed(1) : "";

 // Omitted: Code to convert ImageProperties.latitude and ImageProperties.longitude to

 // degrees, minutes, seconds, and direction

 return {

 "title": ImageProperties.title,

 "keywords": ImageProperties.keywords, // array of strings

 "rating": ImageProperties.rating, // number

 "dateTaken": ImageProperties.dateTaken,

 "make": ImageProperties.cameraManufacturer,

 "model": ImageProperties.cameraModel,

 "orientation": orientationText,

 // Omitted: lat/long properties

 "exposure": exposureText,

 "fNumber": fNumberText

 };

}

Most of the displayImageUI function to which these properties are passed just copies the data into

various controls. It’s good to note again, though, that displaying the picture itself is easily accomplished

with our pal, URL.createObjectURL, but as we learned earlier in this chapter, it would be better to

606

avoid loading the whole image file and instead use a thumbnail from StorageFile.-

getScaledImageThumbnailAsync. That is, change this line of code in displayImageUI (js/scenario1.js):

id(“outputImage”).src = window.URL.createObjectURL(file, { oneTimeOnly: true });

to the following:

var mode = Windows.Storage.FileProperties.ThumbnailMode.singleItem;

file.getScaledImageAsThumbnailAsync(mode, 500).done(function (thumb) {

 var img = id(“outputImage”);

 img.src = URL.createObjectURL(thumb, { oneTimeOnly: true });

 img.onload = function () {

 thumb.close();

 }

});

A bit more code to write, but definitely more efficient!

For MusicProperties a small example can be found in the Playlist sample and another in the

Configure keys for media sample, both of which we’ll see in Chapter 13. The latter especially shows how

to use the music properties to obtain album art. As for VideoProperties and DocumentProperties,

the SDK doesn’t have samples for these, but working with them follows the same pattern as shown

above for ImageProperties.

As for saving properties, the Simple Imaging sample delivers there as well, also in scenario 1. As the

fields shown earlier in Figure 11-12 are editable, the sample provides an Apply button (panned off the

top of the screen) that invokes the applyHandler function below to write them back to the file

(js/scenario1.js):

function applyHandler() {

 ImageProperties.title = id("propertiesTitle").value;

 // Keywords are stored as an array of strings. Split the textarea text by newlines.

 ImageProperties.keywords.clear();

 if (id("propertiesKeywords").value !== "") {

 var keywordsArray = id("propertiesKeywords").value.split("\n");

 keywordsArray.forEach(function (keyword) {

 ImageProperties.keywords.append(keyword);

 });

 }

 var properties = new Windows.Foundation.Collections.PropertySet();

 // When writing the rating, use the "System.Rating" property key.

 // ImageProperties.rating does not handle setting the value to 0 (no stars/unrated).

 properties.insert("System.Rating", Helpers.convertStarsToSystemRating(

 id("propertiesRatingControl").winControl.userRating

));

 // Code omitted: convert discrete latitude/longitude values from the UI into the

 // appropriate forms needed for the properties, and do some validation; the end result

http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2

607

 // is to store these in the properties list

 properties.insert("System.GPS.LatitudeRef", latitudeRef);

 properties.insert("System.GPS.LongitudeRef", longitudeRef);

 properties.insert("System.GPS.LatitudeNumerator", latNum);

 properties.insert("System.GPS.LongitudeNumerator", longNum);

 properties.insert("System.GPS.LatitudeDenominator", latDen);

 properties.insert("System.GPS.LongitudeDenominator", longDen);

 // Write the properties array to the file

 ImageProperties.savePropertiesAsync(properties).done(function () {

 // ...

 }, function (error) {

 // Some error handling as some properties may not be supported by all image formats.

 });

}

A few noteworthy features of this code include the following:

 It separates keywords in the UI control and separately appends each to the keywords vector.

 It creates a new Windows.Foundation.Collections.PropertySet, which is the expected

input to savePropertiesAsync. Remember from Chapter 6 that the PropertySet is the only

WinRT collection class that you can instantiate directly, as we must do here.

 The Helpers.convertStarsToSystemRating method (also in js/default.js) converts between 1–

5 stars, as used in the WinJS.UI.Rating control, to the System.Rating value that uses a 1–99

range. The documentation for System.Rating specifically indicates this mapping.

In general, all the detailed information you want for any particular Windows property can be found

on the reference page for that property. Again start at Windows Properties and drill down from there.

Folders and Folder Queries

Now that we’ve seen everything we can do with a StorageFile and file properties, it’s time to turn our

attention to the folders and libraries in which those files live and the StorageFolder and

StorageLibrary objects that represent them.

As with StorageFile, we’ve already peeked at some of the basic StorageFolder methods in

Chapter 10, such as createFileAsync, createFolderAsync, getFileAsync, getFolderAsync,

getItemAsync, getFolderFromPathAsync, deleteAsync, and renameAsync. It also has many of the

same properties as a file, including name, path, displayName, displayType, attributes,

folderRelativeId, dateCreated, provider, and properties. It also shares a number of identical

methods: isEqual, isOfType, getThumbnailAsync, getScaledImageAsThumbnailAsync, and

getBasicPropertiesAsync. Everything about these is the same as for files, so please refer back to

“StorageFile Properties and Metadata” for the details.

http://msdn.microsoft.com/library/bb787554.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx

608

Be mindful, though, that the Windows properties you can retrieve and modify on a folder differ

from those supported by files. For example, you can use StorageFolder.properties.retrieve-

PropertiesAsync for the System.FreeSpace property and you’ll actually get the free space on the drive

where the folder lives. Pretty cool, eh?

And here are the unique aspects of StorageFolder:

 tryGetItemAsync Identical to getItemAsync (to retrieve a contained item) except that it

results in null (to your completed handler) for the most common errors instead of calling your

error handler. This can simplify app logic. getItemAsync, on the other hand, will succeed if the

item exists invokes your error handler for all error cases. For a simple demonstration, see

scenario 11 of the File access sample.

 getFilesAsync, getFoldersAsync, and getItemsAsync These are the basic methods to

enumerate the immediate contents of a folder depending on whether you want files only,

folders only, or both, respectively. Each method results in a vector of the appropriate object

type—StorageFile, StorageFolder, or StorageItem—as discussed in “Simple Enumeration

and Common Queries” below.

 Any *Query method or property All of these members deal with file queries, which is how you

do deep enumerations of folder contents based on Windows properties, drawing on the power

of the system indexer. This also includes several overloads of getFilesAsync and getFolders-

Async. We’ll talk of all this under both “Simple Enumeration and Common Queries” and

“Custom Queries.”

Before that, however, let’s spend a few minutes on the known folders and the StorageLibrary

object, as well as working with removable storage—these are special cases of handling containers for

files and folders. (The special Windows.Storage.DownloadsFolder mentioned at the beginning of this

chapter in “The Big Picture of User Data” doesn’t need any more explanation.)

Sidebar: Indexing App Content

The query capabilities that we’ll be learning about here draw on the system indexer, which works

automatically on file system content. Beyond this, the API in Windows.Storage.Search also

gives you the ability to easily add Windows properties to files along with the means to index app

content that isn’t stored in files at all. Both topics are covered in Chapter 15, “Contracts,” in the

discussion on Search, specifically in “Indexing and Searching Content.” For now, just check out

the Indexer sample where these features are demonstrated.

http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/windows.storage.downloadsfolder.aspx
http://code.msdn.microsoft.com/windowsapps/Indexer-sample-f6188121

609

KnownFolders and the StorageLibrary Object
As you already know, Windows.Storage.KnownFolders gives you direct access to the StorageFolder

objects for various user data locations. The picturesLibrary, musicLibrary, and videosLibrary are

the obvious ones, but we haven’t yet mentioned a number of others, some of which depend on the

same capabilities in your manifest. All of them are summarized in the following table:

Folder Required Capability Description

cameraRoll Pictures library. The Camera roll folder in the user’s Pictures library.

documentsLibrary Documents library, which has additional

requirements; see “The Big Picture of User

Data” at the beginning of the chapter.

The user’s local Documents folder.

homeGroup Music library, Pictures library, or

Videos library.

Container for the user’s HomeGroup items. Refer to

the HomeGroup app sample.

mediaServerDevices Music library, Pictures library, or

Videos library.

Container for connected media servers; see Chapter

13.

musicLibrary Music library. The user’s root Music library.

picturesLibrary Pictures library. The user’s root Pictures library.

playlists Music library. Default storage location for playlists; see Chapter 13.

removableDevices Removable storage plus at least one file type

association; see “Removable Storage” below.

A folder containing subfolders for each attached

device.

savedPictures Pictures library. Same as the Pictures library.

videosLibrary Videos library. The user’s root Videos library.

Again, only request specific library access if you’re going to work within any o f these libraries

outside of the file picker—for example, when you want to create your own UI to show folder contents

(which the file pickers do very well already).

As you will rightly expect, some of these folders do not support the creation of new files or folders

within them—specifically, homeGroup, mediaServerDevices, and removableDevices—though in the

latter you can generally create subfolders within the folder for any one device. As for the rest, they

behave just like other local folders. The cameraRoll and savedPictures folders, for their part, are

alternate routes into the Pictures library that come from the ongoing work to bring the Windows and

Windows Phone platforms together. They don’t otherwise have any special meaning.

With the three primary media libraries (and documents), you also have the ability to

programmatically include other folders in those libraries. This is different, mind you, from creating a

subfolder in that library directly—a media folder as Windows sees it is a list of any number of other

folders on the file system that are then treated as a single entity. You see this in Windows Explorer

under Libraries (ignore the legacy Podcasts artifact):

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx
http://code.msdn.microsoft.com/HomeGroup-App-sample-d4da5cb2/description

610

In Windows Explorer, if you right-click a folder and select Include In Library, you’ll see a popup

menu with these same choices:

The Windows.Storage.StorageLibrary object gives you access to these capabilities from within

an app. To obtain a StorageLibrary, call the static Windows.Storage.StorageLibrary.-

getLibraryAsync method with a value from Windows.Storage.KnownLibraryId enumeration, as

shown here in scenario 1 of the Library management sample (js/S1_AddFolder.js):

Windows.Storage.StorageLibrary.getLibraryAsync(Windows.Storage.KnownLibraryId.pictures)

 .then(function (library) {

 // ...

 });

}

where the available options in KnownLibraryId are pictures, music, videos, and documents. Once

you have a StorageLibrary object, you have these members to play with:

 folders A read-only but observable vector of StorageFolder objects in the library.

 saveFolder The StorageFolder of the default save location for the library (read-only).

 requestAddFolderAsync Invokes the folder picker UI that automatically shows only those

locations eligible to add to the library (excluding other apps, for instance, and removable

storage, but it does include OneDrive given that it has a local folder with at least placeholder

files). Once the user selects a folder or cancels, the API will complete with the selected

StorageFolder or null, respectively.

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagelibrary.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagelibrary.getlibraryasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagelibrary.getlibraryasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownlibraryid.aspx
http://code.msdn.microsoft.com/Library-management-Sample-05ef6912

611

 requestRemoveFolderAsync Prompts the user to confirm removal of a given StorageFolder

from the library; the Boolean result indicates whether the user consented to the action.

 definitionChanged Fired when the contents of the folders collection have been changed

either through Windows Explorer or another app. Uses this to update your UI as needed.

The Library management sample shows all of these features except for saveFolder. To complete

scenario 1, it calls requestAddFolderAsync (js/S1_AddFolder.js):

Windows.Storage.StorageLibrary.getLibraryAsync(Windows.Storage.KnownLibraryId.pictures)

 .then(function (library) {

 return library.requestAddFolderAsync();

 }).done(function (folderAdded) {

 // ...

 });

}

Scenario 3 does the opposite with requestRemoveFolderAsync (js/S3_RemoveFolder.js):

var folderToRemove =

 picturesLibrary.folders[document.getElementById("foldersSelect").selectedIndex];

picturesLibrary.requestRemoveFolderAsync(folderToRemove).done(function (folderRemoved) {

 // ...

});

where the foldersSelect control is populated from the folders collection (js/S3_RemoveFolder.js):

function fillSelect() {

 var select = document.getElementById("foldersSelect");

 select.options.length = 0;

 picturesLibrary.folders.forEach(function (folder) {

 var option = document.createElement("option");

 option.textContent = folder.displayName;

 select.appendChild(option);

 });

}

Nearly identical code is found in scenario 2 (js/S2_ListFolders.js), which just outputs the list of current

folders to the display.

If you add and remove folders in this sample, also run the built-in Pictures app and you can see the

contents of those folders appearing and disappearing. This is because the Pictures app is using the

definitionChanged event to keep itself updated. The Library management sample does the same just

to refresh its drop-down list in scenario 3 and refreshes its display in scenario 2 (js/S2_ListFolders.js):

Windows.Storage.StorageLibrary.getLibraryAsync(Windows.Storage.KnownLibraryId.pictures)

 .then(function (picturesLibrary) {

 picturesLibrary.addEventListener("definitionchanged", updateListAndHeader);

 updateListAndHeader();// Refresh the display

 });

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagelibrary.requestremovefolderasync.aspx

612

You can test this by adding and removing folders to the Pictures library in Windows Explorer while

the sample is running.

Hint Remember that definitionChanged is a WinRT event, so be sure to remove its listeners

appropriately. Note that the Library management sample does not do this properly.

Removable Storage

As with the media libraries, programmatic access to the user’s removable storage devices is controlled

by a capability declaration plus one or more file type associations. This means that you cannot simply

enumerate the contents of these folders directly or write whatever files you want therein. Put another

way, going directly to Windows.Storage.KnownFolders.removableDevices is only something you do

when you’re looking for a specific file type. For example, a Photo management app can look here for

cameras or USB drives from which to import the image files it supports.

If you simply want to allow the user to open or save files on removable devices, the capability and

the removableDevices folder isn’t what you need: use the file picker instead. What you don’t want to

do is create a file type association that you don’t support, because users will attempt to launch your

app through those associations and will reflect their disappointment in your Store ratings!

Tip One reason you might think about removable storage is to let the user save files to an SD card. In

this case, it’s better for the user to directly configure PC Settings > PC and Devices > Devices > Default

Save Locations, which is at the very bottom of the Devices page and is easy to overlook.

That said, let’s assume that the capability is appropriate for what you want to do. If you load the

Removable storage sample in Visual Studio and run it, you can see the effect of it associating itself with

.gif, .jpg, and .png files. As a result, it shows up in Open With lists such as the context menu of Windows

Explorer and the default program selector:

http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0

613

How you create the appropriate declarations and handle file activation is a subject we’ll return to

later in “File Activation and Association.” For now, assuming that you’ve done all that properly, your

app will be able to get to the removableDevices folder. The sample (scenario 1) just uses the

StorageFolder.getFoldersAsync method to list the connected devices. Scenarios 2 and 3 send an

image to and retrieve an image from a selected device, where the device names themselves are

obtained from APIs in the Windows.Devices namespace, as we’ll see in Chapter 17, “Devices and

Printing.” You don’t have to go to that extent, however, because the removableDevices folder already

gives you access to the StorageFolder objects you need for the same purposes.

Scenario 4 demonstrates handling Auto Play activation, which we’ll also return to in “File Activation

and Association.” In such cases you’ll likely query the contents of the removable device in question to

create a list of the files you care about, and for that we need to look at file queries.

Simple Enumeration and Common Queries
A simple or shallow enumeration of folder contents happens through the variants of getFilesAsync,

getFoldersAsync, and getItemsAsync in the StorageFolder object, which take no arguments. Each

method results in a vector of the appropriate item types: getFilesAsync enumerates files only and

provides a vector of StorageFile objects; getFolderAsync enumerates only immediate child folders

in a vector of StorageFolder objects; and getItemsAsync provides a vector of both together, each

represented by a StorageItem object. Note that getItemsAsync has a variant, getItemsAsync-

(<startIndex>, <maxItemsToRetrieve>), with which you can do a partial enumeration. This is

especially helpful when dealing with folders that contains a few hundred items or more such that you

can bring items into memory only when they come into view.

Once you receive one of the vectors, you can iterate over it as you would an array, as a vector is

projected into JavaScript as such. With the StorageFile, StorageFolder, and StorageItem objects

you can extract their display names and thumbnails to create a gallery view, present a more compact

list to the user, or do whatever else you want. Note that the various permissions and manifest

capabilities do not affect enumeration: if you were able to acquire the root StorageFolder, you have

programmatic permission to enumerate its contents. (For removable storage and the documents

library, however, enumeration is automatically limited to the file types you declare in the manifest.)

The Folder enumeration sample shows us these simple use cases. Scenario 1 calls getItemsAsync on

the Pictures library:

picturesLibrary.getItemsAsync().done(function (items) {

 // Output all contents under the library group

 outputItems(group, items);

});

where the outputItems function just iterates the resulting list and creates some DOM elements to

show their names (the group variable just the header element with the count):

http://msdn.microsoft.com/library/windows/apps/br227276.aspx
http://msdn.microsoft.com/library/windows/apps/br227280.aspx
http://msdn.microsoft.com/library/windows/apps/br227286.aspx
http://msdn.microsoft.com/library/windows/apps/br227287.aspx
http://msdn.microsoft.com/library/windows/apps/br227287.aspx
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000

614

Skipping to scenario 4, we find an example of checking the StorageFile.isAvailable flag for

enumerated items. This scenario lets you select a folder through the folder picker and then iterates the

results to show the file’s displayName, the provider.displayName, and the file’s availability. Doing

this for one of my OneDrive folders, I get the results below left when I have connectivity whereas I see

those below right when I’m offline or on a metered network, as described by the table in “Availability”

earlier, because those files are marked online-only:

I skipped ahead to scenario 4 first because it gives us our first taste of file and folder queries,

specifically the function StorageFolder.createFileQuery, which does exactly the same thing as

getItemsAsync when called with no arguments:

var query = folder.createFileQuery();

query.getFilesAsync().done(function (files) {

 files.forEach(function (file) {

 // ...

});

What comes back from createFileQuery is now a different object, a StorageFileQueryResult (in

the Windows.Storage.Search namespace). Two parallel methods, createFolderQuery and

createItemQuery, return a StorageFolderQueryResult and a StorageItemQueryResult,

respectively.

http://msdn.microsoft.com/library/windows/apps/br227255.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.storagefilequeryresult.aspx
http://msdn.microsoft.com/library/windows/apps/br227261.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.createitemquery.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.storagefolderqueryresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.storageitemqueryresult.aspx

615

As you can see in the code above, the StorageFileQueryResult has a getFilesAsync that

behaves exactly like its namesake in StorageFolder (resulting in a StorageFile vector). Storage-

FolderQueryResult, for its part, has a getFoldersAsync (resulting in a StorageFolder vector) and

StorageItemQueryResult has a getItemsAsync. And all these methods have variants to also return

an index-based subset of results instead of the whole smash.

The three objects then have the rest of their members in common:

 folder A property containing the root StorageFolder in which the query was run.

 getItemCountAsync Retrieves the number of results from the query.

 contentsChanged An event that’s fired when changes to the file system affect query results.

This prompts an app displaying those contents to refresh itself. (If an app is suspended when

this happens, all changes that take place during suspension are consolidated into a single

event.)

 getCurrentQueryOptions, applyNewQueryOptions Retrieves and modifies the

QueryOptions object used to define the query. Calling applyNewQueryOptions fires the

optionsChanged event. See “Custom Queries” later on for using query options.

 findStartIndexAsync and getMatchingPropertiesWithRanges Used to identify exactly

where matches in a query are located; also described in “Custom Queries.”

So now our enumerations start to become more interesting! The whole idea of a query, after all, is

to retrieve a subset of items based on certain criteria. Using the full query API that we’ll see in the next

section, the sky is really the limit here! But the designers of the WinRT API also understood that certain

queries are the ones that most apps will care about—including deep rather than shallow queries—so

they made is easy to execute them without having to ponder the fine details.

You do this through variants of the createFileQuery and createFolderQuery methods (no

variant exists for items):

 createFileQuery(CommonFileQuery) Takes a value from the CommonFileQuery

enumeration (in Windows.Storage.Search).

 createFolderQuery(CommonFolderQuery) Takes a value from the CommonFolderQuery

enumeration (also in Windows.Storage.Search).

Both support an option called defaultQuery, which returns the same vector as getFilesAsync()

and getFoldersAsync(), respectively, using a shallow enumeration. All other options, shown in the

tables below, perform a deep enumeration. Furthermore, all queries can be run in any library or

HomeGroup folder; CommonFileQuery.orderByName and orderBySearchRank can also be run in any

folder. Refer also to Windows Properties for documentation on System.ItemNameDisplay and so forth.

http://msdn.microsoft.com/library/windows/apps/br227254.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.commonfilequery.aspx
http://msdn.microsoft.com/library/windows/apps/br227262.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.commonfolderquery.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx

616

CommonFileQuery Windows Properties used in query

orderbyName Sorted by the System.ItemNameDisplay property (this name is appropriate for use in UI).

orderBySearchRank Sorted by the System.Search.Rank and then by System.DateModified properties.

orderByTitle Sorted by the System.Title property.

orderByDate Sorted by System.ItemDate, which varies with the type of file (e.g., System.Photo.DateTaken for

images, System.Media.DateReleased for music).

orderByMusicProperties Sorted by these four properties in this order: System.Music.DisplayArtist, System.Music.AlbumTitle,

System.Music.TrackNumber, and System.Title.

CommonFolderQuery Windows properties used in query
groupByType Grouped System.ItemTypeText, with one virtual folder per type.

groupByTag Grouped by System.Keywords, with one virtual folder per keyword; files with multiple tags will

appear in multiple folders.

groupByAuthor Grouped by System.Author, with one virtual folder per author; files with multiple authors will appear

in multiple folders.

groupByYear Grouped by the year in System.ItemDate, with one virtual folder per year.

groupByMonth Grouped by the month in System.ItemDate, with one virtual folder per month.

groupByPublishedYear Grouped by the year in System.Media.Year, with one virtual folder per year.

groupByRating Grouped by System.Rating with one virtual folder per rating.

groupByAlbum Grouped by System.Music.AlbumTitle with one virtual folder per title.

groupByArtist Grouped by System.Music.Artist with one virtual folder per artist.

groupByAlbumArtist Grouped by System.Music.AlbumArtist with one virtual folder per album artist.

groupByComposer Grouped by System.Music.Composer, with one virtual folder per composer; files with multiple

composers will appear in multiple folders.

groupByGenre Grouped by System.Music.Genre, with one virtual folder per genre.

Clearly, many of the common folder queries (and one common file query) apply to music

specifically, but others apply generally. However, not every location supports every type of file query—

those that don’t will throw a “parameter is incorrect” exception, which can be confusing if you’re not

prepared for it! (Query support is related to the indexing status of the location in question; libraries are

indexed by default.)

The way you check for support is through StorageFolder.isCommonFileQuerySupported and

isCommonFolderQuerySupported, to which you pass the desired CommonFileQuery and Common-

FolderQuery value you want to test.

To help you play with this, I’ve modified scenario 4 of the Folder enumeration sample that’s in this

chapter’s companion content. I’ve added a drop-down list through which you can select which

CommonFolderQuery to run; once you’ve chosen a folder, it also checks if the query is supported:

var select = document.getElementById("selectQuery");

var selectedQuery = queries[select.selectedIndex];

if (!folder.isCommonFileQuerySupported(selectedQuery)) {

 //Show message in output if not supported and return.

 return;

}

//Run query as usual

617

Assuming the query is supported and succeeds when run, the result is just a flat list of files (a

StorageFile vector) that you can easily iterate.

Folder queries are a little more complicated because the StorageFolderQueryResult.get-

FoldersAsync method gives you a StorageFolder vector, where each one is a virtual folder that’s

used to group files according to the query. That is, each folder does not represent an actual folder on

whatever location was queried but is simply used to organize the results and help you present them in

your UI. The displayName and other properties of each StorageFolder can be used to create group

headings, and the files within each folder that you enumerate with StorageFolder.getFilesAsync

are that group’s contents.

Scenario 2 of the Folder enumeration sample demonstrates this with groupByMonth, groupByTag,

and groupByRating queries on the Pictures library. It runs each query as follows, using the same

processing code for the results (js/scenario2.js; I’ve shortened one variable name for brevity):

var pix = Windows.Storage.KnownFolders.picturesLibrary;

var query = pix.createFolderQuery(Windows.Storage.Search.CommonFolderQuery.groupByTag);

query.getFoldersAsync().done(outputFoldersAndFiles);

The query variable, to be clear, is the StorageFolderQueryResult object, and calling its

getFolderAsync is what performs the actual enumeration. The outputFoldersAndFiles function—

which is a completed handler—receives and iterates the resulting StorageFolder vectors, calling

getFilesAsync for each and joining the resulting promises. It then processes each folder’s results

when they’re all ready to show the output (js/scenario2.js):

function outputFoldersAndFiles(folders) {

 // Add all file retrieval promises to an array of promises

 var promises = folders.map(function (folder) {

 return folder.getFilesAsync();

 });

 // Aggregate the results of multiple asynchronous operations

 // so that they are returned after all are completed. This

 // ensures that all groups are displayed in order.

 WinJS.Promise.join(promises).done(function (folderContents) {

 for (var i in folderContents) {

 // Create a group for each of the file groups

 var group = outputResultGroup(folders.getAt(i).name);

 // Add the group items in the group

 outputItems(group, folderContents[i]);

 }

 });

}

This is a marvelously concise piece of code, so let me explain what’s happening. First, folders is the

StorageFolder vector, and because we can treat it as an array we can use folders.map to execute a

function for each folder in the vector. The promises variable is an array of promises, one for each

folder’s getFilesAsync. Passing this to WinJS.Promise.join, if you remember from Chapter 3, “App

Anatomy and Performance Fundamentals,” returns a promise that is fulfilled when all the promises in

the array are fulfilled, so this effectively waits for each one to complete.

618

The completed handler for join then receives an array that contains all the results of the individual

promises. This handler then simply iterates that array, calling the sample’s outputResultGroup and

outputItems methods for each set, which just build up a DOM tree for the display. The results for my

pictures library with groupByTag are as follows (revealing a small extent of my travels!):

As for scenario 3 of the sample, that brings us into the matter of query options, which are discussed

next.

Custom Queries

Now that we’ve seen the basics of enumerating folder contents with common queries and processing

their results, we’re ready to look at the full query capabilities offered by WinRT wherein you construct a

custom query from scratch using a QueryOptions object. (The common queries are just shortcuts for

typical cases to save you the trouble.) A custom query basically gives you all the capabilities that you

have through the search features of the desktop Windows Explorer, using whatever Windows

Properties you require, especially those you use to index your own app content.

As with the common queries, not all locations support custom queries, so once you’ve built the

QueryOptions you want to call StorageFolder.areQueryOptionsSupported with that object. It if

returns true, you can proceed. If you attempt to query a folder with unsupported options, expect a

“parameter is incorrect” exception.

Something else you might want to know ahead of time is whether the folder itself has been indexed,

which greatly affects the potential speed of the query. You do this through StorageFolder.-

getIndexedStateAsync. This results in an IndexedState value: notIndexed, partiallyIndexed,

http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getindexedstateasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getindexedstateasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.indexedstate.aspx

619

fullyIndexed, and unknown. Do note that a fully indexed folder could yet contain nonindexed folders,

but generally speaking an indexed folder will produce results more quickly than the others.

The next step is to create the query by passing your query options to one of these StorageFolder

methods: createFileQueryWithOptions, createFolderQueryWithOptions, and createItem-

QueryWithOptions. These result in StorageFileQueryResult, StorageFolderQueryResult, and

StorageItemQueryResult objects, as already discussed. With these you can enumerate the results

however you need, just as you do when you use a common query.

If you remember from earlier, the getCurrentQueryOptions and applyNewQueryOptions methods

of Storage[File | Folder | Item]QueryResult work with the QueryOptions that were used to

create the query. The get method retrieves the QueryOptions object, obviously, and calling the apply

method will change the query mid-flight, firing the query result’s optionsChanged event.

Ultimately, these queries involve what are known as Advanced Query Syntax (AQS) strings that are

capable of identifying and describing as many specific criteria you desire. Each criteria is a Windows

Property (again see Windows properties for the reference) such as System.ItemDate, System.Author,

System.Keywords, System.Photo.LightSource, and so on.85 Each property can contain a target value such

as System.Author(Patrick OR Bob) and System.ItemType: "mp3", and terms can be combined with AND

(which is implicit), OR, and NOT operators, as in System.Keywords: “needs review” AND

(System.ItemType: “.doc” OR System.ItemType: “.docx”) .

Tip The AND, OR, and NOT operators must be in uppercase or else they are interpreted as a keyword.

Also note that quotation marks aren’t strictly necessary.

Simply said, an AQS string is exactly what you can type into the search control of Windows Explorer.

You can also try out AQS strings through the Programmatic file search sample, which we’ll see in a

moment once we look at the QueryOptions object that is so central to this process (it’s where you

provide AQS strings).

First, there are three QueryOptions constructors:

 new QueryOptions() Creates an uninitialized object.

 new QueryOptions(<CommonFolderQuery>) Creates an object pre-initialized from a

CommonFolderQuery.

 new QueryOptions(<CommonFileQuery>, <file_types>) Creates an object pre-initialized

from a CommonFileQuery along with an array of file types—for example, ["*.jpg",

"*.jpeg", "*png"]. If you specify null for <file_types>, it’s the same as ["*"].

85 Contrary to any examples in the documentation, queries should always use a full property name such as
System.ItemDate: rather than the user-friendly shorthand date: because the latter will not work on localized builds of

Windows.

http://msdn.microsoft.com/library/windows/apps/br211591.aspx
http://msdn.microsoft.com/library/windows/apps/br211592.aspx
http://msdn.microsoft.com/library/windows/apps/br211593.aspx
http://msdn.microsoft.com/library/windows/apps/br211593.aspx
http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://code.msdn.microsoft.com/windowsapps/Programmatically-searching-25e1a56b
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.queryoptions.aspx

620

Once constructed you then set any of the other properties you care about—all types and

enumerations referred to below such as FolderDepth are found in Windows.Storage.Search:

Property Description

folderDepth Either FolderDepth.shallow (the default) or deep.

fileTypeFilter A vector of strings that describe the desired file type extensions, as in ".mp3". The default is

an empty list (no filtering), meaning "*".

sortOrder A vector of SortEntry structures that each contain a Boolean named ascendingOrder (false

for descending order) and a propertyName string. Each entry in the vector defines a sort

criterion; these are applied in the order they appear in the vector. An example of this will be

given a little later.

indexerOption A value from IndexerOption, which is one of useIndexerWhenAvailable, onlyUseIndexer

(limit the search to indexed content only), and doNotUseIndexer (query the file system directly

bypassing the indexer). As the latter is the default, you’ll typically want to explicitly set this

property to useIndexerWhenAvailable.

userSearchFilter An AQS string for the query, which is combined with applicationSearchFilter.

applicationSearchFilter An AQS string for the query, which is combined with userSearchFilter.

language A string containing the BCP-47 language tag associated with the AQS strings.

dateStackOption A read-only value from DateStackOption that can be set when creating the QueryOptions

from a CommonFolderQuery.

groupPropertyName A read-only string identifying the property used for grouping results with a common query. In

CommonFolderQuery.groupByYear, for example, this is set to System.ItemDate.

storageProviderIdFilter A read-only vector of provider strings, where you add any specific providers by calling

storageProviderIdFilter.append, specifically to limit the results to those providers.

QueryOptions methods You can save a QueryOptions for later use and then reinitialize an instance

from that saved state. The QueryOptions.saveToString returns a string representation for the query

that you can save in your app data—and remember also to save the StorageFolder in the access

cache! Later, when you want to reload the options, use QueryOptions.loadFromString. These

methods are, in short, analogs to JSON.stringify and JSON.parse.

QueryOptions has two other methods—setPropertyPrefetch and setThumbnailPrefetch—which

are discussed in “Metadata Prefetching with Queries.”

Here’s a brief snippet to do a CommonFileQueryorderByTitle file query for MP3s, where we

remember to call areQueryOptionsSupported:

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary;

var options = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderByTitle, [".mp3"]);

if (musicLibrary.areQueryOptionsSupported(options)) {

 var query = musicLibrary.createFileQueryWithOptions(options);

 showResults(query.getFilesAsync());

}

http://msdn.microsoft.com/library/windows/apps/windows.storage.search.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.queryoptions.savetostring.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.queryoptions.loadfromstring.aspx

621

I noted in the table that the application and user filter AQS strings here are combined within the

query. What this means is that you can separately manage any filter you want to apply generally for

your app (applicationSearchFilter) from user-supplied search terms (userSearchFilter). This way

you can enforce some search filters without requiring the user to type them in and without always

having to combine strings yourself. It’s also helpful to separate locale-independent and locale-specific

properties, as terms in applicationSearchFilter should always use locale-invariant property names

(like System.FileName instead of filename) to make sure results come out as expected. For more on this,

see Using Advanced Query Syntax Programmatically.

It’s necessary to use one or both of these properties with the CommonFileQuery.orderBySearch-

Rank query because text-based searches return ranked results to which this query applies. (The query

sorts by System.Search.Rank, System.DateModified, and then System.ItemDisplayName.) Scenario 1 of

the Programmatic file search sample shows a bit of this, where it uses this ordering along with the

userSearchFilter property, whose value is set to whatever you enter in the sample’s search box

(js/scenario1.js):

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary;

var options = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderBySearchRank, ["*"]);

options.userSearchFilter = searchFilter;

var fileQuery = musicLibrary.createFileQueryWithOptions(options);

On my machine, where I have a number of songs with “Nightingale” in the title, as well as an album

called “Nightingale Lullaby,” a search using the string Nightingale AND System.ItemType: mp3 in the

above code gives me results that look like this in the sample (only partial results shown for brevity):86

This shows that the search ranking favors songs with “Nightingale” directly in the title but also

includes those from an album with that name.

A query like this lets us see the purpose of the other two methods on the Storage[File | Folder

| Item]QueryResult objects that we haven’t mentioned yet: findStartIndexAsync and

getMatchingPropertiesWithinRanges.

86 To reiterate the purpose of applicationSearchFilter and userSearchFilter, if my app was capable of working with
only mp3 formats, I could store the constant term "System.ItemType: 'mp3'" in applicationSearchFilter and then

put variable, user-provided terms like "Nightingale" in userSearchFilter.

http://msdn.microsoft.com/library/windows/apps/bb266512.aspx
http://code.msdn.microsoft.com/windowsapps/Programmatically-searching-25e1a56b

622

findStartIndexAsync retrieves the StorageFile for the first item in the query results where the

text argument you provide matches the first property used in the query. This is a bit tricky. In the

sample above, which uses CommonFileQuery.orderBySearchRank, there’s actually not much to

compare to. If you use orderByTitle, on the other hand, you can compare against values of the

System.Title property. For instance, using this and the same AQS string as before, I get these results:

Calling findStartIndexAsync with “Horses” I get the result of 3 (zero-based). I can pass this to the

query’s getFilesAsync(index, 1) method to retrieve the StorageFile for that item:

fileQuery.findStartIndexAsync("Horses").done(function (index) {

 console.log("First item with 'Horses' at index: " + index);

 if (index != 4294967295) {

 fileQuery.getFilesAsync(index, 1).done(function (files) {

 files && console.log(files[0].displayName);

 });

 }

});

This prints “- 08 - Horses, Sleeping.mp3” to the console. Note that the return value of 4294967295 is

a long integer -1, meaning “no index.”

As for getMatchingPropertiesWithRanges, this works for only one StorageFile at a time and is

typically called when going through the query results from getFilesAsync(). It returns a Map of

property names, where the values are arrays (vectors) of objects that describe where matches occurred

in that property. Each object has startPosition and length properties that pinpoint each location.

For a demonstration, play around with scenario 3 of the Semantic text query sample. (The other two

scenarios are for searching in text content, which we’ll mention in Chapter 15, “Contracts.”) It runs a

query against the Music library, as we’ve been doing, using the CommonFileQuery.orderBySearch-

Rank plus whatever extra AQS string you type in (js/filePropertiesMatches.js):

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary;

var options = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderBySearchRank, ["*"]);

options.userSearchFilter = searchFilter;

options.setPropertyPrefetch(

 Windows.Storage.FileProperties.PropertyPrefetchOptions.musicProperties, []);

var fileQuery = musicLibrary.createFileQueryWithOptions(options);

fileQuery.getFilesAsync().done(function (files) {

 if (files.size > 0) {

http://msdn.microsoft.com/library/windows/apps/windows.storage.search.storagefilequeryresult.getmatchingpropertieswithranges.aspx
http://code.msdn.microsoft.com/windowsapps/Semantic-Text-Query-sample-29334be1

623

 files.forEach(function (file) {

 var searchHits = fileQuery.getMatchingPropertiesWithRanges(file);

 // [Output code omitted to highlight System.FileName occurrences]

 });

 }

});

To keep things simple, I just ran a search on “Horses” that results in just the one file, “- 08 - Horses,

Sleeping.mp3”. The map that I got back in the searchHits variable contained the following (only one

location per property):

Property startPosition Length

System.FileName 7 6

System.ItemNameDisplay 7 6

System.ItemPathDisplay 65 6

System.ParsingName 7 6

System.Title 0 6

Clearly, you can see that position 7 (zero-based) in the filename is where “Horses” begins. The

System.Title of the track is just “Horses, Sleeping,” so its start position is appropriately 0.

In some cases, as with my “Nightingale” search before, the term might not occur in the filename or

title at all. In such cases you’ll see a completely different list of properties in the map, such as

System.ItemFolderNameDisplay and System.Music.AlbumTitle.

Metadata Prefetching with Queries
The QueryOptions.setPropertyPrefetch method allows you to indicate a group of file properties

that you want to optimize for fast retrieval—they’re accessed through the same APIs as properties are

otherwise, but they come back faster. This is very helpful when you’re displaying a collection of files in a

ListView, using a custom data source with certain properties from enumerated files. In that case, you’d

want to set those up for prefetch so that the control renders faster. Similarly, the setThumbnail-

Prefetch method tells Windows what kinds of thumbnails you want to include in the query—again,

you can ask for these without setting the prefetch, but they come back faster when you do. This helps

you optimize the display of a file collection.

Examples of this can be found in two samples. In scenario 3 of the Semantic text query sample,

which we saw at the end of the previous section, it made sure to prefetch the music properties it

planned to search (js/filePropertiesMatches.js):

options.setPropertyPrefetch(

 Windows.Storage.FileProperties.PropertyPrefetchOptions.musicProperties, []);

The values affected are determined by the first argument to setPropertyPrefetch, which comes

from PropertyPrefetchOptions: none, musicProperties, videoProperties, imageProperties,

documentProperties, and basicProperties. If something sounds familiar here, it’s because these

http://code.msdn.microsoft.com/windowsapps/Semantic-Text-Query-sample-29334be1
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.propertyprefetchoptions.aspx

624

exactly match the objects returned through methods of the StorageFile.properties object, such as

retrieveMusicPropertiesAsync, as discussed in “Media-Specific Properties” earlier.

To that group of properties you can also specify a custom list in the second argument, with each

property name in quotes, such as ["System.Copyright", "System.Image.ColorSpace"]; for no

custom properties, just pass []. Remember that you can also use strings from the SystemProperties

object in Windows.Storage.

This, in fact, is exactly what you see in an example of the API, found in scenario 3 of the Folder

enumeration sample that we’ve been looking at already (js/scenario3.js):

var search = Windows.Storage.Search;

var fileProperties = Windows.Storage.FileProperties;

// Create query options with common query sort order and file type filter.

var fileTypeFilter = [".jpg", ".png", ".bmp", ".gif"];

var queryOptions = new search.QueryOptions(search.CommonFileQuery.orderByName, fileTypeFilter);

// Set up property prefetch - use the PropertyPrefetchOptions for top-level properties

// and an array for additional properties.

var imageProperties = fileProperties.PropertyPrefetchOptions.imageProperties;

var copyrightProperty = "System.Copyright";

var colorSpaceProperty = "System.Image.ColorSpace";

var additionalProperties = [copyrightProperty, colorSpaceProperty];

queryOptions.setPropertyPrefetch(imageProperties, additionalProperties);

// Query the Pictures library.

var query = Windows.Storage.KnownFolders.picturesLibrary.

 createFileQueryWithOptions(queryOptions);

setThumbnailPrefetch is similar, where you specify a ThumbnailMode, a requested size, and

options, all of which are the same as discussed in “Thumbnails” earlier. The same scenario of the Folder

enumeration sample shows a use of this, before the call to createFileQueryWithOptions

(js/scenario3.js):

var thumbnailMode = fileProperties.ThumbnailMode.picturesView;

var requestedSize = 190;

var thumbnailOptions = fileProperties.ThumbnailOptions.useCurrentScale;

queryOptions.setThumbnailPrefetch(thumbnailMode, requestedSize, thumbnailOptions);

Clearly, you’d often use a thumbnail prefetch when creating a gallery experience with a ListView

control, where you’d typically be using a WinJS.UI.StorageDataSource object as well. In fact, the

StorageDataSource has its own options that it uses to automatically set up the appropriate

prefetching, in which case you don’t use the QueryOptions directly. We’ll see this in the next section.

http://msdn.microsoft.com/library/windows/apps/windows.storage.systemproperties.aspx
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000

625

Creating Gallery Experiences

In Chapter 7 we learned about the three components of a collection control: a data source, a layout,

and templates. One of the most common uses of a collection control—especially the ListView—is to

display a gallery of entities in the file system, organized in interesting ways. This section brings together

much of what we’ve learned in this chapter where implementing such an experience is concerned:

 Unless you’re working with a library for which a capability exists, you’ll need to have the user

choose folders to include in your gallery through the Folder Picker.87 If that set of folders is

unlikely to change often, it’s best for the app to have a page where the user manages the

included folders—adding new ones from the Folder Picker, and removing existing ones. When

the user selects a new folder, be sure to save it in the Windows.Storage.AccessCache so that

subsequent app sessions won’t need to ask again.

 Always, always use thumbnails from the StorageFile.getThumbnailAsync and

getScaledImageAsThumbnailAsync methods. The thumbnails can be passed directly to

URL.createObjectURL to display in img elements in place of the full StorageFile. Using

thumbnails will perform much better both in terms of speed (because thumbnails are typically

drawn from existing caches) and memory (because you’re not loading the whole image file).

 Differentiate file availability based on the StorageFile.isAvailable flag. You can use this to

provide a textual indicator and also “ghost” unavailable items by setting their opacity to

something like 40%. Remember that availability means that network conditions are such that

the file’s contents cannot be accessed, so you typically want to disable interactivity (like

invocation) on unavailable items. Furthermore, some items might be available but are

represented by only a local placeholder file. Be sure, then, to show an indeterminate progress

control if it takes longer than a second or two to get a file’s contents, and also provide a means

to cancel the operation. This gives the user control on slow networks.

 Very often, your gallery will involve some kind of query against the file system to create its data

source. Depending on your needs, you can use a data source built on a WinJS.Binding.List,

which you populate with the results from your queries. Alternately, you can use the

WinJS.UI.StorageDataSource object, which has built-in support for queries (more on this

below). The caveat with StorageDataSource is that it doesn’t support grouping.

For a full end-to-end demonstration of these and other patterns, I’ll refer you to the JavaScript Hilo

app put together by Microsoft’s Patterns & Practices team. (Note: As of the current preview, the app

has not yet been updated to Windows 8.1, but it shows many of these patterns nonetheless.)

87 It’s generally best to work with library content through one of the KnownFolder objects because these will reflect all the

other folders that a user might have added to those libraries. This will not be the case if you have the user select only an
individual local folder. That said, one point of user frustration (which I’ve encountered personally) is the inability to add a

folder on removable storage to a library, in which case providing a way to include such folders directly is helpful.

http://msdn.microsoft.com/library/windows/apps/jj674095.aspx
http://msdn.microsoft.com/library/windows/apps/jj674095.aspx

626

With the StorageDataSource in particular, scenario 5 of the StorageDataSource and

GetVirtualizedFilesVector sample offers a demonstration of working with queries. Back in Chapter 7 we

just used one of the shortcuts like this:

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures",

 { requestedThumbnailSize: 480 });

The first argument to the constructor is actually a query object of some sort—“Pictures” here is

again just a shortcut. But you can create any query you want and use it here. The sample, then, creates

a QueryOptions from scratch, setting up its own sorting by System.IsFolder and System.ItemName. The

purpose of having this query is that for some types of galleries, such as music, the folder hierarchy on

the file system is irrelevant and you want to organize by metadata. This is why a query such as

CommonFileQuery.orderByMusicProperties returns a flat list of files rather than a folder tree,

because you’ll typically group the results by criteria other than folder.

Other options we give to the StorageDataSource set up thumbnails, which are used to call the

QueryOption.setThumbnailPrefetch method on our behalf. The result is a data source over a query

that should perform well by default (js/scenario2ListView.js; code slightly edited):

function loadListViewControl() {

 // Build datasource from the pictures library

 var library = Windows.Storage.KnownFolders.picturesLibrary;

 var queryOptions = new Windows.Storage.Search.QueryOptions;

 // Shallow query to get the file hierarchy

 queryOptions.folderDepth = Windows.Storage.Search.FolderDepth.shallow;

 // Order items by type so folders come first

 queryOptions.sortOrder.clear();

 queryOptions.sortOrder.append({ascendingOrder: false, propertyName: "System.IsFolder"});

 queryOptions.sortOrder.append({ascendingOrder: true, propertyName: "System.ItemName"});

 queryOptions.indexerOption =

 Windows.Storage.Search.IndexerOption.useIndexerWhenAvailable;

 var fileQuery = library.createItemQueryWithOptions(queryOptions);

 var dataSourceOptions = {

 mode: Windows.Storage.FileProperties.ThumbnailMode.picturesView,

 requestedThumbnailSize: 190,

 thumbnailOptions: Windows.Storage.FileProperties.ThumbnailOptions.none

 };

 var dataSource = new WinJS.UI.StorageDataSource(fileQuery, dataSourceOptions);

 // Create the ListView using dataSource...

};

http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535

627

Within its storageRenderer function (the item renderer), the sample uses the StorageData-

Source.loadThumbnail method to load up the prefetched thumbnails and display them in their img

elements.

If you’re interested, you can dig into the WinJS sources (the ui.js file) and see how StorageData-

Source works with its queries and sets up an observable collection. Along the way, you’ll run into one

more set of WinRT APIs: Windows.Storage.BulkAccess. This was originally created for the

StorageDataSource but is now considered deprecated. If you create your own data source or

collection control, just use the enumeration and prefetch APIs we’ve already discussed.

File Activation and Association

As noted a number of times already, an app typically obtains StorageFile and StorageFolder objects

either from locations where it already has programmatic access or through the picker APIs. But a third

option exists: when an app is associated with a particular file type, the user and/or other apps can

launch a file or files, which in turn launches an associated app to handle them. In the process, the app

that’s activated for this purpose receives those StorageFile objects in its activated handler and is

automatically granted full programmatic access. This makes sense if you think about it: if the user

activated the file(s) from Windows Explorer, they’ve implicitly given their consent in the process. And

for another app to launch a file, it must first get to its StorageFile object, and that happens either

through the file picker or some other means that has programmatic access.

Both sides of file activation are demonstrated in the Association launching sample. Let’s start with

scenarios 1 and 2 that show the launching part, as that’s simple and straightforward.

To launch a given StorageFile, just call Windows.System.Launcher.launchFileAsync, the results

of which is a Boolean indicating whether it was successful (js/launch-file.js):

// file is the StorageFile to launch

Windows.System.Launcher.launchFileAsync(file).done(

 function (success) {

 // success indicates whether the file was launched.

 }

});

Note The launcher blocks any file type that can contain executable code, such as .exe, .msi, .js, .etc.

Alternately, you can launch a URI by using the launchUriAsync method, which is typically used to

launch a browser or an URI with a custom scheme (such as mailto:) that activates an app through

protocol association. (We’ll return to protocols in Chapter 15.) This is demonstrated in scenario 2

(js/launch-uri.js):

http://msdn.microsoft.com/library/windows/apps/windows.storage.bulkaccess.aspx
http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec
http://msdn.microsoft.com/library/windows/apps/hh701471.aspx

628

var uri = new Windows.Foundation.Uri(document.getElementById("uriToLaunch").value);

// Launch the URI.

Windows.System.Launcher.launchUriAsync(uri).done(

 function (success) {

 // success indicates whether the URI was launched.

 }

});

Note launchUriAsync does not recognize ms-appx, ms-appx-web, or ms-appdata URIs, because

these already map to the current app. The app should just display such pages directly.

With both APIs you can control some aspects of the launching process by passing a

LauncherOptions object as the second argument. Its properties are as follows:

Property Description

contentType The content type associated with a URI (launchUriAsync only).

desiredRemainingView A value from Windows.UI.ViewManagement.ViewSizePreference (see Chapter

8), indicating how the calling app should appear after the launch: default,

useLess, useHalf, useMore, useMinimum, or useNone. This helps when

implementing cross-app scenarios, although the choice is not guaranteed, such

as when the device is in portrait orientation where split views are not supported.

displayApplicationPicker If true, displays the Open With dialog (see image below) instead of using the

default association.

fallbackUri An http: or https: URI to use if a custom scheme URI has no associated apps

(launchUriAsync only). This is only allowed if the preferredApplication*

properties are empty.

preferredApplicationDisplayName

preferredApplicationPackageFamilyName

The display name and package ID of the recommended app in the Store if no

app currently exists to handle a file type or URI. If you’re using a custom URI

scheme, this is an especially helpful way to get users to a companion app that

handles that scheme. These cannot be used if you set fallbackUri.

treatAsUntrusted If true, displays a warning to the user that the file or URI has not come from a

trusted source. You should always set this flag if you’re not certain about the

origins of the content.

UI A LauncherUIOptions object. For the launching app, lets you set an

invocationPoint or selectionRect, and the preferredPlacement of the Open

With dialog relative to that point or rectangle.

The Association launching sample lets you play with some of these options. Here’s how the Open

With dialog appears for an .mp4 file when using displayApplicationPicker:

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.viewsizepreference.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.launcheruioptions.aspx

629

Let’s switch now to the other side of the equation: an app that can be launched through a file

association must first have at least one File Type Association on the Declarations tab of the manifest

editor, as shown in Figure 11-13. Each file type can have multiple specific types (notice the Add New

button under Supported File Types), such as a JPEG having .jpg and .jpeg file extensions. Note again

that some file types are disallowed for apps; see How to handle file activation for the complete list.

Under Properties, the Display Name is the overall name for a group of file types (this is optional; not

needed if you have only one type). The Name, on the other hand, is required—it’s the internal identity

for the file group and one that should remain consistent for the entire lifetime of your app across all

updates. In a way, the Name/Display Name properties for the whole group of file types is like your real

name, and all the individual file types are nicknames—any of them ultimately refer to the core file type

and your app.

Info Tip is tooltip text for when the user hovers over a file of this type and the app is the primary

association. The Logo is a little tricky; in Visual Studio here, you simply refer to a base name for an

image file, like you do with other images in the manifest. In your actual project, however, you should

have multiple files for the same image in different target sizes (not resolution scales): 16x16, 32x32,

48x48, and 256x256; you’ll find a place to specify all of these under the Square 30x30 Logo section of

the Visual Assets tab in the manifest editor. The Association launching sample uses such images with

targetsize-* suffixes in the filenames, as in smallTile-sdk.targetSize-32.png.88 These various sizes help

Windows provide the best user experience across many different types of devices, and you should be

sure to provide them all.

88 Ignore, however, the sample’s use of targetsize-* naming conventions for the app’s tile images; this is an error because

target sizes apply only to file and URI scheme associations.

http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec

630

FIGURE 11-13 The Declarations > File Type Associations UI in the Visual Studio manifest designer.

The options under Edit Flags control whether an “Open” verb is available for a downloaded file of

this type: checking Open Is Safe will enable the verb in various parts of the Windows UI; checking

Always Unsafe disables the verb. Leaving both blank might enable the verb, depending on where the

file is coming from and other settings within the system.

At the very bottom of this UI you can also set a discrete start page for handling activations,

including a setting for the launched app’s desired view. Typically, though, as shown in js/default.js of

the sample, you’ll just use your main activation handler:

function activated(e) {

 // If activated for file type or protocol, launch the appropriate scenario.

 // Otherwise navigate to either the first scenario or to the last running scenario

 // before suspension or termination.

 var url = null;

 var arg = null;

 if (e.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.file) {

 url = scenarios[2].url;

 arg = e.detail.files;

 } else if (e.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.protocol) {

 url = scenarios[3].url;

 arg = e.detail.uri;

 } else if (e.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) {

631

 url = WinJS.Application.sessionState.lastUrl || scenarios[0].url;

 }

 // ...

}

Here you can see some of the other possibilities in the ActivationKind enumeration. The file

kind means the app was launched through file activation, in response to which it navigates to scenario

3 ([2] by array position). The protocol kind means it was activated through a custom URI scheme, as

we’ll again see in Chapter 15, which navigates to scenario 4. And of course launch is the default kind,

when an app is launched from a tile.

Note Apps can be activated for these purposes when they’re already running. Be sure to test that case

in your own apps and verify that the appropriate app data and settings are loaded, including session

state if eventArgs.detail.previousExecutionState is terminated.

With the activation kind of file, the eventArgs.detail is a WebUIFileActivatedEventArgs

object. As with normal activation, this contains an activatedOperation object with a getDeferral

method (in case you need to do async operations) along with previousExecutionState and

splashScreen properties.

Three members are unique to file activation. First is the files property, which contains either the

single StorageFile that the launching app provided to launchFileAsync or an array of StorageFile

objects if the app was launched from Windows Explorer for a multiple selection. The detail.verb

property will be "open". The sample, for its part, doesn’t do anything with the files it receives except

pass them onto the page control in js/receive-file.js that just outputs some information about those

files. Your real apps, of course, will respond more intelligently by working with the files and their

contents as appropriate.

Tip Because the files might have come from anywhere, the receiving app should always treat them as

untrusted content. Avoid taking permanent actions based on the file contents.

The event args also contains a property called neighboringFilesQuery, which is a ready-made

StorageFileQueryResult that allows you to retrieve sibling files even though they weren’t actually

selected or activated. This helps in creating gallery views for a folder that contains the activated file(s),

and it’s a good place to call the query’s findStartIndexAsync, especially when using a semantic zoom

control where you want to zoom to that index. In this case, the argument to findStartIndexAsync is

one of the StorageFile objects within eventArgs.detail.files rather than a keyword.

Caveat With neighboringFilesQuery, the app still needs programmatic access to the folder in

question, such as a library capabilities, otherwise you’ll see access denied exceptions. Thus, the query is

primarily useful for those libraries and not arbitrary folders.

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.neighboringfilesquery.aspx

632

Apps that declare the Removable Storage capability and at least one file type can also be launched

with ActivationKind.device, which means the user selected to launch that app in response to an

AutoPlay event when a device (like a camera) was attached to the system. An app will typically then do

things like import images from that device. Scenario 4 of the Removable storage sample is activated for

this launch kind, for example. The eventArgs here is WebUIDeviceActivatedEventArgs, the key

property of which is eventArgs.detail.deviceInformationId that identifies the attached device.

This sample passes that onto its page control in js/s4_autoplay.js (as arg) that then gets a virtual

StorageFolder through Windows.Devices.Portable.StorageDevice.fromId and runs a file query

to find images:

var storage = (typeof arg === "string" ?

 Windows.Devices.Portable.StorageDevice.fromId(arg) : arg);

if (storage) {

 var storageName = storage.name;

 // Construct the query for image files

 var queryOptions = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderByName, [".jpg", ".png", ".gif"]);

 var imageFileQuery = storage.createFileQueryWithOptions(queryOptions);

 // Run the query for image files

 imageFileQuery.getFilesAsync().done(function (imageFiles) {

 // process results

 });

What We’ve Just Learned

 User data lives anywhere outside the app’s own app data folders (and package). User data

locations span the local file system, removable storage devices, local networks, and the cloud,

and the StorageFile and StorageFolder objects hide the details about how those locations

are referenced and their access models.

 Access to user data folders, such as media libraries, documents, and removable storage, is

controlled by manifest capabilities. Such capabilities need be declared only if the app needs to

access the file system in some way other than using the file picker.

 The file picker is the way that users can select files from any safe location in the file system, as

well as files that are provided by other apps (where those files might be remote, stored in a

database, or otherwise not present as file entities on the local file system). The ability to select

files directly from other apps—including files that another app might generate on demand—is

one of the most convenient and powerful features of Windows Store apps.

 Apps should always use the Windows.Storage.AccessCache to preserve programmatic access

to files and folders for later sessions. The cache maintains two independent lists: one for recently

http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0

633

used items (limited to 25) and one for general purpose use (limited to 1000 items).

 OneDrive is deeply integrated into Windows such that there is always at least a local

placeholder file that will automatically download its contents (if allowed by the current network)

when the file is open. The StorageFile.isAvailable flag indicates whether the file’s contents

are currently accessible.

 The StorageFile object provide access to rich metadata, including thumbnails and media

specific properties.

 Apps should always use thumbnails to show image contents in consumption scenarios to avoid

loading full image data. Loading the image is necessary only in editing and full-image panning

views.

 The StorageLibrary object supplies the ability to manage which folders are included in the

user’s media libraries.

 StorageFolder objects provide a very rich and extensive capability to enumerate its contents

and to query for items that match certain criteria. WinRT provides common file and folder

queries for typical scenarios, but you can also build custom queries with Advanced Query Syntax

(AQS) strings. Custom queries also provide prefetching capabilities for properties and

thumbnails.

 The WinJS.UI.StorageDataSource object provides a built-in means with query support to

create a gallery experience in a ListView control. A gallery should always use thumbnails for

images and use the isAvailable flag to differentiate items in its UI.

 To support file activation, an app associates itself with one or more file types in its manifest and

then watches for the ActivationKind.file whose event args will contain the StorageFile

objects for the files that were launched, as well as a neighboringFilesQuery that provides

access to other files in the folder.

 Apps that support removable storage can also associate themselves with one or more file types

and be launched for Auto Play events with ActivationKind.device.

634

Chapter 12

Input and Sensors

Touch is clearly one of the most exciting means of interacting with a computer and one that has finally

come of age. Sure, we’ve had touch-sensitive devices for many years: I remember working with a

touch-enabled screen in my college days, which I have to admit is almost an embarrassingly long time

ago now! In that case, the touch sensor was a series of transparent wires embedded in a plastic sheet

over the screen, with an overall touch resolution of around 60 wide by 40 high…and, to rea lly date

myself, the monitor itself was only a text terminal!

Now, touch screens are responsive enough for general purpose use (you don’t have to stab them to

register a point), built into high-resolution displays, relatively inexpensive, and capable of doing

something more than replicating the mouse, such as supporting multitouch and sophisticated gestures.

Because great touch interaction is a fundamental feature of great apps, designing for touch means

in many ways thinking through UI concerns anew. In your layout, for example, it means making hit

targets a size that’s suitable for a variety of fingers. In your content navigation, it means utilizing direct

gestures such as swipes and pinches rather than relying on only item selection and navigation control s.

Designing for touch also means thinking through how gestures might enrich the user experience—how

to make most content directly interactive, and also how to provide for discoverability and user

feedback that has generally relied on mouse-only events like hover.

All in all, approach your design as if touch is the only means of interaction your users will have. At

the same time, it’s important to remember that new methods of input seldom obsolete existing ones.

Sure, punch cards did eventually disappear, but the introduction of the mouse did not make keyboards

obsolete. The availability of speech and handwriting recognition has obsoleted neither mouse nor

keyboard. And I think the same is true for touch: it’s a complementary input method that has its own

particular virtues but is unlikely to wholly supplant the others. As Bill Buxton of Microsoft Research has

said, “Every modality, including touch, is best for something and worst for something else .” I expect, in

time, most consumers will find themselves using keyboard, mouse, and touch together, just as we

learned to integrate the mouse in what was once a keyboard-only reality.

Windows is designed to work well with all forms of input—to work great with touch, to work great

with mice, to work great with keyboards, and, well, to just work great on diverse hardware. (And

Windows Store certification essentially requires this for apps as well.) For this reason, Windows provides

a unified pointer-based input model with which you can distinguish the different types of input if you

really need to, but otherwise it treats them equally. You can also focus more on higher-level gestures as

well, which might arise from any input source, and not worry about raw pointer events. Indeed, the fact

that we haven’t even brought this subject up until now, midway through this book, gives testimony to

just how transparently you work with all kinds of pointer input, especially when using controls that do

635

the work for us. Handling such events ourselves thus arises primarily with custom controls and direct

manipulation of noncontrol objects.

The keyboard also remains an important consideration, and this means both hardware keyboards

and the on-screen “soft” keyboard. The latter has gotten more attention in recent years for touch-only

devices but actually has been around for some time for accessibility purposes. In Windows, too, the soft

keyboard includes a handwriting recognizer—something apps get for free. And when an app wants to

work more closely with raw handwriting input—known as inking—those capabilities are present as well.

The other topic we’ll cover in this chapter is sensors. It might seem an incongruous subject to place

alongside input until you come to see that sensors, like touch screens themselves, are another form of

input! Sensors tell an app what’s happening to the device in its relationship to the physical world: how

it’s positioned in space (relative to a number of reference points), how it’s moving through space, how

it’s being held relative to its “normal” orientation, and even how much light is shining on it. Thinking of

sensors in this light (pun intended), we begin to see opportunities for apps to directly integrate with

the world around a device rather than requiring users to tell the app about those relationships in some

abstract way. And just to warn you, once you see just how easy it is to use the WinRT APIs for sensors,

you might be shopping for a new piece of well-equipped hardware!

Let me also mention that the sensors we’ll cover in this chapter are those for which specific WinRT

APIs exist. There might be other peripherals that can also act as input devices, but we’ll come back to

those generally in Chapter 17, “Devices and Printing.”

Touch, Mouse, and Stylus Input

Where pointer-based input is concerned—which includes touch, mouse, and pen/stylus input—the

singular message from Microsoft has been and remains, “Design for touch and get mouse and stylus

for free.” This is very much the case, as we shall see, but I’ve heard that a phrase like “touch-first

design,” which sounds great to a consumer, can be a terrifying proposition for developers! With all the

attention around touch, consumer expectations are often demanding, and meeting such expectations

seems like it will take a lot of work.

Fortunately, Windows provides a unified framework for handling pointer input—from all sources—

such that you don’t actually need to think about the differences until there’s a specific reason to do so.

In this way, touch-first design is a design issue more than an implementation issue.

We’ll talk more about designing for touch soon. What I wanted to discuss first is how you as a

developer should approach implementing those designs once you have them:

 First, use templates and standard controls and you get lots of touch support for free, along with

mouse, pen, stylus, and accessibility-ready keyboard support. If you build your UI with standard

controls, set appropriate tabindex attributes for keyboard users, and handle standard DOM

events like click, you’re pretty much covered. Controls like Semantic Zoom already handle

636

different kinds of input (as we saw in Chapter 7, “Collection Controls”), and other CSS styles like

snap points and content zooming automatically handle various interaction gestures.

 Second, when you need to handle gestures yourself, as with custom controls or other elements

with which the user will interact directly, use the gesture events like MSGestureTap and

MSGestureHold along with event sequences for inertial gestures (MSGestureStart,

MSGestureChange, and MSGestureEnd). Gestures are essentially higher-order interpretations of

lower-level pointer events, meaning that you don’t have to do such interpretation yourself. For

example, a pointer down followed by a pointer up within a certain movement threshold (to

account for wiggling fingers) becomes a single tap gesture. A pointer down followed by a short

drag followed by a pointer up becomes a swipe that triggers a series of events, possibly

including inertial events (ones that continue to fire even after the pointer, like a touch point, is

physically released).

 Third, if you need to handle pointer events directly, use the unified pointer events like

pointerdown, pointermove, and so forth. These are lower-level events than gestures, and they

are primarily appropriate for apps that don’t necessarily need gesture interpretation. For

example, a drawing or inking app simply needs to trace different pointers with on-screen

feedback, where concepts like swipe and inertia aren’t meaningful. Pointer events also provide

more specialized device data such as pressure, rotation, and tilt, which is surfaced through the

pointer events. Still, it is possible to implement gestures directly with pointer events, as a

number of the built-in controls do.

 Finally, an app can work directly with the gesture recognizer to provide its own interpretations of

pointer events into gestures.

So, what about legacy DOM events that we already know and love, beyond click? Can you still

work with the likes of mousedown, mouseup, mouseover, mousemove, mouseout, and mousewheel? The

answer is yes, because pointer events from all input sources will be automatically translated into these

legacy events. This translation takes a little extra processing time, however, so for new code you’ll

generally realize better responsiveness by using the gesture and pointer events directly. Legacy mouse

events also assume a single pointer and will be generated only for the primary touch point (the one

with the isPrimary property). As much as possible, use the gesture and pointer events in your code.

The Touch Language and Mouse/Keyboard Equivalents
On the Windows Developer Center, the rather extensive article on Touch interaction design is helpful

for designers and developers alike. It discusses various ergonomic considerations, has some great

diagrams on the sizes of human fingers, provides clear guidance on the proper size for touch targets

given that human reality (falling between 30px and 50px), and outlines key design principles such as

providing direct feedback for touch interaction (animation) and having content follow your finger.

http://msdn.microsoft.com/library/windows/apps/Hh972358.aspx
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx

637

Most importantly, the design guidance also describes the Windows Touch Language, which contains

the eight core gestures that are baked into the system and the controls. The table below shows and

describes the gestures and indicates what events appear in the app for them. The Touch interaction

design topic also has videos of these gestures. And for design guidelines around this touch language,

see Gestures, manipulations, and interactions.

Gesture Meaning and Gesture Events Description

One finger touches the screen and lifts up.

Tap for primary action

(commanding); appears as click

and MSGestureTap events on the

element.

Tapping on an element invokes

its primary action, typically

executing a command, checking a

box, setting a rating, positioning a

cursor, etc.

One finger touches the screen and stays in place.

Press and hold to learn; appears as

contextmenu and MSGestureHold

events on the element.

This touch interaction displays

detailed information or teaching

visuals (for example, a tooltip or

context menu) without a

commitment to an action.

Anything displayed this way

should not prevent users from

panning if they begin sliding their

finger.

One or more fingers touch the screen and move in

the same direction.

Slide to pan (can be horizontal or

vertical); automatically appears as

scrolling events for scrollable

regions. Also appears as a gesture

series (MSGestureStart,

MSGestureChange, MSGestureEnd,

possibly with inertial gesture

events signaled by

MSInertiaStart, plus pointer*

events).

Slide is used primarily for panning

interactions but can also be used

for moving, drawing, or writing.

Slide can also be used to target

small, densely packed elements

by scrubbing (sliding the finger

over related objects such as radio

buttons).

One or more fingers touch the screen and move a

short distance in the same direction.

Swipe to select, command, and

move (can be horizontal or

vertical)—also called cross-slide;

appears as a gesture series

(MSGestureStart,

MSGestureChange, MSGestureEnd,

as well as pointer* events). The

gesture recognizer doesn’t

distinguish this from vertical

panning, however, so an app or

control needs to implement that

interpretation directly (a good

reason to use controls like the

ListView!).

Sliding the finger a short distance,

perpendicular to the panning

direction, selects objects in a list

or grid; also implies displaying

commands in an app bar relevant

to the selection.

http://msdn.microsoft.com/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/library/windows/apps/hh761498.aspx

638

Two or more fingers touch the screen and move

closer together or farther apart.

Pinch and stretch to zoom; appears

as a gesture series (MSGestureStart,

MSGestureChange, MSGestureEnd),

but apps can use the -ms-content-

zooming: zoom and touch-action:

pinch-zoom CSS styles to enable

touch zooming automatically.

Can be used for optical zoom or

resizing, as well as for Semantic

Zoom where applicable.

Two or more fingers touch the screen and move in a

clockwise or counter-clockwise arc.

Turn to rotate; appears as a gesture

series (MSGestureStart,

MSGestureChange, MSGestureEnd).

Rotates an object or a view.

Swipe from top or bottom edge for

app commands; handled

automatically through the AppBar

control, though an app can also

detect these events directly through

Windows.UI.Input.EdgeGesture.

The bottom app bar contains

app commands for the current

page context; the top app bar

provides for navigation, if

applicable.

Swipe from edge for system

commands; handled automatically

by the system with the app receiving

events related to the selected charm,

when applicable, as well as focus

and blur events if the foreground

app is changed when swiping from

the left edge.

Swiping from the right displays

the Charms bar; swiping from

the left cycles through currently

running apps; swiping from the

top edge to the bottom closes

the current app; swiping from

the top edge to the left or right

snaps the current app to one

side of the screen.

You might notice in the table above that many of the gestures in the touch language, like pinch and

rotate, don’t have a single event associated with them but are instead represented by a series of

gesture or pointer events. The reason for this is that these gestures, when used with touch, typically

involve animation of the affected content while the gesture is happening. Swipes, for example, show

linear movement of the object being panned or selected. A pinch or stretch movement will often be

actively zooming the content. (Semantic Zoom is an exception, but then you just let the control handle

the details.) And a rotate gesture should definitely give visual feedback. In short, handling these

gestures with touch, in particular, means dealing with a series of events rather than just a single one.

639

This is one reason that it’s so helpful (and time-saving!) to use the built-in controls as much as

possible, because they already handle all the gesture details for you. The ListView control, for example,

contains all the pointer/gesture logic to handling pans and swipes, along with taps. The Semantic Zoom

control, like I said, implements pinch and stretch by watching pointer* events. If you look at the

source code for these controls within WinJS, you’ll start to appreciate just how much they do for you

(and what it will look like to implement a rich custom control of your own, using the gesture

recognizer!).

You can also save yourself a lot of trouble with the touch-action CSS properties described later

under “CSS Styles That Affect Input.” Using this has the added benefit of processing the touch input on

a non-UI thread, thereby providing much smoother manipulation than could be achieved by handling

pointer or gesture events.

On the theme of “write for touch and get other input for free,” all of these gestures also have mouse

and keyboard equivalents, which the built-in controls also implement for you. It’s also helpful to know

what those equivalents are, as shown in the table below. “Standard Keystrokes” later in this chapter also

lists many other command-related keystrokes.

Touch Keyboard Mouse Pen/Stylus

Press and hold (or

tap on text selection)

Right-click button Right button click Press and hold

Tap Enter Left button click Tap

Slide (short distance) Arrow keys Left button click and drag, click on

scrollbar arrows, drag the scrollbar

thumb, use the mouse wheel

Tap on scrollbar arrows, drag

scrollbar thumb, tap and drag

Slide + inertia

(long distance)

Page Up/Page Down Left button click and drag, click on

scrollbar track, drag the scrollbar

thumb, use the mouse wheel

Tap on scrollbar track, drag

scrollbar thumb, tap and drag

Swipe to select Right-click button or spacebar Right button click Tap and drag

Pinch/Stretch Ctrl+ and Ctrl- Ctrl+mouse wheel or UI command UI command or other

hardware feature

Swipe from edge Win+Z, Win+Tab, Win+C or

Win+Shift+C

Clicking on corners of the screen;

right-click shows app bar

Drag in from edge

Rotate Ctrl+, and Ctrl+. Ctrl+Shift+mouse wheel UI command or other

hardware feature

You might notice a conspicuous absence of double-click and/or double-tap gestures in this list.

Does that surprise you? In early builds of Windows 8 we actually did have a double-tap gesture, but it

turned out to not be all that useful, it conflicted with the zoom gesture, and it was sometimes very

difficult for users to perform. I can say from watching friends over the years that double-clicking with

the mouse isn’t even all it’s cracked up to be. People with not-entirely-stable hands will often move the

mouse quite a ways between clicks, just as they might move their finger between taps. As a result, the

reliability of a double-tap ends up being pretty low, and because it wasn’t really needed in the touch

language, it was simply dropped altogether.

640

Sidebar: Creating Completely New Gestures?

While the Windows touch language provides a simple yet fairly comprehensive set of gestures,

it’s not too hard to imagine other possibilities. The question is, when is it appropriate to

introduce a new kind of gesture or manipulation?

First, avoid introducing new ways to do the same things, such as additional gestures that just

swipe, zoom, etc. It’s better to get more creative in how the app interprets an existing gesture.

For example, a swipe gesture might pan a scrollable region but can also just move an object on

the screen—no need to invent a new gesture.

Second, if you have controls placed on the screen where you want the user to give input,

there’s no need to think in terms of gestures at all: just apply the input from those controls

appropriately.

Third, even when you do think a custom gesture is needed, the bottom-line recommendation

is to make those interactions feel natural, rather than something you just invent for the sake of

invention. Microsoft also recommends that gestures behave consistently with the number of

pointers, velocity/time, and so on. For example, separating an element into three pieces with a

three-finger stretch and into two pieces with a two-finger stretch is fine; having a three-finger

stretch enlarge an element while a two-finger stretch zooms the canvas is a bad idea, because it’s

not very discoverable. Similarly, the speed of a horizontal or vertical flick can affect the velocity of

an element’s movement, but having a fast flick switch to another page and a slow flick highlight

text is a bad idea. In this case, having different functions based on speed creates a difficult UI for

your customers because they’ll all have different ideas about what “fast” and “slow” mean and

might also be limited by their physical abilities.

Finally, with any custom gesture, recognize that you are potentially introducing an

inconsistency between apps. When a user starts interacting with a certain kind of app in a new

way, he or she might start to expect the same from other apps and might become confused (or

upset) when those apps don’t behave identically, especially if the apps use a similar gesture for

completely different purposes! Complex gestures, too, might be difficult for some, if not many,

people to perform; might be limited by the kind of hardware in the device (number of touch

points, responsiveness, etc.); and are generally not very discoverable. In most cases it’s simpler to

add an appbar command or a button on your app canvas to achieve the same goal.

Edge Gestures

As we saw in Chapter 9, “Commanding UI,” you don’t need to do anything special for commands on

the app bar or navigation bar to appear: Windows automatically handles the edge swipe from the top

and bottom of your app, along with right-click, Win+Z, and the context menu key on the keyboard.

That said, you can detect when these events happen directly by listening for the starting, completed,

and canceled events on the Windows.UI.Input.EdgeGesture object (which are all WinRT events,

these are subject to the considerations in “WinRT Events and removeEventListener” in Chapter 3, “App

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.edgegesture.aspx

641

Anatomy and Performance Fundamentals”):

var edgeGesture = Windows.UI.Input.EdgeGesture.getForCurrentView();

edgeGesture.addEventListener("starting", onStarting);

edgeGesture.addEventListener("completed", onCompleted);

edgeGesture.addEventListener("canceled", onCanceled);

The completed event fires for all input types; starting and canceled occur only for touch. Within

these events, the eventArgs.kind property contains a value from the EdgeGestureKind enumeration

that indicates the kind of input that invoked the event. The starting and canceled events will always

have the kind of touch, obviously, whereas completed can be any touch, keyboard, or mouse:

function onCompleted(e) {

 // Determine whether it was touch, mouse, or keyboard invocation

 if (e.kind === Windows.UI.Input.EdgeGestureKind.touch) {

 id(“ScenarioOutput”).innerText = “Invoked with touch.”;

 }

 else if (e.kind === Windows.UI.Input.EdgeGestureKind.mouse) {

 id(“ScenarioOutput”).innerText = “Invoked with right-click.”;

 }

 else if (e.kind === Windows.UI.Input.EdgeGestureKind.keyboard) {

 id(“ScenarioOutput”).innerText = “Invoked with keyboard.”;

 }

}

The code above is taken from scenario 1 of the Edge gesture invocation sample

(js/edgeGestureEvents.js). In scenario 2, the sample also shows that you can prevent the edge gesture

event from occurring for a particular element by handling its contextmenu event and calling

eventArgs.preventDefault in your handler. It does this for one element on the screen such that

right-clicking that element with the mouse or pressing the context menu key when that element has

the focus will prevent the edge gesture events:

document.getElementById("handleContextMenuDiv").addEventListener("contextmenu", onContextMenu);

function onContextMenu(e) {

 e.preventDefault();

 id("ScenarioOutput").innerText =

 "The ContextMenu event was handled. The EdgeGesture event will not fire.";

}

Note that this method has no effect on edge gestures via touch and does not affect the Win+Z key

combination that normally invokes the app bar. It’s primarily to show that if you need to handle the

contextmenu event specifically, you usually want to prevent the edge gesture.

CSS Styles That Affect Input

While we’re on the subject of input, it’s a good time to mention a number of CSS styles that affect the

input an app might receive. One style is –ms-user-select, which we’ve encountered a few times in

Chapter 3 and Chapter 5, “Controls and Control Styling.” This style can be set to one of the following:

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.edgegesturekind.aspx
http://code.msdn.microsoft.com/windowsapps/Edge-gesture-invocation-76a474dd

642

 none Disables direct selection, though the element as a whole can be selected if its parent is

selectable.

 inherit Sets the selection behavior of an element to match its parent.

 text Enables selection for text even if the parent is set to none.

 element Enables selection for an arbitrary element.

 auto (the default) May or may not enable selection depending on the control type and the

styling of the parent. For a nontext element that does not have contenteditable="true", it

won’t be selectable unless it’s contained within a selectable parent.

If you want to play around with the variations, refer to the Unselectable content areas with -ms-

user-select CSS attribute sample, which has the third longest JavaScript sample name in the entire

Windows SDK!

A related style, but one not shown in the sample, is -ms-touch-select, which can be either none or

grippers, the latter being the style that enables the selection control circles for touch:

Selectable text elements automatically get this style, as do other textual elements with

contenteditable = "true"— -ms-touch-select turns them off. To see the effect, try this with some

of the elements in scenario 1 of the aforementioned sample with the really long name!

Tip The document.onselectionchange event will fire if the user changes the gripper positions.

In Chapter 8, “Layout and Views,” we introduced the idea of snap points for panning, with the -ms-

scroll-snap* styles, and those for zooming, namely -ms-content-zooming and the -ms-content-

zoom* (refer to the Touch: Zooming and Panning styles reference). The important thing is that -ms-

content-zooming: zoom (as opposed to the default, none) enables automatic zooming with touch and

the mouse wheel, provided that the element in question allows for overflow in both x and y

dimensions. There are quite a number of variations here for panning and zooming and for how those

gestures interact with WinJS controls. The HTML scrolling, panning, and zooming sample explains the

details.

Finally, the touch-action style provides for a number of options on an element:89

 none Disables default touch behaviors like pan and zoom on the element. You often set this

on an element when you want to control the touch behavior directly.

89 double-tap-zoom is not supported for Windows Store apps. Note also that the earlier vendor-prefixed variant of this

style, -ms-touch-action, is deprecated in favor of touch-action.

http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx
http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c

643

 auto Enables usual touch behaviors.

 pan-x/pan-y The element permits horizontal/vertical touch panning, which is performed on

the nearest ancestor that is horizontally/vertically scrollable, such as a parent div.

 pinch-zoom Enables pinch-zoom on the element, performed on the nearest ancestor that has

-ms-content-zooming: zoom and overflow capability. For example, an img element by itself

won’t respond to the gesture with this style, but it will if you place it in a parent div with

overflow set.

 manipulation Shorthand equivalent of pan-x pan-y pinch-zoom.

For an example of panning and zooming, try creating a simple app with markup like this (use

whatever image you’d like):

<div id="imageContainer">

</div>

and style the container as follows:

#imageContainer {

 overflow: auto;

 -ms-content-zooming: zoom;

 touch-action: manipulation;

}

What Input Capabilities Are Present?

The WinRT API in the Windows.Devices.Input namespace provides all the information you need

about the capabilities that are available on the current device, specifically through these three objects:

 MouseCapabilities Properties are mousePresent (0 or 1), horizontalWheelPresent (0 or

1), verticalWheelPresent (0 or 1), numberOfButtons (a number), and swapButtons (0 or 1).

 KeyboardCapabilities Contains only a single property, keyboardPresent (0 or 1), to

indicate the presence of a physical keyboard. It does not indicate the presence of the on-screen

keyboard, which is always available.

 TouchCapabilities Properties are touchPresent (0 or 1) and contacts (a number). Where

touch is concerned, you might also be interested in the Windows.UI.ViewManagement.UI-

Settings.handPreference property, which indicates the user’s right- or left-handedness.

To check whether touch is available, then, you can use a bit of code like this:

var tc = new Windows.Devices.Input.TouchCapabilities();

var touchPoints = 0;

if (tc.touchPresent) {

 touchPoints = tc.contacts;

}

http://msdn.microsoft.com/library/windows/apps/br225648.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.mousecapabilities.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.keyboardcapabilities.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.touchcapabilities.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.handpreference.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.handpreference.aspx

644

Note In the web context where WinRT is not available, some information about capabilities can be

obtained through the msPointerEnabled, msManipulationViewsEnabled, and msMaxTouchPoints

properties that are hanging off DOM elements. These also work in the local context. The

msPointerEnabled flag, in particular, tells you whether pointer* events are available for whatever

hardware is available in the system. If those events are not supported, you’d use standard mouse

events as an alternative.

You’ll notice that the capabilities above don’t say anything about a stylus or pen. For these and for

more extensive information about all pointer devices, including touch and mouse, we have the

Windows.Devices.Input.PointerDevice.getPointerDevices method. This returns an array of

PointerDevice objects, each of which has these properties:

 pointerDeviceType A value from PointerDeviceType that can be touch, pen, or mouse.

 maxContacts The maximum number of contact points that the device can support—typically

1 for mouse and stylus and any other number for touch.

 isIntegrated true indicates that the device is built into the machine so that its presence can

be depended upon; false indicates a peripheral that the user could disconnect.

 physicalDeviceRect This Windows.Foundation.Rect object provides the bounding

rectangle as the device sees itself. Oftentimes, a touch screen’s input resolution won’t actually

match the screen pixels, meaning that the input device isn’t capable of hitting exactly one pixel.

On one of my touch-capable laptops, for example, this resolution is reported as 968x548 for a

1366x768 pixel screen (as reported in screenRect below). A mouse, on the other hand, typically

does match screen pixels one-for-one. This could be important for a drawing app that works

with a stylus, where an input resolution smaller than the screen would mean there will be some

inaccuracy when translating input coordinates to screen pixels.

 screenRect This Windows.Foundation.Rect object provides the bounding rectangle for the

device on the screen, which is to say, the minimum and maximum coordinates that you should

encounter with events from the device. This rectangle will take multimonitor systems into

account, and it’s adjusted for resolution scaling.

 supportedUsages An array of PointerDeviceUsage structures that supply what’s called HID

(human interface device) usage information. This subject is beyond the scope of this book, so I’ll

refer you to the HID Usages page on MSDN for starters.

The Input Device capabilities sample in the Windows SDK retrieves this information and displays it to

the screen through the code in js/pointer.js. I won’t show that code here because it’s just a matter of

iterating through the array and building a big HTML string to dump into the DOM. In the simulator,

the output appears as follows—notice that the simulator reports the presence of touch and mouse

both in this case:

http://msdn.microsoft.com/library/windows/apps/Hh972607.aspx
http://msdn.microsoft.com/library/windows/apps/hh972606.aspx
http://msdn.microsoft.com/library/windows/apps/hh779855.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.getpointerdevices.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevicetype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdeviceusage.aspx
http://msdn.microsoft.com/library/windows/hardware/ff539946.aspx
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745

645

Curious Forge? Interestingly, I ran this same sample in Visual Studio’s Local Machine debugger on a

laptop that is definitely not touch-enabled and yet a touch device was still reported as in the image

above! Why was that? It’s because I still had the Visual Studio simu lator running, which adds a virtual

touch device to the hardware profile. After closing the simulator completely (not just minimizing it), I

got an accurate report for my laptop’s capabilities. Be mindful of this if you’re writing code to test for

specific capabilities.

Tried remote debugging yet? Speaking of debugging, testing an app against different device

capabilities is a great opportunity to use remote debugging in Visual Studio. If you haven’t done so

already, it takes only a few minutes to set up and makes it far easier to test apps on mult iple machines.

For details, see Running Windows Store apps on a remote machine.

Unified Pointer Events
For any situation where you want to work directly with touch, mouse, and stylus input, perhaps to

implement parts of the touch language in this way, use the standard pointer* events as adopted by

the app host and most browsers. Art/drawing apps, for example, will use these events to track and

respond to screen interaction. Remember again that pointers are a lower-level way of looking at input

than gestures, which we’ll see coming up. Which input model you use depends on the kind of events

you’re looking to work with.

Tip Pointer events won’t fire if the system is trying to do a manipulation like panning or zooming. To

disable manipulations on an element, set the -ms-content-zooming: none or -ms-touch-action:

none, and avoid using -ms-touch-action styles of pan-x, pan-y, pinch-zoom, and manipulation.

As with other events, you can listen to pointer* events90 on whatever elements are relevant to you,

remembering again that these are translated into legacy mouse events, so you should not listen to

both. The specific events are described as follows, given in the order of their typical sequencing:

90 The vendor-prefixed MSPointer* events still work in Windows 8.1 but are deprecated.

http://msdn.microsoft.com/library/windows/apps/hh441469(v=vs.110).aspx

646

 pointerover, pointerenter Pointer moved into the bounds of the element from outside;

pointerover precedes pointerenter.

 pointerdown Pointer down occurred on the element.

 pointermove Pointer moved across the element, where a positive button state indicates pen

hover (this replaces the Windows 8 MSPointerHover event). This will precede both

pointerover and pointerenter when a pointer moves into an element.

 pointerup Pointer was released over the element. (If an element previously captured the

touch, msReleasePointerCapture is called automatically.) Note that if a pointer is moved

outside of an element and released, it will receive pointerout but not pointerup.

 pointercancel The system canceled a pointer event.

 pointerout Pointer moved out of the bounds of the element, which also occurs with an up or

cancel event.

 pointerleave Pointer moved out of the bounds of the element or one of its descendants,

including as a result of a down event from a device that doesn’t support hover. This will follow

pointerout.

 gotpointercapture The pointer is captured by the element.

 lostpointercapture The pointer capture has been lost for the element.

These are the names you use with addEventListener; the equivalent property names are of the

form onpointerdown, as usual. It should be obvious that some of these events might not occur with all

pointer types—touch screens, for instance, generally don’t provide hover events, though some that can

detect the proximity of a finger are so capable.

Tip If for some reason you want to prevent the translation of a pointer* event into a legacy mouse

event, call the eventArgs.preventDefault method within the appropriate event handler.

Tip Be mindful that the same pointer events are fired for all mouse buttons: the button property of

the event args (as we'll see shortly) is what differentiates the left, middle, and right buttons.

The PointerEvents example provided with this chapter’s companion content and shown in Figure 12-

1 lets you see what’s going on with all the mouse, pointer, and gesture events, selectively showing

groups of events in the display.

http://msdn.microsoft.com/library/windows/apps/hh465907.aspx
http://msdn.microsoft.com/library/windows/apps/dn251894.aspx
http://msdn.microsoft.com/library/windows/apps/hh465891.aspx
http://msdn.microsoft.com/library/windows/apps/hh465899.aspx
http://msdn.microsoft.com/library/windows/apps/hh465912.aspx
http://msdn.microsoft.com/library/windows/apps/hh868516.aspx
http://msdn.microsoft.com/library/windows/apps/hh465904.aspx
http://msdn.microsoft.com/library/windows/apps/hh465904.aspx
http://msdn.microsoft.com/library/windows/apps/hh465875.aspx
http://msdn.microsoft.com/library/windows/apps/hh465883.aspx

647

FIGURE 12-1 The PointerEvents example display (screenshot cropped a bit to show detail).

Within the handlers for all of the pointer* events, the eventArgs object contains a whole roster of

properties. One of them, pointerType, identifies the type of input: "touch", "pen", or "mouse". This

property lets you implement different behaviors for different input methods, if desired (and note that

these changed from integer values in Windows 8 to strings in Windows 8.1). Each event object also

contains a unique pointerId value that identifies a stroke or a path for a specific contact point,

allowing you to correlate an initial pointerdown event with subsequent events. When we look at

gestures, we’ll also see how we use the pointerId of pointerdown to associate a gesture with a

pointer.

The complete roster of properties that come with the event is actually far too much to show here, as

it contains many of the usual DOM properties along with many pointer-related ones from an object

type called PointerEvent (which is also what you get for click, dblclick, and contextmenu events

starting with Windows 8.1). The best way to see what shows up is to run some code like the Input DOM

pointer event handling sample (a canvas drawing app), set a breakpoint within a handler for one of the

events, and examine the event object. The table below describes some of the properties (and a few

methods) relevant to our discussion here.

Performance tips Pointer events are best for quick responses to input, especially to touch, because

they perform more quickly than gesture events. Also, avoid using an input event to render UI directly,

because input events can come in much more quickly than screen refresh rates. Instead, use

requestAnimationFrame to call your rendering function in alignment with screen refresh.

http://msdn.microsoft.com/library/windows/apps/hh831236.aspx
http://msdn.microsoft.com/library/windows/apps/hh441233.aspx
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed

648

Properties Description

currentPoint A Windows.UI.Input.PointerPoint object. This contains many other properties such as pointerDevice

(a Windows.Input.Device.PointerDevice object, as described in “What Input Capabilities Are Present”

earlier in this chapter) and one just called properties, which is a
Windows.UI.Input.PointerPointProperties.

pointerType The source of the event, could be "touch" or "pen" or "mouse". You can use this to make adjustments

according to input type, if necessary.

pointerId The unique identifier of the contact. This remains the same throughout the lifetime of the pointer. If

desired, you can call Windows.Devices.Input.getPointerDevice with this id to obtain a

PointerDevice that describes the input device’s capabilities, as described earlier in “What Input

Capabilities are Present?”

type The name of the event, as in "pointerdown".

x, screenX, y, screenY The x- and y-coordinates of the pointer’s center point position relative to the screen.

clientX, clientY The x- and y-coordinates of the pointer’s center point position relative to the client area of the app.

offsetX, offsetY The x- and y-coordinates of the pointer’s center point position relative to the element.

button Determines the button pressed by the user (on mice and other input devices with buttons). The left is 0,

middle is 1, and right is 2; these values can be combined with the bitwise OR operator for chord presses

(multiple buttons). This means that a mouse right-click will generate a contextmenu event along with a

pointerDown with button set to 2. A mouse left-click will generate a click event along with a

pointerDown with button set to 0.

ctrlKey, altKey,

shiftKey

Indicates whether certain keys were depressed when the pointer event occurred.

hwTimestamp The timestamp (in microseconds) at which the event was received from the hardware.

relatedTarget Provides the element related to the current event, e.g., the pointerout event will provide the element

to which the touch is moving. This can be null.

isPrimary Indicates if this pointer is the primary one in a multitouch scenario (such as the pointer that the mouse

would control).

Properties surfaced depending on hardware support (if not supported, these values will be 0)

width, height The contact width and height of the touch point specified by pointerId, in CSS pixels (note that these

were screen pixels in Windows 8).

pressure Pen pressure normalized in a decimal range of 0 to 1. This is emulated for nonsensitive hardware based

on button states, returning 0.5 if buttons are down, 0 otherwise.

rotation Clockwise rotation of the cursor around its own major axis in a range of 0 to 359.

tiltX The left-right tilt away from the normal of a transducer (typically perpendicular to the surface) in a

range of -90 (left) to 90 (right).

tiltY The forward-back tilt away from the normal of a transducer (typically perpendicular to the surface) in a

range of -90 (forward/away from user) to 90 (back/toward user).

Properties/Methods

currentPoint

getCurrentPoint

Providers the Windows.UI.Input.PointerPoint object for the current pointer relevant to the target

element (currentPoint) or a given element (getCurrentPoint).

intermediatePoints

getIntermediatPoints

Provides the PointerPoint history for the current pointer relative to the target element

(intermediatePoint) or a given element (getIntermediatePoints).

It’s very instructive to run the Input DOM pointer event handling sample on a multitouch device

because it tracks each pointerId separately, allowing you to draw with multiple fingers

simultaneously.

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.getpointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.input.pointerpoint.aspx

649

Pointer Capture

It’s common with down and up events for an element to set and release a capture on the pointer. To

support these operations, the following methods are available on each element in the DOM and apply

to each pointerId separately:

Method Description
setPointerCapture Captures the pointerId for the element so that pointer events come to it and

are not raised for other elements (even if you move outside the first element

and into another). gotpointercapture will be fired on the element as well.

releasePointerCapture Ends capture, triggering a lostpointercapture event. Note that this must be

called through the element that has the capture, otherwise has no effect.

We see this in the Input DOM pointer event handling sample, where it sets capture within its

pointerdown handler and releases it in pointerup (hs/canvaspaint.js):

this.pointerdown = function (evt) {

 canvas.setPointerCapture(evt.pointerId);

 // ...

};

this.pointerup = function (evt) {

 canvas.releasePointerCapture(evt.pointerId);

 // ...

};

Gesture Events

The first thing to know about all MSGesture* events is that they don’t fire automatically like click and

pointer* events, so you don’t just add a listener and be done with it (that’s what click is for!).

Instead, you need to do a little bit of configuration to tell the system how exactly you want gestures to

occur, and you need to use pointerdown to associate the gesture configurations with a particular

pointerId. This small added bit of complexity (and a small cost in overall performance) makes it

possible for apps to work with multiple concurrent gestures and keep them all independent, just as you

can do with pointer events. Imagine, for example, a jigsaw puzzle app that allows multiple people

sitting around a table-size touch screen to work with individual pieces as they will. (The sample

described in “The Input Instantiable Gesture Sample” later on is a bit like this.) Using gestures, each

person can be manipulating an individual piece (or two!), moving it around, rotating it, perhaps

zooming in to see a larger view, and, of course, testing out placement. For Windows Store apps written

in JavaScript, it’s also helpful that manipulation deltas for configured elements—which include

translation, rotation, and scaling—are given in the coordinate space of the parent element, meaning

that it’s fairly straightforward to translate the manipulation into CSS transforms and such to animate

the element with the manipulation. In short, there is a great deal of flexibility here when you need it; if

you don’t, you can use gestures in a simple manner as well. Let’s see how it all works.

650

Tip If you’re observant, you’ll notice that everything described here has no dependency on WinRT

APIs. As a result, these gesture events work in both the local and web contexts.

The first step to receiving gesture events is to create an MSGesture object and associate it with the

element for which you’re interested in receiving events. In the PointerEvents example, that element is

named divElement; you need to store that element in the gesture’s target property and store the

gesture object in the element’s gestureObject property for use by pointerdown:

var gestureObject = new MSGesture();

gestureObject.target = divElement;

divElement.gestureObject = gestureObject;

With this association, you can then just add event listeners as usual. The example shows the full

roster of the six gesture events:

divElement.addEventListener("MSGestureTap", gestureTap);

divElement.addEventListener("MSGestureHold", gestureHold);

divElement.addEventListener("MSGestureStart", gestureStart);

divElement.addEventListener("MSGestureChange", gestureChange);

divElement.addEventListener("MSGestureEnd", gestureEnd);

divElement.addEventListener("MSInertiaStart", inertiaStart);

We’re not quite done yet, however. If this is all you do in your code, you still won’t receive any of

the events because each gesture has to be associated with a pointer. You do this within the

pointerdown event handler:

function pointerDown(e) {

 //Associate this pointer with the target's gesture

 e.target.gestureObject.addPointer(e.pointerId);

}

To enable rotation and pinch-stretch gestures with the mouse wheel (which you should do), add an

event handler for the wheel event, set the pointerId for that event to 1 (a fixed value for the mouse

wheel), and send it on to your pointerdown handler:

divElement.addEventListener("wheel", function (e) {

 e.pointerId = 1; // Fixed pointerId for MouseWheel

 pointerDown(e);

});

Now gesture events will start to come in for that element. (Remember that the mouse wheel by itself

means translate, Ctrl+wheel means zoom, and Shift+Ctrl+wheel means rotate.) What’s more, if

additional pointerdown events occur for the same element with different pointerId values, the

addPointer method will include that new pointer in the gesture. This automatically enables pinch-

stretch and rotation gestures that rely on multiple points.

If you run the PointerEvents example (checking Ignore Mouse Events and Ignore Pointer Events) and

start doing taps, tap-holds, and short drags (with touch or mouse), you’ll see output like that shown in

Figure 12-2. The dynamic effect is shown in Video 12-1.

http://msdn.microsoft.com/en-us/library/windows/apps/hh968035.aspx

651

FIGURE 12-2 The PointerEvents example output for gesture events (screen shot cropped a bit to emphasize detail).

Again, gesture events are fired in response to a series of pointer events, offering higher-level

interpretations of the lower-level pointer events. It’s the process of interpretation that differentiates the

tap/hold events from the start/change/end events, how and when the MSInertiaStart event kicks off,

and what the gesture recognizer does when the MSGesture object is given multiple points.

Starting with a single pointer gesture, the first aspect of differentiation is a pointer movement

threshold. When the gesture recognizer sees a pointerdown event, it starts to watch the pointermove

events to see whether they stay inside that threshold, which is the effective boundary for tap and hold

events. This accounts for and effectively ignores small amounts of jiggle in a mouse or a touch point as

illustrated (or shall I say, exaggerated!) below, where a pointer down, a little movement, and a pointer

up generates an MSGestureTap:

652

What then differentiates MSGestureTap and MSGestureHold is a time threshold:

 MSGestureTap occurs when pointerdown is followed by pointerup within the time threshold.

 MSGestureHold occurs when pointerdown is followed by pointerup outside the time

threshold. MSGestureHold then fires once when the time threshold is passed with

eventArgs.detail set to 1 (MSGESTURE_FLAG_BEGIN). Provided that the pointer is still within

the movement threshold, MSGestureHold fires then again when pointerup occurs, with

eventArgs.detail set to 2 (MSGESTURE_FLAG_END). You can see this detail included in the

first two events of Figure 12-2 above.

The gesture flags in eventArgs.detail value is accompanied by many other positional and

movement properties in the eventArgs object:

Properties Description

screenX, screenY The x- and y-coordinates of the gesture center point relative to the screen.

clientX, clientY The x- and y-coordinates of the gesture center point relative to the client area of the app.

offsetX, offsetY The x- and y-coordinates of the gesture center point relative to the element.

translationX,

translationY

Translation along the x- and y-axes.

velocityX,

velocityY

Velocity of movement along x- and y-axes.

scale Scale factor for zoom (percentage change in the scale).

expansion Diameter of the manipulation area (absolute change in size, in pixels).

velocityExpansion Velocity of expanding manipulation area.

rotation Rotation angle in radians.

velocityAngular Angular velocity in radians.

detail Contains the gesture flags that describe the gesture state of the event; these flags are defined as

values in eventArgs itself:

eventArgs.MSGESTURE_FLAG_NONE (0): Indicates ongoing gesture such as MSGestureChange where

there is change in the coordinates.

eventArgs.MSGESTURE_FLAG_BEGIN (1): The beginning of the gesture sequence. If the interaction

contains single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and

MSGESTURE_FLAG_END flags will be set (detail will be 3).

eventArgs.MSGESTURE_FLAG_END (2): The end of the gesture sequence. Again, if the interaction

contains single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and

MSGESTURE_FLAG_END flags will be set (detail will be 3).

eventArgs.MSGESTURE_FLAG_CANCEL (4): The gesture was cancelled. Always comes paired with

MSGESTURE_FLAG_END, (detail will be 6).

eventArgs.MSGESTURE_FLAG_INERTIA (8): The gesture is in an inertia state. The MSGestureChange

event can be distinguished from direct interaction and timer driven inertia through this flag.

hwTimestamp The timestamp of the pointer assigned by the system when the input was received from the

hardware.

653

Many of these properties become much more interesting when a pointer moves outside the

movement threshold, after which time you’ll no longer see the tap or hold events. Instead, as soon as

the pointer leaves the threshold area, MSGestureStart is fired, followed by zero or more

MSGestureChange events (typically many more!), and completed with a single MSGestureEnd event:

Note that if a pointer has been held within the movement threshold long enough for the first

MSGestureHold to fire with MSGESTURE_FLAG_BEGIN, but then the pointer is moved out of the

threshold area, MSGestureHold will be fired a second time with MSGESTURE_FLAG_CANCEL |

MSGESTURE_FLAG_END in eventArgs.detail (a value of 6), followed by MSGestureStart with

MSGESTURE_FLAG_BEGIN. This series is how you differentiate a hold from a slide or drag gesture even if

the user holds the item in place for a while.

Together, the MSGestureStart, MSGestureChange, and MSGestureEnd events define a

manipulation of the element to which the gesture is attached, where the pointer remains in contact

with the element throughout the manipulation. Technically, this means that the pointer was no longer

moving when it was released.

If the pointer was moving when released, we switch from a manipulation to an inertial motion. In

this case, an MSInertiaStart event gets fired to indicate that the pointer effectively continues to

move even though contact was released or lifted. That is, you’ll continue to receive MSGestureChange

events until the movement is complete:

654

Conceptually, you can see the difference between a manipulation and an inertial motion, as

illustrated in Figure 12-3. The curves shown here are not necessarily representative of actual changes

between messages. If the pointer is moved along the green line such that it’s no longer moving when

released, we see the series of gesture that define a manipulation. If the pointer is released while

moving, we see MSInertiaStart in the midst of MSGestureChange events and the event sequence

follows the orange line.

FIGURE 12-3 A conceptual representation of manipulation (green) and inertial (orange) motions.

Referring back to Figure 12-2, when the Show drop-down list (as shown!) is set to Velocity, the

output for MSGestureChange events includes the eventArgs.velocity* values. During a

manipulation, the velocity can change at any rate depending on how the pointer is moving. Once an

inertial motion begins, however, the velocity will gradually diminish down to zero at which point

MSGestureEnd occurs. The number of change events depends on how long it takes for the movement

to slow down and come to a stop, of course, but if you’re just moving an element on the display with

these change events, the user will see a nice fluid animation. You can play with this in the PointerEvents

example, using the Show drop-down list to also look at how the other positional properties are

affected by different manipulations and inertial gestures.

Multipoint Gestures

What we’ve discussed so far has focused on a single point gesture, but the same is also true for multi-

point gestures. When an MSGesture object is given multiple pointers through its addPointer event, it

will also fire MSGestureStart, MSGestureChange, MSGestureEnd for rotations and pinch-stretch

gestures, along with MSInertiaStart. In these cases, the scale, rotation, velocityAngular,

expansion, and velocityExpansion properties in the eventArgs object become meaningful.

655

You can selectively view these properties for MSGestureChange events through the upper-right

drop-down list in the PointerEvents example. You might notice is that if you do multipoint gestures in

the Visual Studio simulator, you’ll never see MSGestureTap events for the individual points. This is

because the gesture recognizer can see that multiple pointerdown events are happening almost

simultaneously (which is where the hwTimestamp property comes into play) and combines them into an

MSGestureStart right away (for example, starting a pinch-stretch or rotation gesture).

Now I’m sure you’re asking some important questions. While I’ve been speaking of pinch-stretch,

rotation, and translation gestures as different things, how does one, in fact, differentiate these gestures

when they’re all coming into the app through the same MSGestureChange event? Doesn’t that just

make everything confusing? What’s the strategy for translation, rotation, and scaling gestures?

Well, the answer is, you don’t have to separate them! If you think about it for a moment, how you

handle MSGestureChange events and the data each one contains depends on the kinds of

manipulations you actually support in your UI:

 If you’re supporting only translation of an element, you’ll simply never pay any attention to

properties like scale and rotation and apply only those like translationX and

translationY. This would be the expected behavior for selecting an item in a collection

control, for example (or a control that allowed drag-and-drop of items to rearrange them).

 If you support only zooming, you’ll ignore all the positional properties and work with scale,

expansion, and/or velocityExpansion. This would be the sort of behavior you’d expect for a

control that supported optical or Semantic Zoom.

 If you’re interested in only rotation, the rotation and velocityAngular properties are your

friends.

Of course, if you want to support multiple kinds of manipulations, you can simply apply all of these

properties together, feeding them into combined CSS transforms. This would be expected of an app

that allowed arbitrary manipulation of on-screen objects, and it’s exactly what one of the gesture

samples of the Windows SDK demonstrates.

The Input Instantiable Gesture Sample

While the PointerEvents example included with this chapter gives us a raw view of pointer and gesture

events, what really matters to apps is how to apply these events to real manipulation of on-screen

objects, which is to say, implementing parts of touch language such as pinch/stretch and rotation. For

these we can turn to the Input Instantiable gestures sample.

This sample primarily demonstrates how to use gesture events on multiple elements simultaneously.

In scenarios 1 and 2, the app simulates a simple example of a puzzle app, as mentioned earlier. Each

colored box can be manipulated separately, using drag to move (with or without inertia), pinch-stretch

gestures to zoom, and rotation gestures to rotate, as shown in Figure 12-4 and demonstrated in Video

12-2.

http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca

656

FIGURE 12-4 The Input Instantiable Gestures Sample after playing around a bit. The “instantiable” word comes from

the need to instantiate an MSGesture object to receive gesture events.

In scenario 1 (js/instantiableGesture.js), an MSGesture object is created for each screen element

along with one for the black background “table top” element during initialization (the initialize

function). This is the same as we’ve already seen. Similarly, the pointerdown handler (onPointerDown)

adds pointers to the gesture object for each element, adding a little more processing to manage z-

index. This avoids having simultaneous touch, mouse, and stylus pointers working on the same element

(which would be odd!):

function onPointerDown(e) {

 if (e.target.gesture.pointerType === null) { // First contact

 e.target.gesture.addPointer(e.pointerId); // Attaches pointer to element

 e.target.gesture.pointerType = e.pointerType;

 }

 else if (e.target.gesture.pointerType === e.pointerType) { // Contacts of similar type

 e.target.gesture.addPointer(e.pointerId); // Attaches pointer to element

 }

 // ZIndex Changes on pointer down. Element on which pointer comes down becomes topmost

 var zOrderCurr = e.target.style.zIndex;

 var elts = document.getElementsByClassName("GestureElement");

 for (var i = 0; i < elts.length; i++) {

 if (elts[i].style.zIndex === 3) {

 elts[i].style.zIndex = zOrderCurr;

 }

 e.target.style.zIndex = 3;

 }

}

657

The MSGestureChange handler for each individual piece (onGestureChange) then takes all the

translation, rotation, and scaling data in the eventArgs object and applies them with CSS. This shows

how convenient it is that all those properties are already reported in the coordinate space we need:

function onGestureChange(e) {

 var elt = e.target;

 var m = new MSCSSMatrix(elt.style.msTransform);

 elt.style.msTransform = m.

 translate(e.offsetX, e.offsetY).

 translate(e.translationX, e.translationY).

 rotate(e.rotation * 180 / Math.PI).

 scale(e.scale).

 translate(-e.offsetX, -e.offsetY);

}

There’s a little more going on in the sample, but what we’ve shown here are the important parts.

Clearly, if you didn’t want to support certain kinds of manipulations, you’d again simply ignore certain

properties in the event args object.

Scenario 2 of this sample has the same output but is implemented a little differently. As you can see

in its initialize function (js/gesture.js), the only events that are initially registered apply to the entire

“table top” that contains the black background and a surrounding border. Gesture objects for the

individual pieces are created and attached to a pointer within the pointerdown event

(onTableTopPointerDown). This approach is much more efficient and scalable to a puzzle app that has

hundreds or even thousands of pieces, because gesture objects are held only for as long as a particular

piece is being manipulated. Those manipulations are also like those of scenario 1, where all the

MSGestureChange properties are applied through a CSS transform. For further details, refer to the code

comments in js/gesture.js, as they are quite extensive.

Scenario 3 of this sample provides another demonstration of performing translate, pinch-stretch,

and rotate gestures using the mouse wheel. As shown in the PointerEvents example, the only thing you

need to do here is process the wheel event, set eventArgs.pointerId to 1, and pass that on to your

pointerdown handler that then adds the pointer to the gesture object:

elt.addEventListener("wheel", onMouseWheel, false);

function onMouseWheel(e) {

 e.pointerId = 1; // Fixed pointerId for MouseWheel

 onPointerDown(e);

}

Again, that’s all there is to it. (I love it when it’s so simple!) As an exercise, you might try adding this

little bit of code to scenarios 1 and 2 as well.

658

The Gesture Recognizer
With inertial gestures, which continue to send some number of MSGestureChange events after pointers

are released, you might be asking this question: What, exactly, controls those events? That is, there is

obviously a specific deceleration model built into those events, namely the one around which the look

and feel of Windows is built. But what if you want a different behavior? And what if you want to

interpret pointer events in different way altogether?

The agent that interprets pointer events into gesture events is called the gesture recognizer, which

you can get to directly through the Windows.UI.Input.GestureRecognizer object. After instantiating

this object with new, you set its gestureSettings properties for the kinds of manipulations and

gestures you’re interested in. The documentation for GestureSettings gives all the options here,

which include tap, doubleTap, hold, holdWithMouse, rightTap, drag, translations, rotations, scaling,

inertia motions, and crossSlide (swipe). For example, in the Input Gestures and manipulations with

GestureRecognizer sample (js/dynamic-gestures.js) we can see how it configures a recognizer for tap,

rotate, translate, and scale (with inertia):

gr = new Windows.UI.Input.GestureRecognizer();

// Configuring GestureRecognizer to detect manipulation rotation, translation, scaling,

// + inertia for those three components of manipulation + the tap gesture

gr.gestureSettings =

 Windows.UI.Input.GestureSettings.manipulationRotate |

 Windows.UI.Input.GestureSettings.manipulationTranslateX |

 Windows.UI.Input.GestureSettings.manipulationTranslateY |

 Windows.UI.Input.GestureSettings.manipulationScale |

 Windows.UI.Input.GestureSettings.manipulationRotateInertia |

 Windows.UI.Input.GestureSettings.manipulationScaleInertia |

 Windows.UI.Input.GestureSettings.manipulationTranslateInertia |

 Windows.UI.Input.GestureSettings.tap;

// Turn off UI feedback for gestures (we'll still see UI feedback for PointerPoints)

gr.showGestureFeedback = false;

The GestureRecognizer also has a number of properties to configure those specific events. With

cross-slides, for example, you can set the crossSlideThresholds, crossSlideExact, and

crossSlideHorizontally properties. You can set the deceleration rates (in pixels/ms2) through

inertiaExpansionDeceleration, inertiaRotationDeceleration, and inertiaTranslation-

Deceleration.

Once configured, you then start passing pointer* events to the recognizer object, specific to its

methods named processDownEvent, processMoveEvents, and processUpEvent (also

processMouseWheelEvent, and processInertia, if needed). In response, depending on the

configuration, the recognizer will then fire a number of its own events. First, there are discrete events

like crossSliding, dragging, holding, rightTapped, and tapped. For all others it will fire a series of

manipulationStarted, manipulationUpdated, manipulationInertiaStarting, and

manipulationCompleted events. Note that all of these come from WinRT, so be sure to call

removeEventListener as needed.

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.gesturesettings.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/windows.ui.input.gesturesettings.aspxhttp:/msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturesettings.aspx
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-362b6b59
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-362b6b59

659

When you’re using the recognizer directly, in other words, you’ll be listening for pointer* events,

feeding them to the recognizer, and then listening for and acting on the recognizer’s specific events (as

above) rather than the MSGesture* events that come out of the default recognizer configured by the

MSGesture object.

Again, refer to the documentation on GestureRecognizer for all the details and refer to the sample

for some bits of code. As one extra example, here’s a snippet to capture a small horizontal motion by

using the manipulationTranslateX setting:

var recognizer = new Windows.UI.Input.GestureRecognizer();

recognizer.gestureSettings = Windows.UI.Input.GestureSettings.manipulationTranslateX;

var DELTA = 10;

myElement.addEventListener('pointerdown', function (e) {

 recognizer.processDownEvent(e.getCurrentPoint(e.pointerId));

});

myElement.addEventListener('pointerup', function (e) {

 recognizer.processUpEvent(e.getCurrentPoint(e.pointerId));

});

myElement.addEventListener('pointermove', function (e) {

 recognizer.processMoveEvents(e.getIntermediatePoints(e.pointerId));

});

// Remember removeEventListener as needed for this event

recognizer.addEventListener('manipulationcompleted', function (args) {

 var pt = args.cumulative.translation;

 if (pt.x < -DELTA) {

 // move right

 }

 else if (pt.x > DELTA) {

 // move left

 }

});

Beyond the recognizer, do note that you can always go the low-level route and do your own

processing of pointer* events however you want, completely bypassing the gesture recognizer. This

would be necessary if the configurations allowed by the recognizer object don’t accommodate your

specific need. At the same time, now is a good opportunity to re-read “Sidebar: Creating Completely

New Gestures?” at the end of “The Touch Language and Mouse/Keyboard Equivalents” earlier. It

addresses a few of the questions about when and whether custom gestures are needed.

Keyboard Input and the Soft Keyboard

After everything to do with touch and other forms of input, it seems almost anticlimactic to consider

the humble keyboard, yet the keyboard remains utterly important for textual input, whether it’s a

physical key-board or the on-screen “soft” keyboard. It’s especially important for accessibility as well,

because some users are physically unable to use a mouse or other devices. In fact, the App certification

requirements (section 6.13.4) requires that you disclose anything short of full keyboard support.

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx

660

Fortunately, there is nothing special about handling keyboard input in a Windows Store app and a

little goes a long way. Drawing from Implementing keyboard accessibility, here’s a summary:

 Process keydown, keyup, and keypress events as you already know how to do, especially for

implementing special key combinations. See “Standard Keystrokes” later for a quick run-down

of typical mappings.

 Have tabindex attributes on interactive elements that should be tab stops. Avoid adding

tabindex to noninteractive elements because this will interfere with screen readers.

 Have accesskey attributes on those elements that should have keyboard shortcuts. Try to keep

these simple so that they’re easier to use with the Sticky Keys accessibility feature.

 Call the DOM focus API on whatever element should be the default.

 Take advantage of the keyboard support that exists in built-in controls, such as the App Bar.

As an example, the Here My Am! app we’ve been working with in this book (in this chapter’s

companion content) now has full keyboard support. This was mostly a matter of adding tabindex to a

few elements, setting focus to the image area, and picking up keydown events on the img elements for

the Enter key and spacebar where we’ve already been handling click. Within those keydown events,

note that it’s helpful to use the WinJS.Utilities.Key enumeration for comparing key codes:

var Key = WinJS.Utilities.Key;

var image = document.getElementById("photo");

image.addEventListener("keydown", function (e) {

 if (e.keyCode == Key.enter || e.keyCode==Key.space) {

 image.click();

 }

});

All this works for both the physical keyboard as well as the soft keyboard. Case closed? Well, not

entirely. Two special concerns with the soft keyboard exist: how to make it appear, and the effect of its

appearance on app layout. After covering those, I’ll also provide a quick run-down of standard

keystrokes for app commands.

Soft Keyboard Appearance and Configuration

The appearance of the soft keyboard happens for one reason and one reason only: the user touches a

text input element or an element with the contenteditable="true" attribute (such as a div or

canvas). There isn’t an API to make the keyboard appear, nor will it appear when you click in such an

element with the mouse or a stylus or tab to it with a physical keyboard.

The configuration of the keyboard is also sensitive to the type of input control. We can see this

through scenario 2 of the Input Touch keyboard text input sample, where html/ScopedViews.html

contains a bunch of input controls (surrounding table markup omitted), which appear as shown in

Figure 12-5:

http://msdn.microsoft.com/library/windows/apps/hh700327.aspx
http://msdn.microsoft.com/library/windows/apps/br211775.aspx
http://code.msdn.microsoft.com/windowsapps/Input-Touch-keyboard-text-f86e9bd9

661

<input type="url" name="url" id="url" size="50" />

<input type="email" name="email" id="email" size="50" />

<input type="password" name="password" id="password" size="50" />

<input type="text" name="text" id="text" size="50" />

<input type="number" name="number" id="number" />

<input type="search" name="search" id="search" size="50" />

<input type="tel" name="tel" id="tel" size="50" />

FIGURE 12-5 The soft keyboard appears when you touch an input field, as shown in the Input Touch keyboard text

input sample (scenario 2). The exact layout of the keyboard changes with the type of input field.

What’s shown in Figure 12-5 is the default keyboard. If you tap in the Search field, you get pretty

much the same view as Figure 12-5 except the Enter key turns into Search . For the Email field, it’s

much like the default view except you get @ and .com keys near the spacebar:

662

The URL keyboard is the same except a few keys change and Enter turns into Go:

For passwords you get a key to hide keypresses (below, to the left of the spacebar), which prevents a

visible animation from happening on the screen—a very important feature if you’re recording videos!

And finally, the Number and Telephone fields bring up a number-oriented view:

In all of these cases, the key on the lower right (whose icon looks a bit like a keyboard) lets you

switch to other keyboard layouts:

The options here are the normal (wide) keyboard, the split keyboard, a handwriting recognition

panel, and a key to dismiss the soft keyboard entirely. Here’s what the default split keyboard and

handwriting panels look like:

663

This handwriting panel for input is simply another mode of the soft keyboard: you can switch

between the two, and your selection sticks across invocations. (For this reason, Windows does not

automatically invoke the handwriting panel for a pen pointer, because the user may prefer to use the

soft keyboard even with the stylus.)

And although the default keyboard appears for text input controls, those controls also provide text

suggestions for touch users. This is demonstrated in scenario 1 of the sample and shown below:

Adjusting Layout for the Soft Keyboard

The second concern with the soft keyboard (no, I didn’t forget!) is handling layout when the keyboard

might obscure the input field with the focus.

When the soft keyboard or handwriting panel appears, the system tries to make sure the input field

is visible by scrolling the page content if it can. This means that it just sets a negative vertical offset to

your entire page equal to the height of the soft keyboard. For example, on a 1366x768 display (as in

664

the simulator), touching the Telephone Input Type field in scenario 2 of the Input Touch keyboard text

input sample will slide the whole page upward, as shown in Figure 12-6 and also Video 12-3.

FIGURE 12-6 When the soft keyboard appears, Windows will automatically slide the app page up to make sure the

input field isn’t obscured.

Although this can be the easiest solution for this particular concern, it’s not always ideal. Fortunately,

you can do something more intelligent if you’d like by listening to the hiding and showing events of

the Windows.UI.ViewManagement.InputPane object and adjust your layout directly. Code for doing

this can be found in the—are you ready for this one?—Responding to the appearance of the on-screen

keyboard sample.91 Adding listeners for these events is simple (see the bottom of js/keyboardPage.js,

which also removes the listeners properly):

var inputPane = Windows.UI.ViewManagement.InputPane.getForCurrentView();

inputPane.addEventListener("showing", showingHandler, false);

inputPane.addEventListener("hiding", hidingHandler, false);

Within the showing event handler, the eventArgs.occludedRect object (a Windows.-

Foundation.Rect) gives you the coordinates and dimensions of the area that the soft keyboard is

covering. In response, you can adjust whatever layout properties are applicable and set the

eventArgs.ensuredFocusedElementInView property to true. This tells Windows to bypass its

automatic offset behavior:

function showingHandler(e) {

 if (document.activeElement.id === "customHandling") {

 keyboardShowing(e.occludedRect);

 // Be careful with this property. Once it has been set, the framework will

 // do nothing to help you keep the focused element in view.

 e.ensuredFocusedElementInView = true;

 }

91 And although you might think this is a strong contender for the longest JavaScript sample name in the Windows SDK, it

runs a mere sixth. The top three are the Unselectable content areas with -ms-user-select CSS attribute sample, which wins

the bronze; AppContainer, mobile broadband pin, connection, and device management sample (Appendix C), which

grabs the silver; and, in first place, Windows Runtime in-process component authoring with proxy\stub generation
sample (Chapter 18, “WinRT Components”)! I don’t mind such long names, however—I’m delighted that we have such an

extensive set of great samples to draw from.

http://code.msdn.microsoft.com/windowsapps/Input-Touch-keyboard-text-f86e9bd9
http://code.msdn.microsoft.com/windowsapps/Input-Touch-keyboard-text-f86e9bd9
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.inputpane.aspx
http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c
http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Modern-Win32COM-mobile-8f762ad8
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-367fada2
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-367fada2

665

}

The sample shows both cases. If you tap on the aqua-colored defaultHandling element on the

bottom left of the app, as shown in Figure 12-7, this showingHandler does nothing, so the default

behavior occurs. See the dynamic effect in Video 12-4.

FIGURE 12-7 Tapping on the left defaultHanding element at the bottom shows the default behavior when the

keyboard appears, which offsets other page content vertically.

If you tap the customHandling element (on the right), it calls its keyboardShowing routine to do

layout adjustment:

function keyboardShowing(keyboardRect) {

 // Some code omitted...

 var elementToAnimate = document.getElementById("middleContainer");

 var elementToResize = document.getElementById("appView");

 var elementToScroll = document.getElementById("middleList");

 // Cache the amount things are moved by. It makes the math easier

 displacement = keyboardRect.height;

 var displacementString = -displacement + "px";

 // Figure out what the last visible things in the list are

 var bottomOfList = elementToScroll.scrollTop + elementToScroll.clientHeight;

 // Animate

 showingAnimation = KeyboardEventsSample.Animations.inputPaneShowing(elementToAnimate,

 { top: displacementString, left: "0px" }).then(function () {

 // After animation, layout in a smaller viewport above the keyboard

 elementToResize.style.height = keyboardRect.y + "px";

 // Scroll the list into the right spot so that the list does not appear to scroll

 elementToScroll.scrollTop = bottomOfList - elementToScroll.clientHeight;

 showingAnimation = null;

 });

}

The code here is a little involved because it’s animating the movement of the various page elements.

The layout of affected elements—namely the one that is tapped—is adjusted to make space for the

keyboard. Other elements on the page are otherwise unaffected. The result is shown in Figure 12-8.

666

Again, the dynamic effect is shown in Video 12-4 in contrast to the default effect.

FIGURE 12-8 Tapping the gray customHandling element on the right shows custom handling for the keyboard’s

appearance.

Standard Keystrokes
The last piece I wanted to include on the subject of the keyboard is a table of command keystrokes you

might support in your app. These are in addition to the touch language equivalents, and you’re

probably accustomed to using many of them already. They’re good to review because, again, apps

should be fully usable with just the keyboard and implementing keystrokes like these goes a long way

toward fulfilling that requirement and enabling more efficient use of your app by keyboard users.

Action or Command Keystroke

Move focus Tab

Back (navigation) Back button on special keyboards; backspace if not in a text field; Alt+left arrow

Forward (navigation) Alt+right arrow

Up Alt+up arrow

Cancel/Escape from mode ESC

Walk through items in a list Arrow keys (plus Tab)

Jump through items in a list to next group

if selection doesn’t automatically follow

focus

Ctrl+arrow keys

Zoom (semantic and optical) Ctrl+ and Ctrl-

Jump to something in a named collection Start typing

Jump far Page up/down (should work in panning UI, in either horizontal or vertical

directions)

Next tab or group Ctrl+Tab

Previous tab or group Ctrl+Shift+Tab

Nth tab or group Ctrl+N (1-9)

667

Open app bar (Windows handles this

automatically)

Win+Z

Context menu Context menu key

Open additional flyout/select menu item Enter

Navigate into/activate Enter (on a selection)

Select Space

Select contiguous Shift+arrow keys

Pin this Ctrl+Shift+!

Save Ctrl+S

Find Ctrl+F

Print Ctrl+P (call Windows.Graphics.Printing.PrintManager.showPrintUIAsync)

Copy Ctrl+C

Cut Ctrl+X

Paste Ctrl+V

New Item Ctrl+N

Open address Ctrl+L or Alt+D

Rotate Ctrl+, and Ctrl+.

Play/Pause Ctrl+P (media apps only)

Next item Ctrl+F (conflict with Find)

Previous item Ctrl+B

Rewind Ctrl+Shift+B

Fast forward Ctrl+Shift+F

Inking

Beyond the built-in soft keyboard/handwriting pane, an app might also want to provide a surface on

which it can directly accept pointer input as ink. By this I mean more than just having a canvas element

and processing pointer* events to draw on it to produce a raster bitmap. Ink is a data structure that

maintains the complete input stream—including pressure, angle, and velocity if the hardware supports

it—which allows for handwriting recognition and other higher-level processing that isn’t possible with

raw pixel data. In other words, ink remembers how an image was drawn, not just the final image itself,

and it works with all types of pointer input.

Ink support in WinRT is found in the Windows.UI.Input.Inking namespace. This API doesn’t

depend on any particular presentation framework, nor does it provide for rendering: it deals only with

managing the data structures that an app can process however it wants or simply render to a drawing

surface such as a canvas. Here’s how inking works:

 Create an instance of the manager object with new Windows.UI.Input.Inking.-

InkManager().

 Assign any drawing attributes by creating an InkDrawingAttributes object and settings

attributes like the ink color, fitToCurve (as opposed to the default straight lines),

ignorePressure, penTip (PenTipShape.circle or rectangle), and size (a

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.inking.aspx

668

Windows.Foundation.Size object with height and width).

 For the input element, listen for the pointerdown, pointermove, and pointerup events, which

you generally need to handle for display purposes anyway. The eventArgs.currentPoint is a

Windows.UI.Input.PointerPoint object that contains a pointer id, point coordinates, and

properties like pressure, tilt, and twist.

 Pass that PointerPoint object to the ink manager’s processPointerDown, processPointer-

Update, and processPointerUp methods, respectively.

 After processPointerUp, the ink manager will create an InkStroke object for that path. Those

strokes can then be obtained through the ink manager’s getStrokes method and rendered as

desired.

 Higher-order gestures can be also converted into InkStroke objects directly and given to the

manager through its addStroke method. Stroke objects can also be deleted with

deleteStroke.

The ink manager also provides methods for performing handwriting recognition with its contained

strokes, saving and loading the data, and handling different modes like draw and erase. For a complete

demonstration, check out the Input Ink sample that is shown in Figure 12-9. This sample lets you see

the full extent of inking capabilities, including handwriting recognition.

FIGURE 12-9 The Input Ink sample with many commands on its app bar. The small, green “Hello Ink” text in the

upper left was generated by tapping the Recognition command.

The SDK also includes the Input Simplified ink sample to demonstrate a more focused handwriting

recognition scenario, as shown in Figure 12-10. You should know that this is one sample that doesn’t

support touch at all—it’s strictly for mouse or stylus, and it uses keystrokes for various commands

http://code.msdn.microsoft.com/windowsapps/Ink-App-sample-61abaec3
http://code.msdn.microsoft.com/windowsapps/Input-simplified-ink-sample-11614bbf

669

instead of an app bar. Look at the keydown function in simpleink.js for a list of the Ctrl+key commands;

the spacebar performs recognition of your strokes, and the backspace key clears the canvas. As you can

see in the figure, I think the handwriting recognition is quite good! (It tells me that the handwriting

samples I gave to an engineering team at Microsoft somewhere in the early 1990s must have made a

valuable contribution.)

FIGURE 12-10 The Input Simplified Ink sample doing a great job recognizing my sloppy mouse-based handwriting.

Geolocation

Before we explore sensors more generally, I want to separately call out the geolocation capabilities for

Windows Store apps because its API is structured differently from other sensors. We’ve already used

this since Chapter 2, “Quickstart,” in the Here My Am! app, but we need the more complete story of

this highly useful capability.

Unlike all other sensors, in fact, geolocation is the only one that has an associated capability you

must declare in the manifest. Where you are on the earth is an absolute measure, if you will, and is

therefore classified as a piece of personal information. So, users must give their consent before an app

can obtain that information, and to pass Windows Store certification your app must also provide a

Privacy Statement about how it will use that information. Other sensor data, in contrast, is relative—you

cannot, for example, really know anything about a person from how a device is tilted, how it’s moving,

or how much light is shining on it. Accordingly, you can use those others sensors without declaring any

specific capabilities.

As you might know, geolocation can be obtained in two different ways. The primary and most

precise way, of course, is to get a reading from an actual GPS radio that is talking to geosynchronous

satellites some hundreds of miles up in orbit. The other reasonably useful means, though not always

accurate, is to attempt to find one’s position through the IP address of a wired network connection or

670

to triangulate from the position of available Wi-Fi hotspots. Whatever the case, WinRT will do its best

to give you a decent reading.

To access geolocation readings, you must first create an instance of the WinRT geolocator,

Windows.Devices.Geolocation.Geolocator. With that in hand, you can then call its

getGeopositionAsync method, whose result, delivered to your completed handler, is a Geoposition

object (in the same Windows.Devices.Geolocation namespace, as everything here is unless noted).

Here’s the code as it appears in Here My Am!:

//Make sure this variable stays in scope while getGeopositionAsync is happening.

var locator = new Windows.Devices.Geolocation.Geolocator();

locator.getGeopositionAsync().done(function (position) {

 var position = geocoord.coordinate.point.position;

 //Save for share

 app.sessionState.lastPosition =

 { latitude: position.latitude, longitude: position.longitude };

}

Tip As suggested by the code comment here, the variable that holds the Geolocator object must

presently stay in scope while the getGeopositionAsync call is in process, otherwise that call is

canceled. For this reason, the locator variable in Here My Am! (the first line of code above) is declared

outside the function that calls getGeopositionAsync.

The getGeopositionAsync method also has a variation where you can specify two parameters: a

maximum age for a cached reading (which is to say, how stale you can allow a reading to be) and a

timeout value for how long you’re willing to wait for a response. Both values are in mill iseconds.

A Geoposition contains two properties:

 coordinate A Geocoodinate object that provides accuracy (meters), altitudeAccuracy

(meters), heading (degrees relative to true north), point (a Geopoint that contains the

coordinates, altitude, and some other detailed data), positionSource (a value from

PositionSource identifying how the location was obtained, e.g. cellular, satellite, wiFi,

ipAddress, and unknown), satelliteData (a GeocoordinateSatelliteData object), speed

(meters/sec), and a timestamp (a Date).

 civicAddress A CivicAddress object, which might contain city (string), country (string, a

two-letter ISO-3166 country code), postalCode (string), state (string), and timestamp (Date)

properties, if the geolocation provider supplies such data.92

You can indicate the accuracy you’re looking for through the Geolocator’s desiredAccuracy

property, which is either PositionAccuracy.default or PositionAccuracy.high. The latter, mind

92 That is, the civicAddress property might not be available or might be empty. An alternate means to obtain it is to use

the Bing Maps API, specifically the MapAddress class, to convert coordinates into an address.

http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geolocator.aspx
http://msdn.microsoft.com/library/windows/apps/hh973537.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geoposition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geocoordinate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geopoint.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.positionsource.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geocoordinatesatellitedata.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.civicaddress.aspx
http://www.microsoft.com/maps/developers/web.aspx
http://msdn.microsoft.com/library/jj663670.aspx

671

you, will be much more radio- or network-intensive. This might incur higher costs on metered

broadband connections and can shorten battery life, so set this to high only if it’s essential to your user

experience. You can also be more specific by using Geolocator.desiredAccuracyInMeters, which

will override desiredAccuracy.

The Geolocator also provides a locationStatus property, which is a value from the

PositionStatus enumeration: ready, initializing, noData, disabled, notInitialized, or

notAvailable. It should be obvious that you can’t get data from a Geolocator that’s in any state other

than ready. To track this, listen to the Geolocator’s statuschanged event, where eventArgs.status in

your handler contains the new PositionStatus; this is helpful when you find that a GPS device might

take a couple seconds to provide a reading. For an example of using this event, see scenario 1 of the

Geolocation sample in the Windows SDK (js/scenario1.js):

geolocator = new Windows.Devices.Geolocation.Geolocator();

geolocator.addEventListener("statuschanged", onStatusChanged); //Remember to remove later

function onStatusChanged(e) {

 switch (e.status) {

 // ...

 }

}

PositionStatus and statuschanged reflect both the readiness of the GPS device as well as the

Location permission for the app, as set through the Settings charm or through PC Settings > Privacy >

Location (status is disabled if permission is denied). You can use this event, therefore, to detect

changes to permissions while the app is running and to respond accordingly. Of course, it’s possible for

the user to change permission in PC Settings while your app is suspended, so you’ll typically want to

check Geolocator status in your resuming event handler as well.

The other two interesting properties of the Geolocator are movementThreshold, a distance in

meters that the device can move before another reading is triggered (which can be used for geo-

fencing scenarios), and reportInterval, which is the number of milliseconds between attempted

readings. Be conservative with the latter, setting it to what you really need, again to minimize network

or radio activity. In any case, when the Geolocator takes another reading and finds that the device has

moved beyond the movementThreshold, it will fire a positionchanged event, where the

eventArgs.position property is a new Geoposition object. This is also shown in scenario 1 of the

Geolocation sample (js/scneario2.js):

geolocator.addEventListener("positionchanged", onPositionChanged);

function onPositionChanged(e) {

 var coord = e.position.coordinate;

 document.getElementById("latitude").innerHTML = coord.point.position.latitude;

 document.getElementById("longitude").innerHTML = coord.point.position.longitude;

 document.getElementById("accuracy").innerHTML = coord.accuracy;

}

http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.positionstatus.aspx
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66

672

With movementThreshhold and reportInterval, really think through what your app needs based

on the accuracy and/or refresh intervals of the data you’re using in relation to the location. For

example, weather data is regional and might be updated only hourly. Therefore, movementThreshold

might be set on the scale of miles or kilometers and reportInterval at 15, 30, or 60 minutes, or

longer. A mapping or real-time traffic app, on the other hand, works with data that is very location-

sensitive and will thus have a much smaller threshold and a much shorter interval.

For similar purposes you can also use the more power-efficient geofencing capabilities, which we’ll

talk about very soon.

Where battery life is concerned, it’s best to simply take a reading when the user wants one, rather

than following the position at regular intervals. But this again depends on the app scenario, and you

could also provide a setting that lets the user control geolocation activity.

It’s also very important to note that apps won’t get positionchanged or statuschanged events

while suspended unless you register a time trigger background task for this purpose and the user adds

the app to the lock screen. We’ll talk more of this in Chapter 16, “Alive with Activity,” and you can also

see how this works in scenario 3 of the Geolocation sample. If, however, you don’t use a background

task or the user doesn’t place you on the lock screen and you still want to track the user’s position, be

sure to handle the resuming event and refresh the position there.

On the flip side, some geolocation scenarios, such as providing navigation, need to also keep the

display active (preventing automatic screen shutoff) even when there’s no user activity. For this purpose

you can use the Windows.System.Display.DisplayRequest class, namely its requestActive and

releaseRelease methods that you would call when starting and ending a navigation session. Of

course, because keeping the display active consumes more battery power, only use this capability when

necessary—as when specifically providing navigation—and avoid simply making the request when your

app starts. Otherwise your app will probably gain a reputation in the Windows Store as being power-

hungry!

Sidebar: HTML5 Geolocation

An experienced HTML/JavaScript developer might wonder why WinRT provides a Geolocation

API when HTML5 already has one: window.navigator.geolocation and its getCurrent-

Position method that returns an object with coordinates. The reason for the overlap is that

other languages like C#, Visual Basic, and C++ don’t have another API to draw from, which

leaves HTML/JavaScript developers a choice. Under the covers, the HTML5 API hooks into the

same data as the WinRT API, requires the same manifest capability (Location), and is subject to

the same user consent, so for the most part the two APIs are almost equivalent in basic usage.

The WinRT API, however, also supports the movementThreshold option, which helps the app

cooperate with power management, along with geofencing. Like all other WinRT APIs, however,

Windows.Devices.Geolocation is available only in local context pages in a Windows Store app.

In web context pages you can use the HTML5 API.

http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx

673

Geofencing
A geofence is defined as a virtual perimeter around a real-world geographic location, such that entering

into or leaving that perimeter will trigger events. Perimeters can be established anywhere and can be

static or dynamic—it doesn’t matter. And you can really do anything with geofencing events, such as

providing guidebook information for the present location, coupons for nearby merchants, reminders

for bus/train stops, shopping lists for the store you just walked into, automatic check-ins to social

media, and so on. In short, although geolocation tells you where the device is located on the earth,

simple positions in terms of latitude and longitude are not all that meaningful to human beings.

Geofencing lets you define zones that do have meaning to an individual user, and it lets you know

exactly when the device—presumably with that user!—has crossed into or out of those zones so that

your app can take equally meaningful action.

The Geolocator's movementThreshhold and reportInterval properties can help you implement

some basic types of geofencing. The drawbacks, however, are many. For one, you’d have to constantly

calculate the difference between the current location and the coordinates of your geofencing zones,

which can be cumbersome. The app and/or its background tasks would also need to be running quite a

lot, which drains battery power. It would also need to be watching for changes in the Geolocator’s

status, especially when a device switches the underlying provider.

Fortunately, the APIs in Windows.Devices.Geolocation.Geofencing encapsulates all of this to

spare you such details. After all, what you want to do in an app is concentrate on helping the user set

up their meaningful zones and then on bringing up appropriate content, rather than messing with

geospatial mathematics! And because the WinRT API can provide these services to multiple apps

simultaneously, it can do so more efficiently and thus conserve power.

The Geofencing API provides the means to dynamically create geofences (zones) and fires events on

entry and exit from a geofence. It also lets you set up time windows during which those geofences are

active, set dwell times for those geofences (how long the device must be in or out of a zone before

raising an event), and set up background tasks with a location trigger to specifically watch for geofence

events when the app isn’t active.

Each geofence you want to monitor is based on a Geocircle object, whose center property is a

BasicGeoposition containing latitude and longitude and whose radius property defines a circle

around that center (the units depend on the altitudeReferenceSystem property, nominally in

meters). Clearly, then, only circular zones are supported at present.

Taking the Geocircle, you create a Geofence object from it along with an identity key, a mask that

defines the events of interest (MonitoredGeofenceStates), the dwell time, the start time, and the

duration. Here’s how it’s done in the Geolocation sample (js/scenario4UIHandlers.js):

Function generateGeofence() {

 var geofence = null;

 try {

 var fenceKey = nameElement.value;

http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geocircle.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.basicgeoposition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofence.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.monitoredgeofencestates.aspx
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66

674

 var position = {

 latitude: decimalFormatter.parseDouble(latitude.value),

 longitude: decimalFormatter.parseDouble(longitude.value),

 altitude: 0

 };

 var radiusValue = decimalFormatter.parseDouble(radius.value);

 // the geofence is a circular region

 var geocircle = new Windows.Devices.Geolocation.Geocircle(position, radiusValue);

 var singleUse = false;

 if (geofenceSingleUse.checked) {

 singleUse = true;

 }

 // want to listen for enter geofence, exit geofence and remove geofence events

 var mask = 0;

 mask = mask | Windows.Devices.Geolocation.Geofencing.MonitoredGeofenceStates.entered;

 mask = mask | Windows.Devices.Geolocation.Geofencing.MonitoredGeofenceStates.exited;

 mask = mask | Windows.Devices.Geolocation.Geofencing.MonitoredGeofenceStates.removed;

 var dwellTimeSpan = new Number(parseTimeSpan(dwellTimeField, defaultDwellTimeSeconds));

 var durationTimeSpan = null;

 if (durationField.value.length) {

 durationTimeSpan = new Number(parseTimeSpan(durationField, 0));

 } else {

 durationTimeSpan = new Number(0); // duration required if start time is set

 }

 var startDateTime = null;

 if (startTimeField.value.length) {

 startDateTime = new Date(startTimeField.value);

 } else {

 startDateTime = new Date(); // default is 1/1/1601

 }

 geofence = new Windows.Devices.Geolocation.Geofencing.Geofence(fenceKey, geocircle,

 mask, singleUse, dwellTimeSpan, startDateTime, durationTimeSpan);

 } catch (ex) {

 WinJS.log && WinJS.log(ex.toString(), "sample", "error");

 }

 return geofence;

}

What you now do with the Geofence object depends on whether you want foreground or

background monitoring. The best way to think about this is that background monitoring should be

your default choice. The reasons for this are twofold. First, background monitoring also works when the

app is running, thereby allowing you to have just one piece of code to handle monitoring events.

Second, if you set up event handlers for the running app alongside a background task, both will pick

up geofencing events but the order isn’t guaranteed. Thus, you’d choose foreground monitoring only

for specific scenarios that would not need background monitoring at all.

675

Either way, the first step is to add your Geofence object to the GeofenceMonitor (in

Windows.Devices.Geolocation.Geofencing), specifically through its geofences vector. To end

monitoring of that geofence, just remove that instance from the vector. Be mindful that the

GeofenceMonitor is a system object that you access directly (not using new). So, if you have a

Geofence in the variable geofence, you start monitoring like so:

var monitor = Windows.Devices.Geolocation.Geofencing.GeofenceMonitor.current;

monitor.geofences.push(geofence);

This is demonstrated again in scenario 4 of the sample (see js/scenario4.js), but there’s a bunch more

code going around to manage the UI, so what I’m showing above is the simplest form. Note also that

scenario 5 of the sample, which sets up the background task, requires you to first create a geofence in

scenario 4. What’s different between the two scenarios is how we pick up geofencing events.

For background monitoring, you don’t assign any explicit event handlers. Instead, the running app

must create and register a background task with the location trigger, the general pattern for which

we’ll be talking about in Chapter 16, and you can refer to scenario 5 in the sample again for details.

Background monitoring requires Location background task declaration in the manifest, and setting up

the task means that the app has to be run at least once. Registration of the background task on first

run will prompt the user for consent, because background tasks like this affect battery life.

Here’s the short version of the code that registers the task (js/scenario5.js):

var sampleBackgroundTaskName = "SampleGeofencingBackgroundTask";

var sampleBackgroundTaskEntryPoint = "js\\geofencebackgroundtask.js";

var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();

builder.name = sampleBackgroundTaskName;

builder.taskEntryPoint = sampleBackgroundTaskEntryPoint;

builder.setTrigger(new Windows.ApplicationModel.Background.LocationTrigger(

 Windows.ApplicationModel.Background.LocationTriggerType.geofence));

Once registered, the trigger essentially acts like the event and the background task as a whole is the

handler: when the trigger occurs, the JavaScript code file that you assign to the task gets executed (as a

web worker). For details on how to simulate the trigger for testing, see Testing and debugging your

geofencing apps on the Windows App Builder’s blog. The process involves using the Visual Studio

simulator, in which you can set the position returned by the Geolocator. The trick is that you need to

locally deploy and run the app once to add it to the lock screen, because doing so isn’t supported

through the simulator.

In that task (refer to js/geofencebackgroundtask.js) you then obtain the GeofenceMonitor object

(as shown earlier) and call its readReports method. This returns a vector view of GeofenceState-

ChangeReport objects, which can be empty if nothing has changed since the last call. Each report

contains a geofence property (the Geofence that changed), the geoposition of that geofence, and

the newState of that geofence. There is also a removalReason property if the state change is because

monitoring ended.

What you’re most interested in is the value of newState, which is a value from the GeofenceState

http://blogs.windows.com/windows/b/appbuilder/archive/2014/02/25/testing-and-debugging-your-geofencing-apps.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2014/02/25/testing-and-debugging-your-geofencing-apps.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofencemonitor.readreports.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofencestatechangereport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofencestatechangereport.aspx

676

enumeration: none, entered, exited, and removed. You can then take the appropriate action. (The

sample just takes this information and outputs it to the display; see the getGeofenceStateChanged-

Reports function in js/geofencebackgroundtask.js. I hope your apps will do something much more

interesting!) And if you want to communicate any information to the running app, remember that you

can use local app data for this purpose.

If the app is running when all this happens, it will probably want to know that the background task

completes its work and exits. To do this, you assign a handler for the background task’s completed

event after registering that task. In that handler you can check for whatever app data the background

task saved and then take any further actions desired. For an additional example of this, refer to the

Creating smarter apps with geofencing post also on the Windows App Builder blog.

If you really want to do only foreground monitoring, you can listen to the GeofenceMonitor.-

ongeofencestatuschanged event:

monitor.addEventListener("geofencestatechanged", onGeofenceStateChanged);

In your handler, the eventArgs.target will contain the GeofenceMonitor object, on which you can

call readReports and process as needed. The sample does it this way in scenario 4 (js/scenario4.js):

function onGeofenceStateChanged(args) {

 args.target.readReports().forEach(processReport);

}

Additional information on this can be found on Guidelines for geofencing apps, but be aware that

no JavaScript-specific version of this topic exists at present.

Sensors

As I wrote in this chapter’s introduction, I like to think of sensors as another form of input. It makes a

lot of sense because every device that is now wholly integrated into our computer systems—such that

we take them for granted—was at one point a kind of human-interface peripheral. In time, I suspect

that many of the sensors that are new to us today will be standard equipment just about everywhere.

Sensors, again, are a way of understanding the relationship of a device to the physical world around

it, and this constitutes input because you, as a human being, can affect that relationship primarily by

moving the device around in physical space or otherwise changing its environment. Sensors can also be

used as direct input to cause motion on the screen rather than relying on some form of abstract input

like the keyboard or mouse. For example, instead of using keystrokes to abstractly tilt a game board,

you can, with sensors, just tilt the device. Shaking, in fact, is becoming a well -known physical gesture

that can be wired to a command of some kind like Retry Now, darn you! Why aren’t you doing what I

want? Haven’t we for years been shaking or smacking our computers when they aren’t behaving

properly? Well, with sensors the computer can now actually respond!

Here, then, is what the various sensors tell us:

http://blogs.windows.com/windows/b/appbuilder/archive/2013/08/20/creating-smarter-apps-with-geofencing.aspx
http://msdn.microsoft.com/library/windows/apps/dn322028.aspx

677

 Location The device’s position on the earth (as we covered earlier in “Geolocation”).

 Compass and orientation The direction the device is pointing, relative to the earth’s

magnetic poles or relative to the device’s inherent sense of position (both simple and complex

orientation).

 Inclinometer The static pitch, roll, and yaw of the device in 3D space.

 Gyrometer The angular velocity/rotational motion of the device in 3D space.

 Accelerometer The linear G-force acceleration of the device within 3D space (x, y, z).

 Ambient light The amount of light shining on the surface of the device with the sensor.

These are the sensors that are represented in the WinRT API,93 some of which are created in

software through sensor fusion. This means taking raw data from one or more hardware sensors and

combining, interpreting, and presenting it all in a form that’s more directly useful to apps. Just as with

pointers, you can still get to raw data if you want it, but oftentimes it’s unnecessary. For example, the

Simple Orientation sensor provides a simple interpretation of how the device is oriented in relation to

its default position, rounding everything off, as it were, to the nearest 90-degree quadrant. The full

Orientation sensor combines gyrometer, accelerometer, and compass data to provide an exact 3D

orientation matrix that is much more precise but much more oriented (if I might make the pun!) to

advanced scenarios than simply needing to know whether the device is upside down or right-side up.

Because all of these sensors are very similar in how they work (which is intentional, with the

exception of the Simple Orientation sensor, which is intentionally dissimilar!), I want to show the

general pattern of the sensor APIs rather than explicit examples for each. Such demonstrations are

readily available in these SDK samples: Accelerometer, Compass, Gyrometer, Inclinometer, Light Sensor,

and OrientationSensor. A device like the Microsoft Surface Pro is a good one for all of these, because it

is fully equipped and capable of running Visual Studio directly.

The usage pattern is as follows, with the particulars summarized in the table that follows:

 Obtain a sensor object via Windows.Devices.Sensors.<sensor>.getDefault().

 Call that object’s getCurrentReading to obtain a one-time reading.

 For ongoing readings, configure the object’s minimumReportInterval and reportInterval

properties (both in milliseconds) and listen to the object’s readingchanged event. Your handler

will receive a reading object of an appropriate type in response. As with geolocation, setting

these values wisely will help optimize battery life by avoiding excess electrons flying through the

sensors!

93 There is also the proximity sensor for near-field communications (NFC) that tells us when devices are near one another or

make contact, but this is more a networking handshake than a sensor like the others. We’ll see this in Chapter 17.

http://code.msdn.microsoft.com/windowsapps/Accelerometer-Sensor-Sample-22982671
http://code.msdn.microsoft.com/windowsapps/Compass-Sensor-Sample-0ed09c55
http://code.msdn.microsoft.com/windowsapps/Gyrometer-Sensor-Sample-4fe891d9
http://code.msdn.microsoft.com/windowsapps/Inclinometer-Sensor-Sample-0cd0bf84
http://code.msdn.microsoft.com/windowsapps/LightSensor-Sample-4477824c
http://code.msdn.microsoft.com/windowsapps/OrientationSensor-sample-0b1732be

678

Sensor Name

(Windows.Devices.Sensors.)

Added Members Reading Type

(Windows.Devices.Sensors)

Reading Properties (timestamp

is a Date; all others are Numbers

unless noted)

Accelerometer Event: shaken (event

args contains only a

timestamp property)

AccelerometerReading accelerationX (G’s), accelerationY,

accelerationZ, timestamp

Compass n/a CompassReading headingMagneticNorth (degrees),

headingTrueNorth,

headingAccuracy, timestamp

Gyrometer n/a GyrometerReading angularVelocityX (degrees/sec),

angularVelocityY,

angularVelocityZ, timestamp

Inclinometer n/a InclinometerReading pitchDegrees (degrees),

rollDegrees (degrees), yawDegrees

(degrees), yawAccuracy, timestamp

LightSensor n/a LightSensorReading illuminenceInLux (lux), timestamp

OrientationSensor n/a OrientationSensorReading quaternion, (SensorQuaternion

containing w, x, y, and z properties)

rotationMatrix (Sensor-

RotationMatrix containing m11,

m12, m13, m21, m22, m23, m31,

m32, m33 properties), yawAccuracy,

timestamp

Here’s an example of such code from the Gyrometer sample (js/scenario1.js):

gyrometer = Windows.Devices.Sensors.Gyrometer.getDefault();

var minimumReportInterval = gyrometer.minimumReportInterval;

var reportInterval = minimumReportInterval > 16 ? minimumReportInterval : 16;

gyrometer.reportInterval = reportInterval;

gyrometer.addEventListener("readingchanged", onDataChanged); // Remember to remove as needed

function onDataChanged(e) {

 var reading = e.reading;

 document.getElementById("eventOutputX").innerHTML = reading.angularVelocityX.toFixed(2);

 document.getElementById("eventOutputY").innerHTML = reading.angularVelocityY.toFixed(2);

 document.getElementById("eventOutputZ").innerHTML = reading.angularVelocityZ.toFixed(2);

}

The samples for the compass, inclinometer, and orientation sensor also have scenarios for

calibration because each one has a limited degree of accuracy.

http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.accelerometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.accelerometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.compass.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.compassreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.gyrometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.gyrometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.inclinometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.inclinometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.lightsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.lightsensorreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.orientationsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.orientationsensorreading.aspx

679

Relative axes With all the directional sensors, the values they report through their readings are

relative to the device orientation (portrait or landscape), rather than being absolute. If you allow

different rotations, you’ll need to take these into account, which is especially important for portrait-first

devices like smaller 7” or 8” tablets. The specific mathematics for these cases is beyond the scope of

this book, however, so refer to Aligning sensors with your app’s orientation on the Windows App

Builder blog for more details.

With the Orientation Sensor, a quaternion can be most easily understood as a rotation of a point

[x,y,z] about a single arbitrary axis. This is different from a rotation matrix, which represents rotations

around three axes. The mathematics behind quaternions is fairly exotic because it involves the

geometric properties of complex numbers and mathematical properties of imaginary numbers, but

working with them is simple and frameworks like DirectX support them. See the OrientationSensor

sample for more.

Speaking of orientation, I mentioned that the SimpleOrientationSensor works a little differently.

Its purpose is to supply quadrant orientation rather than exact orientation, which is perhaps all you

need. For example, a star chart app would need to know if a slate device is upside down so that it can

adjust its display (along with a compass reading) to match the sky itself.

To summarize this sensor’s usage:

 Call Windows.Devices.Sensors.SimpleOrientation.getDefault to obtain the object.

 Call the getCurrentOrientation to obtain a reading.

 The orientationChanged event provides for ongoing readings, where eventArgs contains

orientation (a reading) and timestamp properties.

 The reading is a SimpleOrientation value whose meaning is relative to the native device

orientation:

o notRotated, rotated90DegreesCounterclockwise, rotated90DegreesCounter-

clockwise, rotated270DegreesCounterclockwise. Note that these are entirely different

from view orientations like landscape and portrait that you’d pick up in media queries and

so forth. A portrait-first device in its native state, for example, will report a portrait view

orientation but notRotated as its SimpleOrientation.

o faceup, facedown (tablet devices only).

For a demonstration, see the SimpleOrientationSensor sample.

http://go.microsoft.com/fwlink/?LinkID=329102&clcid=0x409
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.simpleorientationsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.simpleorientation.aspx
http://code.msdn.microsoft.com/windowsapps/SimpleOrientationSensor-d948ac62

680

What We’ve Just Learned

 “Design for touch, get mouse and stylus for free” is a message that holds true, because working

with pointer and gesture input from a variety of input devices doesn’t require you to

differentiate between the forms of input.

 Using built-in controls is the easiest way to handle input, but you can also handle pointer*

events and MSGesture* events directly, when needed. You can also feed pointer* events into a

custom gesture recognizer that then issues its own events.

 The Windows touch language includes tap, press and hold, slide/pan, cross-slide (to select),

pinch-stretch, rotate, and edge gestures (from top/bottom and from the sides). A tap is typically

handled with a click event, whereas the others require the creation of an MSGesture object,

association of that object with a pointer, and handling of MSGesture* event sequences, which

provide for manipulations and inertial motions together.

 The touch language also has mouse, stylus, and keyboard equivalents. For mouse and stylus,

there is very little work an app needs to do (such as sending mouse wheel events to the gesture

object). Keyboard support must be implemented separately but simply uses the standard

HTML/JavaScript events.

 Keyboard support also includes accommodating the soft (on-screen) keyboard, which appears

automatically for text input fields and other content-editable elements. It automatically adjusts

its appearance according to input type, and it will slide the app contents up if necessary to

avoid having the keyboard overlap the input control. An app can also handle visibility events

directly to provide a better experience than the default.

 The Inking API provides apps with the means to record, save, and render an entire series of

pointer activities, where the strokes can also be fed into a handwriting recognizer.

 The Geolocation API in WinRT provides apps with access to GPS data as well as events when the

device has moved past a specified threshold, including support for geofencing.

 The WinRT API represents a number of sensors that can also be used as input to an app. In

addition to geolocation, the sensors are compass, orientation, simple orientation (quadrant-

based), inclinometer, gyrometer, accelerometer, and ambient light.

 Most sensors follow the same usage pattern: acquire the sensor object, get a current reading,

and possibly listen to the readingchanged event. They are very easy to work with, leaving much

of your energy to apply them creatively!

681

Chapter 13

Media

To say that media is important to apps—and to culture in general—is a terrible understatement. Ever

since the likes of Edison made it possible to record a performance for later enjoyment, and the likes of

Marconi made it possible to widely broadcast and distribute such performances, humanity’s worldwide

appetite for media—graphics, audio, and video—has probably outpaced the appetite for automobiles,

electricity, and even junk food. In the early days of the Internet, graphics and images easily accounted

for the bulk of network traffic. Today, streaming video even from a single source like Netflix holds top

honors for pushing the capabilities of our broadband infrastructure! (It certainly holds true in my own

household with my young son’s love of Tintin, Bob the Builder, Looney Tunes, and other such shows.)

Incorporating some form of media is likely a central concern for most Windows Store apps. Simple

ones, even, probably use at least a few graphics to brand the app and present an attractive UI, as we’ve

already seen on a number of occasions. Many others, especially games, will certainly use graphics,

video, and audio together. In the context of this book, all of this means using the img, svg (Scalable

Vector Graphics), canvas, audio, and video elements of HTML5.

Of course, working with media goes well beyond just presentation because apps might also provide

any of the following capabilities:

 Organize and edit media files, including those in the pictures, music, and videos media libraries.

 Playback of custom audio and video formats.

 Transcode (convert) media files, possibly applying various filters.

 Organize and edit playlists.

 Capture audio and video from available devices.

 Edit or modify media directly in the rendering pipeline through media stream sources.

 Stream media from a server to a device, or from a device to a Play To target, perhaps also

applying digital rights management (DRM).

These capabilities, for which many WinRT APIs exist, along with the media elements of HTML5 and

their particular capabilities within the Windows environment, will be our focus for this chapter.

Note As is relevant to this chapter, a complete list of audio and video formats that are natively

supported for Windows Store apps can be found on Supported audio and video formats.

http://msdn.microsoft.com/library/windows/apps/hh986969.aspx

682

The Media Hub sample In the Windows SDK you’ll find the Media Hub sample, which provides an

rich, end-to-end sample for many of the individual features that we’ll talk about in this chapter,

including media playback, media capture, effects, system media transport controls, background audio,

3D video, and Play To. I won’t be drawing from this sample here, however, as it has its own

documentation on the MediaHub sample app page.

Sidebar: Performance Tricks for Faster Apps

Various recommendations in this chapter come from two great //build talks: 50 Performance

Tricks to Make Your HTML5 Apps and Sites Faster and Fast Apps and Sites with JavaScript. While

some tricks are specifically for web applications running in a browser, many of them are wholly

applicable to Windows Store apps written in JavaScript because they run on top of the same

infrastructure as Internet Explorer.

Creating Media Elements

Certainly the easiest means to incorporate media into an app is what we’ve already been doing for

years: simply use the appropriate HTML element in your layout and voila! there you have it. With img,

audio, and video elements, in fact, you’re completely free to use content from just about any location.

That is, the src attributes of these elements can be assigned http:// or https:// URIs for remote content,

ms-appx:/// and ms-appdata:/// URIs for local content, or URIs from URL.createObjectURL for any

content represented by a StorageFile object. Remember with bitmap images that it’s more memory

efficient to use the StorageFile thumbnail APIs and pass the thumbnail to URL.createObjectURL

instead of opening the whole image file. The img element can also use an SVG file as a source.

There are three ways to create a media element in a page or page control.

First is to include the element directly in declarative HTML. Here it’s often useful to use the

preload="auto" attribute for remote audio and video to increase the responsiveness of controls and

other UI that depend on those elements. (Doing so isn’t really important for local media files since they

are, well, already local!) Oftentimes, media elements are placed near the top of the HTML file, in order

of priority, so that downloading can begin while the rest of the document is being parsed .

On the flip side, if the user can wait a short time to start a video, use a preview image in place of the

video and don’t start the download until it’s actually necessary. Code for this is shown later in this

chapter in the “Video Playback and Deferred Loading” section. You can also consider using the

background transfer APIs, as we discussed in Chapter 4, “Web Content and Services,” to save media files

locally for later playback.

Playback for a declarative element can be automatically started with the autoplay attribute,

through the built-in UI if the element has the controls attribute, or by calling <element>.play()

from JavaScript.

http://code.msdn.microsoft.com/windowsapps/Media-Hub-sample-app-3ea52c49
http://msdn.microsoft.com/library/windows/apps/dn263106
http://channel9.msdn.com/Events/Build/2012/3-132
http://channel9.msdn.com/Events/Build/2012/3-132
http://channel9.msdn.com/Events/Build/2013/4-313

683

The second method is to create an HTML element in JavaScript via document.createElement and

add it to the DOM with <parent>.appendChild and similar methods. Here’s an example using media

files in this chapter’s companion content, though you’ll need to drop the code into a new project of

your own in a media folder:

//Create elements and add to DOM, which will trigger layout

var picture = document.createElement("img");

picture.src = "/media/wildflowers.jpg";

picture.width = 300;

picture.height = 450;

document.getElementById("divShow").appendChild(picture);

var movie = document.createElement("video");

movie.src = "/media/ModelRocket1.mp4";

movie.autoplay = false;

movie.controls = true;

document.getElementById("divShow").appendChild(movie);

var sound = document.createElement("audio");

sound.src = "/media/SpringyBoing.mp3";

sound.autoplay = true; //Play as soon as element is added to DOM

sound.controls = true; //If false, audio plays but does not affect layout

document.getElementById("divShow").appendChild(sound);

Unless otherwise hidden by styles, adding image and video elements to the DOM, plus audio

elements with the controls attribute, will trigger re-rendering of the document layout. An audio

element without that attribute will not cause re-rendering. As with declarative HTML, setting autoplay

to true will cause video and audio to start playing as soon as the element is added to the DOM.

Finally, for audio, apps can create an Audio object in JavaScript to play sounds or music without any

effect on UI. More on this later. JavaScript also has the Image class, and the Audio class can be used to

load video:

//Create objects (preloading), then set other DOM object sources accordingly

var picture = new Image(300, 450);

picture.src = "http://www.kraigbrockschmidt.com/downloads/media/wildflowers.jpg";

document.getElementById("image1").src = picture.src;

//Audio object can be used to preload (but not render) video

var movie = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4");

document.getElementById("video1").src = movie.src;

var sound = new Audio("http://www.kraigbrockschmidt.com/downloads/media/SpringyBoing.mp3");

document.getElementById("audio1").src = sound.src;

Creating an Image or Audio object from code does not create elements in the DOM, which can be a

useful trait. The Image object, for instance, has been used for years to preload an array of image

sources for use with things like image rotators and popup menus, and you can use the same trick for

preloading image thumbnails. For remote sources, preloading means that the images have been

downloaded and cached. This way, assigning the same URI to the src attribute of an element that is in

684

the DOM, as shown above, will make that image appear immediately. The same is true for preloading

video and audio, but again, this is primarily helpful with remote media because files on the local file

system will load relatively quickly as is. Still, if you have large local images and want them to appear

quickly when needed, preloading their thumbnails is a useful strategy.

Of course, you might want to load media only when it’s needed, in which case the same type of

code can be used with existing elements, or you can just create an element and add it to the DOM as

shown earlier.

Graphics Elements: Img, Svg, and Canvas (and a Little CSS)

I know you’re probably excited to get to sections of this chapter on video and audio , but we cannot

forget that images have been the backbone of web applications since the beginning and remain a

huge part of any app’s user experience. Indeed, it’s helpful to remember that video itself is conceptually

just a series of static images sequenced over time! Fortunately, HTML5 has greatly expanded an app’s

ability to incorporate image data by adding SVG support and the canvas element to the tried-and-true

img element. Furthermore, applying CSS animations and transitions (covered in detail in Chapter 14,

“Purposeful Animations”) to otherwise static image elements can make them appear very dynamic.

Speaking of CSS, it’s worth noting that many graphical effects that once required the use of static

images can be achieved with just CSS, especially CSS3:

 Borders, background colors, and background images

 Folder tabs, menus, and toolbars

 Rounded border corners, multiple backgrounds/borders, and image borders

 Transparency

 Embeddable fonts

 Box shadows

 Text shadows

 Gradients

In short, if you’ve ever used img elements to create small visual effects, create gradient backgrounds,

use a nonstandard font, or provide some kind of graphical navigation structure, there’s probably a way

to do it in pure CSS. For details, see the great overview of CSS3 by Smashing Magazine as well as the

CSS specs at http://www.w3.org/. CSS also provides the ability to declaratively handle some events and

visual states using pseudo-selectors of hover, visited, active, focus, target, enabled, disabled,

and checked. For more, see http://css-tricks.com/ as well as another Smashing Magazine tutorial on

pseudo-classes.

http://coding.smashingmagazine.com/2009/01/08/push-your-web-design-into-the-future-with-css3/
http://www.w3.org/
http://css-tricks.com/
http://www.smashingmagazine.com/2011/03/30/how-to-use-css3-pseudo-classes/
http://www.smashingmagazine.com/2011/03/30/how-to-use-css3-pseudo-classes/

685

That said, let’s review the three primary HTML5 elements for graphics:

 img is used for raster data. The PNG format is generally preferred over other formats, especially

for text and line art, though JPEG makes smaller files for photographs. GIF is generally

considered outdated, as the primary scenarios where GIF produced a smaller file size can

probably be achieved with CSS directly. Where scaling is concerned, Windows Store apps need

to consider pixel density, as we saw in Chapter 8, “Layout and Views,” and provide separate

image files for each scale the app might encounter. This is where the smaller size of JPEGs can

reduce the overall size of your app package in the Windows Store.

 SVGs are best used for smooth scaling across display sizes and pixel densities. SVGs can be

declared inline, created dynamically in the DOM, or maintained as separate files and used as a

source for an img element (in which case all the scaling characteristics are maintained). As we

saw in Chapter 8, preserving the aspect ratio of an SVG is often important, for which you

employ the viewBox and preserveAspectRatio attributes of the svg tag.

 The canvas element provides a drawing surface and API for creating graphics with lines,

rectangles, arcs, text, and so forth, including 3D graphics via WebGL (starting in Windows 8.1).

The canvas ultimately generates raster data, which means that once created, a canvas scales

like a bitmap. (An app, of course, will typically redraw a canvas with scaled coordinates when

necessary to avoid pixelation.) The canvas is also very useful for performing pixel manipulation,

even on individual frames of a video while it’s playing.

Apps often use all three of these elements, drawing on their various strengths. I say this because

when canvas first became available, developers seemed so enamored with it that they seemed to

forget how to use img elements and they ignored the fact that SVGs are often a better choice

altogether! (And did I already say that CSS can accomplish a great deal by itself as well?)

In the end, it’s helpful to think of all the HTML5 graphics elements as ultimately producing a bitmap

that the app host simply renders to the display. You can, of course, programmatically animate the

internal contents of these elements in JavaScript, as we’ll see in Chapter 14, but for our purposes here

it’s helpful to think of these as essentially static.

What differs between the elements is how image data gets into the element to begin with. Img

elements are loaded from a source file, svgs are defined in markup, and canvas elements are filled

through procedural code. But in the end, as demonstrated in scenario 1 in the HTML Graphics example

for this chapter and shown in Figure 13-1, each can produce identical results.

686

FIGURE 13-1 Image, canvas, and svg elements showing identical results.

In short, there are no fundamental differences as to what can be rendered through each type of

element (though WebGL in a canvas has much richer 3D capabilities). However, they do have

differences that become apparent when we begin to manipulate those elements as with CSS. Because

each element is just a node in the DOM, plain and simple, they are treated like all other nongraphic

elements: CSS doesn’t affect the internals of the element, just how it ultimately appears on the page.

Individual parts of SVGs declared in markup can, in fact, be separately styled so long as they can be

identified with a CSS selector. In any case, such styling affects only presentation, so if new styles are

applied, they are applied to the original contents of the element.

What’s also true is that graphics elements can overlap with each other and with nongraphic

elements (as well as video), and the rendering engine automatically manages transparency according

to the z-index of those elements. Each graphic element can have clear or transparent areas, as is built

into image formats like PNG. In a canvas, any areas cleared with the clearRect method that aren’t

otherwise affected by other API calls will be transparent. Similarly, any area in an SVG’s rectangle that’s

not affected by its individual parts will be transparent.

Scenario 2 in the HTML Graphics example allows you to toggle a few styles (with a check box) on

the same elements shown earlier. In this case, I’ve left the background of the canvas element

transparent so that we can see areas that show through. When the styles are applied, the img element

is rotated and transformed, the canvas gets scaled, and individual parts of the svg are styled with new

colors, as shown in Figure 13-2.

687

FIGURE 13-2 Styles applied to graphic elements; individual parts of the SVG can be styled if they are accessible

through the DOM.

The styles in css/scenario2.css are simple:

.transformImage {

 transform: rotate(30deg) translateX(120px);

}

.scaleCanvas {

 transform: scale(1.5, 2);

}

as is the code in js/scenario2.js that applies them:

function toggleStyles() {

 var applyStyles = document.getElementById("check1").checked;

 document.getElementById("image1").className = applyStyles ? "transformImage" : "";

 document.getElementById("canvas1").className = applyStyles ? "scaleCanvas" : "";

 document.getElementById("r").style.fill = applyStyles ? "purple" : "";

 document.getElementById("l").style.stroke = applyStyles ? "green" : "";

 document.getElementById("c").style.fill = applyStyles ? "red" : "";

 document.getElementById("t").style.fontStyle = applyStyles ? "normal" : "";

 document.getElementById("t").style.textDecoration = applyStyles ? "underline" : "";

}

The other thing you might have noticed when the styles are applied is that the scaled-up canvas

looks rasterized, like a bitmap would typically be. This is expected behavior, as shown in the following

table of scaling characteristics. These are demonstrated in scenarios 3 and 4 of the HTML Graphics

example.

688

Element Scaling Handling layout changes for best appearance

img rasterized Change src attribute for different scales (or just use an SVG file as a source).

canvas rasterized Redraw canvas using scaled dimensions; this is often best done by calling <context>.scale

(2D) or <context>.uniformMatrix3fv according to the needed display size instead of

changing the coordinates used in the code.

svg smooth Not needed. Use viewBox and preseveAspectRatio for proportional scaling.

Additional Characteristics of Graphics Elements
There are a few additional characteristics to be aware of with graphics elements. First, different kinds of

operations will trigger a re-rendering of the element in the document. Second is the mode of operation

of each element. Third are the relative strengths of each element. These are summarized in the

following table:

Element Trigger for re-rendering Mode Strengths
img Change src attribute

Change of styling via JavaScript

Pixel Fast to render and transform

Great for static elements and static/repeating

backgrounds

Sprite animation by changing src attribute

canvas Calls to context API

Change of styling via JavaScript

Note: re-rendering happens only when

code returns control to the host and

unblocks the UI thread; there are no

visible changes while the code is

manipulating the canvas.

Immediate: API calls are

rendered to pixels and

forgotten.

Fine-grained dynamic content

Fast to render after being drawn

Pixel-level manipulation

Excellent for fine-grained dynamic/interactive

content with frequent computation

svg Change to element structure

Change of styling via JavaScript
Retained: all shapes

exist as DOM elements

(unless used as img src).

Smooth scaling

Fine-grained control over individual (retained)

elements

Shape-level manipulation

Excellent for interactive graphics, detailed and

scalable styling, and dynamic per-shape attributes

Sidebar: Using Media Queries to Show and Hide SVG Elements

Because SVGs generate elements in the DOM, those elements can be individually styled. You can

use this fact with media queries to hide different parts of the SVG depending on its size. To do

this, add different classes to those SVG elements. Then, in CSS, add or remove the display:

none style for those classes within media queries like @media (min-width:300px) and (max-

width:499px). You may need to account for the size of the SVG relative to the app window, but

it means that you can effectively remove detail from an SVG rather than allowing those parts to

be rendered with too few pixels to be useful.

689

In the end, HTML5 includes all three of these elements because all three are really needed. All of

them benefit from full hardware acceleration, just as they do in Internet Explorer, since apps written in

HTML and JavaScript run on the same rendering engine as the browser.

The best practice in app design is to explore the appropriate use of each type of elements. Each

element can have transparent areas, so you can easily achieve some very fun effects. For example, if

you have data that maps video timings to caption or other text, you can use an interval handler (with

the interval set to the necessary granularity like a half-second) to take the video’s currentTime

property, retrieve the appropriate text for that segment, and render the text to an otherwise

transparent canvas that sits on top of the video. Titles and credits can be done in a similar manner,

eliminating the need to re-encode the video.

Some Tips and Tricks
Working with the HTML graphics elements is generally straightforward, but knowing some details can

help when working with them inside a Windows Store app.

General tip To protect any content of an app view from screen capture, obtain the ApplicationView

object from Windows.UI.ViewManagement.ApplicationView.getForCurrentView() and set its

isScreenCaptureEnabled property to false. This is demonstrated in the Disable screen capture

sample in the Windows SDK. You would do this, for example, when rendering content obtained from a

rights-protected source.

Img Elements

 When possible, avoid loading an entire image file by using the StorageFile thumbnail APIs,

getThumbnailAsync and getScaledImageAsThumbnailAsync, as described in Chapter 11, “The

Story of State, Part 2.” You can pass a thumbnai l to URL.createObjectURL as you would a

StorageFile. Of course, if you’re using remote resources directly with http[s]:// URIs, you

won’t be able to intercept the rendering to do this.

 Use the title attribute of img for tooltips, not the alt attribute. You can also use a WinJS.-

UI.Tooltip control, as described in Chapter 5, “Controls and Control Styling.”

 To create an image from an in-memory stream, see MSApp.createBlobFromRandomAccess-

Stream (introduced in Chapter 10, “The Story of State, Part 1”), the result of which can be then

given to URL.createObjectURL to create an appropriate URI for a src attribute. We’ll

encounter this elsewhere in this chapter, and we’ll need it when working with the Share contract

in Chapter 15, “Contracts.” The same technique also works for audio and video streams,

including those partially downloaded from the web.

 When loading images from http:// or other remote sources, you run the risk of having the

element show a red X placeholder image. To prevent this, catch the img.onerror event and

supply your own placeholder:

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.isscreencaptureenabled.aspx
http://code.msdn.microsoft.com/windowsapps/Disable-screen-capture-00efe630
http://code.msdn.microsoft.com/windowsapps/Disable-screen-capture-00efe630
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getthumbnailasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getscaledimageasthumbnailasync.aspx
http://msdn.microsoft.com/library/windows/apps/Hh767329.aspx
http://msdn.microsoft.com/library/windows/apps/Hh767329.aspx

690

var myImage = document.getElementById('image');

myImage.onerror = function () { onImageError(this);}

function onImageError(source) {

 source.src = “placeholder.png”;

 source.onerror = "";

}

 Supported image formats for the img element are listed at the bottom of the img element

documentation. Note that as of Windows 8.1, the img element supports the Direct Draw Surface

(DDS) file format for in-package content. DDS files are commonly used for game assets and

benefit from full hardware acceleration and very short image decoding time. A demonstration

of using these can be found in the Block compressed images sample.

 Want to do optical character recognition? Check out the Bing OCR control available from

http://www.bing.com/dev/en-us/ocr, which is free to use for up to 5,000 transactions per

month.

Svg Elements

 <script> tags are not supported within <svg>.

 If you have an SVG file in your package (or appdata), you can load it into an img element by

pointing at the file with the src attribute, but this doesn’t let you traverse the SVG in the DOM.

What you can do instead is load the SVG file by using the simple XMLHttpRequest method or

the WinJS.xhr wrapper (see Appendix C, “Additional Networking Topics”), and then insert the

marking directly into the DOM as a child of some other element. This lets you traverse the SVG’s

content and style it with CSS without having to place the SVG directly in your HTML files.

Scenario 2 of the HTML Graphics example in the companion content shows this (js/scenario2.js):

WinJS.xhr({ url: "/html/graphic.svg", responseType: "text" }).done(function (request) {

 //setInnerHTMLUnsafe is OK because we know the content is coming from our package.

 WinJS.Utilities.setInnerHTMLUnsafe(document.getElementById("svgPlaceholder"),

 request.response);

});

 PNGs and JPEGs generally perform better than SVGs, so if you don’t technically need an SVG or

have a high-performance scenario, consider using scaled raster graphics. Or you can

dynamically create a scaled static image from an SVG so as to use the image for faster rendering

later:

<!-- in HTML-->

<canvas id="canvas" style="display: none;" />

// in JavaScript

var c = document.getElementById("canvas").getContext("2d");

c.drawImage(document.getElementById("svg"),0,0);

var imageURLToUse = document.getElementById("canvas").toDataURL();

http://msdn.microsoft.com/library/ie/ms535259(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/BlockCompressedImages-19830098
http://www.bing.com/dev/en-us/ocr

691

 Two helpful SVG references (JavaScript examples): http://www.carto.net/papers/svg/samples/

and http://srufaculty.sru.edu/david.dailey/svg/.

 A number of tools are available to create SVGs: see 4 useful commercial SVG tools and 5 useful

open source SVG tools (both on the IDR solutions blog).

Canvas Elements

As you probably know, and as demonstrated in the HTML Graphics example, you obtain a 2D context

for a canvas with code like this:

var c = document.getElementById("canvas").getContent("2d");

To obtain a 3D WebGL context (as can be done starting with Windows 8.1), the argument to

getContext must be experimental-webgl:

var c = document.getElementById("canvas").getContent("experimental-webgl");

From that point you can use the supported WebGL APIs as documented in WebGL APIs for Internet

Explorer. In this book I won’t go into any of the details about the API itself, as it quickly gets

complicated. Besides, there are plenty of tutorials on the web.

WebGL aside, here are other tips and tricks for the canvas (note that all the methods named here

are found on the context object):

 Remember that a canvas element needs specific width and height attributes (in JavaScript,

canvas.width and canvas.height), not styles. It does not accept px, em, %, or other units.

 Despite its name, the closePath method is not a direct complement to beginPath. beginPath

is used to start a new path that can be stroked, clearing any previous path. closePath, on the

other hand, simply connects the two endpoints of the current path, as if you did a lineTo

between those points. It does not clear the path or start a new one. This seems to confuse

programmers quite often, which is why you sometimes see a circle drawn with a line to the

center!

 A call to stroke is necessary to render a path; until that time, think of paths as a pencil sketch

of something that’s not been inked in. Note also that stroking implies a call to beginPath.

 When animating on a canvas, doing clearRect on the entire canvas and redrawing every frame

is generally easier to work with than clearing many small areas and redrawing individual parts of

the canvas. The app host eventually has to render the entire canvas in its entirety with every

frame anyway to manage transparency, so trying to optimize performance by clearing small

rectangles isn’t an effective strategy except when you’re doing only a smal l number of API calls

for each frame.

 Rendering canvas API calls is accomplished by converting them to the equivalent DirectX calls in

the GPU. This draws shapes with automatic antialiasing. As a result, drawing a shape like a 2D

http://www.carto.net/papers/svg/samples/
http://srufaculty.sru.edu/david.dailey/svg/
http://blog.idrsolutions.com/2013/05/4-useful-commercial-svg-tools/
http://blog.idrsolutions.com/2013/04/5-useful-open-source-svg-tools/
http://blog.idrsolutions.com/2013/04/5-useful-open-source-svg-tools/
http://msdn.microsoft.com/library/ie/ff975238(v=vs.85).aspx
http://msdn.microsoft.com/library/ie/dn302469(v=vs.85).aspx
http://msdn.microsoft.com/library/ie/dn302469(v=vs.85).aspx
http://msdn.microsoft.com/library/ie/ff975057(v=vs.85).aspx

692

circle in a color and drawing the same circle with the background color does not erase every

pixel. To effectively erase a shape, use clearRect on an area that’s slightly larger than the

shape itself. This is one reason why clearing the entire canvas and redrawing every frame often

ends up being easier.

 To set a background image in a canvas (so that you don’t have to draw each time), you can use

the canvas.style.backgroundImage property with an appropriate URI to the image.

 Use the msToBlob method on a canvas object to obtain a blob for the canvas contents.

 When using drawImage, you may need to wait for the source image to load using code such as

var img = new Image();

img.onload = function () { myContext.drawImage(myImg, 0, 0); }

myImg.src = "myImageFile.png";

 The context’s msImageSmoothingEnabled property (a Boolean) determines how images are

resized on the canvas when rendered with drawImage or pattern-filling through fill, stroke,

or fillText. By default, smoothing is enabled (true), which uses a bilinear smoothing method.

When this flag is false, a nearest-neighbor algorithm is used instead, which is appropriate for

the retro-graphics look of 1980s video games.

 Although other graphics APIs see a circle as a special case of an ellipse (with x and y radii being

the same), the canvas arc function works with circles only. Fortunately, a little use of scaling

makes it easy to draw ellipses, as shown in the utility function below. Note that we use save and

restore so that the scale call applies only to the arc; it does not affect the stroke that’s used

from main. This is important, because if the scaling factors are still in effect when you call

stroke, the line width will vary instead of remaining constant.

function arcEllipse(ctx, x, y, radiusX, radiusY, startAngle, endAngle, anticlockwise) {

 //Use the smaller radius as the basis and stretch the other

 var radius = Math.min(radiusX, radiusY);

 var scaleX = radiusX / radius;

 var scaleY = radiusY / radius;

 ctx.save();

 ctx.scale(scaleX, scaleY);

 //Note that centerpoint must take the scale into account

 ctx.arc(x / scaleX, y / scaleY, radius, startAngle, endAngle, anticlockwise);

 ctx.restore();

}

 There’s no rule that says you have to do everything on a single canvas element. It can be very

effective to layer multiple elements directly on top of one another to optimize rendering of

different parts of your display, especially where game animations are concerned. See to

Optimize HTML5 canvas rendering with layering (IBM developerWorks).

http://msdn.microsoft.com/library/windows/apps/hh465735.aspx
http://msdn.microsoft.com/library/windows/apps/hh453178.aspx
http://msdn.microsoft.com/library/ie/dn265062(v=vs.85).aspx
http://www.ibm.com/developerworks/web/library/wa-canvashtml5layering/index.html

693

 By copying pixel data from a video, it’s possible with the canvas to dynamically manipulate a

video (without affecting the source, of course). This is a useful technique, even if it’s processor-

intensive (which means it might not work well on low-power devices).

Here’s an example of frame-by-frame video manipulation, the technique for which is nicely outlined

in a Windows team blog post, Canvas Direct Pixel Manipulation.94 In the VideoEdit example for this

chapter, default.html contains a video and canvas element in its main body:

<video id="video1" src="Rocket01.mp4" muted style="display: none"></video>

<canvas id="canvas1" width="640" height="480"></canvas>

In code (js/default.js), we call startVideo from within the activated handler. This function starts the

video and uses requestAnimationFrame to do the pixel manipulation for every video frame:

var video1, canvas1, ctx;

var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 };

function startVideo() {

 video1 = document.getElementById("video1");

 canvas1 = document.getElementById("canvas1");

 ctx = canvas1.getContent("2d");

 video1.play();

 requestAnimationFrame(renderVideo);

}

function renderVideo() {

 //Copy a frame from the video to the canvas

 ctx.drawImage(video1, 0, 0, canvas1.width, canvas1.height);

 //Retrieve that frame as pixel data

 var imgData = ctx.getImageData(0, 0, canvas1.width, canvas1.height);

 var pixels = imgData.data;

 //Loop through the pixels, manipulate as needed

 var r, g, b;

 for (var i = 0; i < pixels.length; i += 4) {

 r = pixels[i + colorOffset.red];

 g = pixels[i + colorOffset.green];

 b = pixels[i + colorOffset.blue];

 //This creates a negative image

 pixels[i + colorOffset.red] = 2–5 - r;

 pixels[i + colorOffset.green] = 2–5 - g;

 pixels[i + colorOffset.blue] = 2–5 - b;

 }

 //Copy the manipulated pixels to the canvas

 ctx.putImageData(imgData, 0, 0);

94 See also http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/.

http://windowsteamblog.com/windows/b/developers/archive/2011/02/15/canvas-direct-pixel-manipulation.aspx
http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/

694

 //Request the next frame

 requestAnimationFrame(renderVideo);

}

Here the page contains a hidden video element (style="display: none") that is told to start

playing once the document is loaded (video1.play()). In a requestAnimationFrame loop, the

current frame of the video is copied to the canvas (drawImage) and the pixels for the frame are copied

(getImageData) into the imgData buffer. We then go through that buffer and negate the color values,

thereby producing a photographically negative image (an alternate formula to change to grayscale is

also shown in the code comments, omitted above). We then copy those pixels back to the canvas

(putImageData) so that when we return, those negated pixels are rendered to the display.

Again, this is processor-intensive because it’s not generally a GPU-accelerated process, and it might

perform poorly on lower-power devices. (Be sure, however, to run a Release build outside the

debugger when evaluating performance.) It’s much better to write a video effect DLL where possible, as

discussed in “Applying a Video Effect” later in this chapter. Nevertheless, it is a useful technique to

know. What’s really happening is that instead of drawing each frame with API calls, we’re simply using

the video as a data source. So we could, if we like, embellish the canvas in any other way we want

before returning from the renderVideo function. An example of this that I enjoy is shown in

Manipulating video using canvas on Mozilla’s developer site, which dynamically makes green-screen

background pixels transparent so that an img element placed underneath the video shows through as a

background. The same could even be used to layer two videos so that a background video is used

instead of a static image. Again, be mindful of performance on low-power devices; you might consider

providing a setting through which the user can disable such extra effects.

Rendering PDFs
In addition to the usual image formats, you may need to load and display a PDF into an img element

(or a canvas by using its drawImage function). Aside from third-party libraries, you can use the WinRT

APIs in Windows.Data.Pdf for this purpose. Here you’ll find a PdfDocument object that represents a

document as a whole, along with a PdfPage object that represents a single page within a document.

Note Although WinRT offers a means to load and display PDFs, it does not have an API for generating

PDFs. You’ll still need third-party libraries for that.

There are two ways to load a PDF into a PdfDocument:

 Given a StorageFile object (from the local file system, the file picker, removable storage, etc.) ,

call the static method PdfDocument.loadFromFileAsync (which has two variants, the second

of which takes a password if that’s necessary).

 Given some kind of random access stream object (from a partial HTTP request operation, for

instance; refer to “Q&A on Files, Streams, Buffers, and Blobs” in Chapter 10), call the static

method PdfDocument.loadFromStreamAsync (which again has a password variant).

https://developer.mozilla.org/En/Manipulating_video_using_canvas
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfdocument.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfpage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfdocument.loadfromfileasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfdocument.loadfromstreamasync.aspx

695

In both cases the load* methods return a promise that’s fulfilled with a PdfDocument instance.

Here’s an example from scenario 1 of the PDF viewer sample where the file in question (represented by

pdfFileName) is located in the app package (js/scenario1.js):

var pdfLib = Windows.Data.Pdf;

Windows.ApplicationModel.Package.current.installedLocation.getFileAsync(pdfFileName)

 .then(function loadDocument(file) {

 return pdfLib.PdfDocument.loadFromFileAsync(file);

}).then(function setPDFDoc(doc) {

 renderPage(doc, pageIndex, renderOptions);

});

The file variable from the first promise is just a StorageFile, so you can substitute any other code

that results in such an object before the call to loadFromFileAsync. The setPDFDoc completed

handler, as it’s named here, receives the PdfDocument, whose isPasswordProtected and pageCount

properties provide you with some obvious information.

The next thing to do is then render one or more pages of that document, or portions of those

pages. The API is specifically set up to render one page at a time, so if you want to provide a multipage

view you’ll need to render multiple pages and display them in side-by-side img elements (using a

Repeater control, perhaps), display them in a ListView control, or render those pages into a large

canvas. More on this in a bit.

To get a PdfPage object for any given page, call PdfDocument.getPage with the desired (zero-

based index), as shown here from within the renderPage function of the sample (js/scenario1.js):

var pdfPage = pdfDocument.getPage(pageIndex);

At this point the page’s properties will be populated. These include the following:

 index The zero-based position of the page in the document.

 preferredZoom The preferred magnification factor (a number) for the page.

 rotation A value from the PdfPageRotation enumeration, one of normal, rotate90,

rotate180, and rotate270.

 dimensions A PdfPageDimensions object containing artBox, bleedBox, cropBox, mediaBox,

and trimBox, each of which is a Windows.Foundation.Rect. All of these represent intentions

of the PDF’s author; for specific definitions, refer to the Abode PDF Reference.

 size A Windows.Foundation.Size object the page’s basic width and height based on the

dimensions.cropBox, dimensions.mediaBox, and rotation properties.

To render the page, call its renderToStreamAsync, which, as its name implies, requires a random

access stream that receives the rendering. You can create an in-memory stream, a file-based stream, or

perhaps a stream to some other data store entirely, again using the APIs discussed in Chapter 10,

depending on where you want the rendering to end up. Generally speaking, if you want to render just

http://code.msdn.microsoft.com/windowsapps/PDF-viewer-sample-85a4bb30
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfdocument.getpage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfpagerotation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfpagedimensions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.rect.aspx
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://msdn.microsoft.com/library/windows/apps/windows.foundation.size.aspx

696

a single page for display, create an in-memory stream like the sample (js/scenario1.js):

var pageRenderOutputStream = new Windows.Storage.Streams.InMemoryRandomAccessStream();

If, on the other hand, you want to render a whole document and don’t want to goggle up so much

memory that you kick out every other suspended app, you should definitely render each page into a

temporary file instead. This is demonstrated in the other SDK sample for PDFs, the PDF showcase

viewer sample, whose code contains a more sophisticated mechanism to build a data source for pages

that are then displayed in a ListView. (This sample also has its own documentation on the PDF viewer

end-to-end sample page.) Once it opens a PdfDocument, it iterates all the pages and calls the following

loadPage method (which also allows for in-memory rendering; js/pdflibrary.js):

loadPage: function (pageIndex, pdfDocument, pdfPageRenderingOptions, inMemoryFlag, tempFolder) {

 var filePointer = null;

 var promise = null;

 if (inMemoryFlag) {

 promise = WinJS.Promise.wrap(new Windows.Storage.Streams.InMemoryRandomAccessStream());

 } else {

 // Creating file on disk to store the rendered image for a page on disk

 // This image will be stored in the temporary folder provided during VDS init

 var filename = this.randomFileName() + ".png";

 var file = null;

 promise = tempFolder.createFileAsync(filename,

 Windows.Storage.CreationCollisionOption.replaceExisting).then(function (filePtr) {

 filePointer = filePtr;

 return filePointer.openAsync(Windows.Storage.FileAccessMode.readWrite);

 }, function (error) {

 // Error while opening a file

 filePointer = null;

 }, function (error) {

 // Error while creating a file

 });

 }

 return promise.then(function (imageStream) {

 var pdfPage = pdfDocument.getPage(pageIndex);

 return pdfPage.renderToStreamAsync(imageStream, pdfPageRenderingOptions)

 .then(function () {

 return imageStream.flushAsync();

 })

 // ...

Either way, your stream object must get to PdfPage.renderToStreamAsync, which has two variants.

One just takes a stream, and the other takes the stream plus a PdfPageRenderingOptions object that

controls finer details: backgroundColor, destinationHeight, destinationWidth, sourceRect,

isIgnoringHighContrast, and bitmapEncoderId. With these options, as shown in the first PDF

viewer sample, you can render a whole page, a zoomed-in page, or a portion of a page (js/scenario1.js):

var pdfPage = pdfDocument.getPage(pageIndex);

var pdfPageRenderOptions = new Windows.Data.Pdf.PdfPageRenderOptions();

var renderToStreamPromise;

http://code.msdn.microsoft.com/windowsapps/PDF-viewer-showcase-sample-39ced1e8
http://code.msdn.microsoft.com/windowsapps/PDF-viewer-showcase-sample-39ced1e8
http://msdn.microsoft.com/library/windows/apps/dn263107.aspx
http://msdn.microsoft.com/library/windows/apps/dn263107.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.pdf.pdfpagerenderoptions.aspx

697

var pagesize = pdfPage.size;

switch (renderOptions) {

 case RENDEROPTIONS.NORMAL:

 renderToStreamPromise = pdfPage.renderToStreamAsync(pageRenderOutputStream);

 break;

 case RENDEROPTIONS.ZOOM:

 // Set pdfPageRenderOptions.'destinationwidth' or 'destinationHeight' to take

 // zoom factor into effect

 pdfPageRenderOptions.destinationHeight = pagesize.height * ZOOM_FACTOR;

 renderToStreamPromise = pdfPage.renderToStreamAsync(pageRenderOutputStream,

 pdfPageRenderOptions);

 break;

 case RENDEROPTIONS.PORTION:

 // Set pdfPageRenderOptions.'sourceRect' to the rectangle containing portion to show

 pdfPageRenderOptions.sourceRect = PDF_PORTION_RECT;

 renderToStreamPromise = pdfPage.renderToStreamAsync(pageRenderOutputStream,

 pdfPageRenderOptions);

 break;

};

The promise that comes back from renderToStreamAsync doesn’t have any results, because the

rendering will be contained in the stream. If the operation succeeds, your completed handler will be

called and you can then pass the stream onto MSApp.createBlobFromRandomAccessStream, followed

by our old friend URL.createObjectURL, whose result you can assign to an img.src. If the operation

fails, your error handler is called, of course. Be mindful to call the stream’s flushAsync first thing

before getting the URL and to close the stream (through its close method or blob.msClose). Here’s

the whole process from the sample (js/scenario1.js):

renderToStreamPromise.then(function Flush() {

 return pageRenderOutputStream.flushAsync();

}).then(function DisplayImage() {

 if (pageRenderOutputStream !== null) {

 var blob = MSApp.createBlobFromRandomAccessStream("image/png", pageRenderOutputStream);

 var picURL = URL.createObjectURL(blob, { oneTimeOnly: true });

 scenario1ImageHolder1.src = picURL;

 pageRenderOutputStream.close();

 blob.msClose(); // Closes the stream

 };

},

function error() {

 if (pageRenderOutputStream !== null) {

 pageRenderOutputStream.close();

 }

});

If you’re using file-based streams, as in the PDF showcase viewer sample, you can just hold onto a

collection of StorageFile objects. When you need to render any particular page, you can grab a

thumbnail from the StorageFile and pass it to URL.createObjectURL. Alternately, if you use the

PdfPageRenderOptions to generate renderings that match your screen size, you can just pass those

StorageFile objects to URL.createObjectURL directly. This is what the PDF showcase viewer sample

698

does. Its data source, again, manages a bunch of StorageFile objects (or in-memory streams). To

show that flow, we can see that each item in the data source is an object with pageIndex and imageSrc

properties (js/pdfLibrary.js):

loadPage: function (pageIndex, pdfDocument, pdfPageRenderingOptions, inMemoryFlag, tempFolder) {

 // ... all code as shown earlier

 return promise.then(function (imageStream) {

 var pdfPage = pdfDocument.getPage(pageIndex);

 return pdfPage.renderToStreamAsync(imageStream, pdfPageRenderingOptions)

 .then(function () {

 return imageStream.flushAsync();

 })

 .then(function closeStream() {

 var picURL = null;

 if (inMemoryFlag) {

 var renderStream = Windows.Storage.Streams.RandomAccessStreamReference

 .createFromStream(imageStream);

 return renderStream.openReadAsync().then(function (stream) {

 imageStream.close();

 pdfPage.close();

 return { pageIndex: pageIndex, imageSrc: stream };

 });

 } else {

 imageStream.close();

 pdfPage.close();

 return { pageIndex: pageIndex, imageSrc: filePointer };

 }

 });

 });

},

In default.html, the app’s display is composed of nothing more than two ListView controls inside a

Semantic Zoom control:

<div id="pdfViewTemplate" data-win-control="WinJS.Binding.Template">

 <div id="pdfitemmainviewdiv" data-win-control="WinJS.UI.ViewBox">

 <img src="/images/placeholder.jpg" alt="PDF page"

 data-win-bind="src: imageSrc blobUriFromStream" style="width: 100%; height: 100%;" />

 </div>

</div>

<div id="pdfSZViewTemplate" data-win-control="WinJS.Binding.Template" style="display: none">

 <div>

 <img src="/images/placeholder.jpg" alt="PDF page thumbnail"

 data-win-bind="src: imageSrc blobUriFromStream"/>

 </div>

</div>

<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom"

 data-win-options="{zoomedInItem: window.zoomedInItem, zoomedOutItem: window.zoomedOutItem }"

 style="height: 100%; width: 100%">

 <!-- zoomed-in view. -->

 <div id="zoomedInListView" data-win-control="WinJS.UI.ListView"

699

 data-win-options="{ itemTemplate: pdfViewTemplate, selectionMode: 'none',

 tapBehavior: 'invokeOnly', swipeBehavior: 'none' ,

 layout: {type: WinJS.UI.GridLayout, maxRows: 1}, }">

 </div>

 <!--- zoomed-out view. -->

 <div id="zoomedOutListView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemTemplate: pdfSZViewTemplate, selectionMode: 'none',

 tapBehavior: 'invokeOnly', swipeBehavior: 'none',

 layout: {type: WinJS.UI.GridLayout} }">

 </div>

</div>

The last piece that glues it all together is the blobUriFromStream initializer in the data-win-bind

statements of the templates. The code for this is hiding out at the bottom of js/default.js and is where

the imageSrc from the data source—a StorageFile or stream—gets sent to URL.createObjectURL:

window.blobUriFromStream = WinJS.Binding.initializer(function (source, sourceProp,

 dest, destProp) {

 if (source[sourceProp] !== null) {

 dest[destProp] = URL.createObjectURL(source[sourceProp], { oneTimeOnly: true });

 }

});

The results of all this are shown in two views below, the zoomed-in view (left) and the zoomed-out

view (right), revealing a curious advertisement for Windows 7!

Video Playback and Deferred Loading

Let’s now talk about video playback. As we’ve already seen, simply including a video element in your

HTML or creating an element on the fly gives you playback ability. In the code below, the video is

sourced from an in-package file, starts playing by itself, loops continually, and provides controls:

<video src="/media/ModelRocket1.mp4" controls loop autoplay></video>

As with other standards we’ve discussed, I’m not going to rehash the details (properties, methods,

and events) that are available in the W3C spec for the video and audio tags, found on

700

http://www.w3.org/TR/html51/ in sections 4.8.6 to 4.8.10. Especially note the event summary in section

4.8.10.15 and that most of the properties and methods for both are found in section 4.8.10.

Note that the track element for subtitles is supported for both video and audio; you can find an

example of using it in scenario 4 of the HTML media playback sample, which includes a WebVTT file (a

simple text file; see media/sample-subtitle-en.vtt in the sample) that contains entries like the following

to describe when a give subtitle should appear:

00:00:05.242 --> 00:00:08.501

My name is Jason Weber, and my job is to make Internet Explorer fast.

This file is then referenced in the track element in its src attribute (html/Subtitles.html):

<video id="subtitleVideo" style="position: relative; z-index: auto; width: 50%;"

 src="http://ie.microsoft.com/testdrive/Videos/BehindIE9AllAroundFast/Video.mp4"

 poster="images/Win8MediaLogo.png" loop controls>

 <track id="scenario3entrack" src="/media/sample-subtitle-en.vtt" kind="subtitles"

 srclang="en" default>

</video>

Another bit that’s helpful to understand is that video and audio are closely related, because they’re

part of the same spec. In fact, if you want to play just the audio portion of a video, you can use the

Audio object in JavaScript:

//Play just the audio of a video

var movieAudio = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4");

movieAudio.load();

movieAudio.play();

You can also have a video’s audio track play in the background depending on the value assigned to

the element’s msAudioCategory attribute, as we’ll see later under “Playback Manager and Background

Audio.” The short of it is that if you use the value ForegroundOnlyMedia for this attribute, the video

will be muted when in the background, and you can also use this condition to automatically pause the

video (again, see “Playback Manager and Background Audio”). If you use instead use

BackgroundCapableMedia for the attribute, the video’s soundtrack can play in the background

provided that you’ve done the other necessary work for background audio. I, for one, appreciate apps

that take trouble to make this work—I’ll often listen to the audio for conference talks in the

background and then watch only the most important video segments.

For any given video element, you can set the width and height to control the playback size (as to

100% for full-screen). This is important when your app view changes size, and you’ll likely have CSS

styles for video elements in your various media queries. Also, if you have a control to play full screen,

simply make the video the size of the viewport. In addition, when you create a video element with the

controls attribute, it will automatically have a full-screen control on the far right that does exactly

what you expect within a Windows Store app:

http://www.w3.org/TR/html51/
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9

701

In short, you don’t need to do anything special to make this work, although you can employ the

:-ms-fullscreen pseudo-class in CSS for full-screen styling. When the video is full screen, a similar

button (or the ESC key) returns to the normal app view. If there’s a problem going to full screen, the

video element will fire an MSFullScreenError event.

Note In case you’re wondering, the audio and video elements don’t provide any CSS pseudo-selectors

for styling the controls bar. As my son’s preschool teacher would say (in reference to handing out

popsicles, but it works here too), “You get what you get and you don’t throw a fit and you’re happy

with it.” If you’d like to do something different with these controls, you’ll need to turn off the defaults

(set the controls attribute to false) and provide controls of your own that would call the element

methods appropriately.

When implementing your own controls, be sure to set a timeout to make the controls disappear (either

hiding them or changing the z-index) when they’re not being used. This is especially important

because whenever the video is partly obstructed by other controls, even by a single pixel, playback

decoding will switch from the GPU to the CPU and thus consume more power and other system

resources. So be sure to hide those controls after a short time or size the video so that there’s no

overlap. Your customers will greatly appreciate it! I, for one, have been impressed with how power-

efficient video is with GPU playback on ARM devices such as the Microsoft Surface. In years past, video

playback was a total battery killer, but now it’s no more an impact than answering emails.

You can use the various events of the video element to know when the video is played and paused

through the controls, among other things (though there is not an event for going full -screen), but you

should also respond appropriately when hardware buttons for media control are used. For this purpose,

listen for the buttonpressed event coming from the Windows.Media.SystemMediaTransport-

Controls object.95 (This is a WinRT object event, so call removeEventListener as needed.) Refer to

the System media transport controls sample for a demonstration; the process is basically add a listener

for buttonpressed and then enable the buttons for which you want to receive that event

(js/scenario1.js):

systemMediaControls = Windows.Media.SystemMediaTransportControls.getForCurrentView();

systemMediaControls.addEventListener("buttonpressed", systemMediaControlsButtonPressed, false);

systemMediaControls.isPlayEnabled = true;

systemMediaControls.isPauseEnabled = true;

systemMediaControls.isStopEnabled = true;

systemMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.closed;

We’ll talk more of these later under “The Media Transport Control UI” because they very much apply

to audio playback where you might not have any other controls available.

I also mentioned that you might want to defer loading a video (called lazy loading) until it’s needed

and show a preview image in its place. This is accomplished with the poster attribute, whose value is

the image to use, and then later setting the src attribute and calling the element’s load method:

<video id="video1" poster="/media/rocket.png" width="640" height="480"></video>

95 The SystemMediaTransportControls class replaces the deprecated Windows.Media.MediaControl class of Windows 8.

http://msdn.microsoft.com/library/windows/apps/dn282404.aspx
http://msdn.microsoft.com/library/windows/apps/dn282402.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.systemmediatransportcontrols.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.systemmediatransportcontrols.aspx
http://code.msdn.microsoft.com/windowsapps/System-media-transport-7b064ffc

702

var video1 = document.getElementById("video1");

var clickListener = video1.addEventListener("click", function () {

 video1.src = "http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4";

 video1.load();

 //Remove listener to prevent interference with video controls

 video1.removeEventListener("click", clickListener);

 video1.addEventListener("click", function () {

 video1.controls = true;

 video1.play();

 });

});

In this case I’m not using preload="true" or even providing a src value so that nothing is

transferred until the video is started with a click or tap. Then that listener is removed, the video’s own

controls are turned on, and playback is started. This, of course, is a more roundabout method; often

you’ll use preload="true" controls src="..." directly in the video element, as the poster

attribute will handle the preview image.

Streaming video Windows Store apps can certainly take advantage of streaming media, a subject

that we’ll return to in “Streaming Media and Play To” at the end of this chapter.

Sidebar: Source Attributes and Custom Formats

In web applications, video (and audio) elements can use HTML5 source attributes to provide

alternate formats in case a client system doesn’t have the necessary codec for the primary source.

Given that the list of supported formats in Windows is well known (refer again to Supported

audio and video formats), this isn’t much of a concern for Windows Store apps. However, source

is still useful because it can identify the specific codecs for the source:

<video controls loop autoplay>

 <source src="video1.vp8" type="video/webm" />

</video>

This is important when you need to provide a custom codec for your app through Windows.-

Media.MediaExtensionManager, outlined in the “Handling Custom Audio and Video Formats”

section later in this chapter, because the codec identifies the extension to load for decoding. I

show WebM as an example here because it’s not directly available to Windows Store apps

(though it is in Internet Explorer). When the app host running a Windows Store app encounters

the video element above, it will look for a matching decoder for the specified type.

Alternately, the Windows.Media.Core.MediaStreamSource object makes it possible for you

to handle audio, video, and image formats that aren’t otherwise supported in the platform,

including plug-in free decryption of protected content. We’ll also talk about this in the “Handling

Custom Audio and Video Formats” section.

http://msdn.microsoft.com/library/windows/apps/hh986969.aspx
http://msdn.microsoft.com/library/windows/apps/hh986969.aspx

703

Disabling Screen Savers and the Lock Screen During Playback
When playing video, especially full-screen, it’s important to disable any automatic timeouts that would

blank the display or lock the device. This is done through the Windows.System.Display.Display-

Request object. Before starting playback, create an instance of this object and call its requestActive

method.

var displayRequest = new Windows.System.Display.DisplayRequest();

if (displayRequest) {

 displayRequest.requestActive();

}

If this call succeeds, you’ll be guaranteed that the screen wi ll stay active despite user inactivity. When

the video is complete, be sure to call requestRelease:

displayRequest.releaseRequest();

See to the simple Display power state sample for a reference project.

Note that Windows will automatically deactivate such requests when your app is moved to the

background, and it will reactivate them when the user switches back.

Tip As with image content, if you have a rights-protected video for which you want to disable screen

capture, call Windows.UI.ViewManagement.ApplicationView.getForCurrentView() and set the

resulting object’s isScreenCaptureEnabled property to false. This is again demonstrated in the

Disable screen capture sample.

Video Element Extension APIs
Beyond the HTML5 standards for video elements, the app host adds some additional properties and

methods, as shown in the following table and documented on the video element page. Also note the

references to the HTML media playback sample where you can find some examples of using these.

Properties Description
msHorizontalMirror A Boolean that controls whether the playback is flipped horizontally. This is particularly

useful when sourcing the video element from a camera to make sure the user sees the

proper orientation. See the notes on the enclosureLocation property in “Selecting a

Media Capture Device” later on.

msZoom A Boolean that indicates whether to allow the video element to fit inside its display space

by trimming the top/bottom or left/right (when true). This allows apps to give users

control over videos whose aspect ratio differs from that of its given display area—that is,

to remove letterboxing or pillar boxes. For a demonstration, refer to scenario 3 of the

HTML media playback sample.

msIsLayoutOptimalForPlayback

(onMSVideoOptimalLayoutChanged)
A Boolean that indicates whether a video will have the best playback based on its layout.

When this changes the onMSVideoOptimalLayoutChanged event fires. For details, see How

to optimize video rendering and Audio and Video Performance.

msIsStereo3D A Boolean that indicates whether the system considers the video element’s source to be

3D (based on metadata in the video itself). Whether the system is itself capable can be

determined through Windows.Graphics.Display.DisplayInformation.stereoEnabled.

Apps can also listen for DisplayInformation.stereoEnabledChanged (a WinRT event) to

http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx
http://code.msdn.microsoft.com/windowsapps/Display-Request-Sample-e667f8aa
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.isscreencaptureenabled.aspx
http://code.msdn.microsoft.com/windowsapps/Disable-screen-capture-00efe630
http://msdn.microsoft.com/library/windows/apps/hh465962.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/library/windows/apps/hh452785.aspx
http://msdn.microsoft.com/library/windows/apps/hh452785.aspx
http://msdn.microsoft.com/library/windows/apps/hh848311.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.stereoenabled.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayinformation.stereoenabledchanged.aspx

704

know when the capabilities change.

For details on this and other Stereo 3D concerns, refer to How to enable stereo video

playback and scenario 5 of the HTML media playback sample.

msStereo3DRenderMode Can be mono (the default) or stereo so that apps can control playback. (See above for

references.)

msStereo3DPackingMode Can be none (2D default), topbottom, or sidebyside; this is an adjustment available to

apps when the video metadata doesn’t clearly indicate which orientation to use. (See

above for references.)

msRealtime Enables the media to reduce initial latency as much as possible for playback. This is

important for two-way communication apps, for example, as well as gaming chat, but

should be used carefully. For details, refer to How to enable low-latency playback and the

Real-time communications sample.

msPlayToDisabled

msPlayToPrimary

msPlayToSource

Properties related to the Play To feature in Windows. See the “Play To” section at the end

of this chapter. Note that these are available on img and audio elements as well.

msAudioTracks An array of audio track descriptions to support additional languages or other tracks (e.g.,

commentary). Set msAudioTracks.selectedTrack to the desired index to change the

playback audio. For details, refer to How to select audio tracks in different languages as

well as scenario 2 of the HTML media playback sample.

msAudioCategory Identifies the kind of audio being played in the video; see “Playback Manager and

Background Audio” later for the specific values . Note that setting this to

"Communications" will also set the device type to "Communications" and force

msRealtime to true. Typically a video should use “ForegroundOnlyMedia” so that it’s

muted when the playback app is switched to the background. The app will, in this case,

receive an event indicating that the video has been muted; the app can use the mute

event to pause the video as well.

msAudioDeviceType Specifies the output devices that audio will be sent to; see “Audio Element Extension

APIs.”

Methods Description
msFrameStep

(onMSVideoFrameStepCompleted)
Steps the video by one frame forward or backward. The onMSVideoFrameStepCompleted

event fires when the step is complete.

msInsertVideoEffect

msInsertAudioEffect

msClearEffects

Adds or removes effects during playback (see below). All are available on video;

msInsertVideoEffect is not available on audio elements.

msSetMediaProtectionManager Used for DRM with both audio and video; see “Streaming from a Server and Digital

Rights Management” toward the end of this chapter.

msSetVideoRectangle Sets the dimension of a subrectangle within a video.

onMSVideoFrameStepCompleted (event) Occurs when the video format changes.

Sidebar: Zooming Video for Smaller Screens

With video playback on small devices, it’s a good idea to provide a control that sets the msZoom

property to true for full-screen playback. By default, full-screen video that doesn’t exactly match

the aspect ratio of the display will have pillar boxes. On a very small screen—such as 7” or 8”

tablets, this might cause the video to be shrunk down to a size that’s hard to see. By setting

msZoom to true, you remove those pillar boxes automatically. If you want to go further, you can

also do full-screen playback by default and even stretch the video element to be larger than the

display size, effectively zooming in even further.

http://msdn.microsoft.com/library/windows/apps/hh452749.aspx
http://msdn.microsoft.com/library/windows/apps/hh452749.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/library/windows/apps/hh452742.aspx
http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://msdn.microsoft.com/library/windows/apps/hh452774.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9

705

Applying a Video Effect
The earlier table shows that video elements have msInsertVideoEffect and msInsertAudioEffect

methods on them. WinRT provides a built-in video stabilization effect that is easily applied to an

element. This is demonstrated in scenario 3 of the Media extensions sample, which plays the same

video with and without the effect, so the stabilized one is muted:

vidStab.msClearEffects();

vidStab.muted = true;

vidStab.msInsertVideoEffect(Windows.Media.VideoEffects.videoStabilization, true, null);

Custom effects, as demonstrated in scenario 4 of the sample, are implemented as separate dynamic-

link libraries (DLLs) written in C++ and are included in the app package because a Windows Store app

can install a DLL only for its own use and not for systemwide access. With the sample you’ll find DLL

projects for a grayscale, invert, and geometric effects, where the latter has three options for fisheye,

pinch, and warp. In the js/CustomEffect.js file you can see how these are applied, with the first

parameter to msInsertVideoEffect being a string that identifies the effect as exported by the DLL

(see, for instance, the InvertTransform.idl file in the InvertTransform project):

vid.msInsertVideoEffect("GrayscaleTransform.GrayscaleEffect", true, null);

vid.msInsertVideoEffect("InvertTransform.InvertEffect", true, null);

The second parameter to msInsertVideoEffect, by the way, indicates whether the effect is

required, so it’s typically true. The third is a parameter called config, which just contains additional

information to pass to the effect. In the case of the geometric effects in the sample, this parameter

specifies the particular variation:

var effect = new Windows.Foundation.Collections.PropertySet();

effect["effect"] = effectName;

vid.msClearEffects();

vid.msInsertVideoEffect("PolarTransform.PolarEffect", true, effect);

where effectName will be either “Fisheye”, “Pinch”, or “Warp”.

To be more specific, the config argument is a PropertySet that you can use to pass any information

you need to the effect object. It can also communicate information back: if the effect writes

information into the PropertySet, it will fire its mapchanged event.

Audio effects, not shown in the sample, are applied the same way with msInsertAudioEffect (with

the same parameters). Do note that each element can have at most two effects per media stream. A

video element can have two video effects and two audio effects; an audio element can have two

audio effects. If you try to add more, the methods will throw an exception. This is why it’s a good idea

to call msClearEffects before inserting any others.

For additional discussion on effects and other media extensions, see Using media extensions.

http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.propertyset.mapchanged.aspx
http://msdn.microsoft.com/library/windows/apps/hh700365.aspx

706

Browsing Media Servers
Many households, including my own, have one or more media servers available on the local network

from which apps can play media. Getting to these servers is the purpose of the one other property in

Windows.Storage.KnownFolders that we haven’t mentioned yet: mediaServerDevices. As with other

known folders, this is simply a StorageFolder object through which you can then enumerate or query

additional folders and files. In this case, if you call its getFoldersAsync, you’ll receive back a list of

available servers, each of which is represented by another StorageFolder. From there you can use file

queries, as discussed in Chapter 11, to search for the types of media you’re interested in or apply user-

provided search criteria. An example of this can be found in the Media Server client sample.

Audio Playback and Mixing

The audio element in HTML5 has many things in common with video. For one, the audio element

provides its own playback abilities, including controls, looping, and autoplay:

<audio src="media/SpringyBoing.mp3" controls loop autoplay></audio>

The same W3C spec applies to both video and audio elements, so the same code to play just the

audio portion of a video is exactly what we use to play an audio file:

var sound = new Audio("media/SpringyBoing.mp3");

sound1.msAudioCategory = "SoundEffect";

sound1.load(); //For preloading media

sound1.play(); //At any later time

As mentioned earlier in this chapter, creating an Audio object without controls and playing it has no

effect on layout, so this is what’s generally used for sound effects in games and other apps.

As with video, it’s important for many audio apps to respond appropriately to the buttonpressed

event coming from the Windows.Media.SystemMediaTransportControls object96 so that the user

can control playback with hardware buttons. This is not a concern with audio such as game sounds,

however, where playback control is not needed.

Speaking of which, an interesting aspect of audio is mixing multiple sounds together, as games

generally require. Here it’s important to understand that each audio element can be playing one

sound: it has only one source file and one source file alone. However, multiple audio (and video)

elements can be playing at the same time with automatic intermixing depending on their assigned

msAudioCategory attributes. (See “Playback Manager and Background Audio” below.) In the following

example, some background music plays continually (loop is set to true, and the volume is halved)

while another sound is played in response to taps (see the AudioPlayback example with this chapter’s

96 This again replaces the deprecated Windows.Media.MediaControl object.

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.mediaserverdevices.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Server-sample-fffbe490
http://msdn.microsoft.com/library/windows/apps/windows.media.systemmediatransportcontrols.aspx
http://msdn.microsoft.com/library/windows/apps/hh767375.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx

707

companion content):97

var sound1 = new Audio("/media/SpringyBoing.mp3");

sound1.msAudioCategory = "SoundEffects"; //Set this before setting src if possible

sound1.load(); //For preloading media

//Background music

var sound2 = new Audio();

sound2.msAudioCategory = "ForegroundOnlyMedia"; //Set this before setting src

sound2.src = "http://www.kraigbrockschmidt.com/mp3/WhoIsSylvia_PortlandOR_5-06.mp3";

sound2.loop = true;

sound2.volume = 0.5; //50%;

sound2.play();

document.getElementById("btnSound").addEventListener("click", function () {

 //Reset position in case we're already playing

 sound1.currentTime = 0;

 sound1.play();

});

By loading the tap sound when the object is created, we know we can play it at any time. When

initiating playback, it’s a good idea to set the currentTime to 0 so that the sound always plays from

the beginning.

The question with mixing, especially in games, is a matter of managing many different sounds

without knowing ahead of time how they will be combined. You may need, for instance, to overlap

playback of the same sound with different starting times, but it’s impractical to declare three audio

elements with the same source. The technique that’s emerged is to use “rotating channels,” as

described on HTML5 Audio Tutorial: Rotating Channels (Ajaxian website) and demonstrated in the

AudioPlayback example in this chapter’s companion content. To summarize:

15. Declare audio elements for each sound (with preload="auto"), and make sure they aren’t

showing controls so that they aren’t part of your layout..

16. Create a pool (array) of Audio objects for however many simultaneous channels you need.

17. To play a sound:

a. Obtain an available Audio object from the pool.

b. Set its src attribute to one that matches a preloaded audio element.

c. Call that pool object’s play method.

As sound designers in the movies have discovered, it is possible to have too much sound going on

at the same time, because it gets really muddied. You might not need more than a couple dozen

97 And yes, I am playing the guitar and singing the lead part in this live recording, along with my friend Ted Cutler. The

song, Who is Sylvia?, was composed by another friend, J. Donald Walters, using lyrics of Shakespeare.

http://ajaxian.com/archives/html5-audio-tutorial-rotating-channels

708

channels at most.

Hint Need some sounds for your app? Check out http://www.freesound.org.

Custom formats The Windows.Media.Core.MediaStreamSource object enables you to work with

audio formats that don’t have native support in the platform. See “Handling Custom Audio and Video

Formats” later in this chapter.

Audio Element Extension APIs
As with the video element, a few extensions are available on audio elements as well, namely those to

do with effects (msInsertAudioEffect; see “Applying a Video Effect” earlier for a general discussion),

DRM (msSetMediaProtectionManager), Play To (msPlayToSource, etc.), msRealtime, and

msAudioTracks, as listed earlier in “Video Element Extension APIs.“ In fact, every extension API for

audio exists on video, but two of them have primary importance for audio:

 msAudioDeviceType Allows an app to determine which output device audio will render to:

"Console" (the default) and "Communications". This way an app that knows it’s doing

communication (like chat) doesn’t interfere with media audio.

 msAudioCategory Identifies the type of audio being played (see table in the next section),

which determines how it will mix with other audio streams. This is also very important to identify

audio that can continue to play in the background (thereby preventing the app from being

suspended), as described in the next section. Note that you should always set this property

before setting the audio’s src and that setting this to "Communications" will also set the

device type to "Communications" and force msRealtime to true.

Do note that despite the similarities between the values in these properties, msAudioDeviceType is

for selecting an output device whereas msAudioCategory identifies the nature of the audio that’s being

played through whatever device. A communications category audio could be playing through the

console device, for instance, or a media category could be playing through the communications device.

The two are separate concepts.

One other capability that’s available for audio is effects discovery, which means an app can

enumerate effects that are being used in the audio processing chain on any given device. I won’t go

into details here, but refer to the Windows.Media.Effects namespace and the Audio effects discovery

sample in the SDK.

Playback Manager and Background Audio
To explore different kinds of audio playback (including the audio track of videos), let’s turn our

attention to the Playback Manager msAudioCategory sample. I won’t show a screen shot of this

because, doing nothing but audio, there isn’t much to show! Instead, let me outline the behaviors of its

different scenarios—which align to msAudioCategory values—in the following table, as well as list

http://www.freesound.org/
http://msdn.microsoft.com/library/windows/apps/hh767376.aspx
http://msdn.microsoft.com/library/windows/apps/hh767375.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.effects.aspx
http://go.microsoft.com/fwlink/p/?LinkID=309019
http://go.microsoft.com/fwlink/p/?LinkID=309019
http://code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67

709

those categories that aren’t represented in the sample but that can be used in your own app. In each

scenario you need to first select an audio file through the file picker.

Scenario msAudioCategory Description

1 BackgroundCapableMedia Plays the selected audio when the app is both visible and in the background,

including when the user is on the desktop, the Start screen, and the lock

screen. The app will not be suspended when in the background, which you can

confirm through Task Manager. This is typically used for playing local playlists,

local or streaming media files, music videos, etc. Using this requires a

declaration in the manifest and handlers for media transport control buttons.

2 Communications Like BackgroundCapableMedia, this will also continue to play the selected

audio when the app is in the background. Use this for peer-to-peer chat, VoIP,

etc.

3 Other (the default for audio

elements)

Plays the selected audio when the app is in the foreground, mixing with

background audio; the audio is paused when the app is in the background.

4 ForegroundOnlyMedia Plays the selected audio when the app is in the foreground; the audio is

paused and muted when the app is in the background (video will continue to

play, however, in which case you use the mute event to also pause the video).

When audio of this category is played, background audio will be muted.

5 Alert Plays the selected audio when the app is in the foreground and attenuates

background audio. This is used for app notifications like ringtones as well as

system alerts.

n/a GameMedia Used for ambient music in a game.

n/a GameEffects Used for game sound effects intended to mix with existing audio (all nonmusic

sounds).

n/a SoundEffects Other sound effects (outside of games) intended to mix in with existing audio,

such as brief dings, beeps, boinks, and blurps that indicate activity but don’t

otherwise qualify as alerts.

Where a single audio stream is concerned, there isn’t always a lot of difference between most of

these categories. Yet as the table indicates, different categories have different effects on other

concurrent audio streams. For this purpose, the Windows SDK does an odd thing by provid ing a second

identical sample to the first, the Playback Manager companion sample. This allows you run these apps

at the same time (side by side, or one or both in the background) and play audio with different

category settings to see how they combine.

How different audio streams combine is a subject that’s discussed in the Audio Playback in a

Windows Store App whitepaper. However, you don’t have direct control over mixing—instead, the

important thing is that you assign the most appropriate category to any particular audio stream . These

categories help the playback manager perform the right level of mixing between audio streams

according to user expectations, both with multiple streams in the same app, and streams coming from

multiple apps (with limits on how many background audio apps can be going at once) . For example,

users will expect that alarms, being an important form of notification, will temporarily attenuate other

audio streams (just like the GPS system in my car attenuates music when it gives directions) . Similarly,

users expect that an audio stream of a foreground app takes precedence over a stream of the same

category of audio playing in the background.

http://code.msdn.microsoft.com/windowsapps/Playback-Manager2-55c5b86d
http://go.microsoft.com/fwlink/p/?LinkID=306612
http://go.microsoft.com/fwlink/p/?LinkID=306612

710

As a developer, then, avoid playing games with the categories or trying to second guess the mixing

algorithms, because you’ll end up creating an inconsistent user experience. Just assign the most

appropriate category to your audio stream and let the playback manager deliver a consistent

systemwide experience with audio from all sources.

Setting an audio category for any given audio element is a simple matter of setting its msAudio-

Category attribute. Every scenario in the sample does the same thing for this, making sure to set the

category before setting the src attribute (shown here from js/backgroundcapablemedia.js):

audtag = document.createElement('audio');

audtag.setAttribute("msAudioCategory", "BackgroundCapableMedia");

audtag.setAttribute("src", fileLocation);

You could accomplish the same thing through audtag.msAudioCategory property, as seen in the

previous section, as well as in markup:

<audio id="audio1" src="song.mp3" msAudioCategory="BackgroundCapableMedia"></audio>

<audio id="audio2" src="voip.mp3" msAudioCategory="Communications"></audio>

<audio id="audio3" src="lecture.mp3" msAudioCategory="Other"></audio>

With BackgroundCapableMedia and Communications, however, simply setting the category isn’t

sufficient: you also need to declare an audio background task extension in your manifest. This is easily

accomplished by going to the Declarations tab in the manifest designer:

First, select Background Tasks from the Available Declarations drop-down list and click Add. Then

711

check Audio under Supported Task Types, and identify a Start Page under App Settings. The start page

isn’t really essential for background audio (because the app will never be launched for this purpose),

but you need to provide something to make the manifest editor happy.

These declarations appear as follows in the manifest XML, should you care to look:

<Application Id="App" StartPage="default.html">

 <!-- ... -->

 <Extensions>

 <Extension Category="windows.backgroundTasks" StartPage="default.html">

 <BackgroundTasks>

 <Task Type="audio" />

 </BackgroundTasks>

 </Extension>

 </Extensions>

</Application>

Furthermore, background audio apps must do a few things with the Windows.Media.System-

MediaTransportControls object that we’ve already mentioned so that the user can control

background audio playback through the media control UI (see the next section):

 Set the object’s isPlayEnabled and isPauseEnabled properties to true.

 Listen to the buttonpressed event and handle play and pause cases in your handler by starting

and stopping the audio playback as appropriate.

These requirements also make it possible for the playback manager to control the audio streams as

the user switches between apps. If you fail to provide these listeners, your audio will always be paused

and muted when the app goes into the background. (You can also optionally listen to the

propertychanged event that is triggered for sound level changes.)

How to do this is shown in the Playback Manager sample for all its scenarios; the following is from

js/backgroundcapablemedia.js (some code omitted), and note that the propertychanged event

handler is not required for background audio:

var systemMediaControls = Windows.Media.SystemMediaTransportControls.getForCurrentView();

systemMediaControls.addEventListener("propertychanged", mediaPropertyChanged, false);

systemMediaControls.addEventListener("buttonpressed", mediaButtonPressed, false);

systemMediaControls.isPlayEnabled = true;

systemMediaControls.isPauseEnabled = true;

// audtag variable is the global audio element for the page

audtag.setAttribute("msAudioCategory", "BackgroundCapableMedia");

audtag.setAttribute("src", fileLocation);

audtag.addEventListener("playing", audioPlaying, false);

audtag.addEventListener("pause", audioPaused, false);

function mediaButtonPressed(e) {

 switch (e.button) {

http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx

712

 case Windows.Media.SystemMediaTransportControlsButton.play:

 audtag.play();

 break;

 case Windows.Media.SystemMediaTransportControlsButton.pause:

 audtag.pause();

 break;

 default:

 break;

 }

}

function mediaPropertyChanged(e) {

 switch (e.property) {

 case Windows.Media.SystemMediaTransportControlsProperty.soundLevel:

 // Catch SoundLevel notifications and determine SoundLevel state. If it's muted,

 // we'll pause the player. If your app is playing media you feel that a user should

 // not miss if a VOIP call comes in, you may want to consider pausing playback when

 // your app receives a SoundLevel(Low) notification. A SoundLevel(Low) means your

 // app volume has been attenuated by the system (likely for a VOIP call).

 var soundLevel = e.target.soundLevel;

 switch (soundLevel) {

 case Windows.Media.SoundLevel.muted:

 log(getTimeStampedMessage("App sound level is: Muted"));

 break;

 case Windows.Media.SoundLevel.low:

 log(getTimeStampedMessage("App sound level is: Low"));

 break;

 case Windows.Media.SoundLevel.full:

 log(getTimeStampedMessage("App sound level is: Full"));

 break;

 }

 appMuted(); // Typically only call this for muted and perhaps low levels.

 break;

 default:

 break;

 }

}

function audioPlaying() {

 systemMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.playing;

}

function audioPaused() {

 systemMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.paused;

}

function appMuted() {

 if (audtag) {

 if (!audtag.paused) {

713

 audtag.pause();

 }

 }

}

Note Using the propertychanged event to detect a SoundLevel.muted on a video is the condition

you typically use to pause a foreground-only video.

Given that WinRT events are involved here, the page control’s unload handler makes sure to clear

everything out (js/backgroundcapablemedia.js):

if (systemMediaControls) {

 systemMediaControls.removeEventListener("buttonpressed", mediaButtonPressed, false);

 systemMediaControls.removeEventListener("propertychanged", mediaPropertyChanged, false);

 systemMediaControls.isPlayEnabled = false;

 systemMediaControls.isPauseEnabled = false;

 systemMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.closed;

 systemMediaControls = null;

}

Again, setting the media control object’s isPlayEnabled and isPauseEnabled properties to true,

make sure that the play/pause button is clickable in the UI and that the system controls also respond to

hardware events, such as the buttons on my keyboard. For example, my keyboard also has next,

previous, and stop buttons, but unless the app sets isNextEnabled, isPreviousEnabled, and

isStopEnabled and handles those cases in the buttonpressed event, they won’t have any effect. We’ll

see more in the next section.

Note The SystemMediaTransportControls.isEnabled property affects the entire control panel.

The other very important part to making the UI work properly is setting the playbackStatus value,

otherwise the actual audio playback will be out of sync with the system controls. Take a look at the

code again and you’ll see that the playing and pause events of the audio element are wired to

functions named audioPlaying and audioPaused. Those functions then set the playbackStatus to

the appropriate value from the Windows.Media.MediaPlaybackStatus enumeration, whose values are

playing, paused, stopped, closed, and changing.

In short, the buttonpressed event is how an app responds to system control events. Setting

playbackStatus is how you then affect the system controls in response to app events.

A few additional notes about background audio:

 If the audio is paused, a background audio app will be suspended like any other, but if the user

presses a play button, the app will be resumed and audio will then continue playback.

 The use of background audio is carefully evaluated with apps submitted to the Windows Store.

If you attempt to play an inaudible track as a means to avoid being suspended, the app will fail

Windows Store certification.

http://msdn.microsoft.com/library/windows/apps/windows.media.mediaplaybackstatus.aspx

714

 A background audio app should be careful about how it uses the network for streaming media

to support the low-power state called connected standby. For details, refer to Writing a power

savvy background media app.

Now let’s see the UI that Windows displays in response to hardware buttons.

The Media Transport Control UI
As mentioned in the previous section, handling the buttonpressed event from the SystemMedia-

TransportControls object is required for background audio so that the user can control the audio

through hardware buttons (built into many devices, including keyboards and remote controls) without

needing to switch to the app. This is especially important because background audio continues to play

not only when the user switches to another app but also when the user switches to the Start screen,

switches to the desktop, or locks the device. Furthermore, the system controls also integrate

automatically with Play To, meaning that they act as a remote control for the remote Play To device.

The default media control UI appears in the upper left of the screen, as shown in Figure 13-3,

regardless of what is on the screen at the time. Tapping anywhere outside the specific control buttons

will switch to the app.

FIGURE 13-3 The system media control UI appearing above the Start screen (top) and the desktop (bottom). It will

also show on the lock screen and on top of other Windows Store apps.

Setting the control object’s isPreviousEnabled and isNextEnabled properties to true will, as

you’d expect, enable the other two buttons you see in Figure 13-3. This is demonstrated in the System

media transport controls sample, in whose single scenario you can select multiple files for playback.

When you have multiple files selected, it will play them in sequence, enabling and disabling the buttons

depending on the position of the track in the list, as shown in Figure 13-4. (The AudioPlayback example

in the companion content shows this as well—see the next section.)

http://msdn.microsoft.com/library/windows/desktop/jj247568.aspx
http://msdn.microsoft.com/library/windows/desktop/jj247568.aspx
http://code.msdn.microsoft.com/windowsapps/System-media-transport-7b064ffc
http://code.msdn.microsoft.com/windowsapps/System-media-transport-7b064ffc

715

FIGURE 13-4 The system media control UI with different states of the previous and next buttons. Note that the gap

between the volume control and the other controls is transparent and just shows whatever is underneath.

Notice the significant difference between Figure 13-3 and Figure 13-4: in the first case we just see

the app’s Display Name from its manifest along with its tile logo, where in the latter case we see album

art along with the track title and artist name. Where do the system controls get this information?

This is done through the SystemMediaTransportControls.displayUpdater object, which is of

class SystemMediaTransportControlsDisplayUpdater. Simply said, you populate whichever

properties you need within this object and then call its update method to send them to the UI.

To populate the properties, you can either extract metadata from a StorageFile or set the

properties manually. The first way is done with displayUpdater.copyFromFileAsync, which is how

the SDK sample does it (js/scenario1.js; code here is condensed):

function updateSystemMediaControlsDisplayAsync(mediaFile) {

 var updatePromise;

 // This is a helper function to return a MediaPlaybackType value

 var mediaType = getMediaTypeFromFileContentType(mediaFile);

 var updatePromise = systemMediaControls.displayUpdater.copyFromFileAsync(

 mediaType, mediaFile);

 return updatePromise.then(function (isUpdateSuccessful) {

 if (!isUpdateSuccessful) {

 // Clear the UI if we couldn't get the metadata

 systemMediaControls.displayUpdater.clearAll();

 }

 systemMediaControls.displayUpdater.update();

 });

}

http://msdn.microsoft.com/library/windows/apps/windows.media.systemmediatransportcontrolsdisplayupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.systemmediatransportcontrolsdisplayupdater.copyfromfileasync.aspx

716

The AudioPlayback example for this chapter has another example, though the MP3s in question

don’t have associated album art. That is, Windows will automatically retrieve album art from a central

service for published recordings and save it as part of the StorageFile properties.

Of course, sometimes you’ll be working with unpublished audio (like the AudioPlayback example).

You might also be drawing from a source that doesn’t readily provide a metadata-equipped

StorageFile, or you simply want more control over the process. In all these cases you can set

displayUpdater properties individually. First, you must set the displayUpdater.type property to a

value from the MediaPlaybackType enumeration (music, image, video, or unknown). Failure to do so

will cause exceptions in the next step!

Depending on the type—other than unknown—you then populate fields of one of the following

groups (where all strings must be less than 128 characters):

Group Class (in Windows.Media) Properties

displayUpdater.musicProperties MusicDisplayProperties artist, albumArtist, and title

displayUpdater.imageProperties ImageDisplayProperties title, subtitle

displayUpdater.videoProperties VideoDisplayProperties title, subtitle

Finally, set the displayUpdater.thumbnail property to a RandomAccessStreamReference for the

image you want to display—that is, to the result that comes back from one of its static creation

methods: createFromFile, createFromStream, or createFromUri.

Here’s how the AudioPlayback example with this chapter does it. When you first start playback of

the music segments, it sets up the invariant parts of the UI (js/default.js):

var du = sysMediaControls.displayUpdater;

du.type = Windows.Media.MediaPlaybackType.music;

du.musicProperties.artist = "AudioPlayback Example (Chapter 13)";

var thumbUri = new Windows.Foundation.Uri("ms-appx:///media/albumArt.jpg");

du.thumbnail = Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(thumbUri);

du.update();

and then whenever it switches to a different track, it updates the track title (js/default.js):

du.musicProperties.title = "Segment " + (curSong + 1);

du.update();

The result is as follows:

http://msdn.microsoft.com/library/windows/apps/windows.media.mediaplaybacktype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.musicdisplayproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.imagedisplayproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.videodisplayproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.aspx

717

Playing Sequential Audio
An app that’s playing audio tracks (such as music, an audio book, or recorded lectures) will often have a

list of tracks to play sequentially, especially while the app is running in the background. In this case it’s

important to start the next track quickly because Windows will otherwise suspend the app 10 seconds

after the current audio is finished. For this purpose, listen for the audio element’s ended event and set

audio.src to the next track. A good optimization in this case is to create a second Audio object and

set its src attribute after the first track starts to play. This way that second track will be preloaded and

ready to go immediately, thereby avoiding potential delays in playback between tracks. This is shown in

the AudioPlayback example for this chapter, where I’ve split the one complete song into four segments

for continuous playback. It also shows again how to handle the next and previous button events, along

with setting the segment number as the track name:

var sysMediaControls = Windows.Media.SystemMediaTransportControls.getForCurrentView();

var playlist = ["media/segment1.mp3", "media/segment2.mp3", "media/segment3.mp3",

 "media/segment4.mp3"];

var curSong = 0;

var audio1 = null;

var preload = null;

document.getElementById("btnSegments").addEventListener("click", playSegments);

audio1 = document.getElementById("audioSegments");

preload = document.createElement("audio");

audio1.addEventListener("playing", function () {

 sysMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.playing;

});

audio1.addEventListener("pause", function () {

 sysMediaControls.playbackStatus = Windows.Media.MediaPlaybackStatus.paused;

});

//Starts playback of sequential segments

function playSegments() {

 e.target.disabled = true; //Prevent reentrancy

 curSong = 0;

 //Pause the other music

 document.getElementById("musicPlayback").pause();

 sysMediaControls.isPlayEnabled = true;

 sysMediaControls.isPauseEnabled = true;

 sysMediaControls.isNextEnabled = true;

 sysMediaControls.isPreviousEnabled = false;

 //Remember to remove this WinRT event listener if it goes out of scope

 sysMediaControls.addEventListener("buttonpressed", function (e) {

 var wmb = Windows.Media.SystemMediaTransportControlsButton;

 switch (e.button) {

 case wmb.play:

718

 audio1.play();

 break;

 case wmb.pause:

 case wmb.stop:

 audio1.pause();

 break;

 case wmb.next:

 playNext();

 break;

 case wmb.previous:

 playPrev();

 break;

 default:

 break;

 }

 });

 //Set invariant metadata [omitted--code is in previous section]

 //Show the element (initially hidden) and start playback

 audio1.style.display = "";

 audio1.volume = 0.5; //50%;

 playCurrent();

 //Preload the next track in readiness for the switch

 var preload = document.createElement("audio");

 preload.setAttribute("preload", "auto");

 preload.src = playlist[1];

 //Switch to the next track as soon as one had ended or next button is pressed

 audio1.addEventListener("ended", playNext);

}

function playCurrent() {

 audio1.src = playlist[curSong];

 audio1.play();

 //Update metadata title [omitted]

}

function playNext() {

 curSong++;

 //Enable previous button if we have at least one previous track

 sysMediaControls.isPreviousEnabled = (curSong > 0);

 if (curSong < playlist.length) {

 playCurrent(); //playlist[curSong] should already be loaded

719

 //Set up the next preload

 var nextTrack = curSong + 1;

 if (nextTrack < playlist.length) {

 preload.src = playlist[nextTrack];

 } else {

 preload.src = null;

 //Disable next if we're at the end of the list.

 sysMediaControls.isNextEnabled = false;

 }

 }

}

function playPrev() {

 //Enable Next unless we only have one song in the list

 sysMediaControls.isNextEnabled = (curSong != playlist.length - 1);

 curSong--;

 //Disable previous button if we're at the beginning now

 sysMediaControls.isPreviousEnabled = (curSong != 0);

 playCurrent();

 preload.src = playlist[curSong + 1]; //This should always work

}

When playing sequential tracks like this from an app written in JavaScript and HTML, you might

notice brief gaps between the tracks, especially if the first track flows directly into the second. This is a

present limitation of the platform given the layers that exist between the HTML audio element and the

low-level XAudio2 APIs that are ultimately doing the real work. You can mitigate the effects to some

extent—for example, you can crossfade the two tracks or crossfade a third overlay track that contains a

little of the first and a little of the second track. You can also use a negative time offset to start playing

the next track slightly before the previous one ends. But if you want a truly seamless transition, you’ll

need to bypass the audio element and use the XAudio2 APIs from a WinRT component for direct

playback. How to do this is discussed in the Building your own Windows Runtime components to

deliver great apps post on the Windows developer blog.

Playlists

The AudioPlayback example in the previous section is clearly contrived because an app wouldn’t

typically have an in-memory playlist. More likely an app would load an existing playlist or create one

from files that a user has selected.

WinRT supports these actions through a simple API in Windows.Media.Playlists, which supports

the WPL (Windows Media Player), ZPL (Zune), and M3U formats. The Playlist sample in the Windows

http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://msdn.microsoft.com/library/windows/apps/br206938.aspx
http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee

720

SDK98 shows how to perform various tasks with the API. Scenario 1 lets you choose multiple files with

the file picker, creates a new Playlist object, adds those files to its files list (a StorageFile vector),

and saves the playlist with its saveAsAsync method (this code from js/create.js is simplified and

reformatted a bit):

function pickAudio() {

 var picker = new Windows.Storage.Pickers.FileOpenPicker();

 picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary;

 picker.fileTypeFilter.replaceAll(SdkSample.audioExtensions);

 picker.pickMultipleFilesAsync().done(function (files) {

 if (files.size > 0) {

 SdkSample.playlist = new Windows.Media.Playlists.Playlist();

 files.forEach(function (file) {

 SdkSample.playlist.files.append(file);

 });

 SdkSample.playlist.saveAsAsync(Windows.Storage.KnownFolders.musicLibrary,

 "Sample", Windows.Storage.NameCollisionOption.replaceExisting,

 Windows.Media.Playlists.PlaylistFormat.windowsMedia)

 .done();

 }

}

Notice that saveAsAsync takes a StorageFolder and a name for the file (along with an optional

format parameter). This accommodates a common use pattern for playlists where a music app has a

single folder in which it stores playlists and provides users with a simple means to name them and/or

select them. In this way, playlists aren’t typically managed like other user data files where one always

goes through a file picker to do a Save As into an arbitrary folder. You could use FileSavePicker, get

a StorageFile, and use its path property to get to the appropriate StorageFolder, but more likely

you’ll save playlists in one place and present them as entities that appear only within the app itself.

For example, the Music app that comes with Windows allows you create a new playlist when you’re

viewing tracks of some album:

Or you can use the New Playlist command on the app’s left control pane. In either case, selecting New

98 This sample almost wins the prize for the shortest name in the Windows SDK, but it’s beaten by the AtomPub sample, the

Indexer sample, and the grand champion of conciseness—the Print sample!

http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playlists.playlist.aspx

721

Playlist displays a flyout in which you provide a name:

After this, the playlist will appear both on the left-side controls pane (below left), which makes it

playable like an album, and in the track menu (below right):

In other words, though playlists might be saved in discrete files, they aren’t necessarily presented

that way to the user, and the API reflects that usage pattern.

Loading a playlist uses the Playlist.loadAsync method given a StorageFile for the playlist. This

might be a StorageFile obtained from a file picker or from the enumeration of the app’s private

playlist folder. Scenario 2 of the Playlist sample (js/display.js) demonstrates the former, where it then

goes through each file and requests their music properties (refer back to Chapter 11 in the section

“Media Specific Properties” for information on media file properties and the applicable APIs):

function displayPlaylist() {

 var picker = new Windows.Storage.Pickers.FileOpenPicker();

 picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary;

 picker.fileTypeFilter.replaceAll(SdkSample.playlistExtensions);

 var promiseCount = 0;

 picker.pickSingleFileAsync()

 .then(function (item) {

 if (item) {

 return Windows.Media.Playlists.Playlist.loadAsync(item);

 }

 return WinJS.Promise.wrapError("No file picked.");

 })

 .then(function (playlist) {

 SdkSample.playlist = playlist;

 var promises = {};

 // Request music properties for each file in the playlist.

722

 playlist.files.forEach(function (file) {

 promises[promiseCount++] = file.properties.getMusicPropertiesAsync();

 });

 // Print the music properties for each file. Due to the asynchronous

 // nature of the call to retrieve music properties, the data may appear

 // in an order different than the one specified in the original playlist.

 // To guarantee the ordering, we use Promise.join with an associative array

 // passed as a parameter, containing an index for each individual promise.

 return WinJS.Promise.join(promises);

 })

 .done(function (results) {

 var output = "Playlist content:\n\n";

 var musicProperties;

 for (var resultIndex = 0; resultIndex < promiseCount; resultIndex++) {

 musicProperties = results[resultIndex];

 output += "Title: " + musicProperties.title + "\n";

 output += "Album: " + musicProperties.album + "\n";

 output += "Artist: " + musicProperties.artist + "\n\n";

 }

 if (resultIndex === 0) {

 output += "(playlist is empty)";

 }

 }, function (error) {

 // ...

 });

}

The other method for managing a playlist is PlayList.saveAsync, which takes a single

StorageFile. This is what you’d use if you’ve loaded and modified a playlist and simply want to save

those changes (typically done automatically when the user adds or removes items from the playlist).

This is demonstrated in scenarios 3, 4, and 5 of the sample (js/add.js, js/remove.js, and js/clear.js), which

just use methods of the Playlist.files vector like append, removeAtEnd, and clear, respectively.

Playback of a playlist depends, of course, on the type of media involved, but typically you’d load a

playlist and sequentially take the next StorageFile object from its files vector, pass it to URL.-

createObjectURL, and then assign that URI to the src attribute of an audio or video element. You

could also use playlists to manage lists of videos and images for sequential showing as well.

Sidebar: Background Downloading

Now it’s not always the case that everything you want to play is already on the local file system:

you might want to be downloading the next track at the same time you’re streaming the current

one. This is a great opportunity to use the background downloader API that we talked about in

Chapter 4 and, more specifically, the high priority and unconstrained download features that the

API provides. Mind you, this would be for scenarios where you want to retain a copy of the

media on the local file system after playback is done—you wouldn’t need to worry about this if

723

you’re in a streaming-only situation.

Anyway, let’s say that you want to download and play an album in its entirety. For this you’d

use a strategy like the following:

 Start a download operation for the first track at high priority.

 Start additional downloads for one or more subsequent tracks at normal priority.

 As soon as the first track is transferred, begin playback and change the next track’s

download priority to high.

 Repeat the process of starting additional downloads as necessary, always setting the next

track’s priority to high so that it gets transferred soonest.

Alongside setting priorities, you might also configure these as unconstrained downloads if

you’d like to allow the device to go into connected standby and continue to download and play,

which would be very important for a series of videos where each file transfer could be quite

large. Each request is subject to user consent, of course, but the capability is there so that the

user can enjoy a continuous media experience without having everything in the system continue

to run as it normally would.

More details on this subject can be found in Writing a power savvy background media app.

Text to Speech

Before we delve into the next round of media topics in this chapter, it’s a good time to take a little

break and look at a different set of APIs that are very much related to audio but don’t rely on any

preexisting media files: text to speech. These APIs are found in the Windows.Media.SpeechSynthesis

namespace, specifically in the SpeechSynthesizer class.

The basic “hear me now” usage is straightforward:

 Create an Audio object to handle playback.

 Create an instance of the SpeechSynthesizer object.

 Call its synthesizeTextToStreamAsync method, which results in a SpeechSynthesisStream

object.

 Pass that stream object to MSApp.createBlobFromRandomAccessStream to get a blob.

 Pass the blob to URL.createObjectURL.

 Assign the resulting URL to the audio’s src property and then call its play method when you’re

ready for playback.

http://msdn.microsoft.com/library/windows/desktop/jj247568(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.speechsynthesizer.synthesizetexttostreamasync.aspx

724

Here’s how it’s done in scenario 1 of the Speech synthesis sample, where the Data element is a text

box in which you can type whatever you want (js/SpeakText.js):

var synth = new Windows.Media.SpeechSynthesis.SpeechSynthesizer();

var txtData = document.getElementById("Data");

var audio = new Audio();

synth.synthesizeTextToStreamAsync(txtData.value).then(function (markersStream) {

 var blob = MSApp.createBlobFromRandomAccessStream(markersStream.ContentType, markersStream);

 audio.src = URL.createObjectURL(blob, { oneTimeOnly: true });

 markersStream.seek(0); //start at beginning when speak is hit

 audio.AutoPlay = Boolean(true);

 audio.play();

});

The same scenario also offers an option to save the speech stream into a WAV file rather than

playing it back. Here, file is a StorageFile from a FileSavePicker, and the code is just the same

business of playing with the necessary files, buffers, and streams to get the job done (js/SpeakText.js):

synth.synthesizeTextToStreamAsync(txtData.value).then(function (markerStream) {

 var buffer = new Windows.Storage.Streams.Buffer(markerStream.size);

 file.openAsync(Windows.Storage.FileAccessMode.readWrite).then(function (writeStream) {

 var outputStream = writeStream.getOutputStreamAt(writeStream.size);

 var dataWriter = new Windows.Storage.Streams.DataWriter(outputStream);

 markerStream.readAsync(buffer, markerStream.size,

 Windows.Storage.Streams.InputStreamOptions.none).then(function () {

 dataWriter.writeBuffer(buffer);

 // close the data file streams

 dataWriter.storeAsync().then(function () {

 outputStream.flushAsync().then(function () {

 });

 });

 });

 });

})

Scenario 2 is exactly the same except that it works with the synthesizeSsmlToStreamAsync

method, which supports the use of Speech Synthesis Markup Language (SSML) instead of just plain

text. SSML is a W3C standard that enables you to encode much more subtlety and accurate

pronunciations into your source text. For example, the phoneme tag lets you spell out the exact

phonetic syllables for a word like whatchamacallit (html/SpeakSSML.html):

<phoneme alphabet='x-microsoft-ups' ph='S1 W AA T . CH AX . M AX . S2 K AA L . IH T'>

 whatchamacallit

</phoneme>

Give the sample a try if you don’t know what that word sounds like!

The one other option you have with speech synthesis is to choose from a variety of voices that

support different languages. For the complete list of 17 options covering almost as many languages,

see the documentation for the SpeechSynthesizer.voice property. Note, however, that voices get

http://www.w3.org/TR/speech-synthesis/
http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.speechsynthesizer.voice.aspx

725

installed on a device only as part of a set of locale-specific language resources, so only a smaller subset

is typically available.99 That list is available in the SpeechSynthesizer.allVoices vector with the

default one in defaultVoice. You can enumerate the contents of allVoices to create a list of options

for the user, if you want, or you can programmatically select one according to your preferences. (The

sample does this to populate a drop-down list.)

To select a voice, simply copy one of the elements from allVoices into the voice property

(js/SpeakText.js):

// voicesSelect is a drop-down element

var allVoices = Windows.Media.SpeechSynthesis.SpeechSynthesizer.allVoices;

var selectedVoice = allVoices[voicesSelect.selectedIndex];

synth.voice = selectedVoice;

And that’s really all there is to it! I suspect by now you want to give it a try if you haven’t already,

and I’m sure you can think of creative ways to employ this API in your own projects, especially for

teaching aids, accessibility features, and perhaps in early childhood educational apps.

Sidebar: OK, What About Speech Recognition?

Although WinRT has an API for speech synthesis, it does not at present have one for speech

recognition. Fortunately, Bing provides a speech recognition control for Windows and Windows

Phone that you can learn more about on http://www.bing.com/dev/en-us/speech.

Loading and Manipulating Media

So far in this chapter we’ve seen how to display images and play audio and video by using their

respective HTML elements: img, audio, and video. We also covered a number of related topics in

Chapter 11, including:

 Programmatically accessing the user’s media libraries through Windows.Storage.-

KnownFolders with the appropriate manifest capabilities, as well as removable storage.

 Using thumbnails to display images or video placeholders instead of loading up the entire file

contents.

 Retrieving and modifying file properties, including those specific to media, through the

getImagePropertiesAsync, getVideoPropertiesAsync, and getMusicPropertiesAsync

methods of StorageFile.properties.

 Using the Windows.Storage.StorageLibrary object to add folders to and remove folders

99 To install a voice, go to PC Settings > Time and Language > Region and Language. First click “+ Add a Language” to
select a language to activate, and then when it appears in the list on this page, select it, click Options, and that will take

you to a page where you can download the language pack that includes the voice.

http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.speechsynthesizer.allvoices.aspx
http://www.bing.com/dev/en-us/speech

726

from the media libraries.

 Enumerating folder contents using queries.

In short, what we’ve covered to this point in the book is how to consume media for the purposes of

display and playback, as well as creating gallery views of library content. We turn our attention now to

manipulating media, namely the concerns of transcoding and editing. (Simply changing file-level

properties, like title and author, are covered in Chapter 11.) For this we’ll be looking at the core APIs

that make this possible, including those that give you access to the raw media stream. What you then

do with that raw stream is up to you—we’ll see some basic examples here, but we won’t delve into

anything more specific than that because the subject can quickly become intricate and compl icated.

For that reason you’ll probably find it helpful to refer to some of the topics in the documentation, such

as Processing image files, Transcoding (audio and video), and Using media extensions.

Image Manipulation and Encoding

To do something more with an image than just loading and displaying it (where again you can apply

various CSS transforms for effect), you need to get to the actual pixels by means of a decoder. This

already happens under the covers when you assign a URI to an img.src, but to have direct access to

pixels means decoding manually. On the flip side, saving pixels back out to an image file means using

an encoder.

WinRT provides APIs for both in the Windows.Graphics.Imaging namespace, namely in the

BitmapDecoder, BitmapTransform, and BitmapEncoder classes. Loading, manipulating, and saving an

image file often involves these three classes in turn, though the BitmapTransform object is focused on

rotation and scaling, so you won’t use it if you’re doing other manipulations.

One demonstration of this API can be found in scenario 2 of the Simple imaging sample. I’ll leave it

to you to look at the code directly, however, because it gets fairly involved—up to 11 chained promises

to save a file! It also does all decoding, manipulation, and encoding within a single function such as

saveHandler (js/scenario2.js). Here’s the process it follows:

1. Open a file with StorageFile.openAsync, which provides a stream.

2. Pass that stream to the static method BitmapDecoder.createAsync, which provides a specific

instance of BitmapDecoder for the stream.

3. Pass that decoder to the static method BitmapEncoder.createForTranscodingAsync, which

provides a specific BitmapEncoder instance. This encoder is created with a new instance of

Windows.Storage.Streams.InMemoryRandomAccessStream.

4. Set properties in the encoder’s bitmapTransform property (a BitmapTransform object) to

configure scaling and rotation. This creates the transformed graphic in the in-memory stream.

5. Create a property set (Windows.Graphics.Imaging.BitmapPropertySet) that includes

System.Photo.Orientation and use the encoder’s bitmapProperties.setPropertiesAsync to

http://msdn.microsoft.com/library/windows/apps/hh465103.aspx
http://msdn.microsoft.com/library/windows/apps/hh452806.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700365.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

727

save it.

6. Copy the in-memory stream to the output file stream by using Windows.Storage.Stream.-

RandomAccessStream.copyAsync.

7. Close both streams with their respective close methods (this is what closes the file).

As comprehensive as this scenario is, it’s helpful to look at different stages of the process separately,

for which purpose we have the ImageManipulation example in this chapter’s companion content. This

lets you pick and load an image, convert it to grayscale, and save that converted image to a new file. Its

output is shown in Figure 13-5. It also gives us an opportunity to see how we can send decoded image

data to an HTML canvas element and save that canvas’s contents to a file.

FIGURE 13-5 Output of the ImageManipulation example in the chapter’s companion content.

The handler for the Load Image button (loadImage in js/default.js) provides the initial display. It lets

you select an image with the file picker, displays the full-size image (not a thumbnail) in an img

element with URL.createObjectURL, calls StorageFile.properties.getImagePropertiesAsync to

retrieve the title and dateTaken properties, and uses StorageFile.getThumbnailAsync to provide

the thumbnail at the top. We’ve seen all of these APIs in action already.

Clicking the Grayscale button enters the setGrayscale handler where the interesting work

happens. We call StorageFile.openReadAsync to get a stream, call BitmapDecoder.createAsync

with that to obtain a decoder, cache some details from the decoder in a local object (encoding), and

call BitmapDecoder.getPixelDataAsync and copy those pixels to a canvas (and only three chained

async operations here!):

728

var Imaging = Windows.Graphics.Imaging; //Shortcut

var imageFile; //Saved from the file picker

var decoder; //Saved from BitmapDecoder.createAsync

var encoding = {}; //To cache some details from the decoder

function setGrayscale() {

 //Decode the image file into pixel data for a canvas

 //Get an input stream for the file (StorageFile object saved from opening)

 imageFile.openReadAsync().then(function (stream) {

 //Create a decoder using static createAsync method and the file stream

 return Imaging.BitmapDecoder.createAsync(stream);

 }).then(function (decoderArg) {

 decoder = decoderArg;

 //Configure the decoder if desired. Default is BitmapPixelFormat.rgba8 and

 //BitmapAlphaMode.ignore. The parameterized version of getPixelDataAsync can also

 //control transform, ExifOrientationMode, and ColorManagementMode if needed.

 //Cache these settings for encoding later

 encoding.dpiX = decoder.dpiX;

 encoding.dpiY = decoder.dpiY;

 encoding.pixelFormat = decoder.bitmapPixelFormat;

 encoding.alphaMode = decoder.bitmapAlphaMode;

 encoding.width = decoder.pixelWidth;

 encoding.height = decoder.pixelHeight;

 return decoder.getPixelDataAsync();

 }).done(function (pixelProvider) {

 //detachPixelData gets the actual bits (array can't be returned from

 //an async operation)

 copyGrayscaleToCanvas(pixelProvider.detachPixelData(),

 decoder.pixelWidth, decoder.pixelHeight);

 });

}

The decoder’s getPixelDataAsync method comes in two forms. The simple form, shown here,

decodes using defaults. The full-control version lets you specify other parameters, as explained in the

code comments above. A common use of this is doing a transform using a Windows.Graphics.-

Imaging.BitmapTransform object (as mentioned before), which accommodates scaling (with different

interpolation modes), rotation (90-degree increments), cropping, and flipping.

Either way, what you get back from the getPixelDataAsync is not the actual pixel array, because of

a limitation in the WinRT language projection mechanism whereby an asynchronous operation cannot

return an array. Instead, the operation returns a PixelDataProvider object whose singular super-

exciting synchronous method called detachPixelData gives you the array you want. (And that method

can be called only once and will fail on subsequent calls, hence the “detach” in the method name.) In

the end, though, what we have is exactly the data we need to manipulate the pixels and display the

result on a canvas, as the copyGrayscaleToCanvas function demonstrates. You can, of course, replace

this kind of function with any other manipulation routine:

http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapdecoder.getpixeldataasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.pixeldataprovider.aspx

729

function copyGrayscaleToCanvas(pixels, width, height) {

 //Set up the canvas context and get its pixel array

 var canvas = document.getElementById("canvas1");

 canvas.width = width;

 canvas.height = height;

 var ctx = canvas.getContext("2d");

 //Loop through and copy pixel values into the canvas after converting to grayscale

 var imgData = ctx.createImageData(canvas.width, canvas.height);

 var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 };

 var r, g, b, gray;

 var data = imgData.data; //Makes a huge perf difference to not dereference

 //imgData.data each time!

 for (var i = 0; i < pixels.length; i += 4) {

 r = pixels[i + colorOffset.red];

 g = pixels[i + colorOffset.green];

 b = pixels[i + colorOffset.blue];

 //Calculate brightness value for each pixel

 gray = Math.floor(30 * r + 55 * g + 11 * b) / 100;

 data[i + colorOffset.red] = gray;

 data[i + colorOffset.green] = gray;

 data[i + colorOffset.blue] = gray;

 data[i + colorOffset.alpha] = pixels[i + colorOffset.alpha];

 }

 //Show it on the canvas

 ctx.putImageData(imgData, 0, 0);

 //Enable save button

 document.getElementById("btnSave").disabled = false;

}

This is a great place to point out that JavaScript isn’t necessarily the best language for working over

a pile of pixels like this, though in this case the performance of a Release build running outside the

debugger is actually quite good. Such routines may be better implemented as a WinRT component in a

language like C# or C++ and made callable by JavaScript. We’ll take the opportunity to do exac tly this

in Chapter 18, “WinRT Components,” where we’ll also see limitations of the canvas element that

require us to take a slightly different approach.

Saving this canvas data to a file then happens in the saveGrayscale function, where we use the file

picker to get a StorageFile, open a stream, acquire the canvas pixel data, and hand it off to a

BitmapEncoder:

function saveGrayscale() {

 var picker = new Windows.Storage.Pickers.FileSavePicker();

 picker.suggestedStartLocation =

 Windows.Storage.Pickers.PickerLocationId.picturesLibrary;

 picker.suggestedFileName = imageFile.name + " - grayscale";

 picker.fileTypeChoices.insert("PNG file", [".png"]);

730

 var imgData, fileStream = null;

 picker.pickSaveFileAsync().then(function (file) {

 if (file) {

 return file.openAsync(Windows.Storage.FileAccessMode.readWrite);

 } else {

 return WinJS.Promise.wrapError("No file selected");

 }

 }).then(function (stream) {

 fileStream = stream;

 var canvas = document.getElementById("canvas1");

 var ctx = canvas.getContext("2d");

 imgData = ctx.getImageData(0, 0, canvas.width, canvas.height);

 return Imaging.BitmapEncoder.createAsync(

 Imaging.BitmapEncoder.pngEncoderId, stream);

 }).then(function (encoder) {

 //Set the pixel data--assume "encoding" object has options from elsewhere.

 //Conversion from canvas data to Uint8Array is necessary because the array type

 //from the canvas doesn't match what WinRT needs here.

 encoder.setPixelData(encoding.pixelFormat, encoding.alphaMode,

 encoding.width, encoding.height, encoding.dpiX, encoding.dpiY,

 new Uint8Array(imgData.data));

 //Go do the encoding

 return encoder.flushAsync();

 }).done(function () {

 fileStream.close();

 }, function () {

 //Empty error handler (do nothing if the user canceled the picker)

 });

}

Note how the BitmapEncoder takes a codec identifier in its first parameter. We’re using

pngEncoderId, which is, as you can see, defined as a static property of the Windows.Graphics.-

Imaging.BitmapEncoder class; other values are bmpEncoderId, gifEncoderId, jpegEncoderId,

jpegXREncoderId, and tiffEncoderId. These are the formats supported by the API. You can set

additional properties of the BitmapEncoder before setting pixel data, such as its BitmapTransform,

which will then be applied during encoding.

One gotcha to be aware of here is that the pixel array obtained from a canvas element (a DOM

CanvasPixelArray) is not directly compatible with the WinRT byte array required by the encoder. This

is the reason for the new Uint8Array call down there in the last parameter.

Note Scenario 3 of the SDK’s Simple imaging sample performs a different manipulation on canvas

contents—applying artistic strokes—so you can refer to that for another demonstration. Its process of

saving canvas contents is pretty much the same thing as shown above.

http://msdn.microsoft.com/library/windows/apps/hh465731.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

731

Transcoding and Custom Image Formats

In the previous section we mostly saw the use of a BitmapEncoder created with that class’s static

createAsync method to write a new file. That’s all well and good, but you might want to know about a

few of the encoder’s other capabilities.

First is the BitmapEncoder.createForTranscodingAsync method that was mentioned briefly in

the context of the Simple imaging sample. This specifically creates a new encoder that is initialized

from an existing BitmapDecoder. This is primarily used to manipulate some aspects of the source

image file while leaving the rest of the data intact. To be more specific, you can first change those

aspects that are expressed through the encoder’s setPixelData method: the pixel format (rgba8,

rgba16, and bgra8; see BitmapPixelFormat), the alpha mode (premultiplied, straight, or ignore; see

BitmapAlphaMode), the image dimensions, the image DPI, and, of course, the pixel data itself. Beyond

that, you can change other properties through the encoder’s bitmapProperties.setProperties-

Async method. In fact, if all you need to do is change a few properties and you don’t want to affect the

pixel data, you can use BitmapEncoder.createForInPlacePropertyEncodingAsync instead (how’s

that for a method name!). This encoder allows calls to only bitmapProperties.set-

PropertiesAsync, bitmapProperties.getPropertiesAsync, and flushAsync, and since it can

assume that the underlying data in the file will remain unchanged, it executes much faster than its

more flexible counterparts and it has less memory overhead.

An encoder from createForTranscodingAsync does not accommodate a change of image file

format (e.g., JPEG to PNG); for that you need to use createAsync wherein you can specify the specific

kind of encoding. As we’ve already seen, the first argument to createAsync is a codec identifier, for

which you normally pass one of the static properties of BitmapEncoder such as pngEncoderId. What I

haven’t mentioned is that you can also specify custom codecs in this first parameter and that the

createAsync call also supports an optional third argument in which you can provide options for the

particular codec in question. However, there are complications and restrictions here.

Let me address options first. The present documentation for the BitmapEncoder codec values (like

pngEncoderId) lacks any details about available options. For that you need to instead refer to the docs

for the Windows Imaging Component (WIC), specifically the Native WIC Codecs that are what WinRT

surfaces to Windows Store apps. If you go into the page for a specific codec, you’ll then see a section

on “Encoder Options” that tells you what you can use. For example, the JPEG codec supports properties

like ImageQuality (a value between 0.0 and 1.0), as well as built-in rotations. The PNG codec supports

properties like FilterOption for various compression optimizations.

To provide these properties, you need to create a new BitmapPropertySet and insert an entry in

that set for each desired option. If, for example, you have a variable named quality that you want to

apply to a JPEG encoding, you’d create the encoder like this:

var options = new Windows.Graphics.Imaging.BitmapPropertySet();

options.insert("ImageQuality", quality);

var encoderPromise = Imaging.BitmapEncoder.createAsync(Imaging.BitmapEncoder.jpegEncoderId,

 stream, options);

http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapencoder.createfortranscodingasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmappixelformat.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapalphamode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapencoder.createforinplacepropertyencodingasync.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430027.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430026.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430028.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmappropertyset.aspx

732

You use the same BitmapPropertySet for any properties you might pass to an encoder’s bitmap-

Properties.setPropertiesAsync call. Here’s we’re just using the same mechanism for encoder

options.

As for custom codecs, this simply means that the first argument to BitmapEncoder.createAsync

(as well as BitmapDecoder.createAsync) is the GUID (a class identifier or CLSID) for that codec, the

implementation of which must be provided by a DLL. Details on how to write one of these is provided

in How to Write a WIC-Enabled Codec. The catch is that including custom image codecs in your

package is not presently supported. If the codec is already on the system (that is, installed via the

desktop), it will work. However, the Windows Store policies do not allow apps to be dependent on

other apps, so it’s unlikely that you can even ship such an app unless it’s preinstalled on some specific

OEM device and the DLL is part of the system image. (An app written in C++ can do more here, but

that’s beyond the scope of this book.)

In short, for apps written in JavaScript and HTML, you’re really limited, for all practical purposes, to

image formats that are inherently supported in the system unless you're willing to write your own

decoder for file data and do in-place conversions to a supported format.

Do note that these restrictions do not exist for custom audio and video codecs. The Media

extensions sample shows how to do this with a custom video codec, as we’ll see in “Custom

Decoders/Encoders and Scheme Handlers” later..

Manipulating Audio and Video
As with images, if all you want to do is load the contents of a StorageFile into an audio or video

element, you can just pass that StorageFile to URL.createObjectUrl and assign the result to a src

attribute. Similarly, if you want to get at the raw data, we can just use the StorageFile.openAsync or

openReadAsync methods to obtain a file stream.

To be honest, opening the file is probably the farthest you’d ever go in JavaScript with raw audio or

video, if even that. While chewing on an image is a marginally acceptable process in the JavaScript

environment, churning on audio and especially video is really best done in a highly performant C++

DLL. In fact, many third-party, platform-neutral C/C++ libraries for such manipulations are readily

available, which you should be able to directly incorporate into such a DLL. In this case you might as

well just let the DLL open the file itself!

That said, WinRT (which is written in C++!) does provide for transcoding (converting) between

different media formats, and it provides an extensibility model for custom codecs, effects, and scheme

handlers. In fact, we’ve already seen how to apply custom video effects through the Media extensions

sample (see “Applying a Video Effect” earlier in the chapter), and the same DLLs can also be used within an

encoding process, where all that the JavaScript code really does is glue the right components together

(which it’s very good at doing). Let’s see how this works with transcoding video first and then with

custom codecs.

http://msdn.microsoft.com/library/windows/apps/br226252.aspx
http://msdn.microsoft.com/library/windows/apps/br226252.aspx
http://msdn.microsoft.com/library/windows/desktop/ee719883.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096

733

Transcoding

Transcoding both audio and video is accomplished through the Windows.Media.Transcoding.-

MediaTranscoder class, which supports output formats of mp3, wav, and wma for audio, and mp4,

wmv, avi, and m4a for video. The transcoding process also allows you to apply effects and to trim start

and end times.

Transcoding happens either from one StorageFile to another or one RandomAccessStream to

another, and in each case it happens according to a MediaEncodingProfile. To set up a transcoding

operation, you call the MediaTranscoder prepareFileTranscodeAsync or prepareStream-

TranscodeAsync method, which returns back a PrepareTranscodeResult object. This represents the

operation that’s ready to go, but it won’t happen until you call that result’s transcodeAsync method.

In JavaScript, each result is a promise, allowing you to provide completed and progress handlers for a

single operation but also allowing you to combine operations with WinJS.Promise.join. This allows

them to be set up and started later, which is useful for batch processing and doing automatic uploads

to a service like YouTube while you’re sleeping! (And at times like these I’ve actually pulled ice packs

from my freezer and placed them under my laptop as a poor-man’s cooling system….)

The Transcoding media sample provides us with a couple of transcoding scenarios. In scenario 1

(js/presets.js) we can pick a video file, pick a target format, select a transcoding profile, and turn the

machine loose to do the job (with progress being reported), as shown in Figure 13-6.

FIGURE 13-6 The Transcoding media sample cranking away on a video of my then two-year-old son discovering

the joys of a tape measure.

http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.mediaproperties.mediaencodingprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparefiletranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparestreamtranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparestreamtranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.preparetranscoderesult.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Transcode-Sample-f7ba5269

734

The code that’s executed when you press the Transcode button is as follows (js/presets.js, with some

bits omitted; this sample happens to use nested promises, which again isn’t recommended for proper

error handling unless you want, as this code would show, to eat any exceptions that occur prior to the

transcode-Async call):

function onTranscode() {

 // Create transcode object.

 var transcoder = null;

 transcoder = new Windows.Media.Transcoding.MediaTranscoder();

 // Get transcode profile.

 getPresetProfile(id("profileSelect"));

 // Create output file and transcode.

 var videoLib = Windows.Storage.KnownFolders.videosLibrary;

 var createFileOp = videoLib.createFileAsync(g_outputFileName,

 Windows.Storage.CreationCollisionOption.generateUniqueName);

 createFileOp.done(function (ofile) {

 g_outputFile = ofile;

 g_transcodeOp = null;

 var prepareOp = transcoder.prepareFileTranscodeAsync(g_inputFile, g_outputFile,

 g_profile);

 prepareOp.done(function (result) {

 if (result.canTranscode) {

 g_transcodeOp = result.transcodeAsync();

 g_transcodeOp.done(transcodeComplete, transcoderErrorHandler,

 transcodeProgress);

 } else {

 transcodeFailure(result.failureReason);

 }

 }); // prepareOp.done

 id("cancel").disabled = false;

 }); // createFileOp.done

}

The getPresetProfile method retrieves the appropriate profile object according to the option

selected in the app. For the selections shown in Figure 13-6 (WMV and WVGA), we’d use these parts of

that function:

function getPresetProfile(profileSelect) {

 g_profile = null;

 var mediaProperties = Windows.Media.MediaProperties;

 var videoEncodingProfile;

 switch (profileSelect.selectedIndex) {

 // other cases omitted

 case 2:

 videoEncodingProfile = mediaProperties.VideoEncodingQuality.wvga;

 break;

 }

 if (g_useMp4) {

735

 g_profile = mediaProperties.MediaEncodingProfile.createMp4(videoEncodingProfile);

 } else {

 g_profile = mediaProperties.MediaEncodingProfile.createWmv(videoEncodingProfile);

 }

}

In scenario 2, the sample always uses the WVGA encoding but allows you to set specific values for

the video dimensions, the frame rate, the audio and video bitrates, audio channels, and audio

sampling. It applies these settings in getCustomProfile (js/custom.js) simply by configuring the profile

properties after the profile is created:

function getCustomProfile() {

 if (g_useMp4) {

 g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createMp4(

 Windows.Media.MediaProperties.VideoEncodingQuality.wvga);

 } else {

 g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createWmv(

 Windows.Media.MediaProperties.VideoEncodingQuality.wvga);

 }

 // Pull configuration values from the UI controls

 g_profile.audio.bitsPerSample = id("AudioBPS").value;

 g_profile.audio.channelCount = id("AudioCC").value;

 g_profile.audio.bitrate = id("AudioBR").value;

 g_profile.audio.sampleRate = id("AudioSR").value;

 g_profile.video.width = id("VideoW").value;

 g_profile.video.height = id("VideoH").value;

 g_profile.video.bitrate = id("VideoBR").value;

 g_profile.video.frameRate.numerator = id("VideoFR").value;

 g_profile.video.frameRate.denominator = 1;

}

And to finish off, scenario 3 is like scenario 1, but it lets you set start and end times that are then

saved in the transcoder’s trimStartTime and trimStopTime properties (see js/trim.js):

transcoder = new Windows.Media.Transcoding.MediaTranscoder();

transcoder.trimStartTime = g_start;

transcoder.trimStopTime = g_stop;

Though not shown in the sample, you can apply effects to a transcoding operation by using the

transcoder’s addAudioEffect and addVideoEffect methods.

Handling Custom Audio and Video Formats
Although Windows supports a variety of audio and video formats in-box, there are clearly many more

formats that your app might want to work with. You can do this a couple of ways. First, you can use

custom bytestream objects, media sources, codecs, and effects. Second, you can obtain what’s called a

media stream source with which you can do in-place decoding. We'll look at both in this section.

736

Custom Decoders/Encoders and Scheme Handlers

To support custom audio and video formats beyond those that Windows supports in-box, WinRT

provides some extensibility mechanisms. I should warn you up front that this subject will take you into

some pretty vast territory around the entire Windows Media Foundation (WMF) SDK. What’s in WinRT

is just a wrapper, so knowledge of WMF is essential and not for the faint of heart! It’s also important to

note that all such extensions are available to only the app itself and are not available to other apps on

the system. Furthermore, Windows will always prefer in-box components over a custom one, which

means don’t bother wasting your time creating a new mp3 decoder or such since it will never actually

be used. Your primary reference here is the Media extensions sample, which demonstrates an MPEG1

decoder along with grayscale, invert, and polar transform (pinch, warp, and fisheye) effects. Each of

these is implemented as a C++ extension DLL. To enable these, the app must declare them in its

manifest as follows (note that the manifest editor in Visual Studio does not surface these parts of the

manifest, so you have to edit the XML directly):

<Extension Category="windows.activatableClass.inProcessServer">

 <InProcessServer>

 <Path>MPEG1Decoder.dll</Path>

 <ActivatableClass ActivatableClassId="MPEG1Decoder.MPEG1Decoder"

 ThreadingModel="both" />

 </InProcessServer>

</Extension>

The ActivatableClassId is how an extension is identified when calling the WinRT APIs, which is

clearly mapped in the manifest to the specific DLL that needs to be loaded.

Depending, then, on the use of the extension, you might need to register it with WinRT through the

methods of Windows.Media.MediaExtensionManager: registerAudio[Decoder | Encoder],

registerByteStreamHandler (media sinks), registerSchemeHandler (media sources/file containers),

and registerVideo[Decoder | Encoder]. In scenario 1 of the Media extensions sample

(js/LocalDecoder.js), we can see how to set up a custom decoder for video playback:

var page = WinJS.UI.Pages.define("/html/LocalDecoder.html", {

 extensions: null,

 MFVideoFormat_MPG1: { value: "{3147504d-0000-0010-8000-00aa00389b71}" },

 NULL_GUID: { value: "{00000000-0000-0000-0000-000000000000}" },

 ready: function (element, options) {

 if (!this.extensions) {

 // Add any initialization code here

 this.extensions = new Windows.Media.MediaExtensionManager();

 // Register custom ByteStreamHandler and custom decoder.

 this.extensions.registerByteStreamHandler("MPEG1Source.MPEG1ByteStreamHandler",

 ".mpg", null);

 this.extensions.registerVideoDecoder("MPEG1Decoder.MPEG1Decoder",

 this.MFVideoFormat_MPG1, this.NULL_GUID);

 }

 // ...

http://msdn.microsoft.com/library/ms694197.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/library/windows/apps/windows.media.mediaextensionmanager.aspx

737

where the MPEG1Source.MPEG1ByteStreamHandler CLSID (class identifier) is implemented in one DLL

(see the MPEG1Source C++ project in the sample’s solution) and the MPEG1Decoder.MPEG1.Decoder

CLSID is implemented in another (the MPEG1Decoder C++ project).

Scenario 2, for its part, shows the use of a custom scheme handler, where the handler (in the

GeometricSource C++ project) generates video frames on the fly. Fascinating stuff, but beyond the

scope of this book.

Effects, as we’ve seen, are quite simple to use once you have one implemented: just pass their CLSID

to methods like msInsertVideoEffect and msInsertAudioEffect on video and audio elements.

You can also apply effects during the transcoding process in the MediaTranscoder class’s addAudio-

Effect and addVideoEffect methods. The same is also true for media capture, as we’ll see shortly.

Media Stream Sources

If you’re going to do heavy-duty encoding and decoding of a custom audio or video format, it’s a

good investment in the long time to create a custom media extension as outlined in the previous

section. For other scenarios, however, it’s sheer overkill. For all these reasons that is another way to

handle custom formats: the Windows.Media.Core.MediaStreamSource API. This basically allows an

app to inject its own code into the media pipeline that’s used in playback, transcoding, and streaming

alike. It operates like this:

 Create an instance of MediaStreamSource using a descriptor for the stream, and then set

other desired properties. This object is what delivers samples into the media pipeline.

 Add listeners to the MediaStreamSource object’s samplerequested, starting, and closed

events. These are WinRT events to be sure to call removeEventListener when the object

goes out of scope. You can also listen to the paused event if you’re need to manage a read-

ahead buffer.

 Pass the MediaStreamSource to URL.createObjectURL and assign the return to the media

element’s src attribute, after which you can start playback for audio and video.

The important work then occurs within your three events handlers:

 The starting event is fired when rendering begins. Here you open the source stream (e.g.,

open a file to obtain a RandomAccessStream) and adjust the starting position if needed.

 When the media engine is ready to render a frame or sample, it fires a samplerequested

event. Here you read and parse data from the stream, manipulate it however you want, and

return the sample. You can also decompress or decrypt your source's data, combine data from

multiple sources, or even generate samples on the fly. In short, this is where you provide the

raw bytes into the next stage of the pipeline, and you’re in complete control.

 When rendering is complete, the closed event fires. Here you close whatever stream you

opened in starting. This is also a place where you can remove event listeners.

http://msdn.microsoft.com/library/windows/apps/dn282716

738

The MediaStreamSource streaming sample demonstrates this process for an MP3 file that you select

using the file picker, handling playback through a simple audio element (html/S1_StreamMP3.html):

<audio id="mediaPlayer" width="610" controls="controls" ></audio>

The selected file from the picker ends up in a variable called inputMP3File, after which the sample

calls its function initializeMediaStreamSource in js/S1_StreamMP3.js. Let’s follow though that code,

which starts by retrieving various properties from the file:

function initializeMediaStreamSource() {

 byteOffset = 0;

 timeOffset = 0;

 // get the MP3 file properties

 getMP3FileProperties().then(function () {

 return getMP3EncodingProperties();

 }).then(function () {

The getMP3FileProperties function initializes variables called title and songDuration using the

StorageFile.properties.getMusicProperties async method; the getMP3EncodingProperties

function initialized variables called sampleRate, channelCount, and bitrate using

StorageFile.properties.retrievePropertiesAsync for the associated System.Audio* properties.

Note The original sample doesn’t properly chain the get* functions as shown above and available in

the modified sample in the companion content. Without this correction, the sample can crash if it

attempts to continue executing the code before variables like songDuration have been initialized.

With these properties in hand, we can now create the descriptor for the stream:

 var audioProps = Windows.Media.MediaProperties.AudioEncodingProperties.createMp3(

 sampleRate, channelCount, bitrate);

 var audioDescriptor = new Windows.Media.Core.AudioStreamDescriptor(audioProps);

Then we can create the MediaStreamSource with that descriptor and set some of its properties like

canSeek, duration, and musicProperties (or videoProperties and thumbnail for video):

 MSS = new Windows.Media.Core.MediaStreamSource(audioDescriptor);

 MSS.canSeek = true;

 MSS.musicProperties.title = title;

 MSS.duration = songDuration;

Now we’re ready to attach event listeners, assign the stream to the media element, and start

playback:

 MSS.addEventListener("samplerequested", sampleRequestedHandler, false);

 MSS.addEventListener("starting", startingHandler, false);

 MSS.addEventListener("closed", closedHandler, false);

 mediaPlayer.src = URL.createObjectURL(MSS, { oneTimeOnly: true });

http://code.msdn.microsoft.com/windowsapps/MediaStreamSource-media-dfd55dff

739

 mediaPlayer.play();

 });

}

When play is called, Windows needs to start rendering the audio, so it first fires the starting

event, where eventArgs.request is a MediaStreamSourceStartingRequest object containing a

startPosition property, a setActualStartPosition method (so that you can make adjustments),

and a getDeferral method. The deferral is necessary—as we’ve seen in other cases—because

playback begins as soon as your event handler returns. The deferral allows you to do async work within

the handler, as shown in the sample (js/S1_StreamMP3.js):

function startingHandler(e) {

 var request = e.request;

 if ((request.startPosition !== null) && request.startPosition <= MSS.duration) {

 var sampleOffset = Math.floor(request.startPosition / sampleDuration);

 timeOffset = sampleOffset * sampleDuration;

 byteOffset = sampleOffset * sampleSize;

 }

 // Create the RandomAccessStream for the input file for the first time

 if (mssStream === undefined){

 var deferral = request.getDeferral();

 try{

 inputMP3File.openAsync(Windows.Storage.FileAccessMode.read).then(function(stream) {

 mssStream = stream;

 request.setActualStartPosition(timeOffset);

 deferral.complete();

 });

 }

 catch (exception){

 MSS.notifyError(Windows.Media.Core.MediaStreamSourceErrorStatus.failedToOpenFile);

 deferral.complete();

 }

 }

 else {

 request.setActualStartPosition(timeOffset);

 }

}

As you can see, the sample simply opens the inputMP3File file to obtain a stream, which it stores in

mssStream. At the top, it also sets timeOffset and byteOffset variables that are used within the

samplerequested handler. When opening a new file, these end up being zero. Note also the use of

MediaStreamSource.notifyError to communicate error conditions to the media pipeline.

You can also see that this event handler works when the stream has already been initialized. This

happens if you start playback in the UI and then pause it, which will raise a paused event (not handled

in the sample). When you resume playback, the starting event will fire again, but in that case we just

need to update the timeOffset instead of opening the stream again.

http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsourcestartingrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.notifyerror.aspx

740

Once the starting event handler returns, the samplerequested handler starts getting called. Its

eventArgs.request is a MediaStreamSourceSampleRequest object that contains the

streamDescriptor related to the request, a getDeferral method for the usual purposes, a

reportSampleProgress method to call when the sample can’t be delivered right away, and a sample

property in which the sample data is stored before the handler returns (js/S1_StreamMP3.js):

function sampleRequestedHandler(e){

 var request = e.request;

 // Check if the sample requested byte offset is within the file size

 if (byteOffset + sampleSize <= mssStream.size)

 {

 var deferral = request.getDeferral();

 var inputStream = mssStream.getInputStreamAt(byteOffset);

 // Create the MediaStreamSample and assign to the request object.

 // You could also create the MediaStreamSample using createFromBuffer(...)

 Windows.Media.Core.MediaStreamSample.createFromStreamAsync(

 inputStream, sampleSize, timeOffset).then(function(sample) {

 sample.duration = sampleDuration;

 sample.keyFrame = true;

 // Increment the time and byte offset

 byteOffset = byteOffset + sampleSize;

 timeOffset = timeOffset + sampleDuration;

 request.sample = sample;

 deferral.complete();

 });

 }

}

The sample itself is represented by a MediaStreamSample object, which can be created in two ways.

One is through the static MediaStreamSample.createFromStreamAsync method, as shown in the

code above, where you indicate what portion of the stream to use. The other is the static method

MediaStreamSample.createFromBuffer, where the buffer can contain any data that you’ve

generated dynamically or data that you’ve read from your original input stream and then manipulated.

See the sidebar on the next page.

Once created, be sure to set the duration property of the sample so that the rest of the media

pipeline knows how much of the playback stream it has to work with. In addition, you can set these

other properties:

 keyFrame If true, indicates that the sample can be independently decoded from other

samples.

 discontinuous If true, indicates that the previous sample in the sequence was missing, such

as when you drop video frames or audio samples because of network latency.

 protection A MediaStreamSampleProtectionProperties object for handling digital rights

management. Refer to the MediaStreamSource.mediaProtectionManager property and

http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsourcesamplerequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsample.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsample.createfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsample.createfrombuffer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsampleprotectionproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.mediaprotectionmanager.aspx

741

addProtectionKey method. We’ll talk a bit more of DRM later in this chapter under “Streaming

Media and Play To.”

 decodeTimestamp By default, this is the same as the sample’s read-only timestamp property,

but some formats might require a different value for decoding, in which case you use this to

override that default.

In any case, when you’ve created the necessary sample, assign it to the request.sample property

and then return. If you want to know when the media pipeline has finished with the sample, you can

listen to the MediaStreamSample.processed event. This is most useful to know when you can reuse its

buffer.

If you’ve reached the end of the stream, on the other hand, simply return from the event handler

without setting request.sample, which will signal the media pipeline that playback has finished. At

that point the closed event will be fired, in which you do your cleanup (js/S1_StreamMP3.js):

function closedHandler(e){

 if (mssStream){

 mssStream.close();

 mssStream = undefined;

 }

 e.target.removeEventListener("starting", startingHandler, false);

 e.target.removeEventListener("samplerequested", sampleRequestedHandler, false);

 e.target.removeEventListener("closed", closedHandler, false);

 if (e.target === MSS) {

 MSS = null;

 }

}

Earlier I briefly mentioned the stream source’s paused event. This again indicates that playback has

been paused through the media element’s UI. This is helpful if you’re managing a read-ahead buffer in

your stream (such as when you’re downloading from a network). If you are, you also need to call the

MediaStreamSource.setBufferedRange method to tell the media pipeline how much data you have.

Windows uses this to determine when you’ve buffered the whole stream (from offset 0 to duration),

which means it can enter a lower power mode.

By default as well, the media pipeline will be making sample requests three seconds ahead of the

playback offset. This can be changed through the MediaStreamSource.bufferTime property

(expressed in milliseconds, so the default value is 3000).

The other feature that I alluded to earlier is that you can have a stream source read from multiple

streams simultaneously. For example, you might want to play an alternate audio track along with a

video, in which case you would have separate descriptors for each and would use the second

MediaStreamSource constructor that takes two descriptors instead of one. If you have more than two

descriptors, you can also call the source’s addStreamDescriptor after it’s been created, but this has to

be done before playback or any other operation has begun.

http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.addprotectionkey.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.setbufferedrange.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.buffertime.aspx
http://msdn.microsoft.com/library/windows/apps/dn282757.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.core.mediastreamsource.addstreamdescriptor.aspx

742

When dealing with multiple streams, you must clearly pay attention to the request.stream-

Descriptor property in the samplerequested event so that you return the correct sample! The

MediaStreamSource also fires a switchStreamsRequested event to tell you that it’s switching streams

if you have other work you need to do in preparation for sample, but this is wholly optional.

Sidebar: Generating Sine Wave Audio

As an example of generating a dynamic stream, I’ve added a second scenario to the modified

MediaStreamSource streaming sample in the companion content. For this I create a buffer

ahead of time that contains data for a 110Hz sine wave, and then I set up the

MediaStreamSource with an 8-bit PCM audio descriptor (PCM is the basis for the WAV file

format). The samplerequested handler then uses MediaStreamSample.createFromBuffer to

generate the audio sample from the buffer (special thanks to Anders Klemets for the code):

//Include approximately 100 ms of audio data in the buffer

var cyclesPerBuffer = Math.floor(sampleRate / 10 / samplesPerCycle);

var samplesPerBuffer = samplesPerCycle * cyclesPerBuffer;

var sampleLength = Math.floor(samplesPerBuffer * 1000 / sampleRate);

//sineBuffer if populated with 110Hz sine wave data

//sampleLength is the duration of the data in the buffer, in ms

//timeOffset is initially set to 0

function sampleRequestedHandler(e) {

 var sample = Windows.Media.Core.MediaStreamSample.createFromBuffer(

 sineBuffer, timeOffset);

 sample.duration = sampleLength;

 timeOffset = (timeOffset + sample.duration);

 e.request.sample = sample;

}

Media Capture

There are times when we can really appreciate the work that people have done to protect individual

privacy, such as making sure I know when my computer’s camera is being used since I am often using it

in the late evening, sitting in bed, or in the early pre-shower mornings when I have, in the words of my

father-in-law, “pineapple head” or I bear a striking resemblance to the character of Heat Miser in The

Year Without a Santa Claus.

And there are times when we want to turn on a camera or a microphone and record something: a

picture, a video, or audio. Of course, an app cannot know ahead of time what exact camera and

microphones might be on a system. A key step in capturing media, then, is determining which device

to use—something that the Windows.Media.Capture APIs provide for nicely, along with the process of

doing the capture itself into a file, a stream, or some other custom “sink,” depending on how an app

743

wants to manipulate or process the capture.

Back in Chapter 2, “Quickstart,” we learned how to use WinRT to easily capture a photograph in the

Here My Am! app. To quickly review, we only needed to declare the Webcam capability in the manifest

and add a few lines of code (this is from HereMyAm2a, the first version of the app):

function capturePhoto() {

 var captureUI = new Windows.Media.Capture.CameraCaptureUI();

 var that = this;

 captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png;

 captureUI.photoSettings.croppedSizeInPixels =

 { width: that.clientWidth, height: that.clientHeight };

 captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFile) {

 //Be sure to check validity of the item returned; could be null

 //if the user canceled.

 if (capturedFile) {

 lastCapture = capturedFile; //Save for Share

 that.src = URL.createObjectURL(capturedFile, {oneTimeOnly: true});

 }

 }, function (error) {

 console.log("Unable to invoke capture UI: " + error.message);

 });

}

The UI that Windows brings up through this API provides for cropping, retakes, and adjusting

camera settings. Another example of taking a photo can also be found in scenario 1 of the

CameraCaptureUI Sample, along with an example of capturing video in scenario 2. In this latter case

(js/capturevideo.js) we configure the capture UI object for a video format and indicate a video mode in

the call to captureFileAsync. The resulting StorageFile can be passed straight along to a

video.src property through our good friend URL.createObjectURL:

function captureVideo() {

 var dialog = new Windows.Media.Capture.CameraCaptureUI();

 dialog.videoSettings.format = Windows.Media.Capture.CameraCaptureUIVideoFormat.mp4;

 dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.video)

 .done(function (file) {

 if (file) {

 var videoBlobUrl = URL.createObjectURL(file, {oneTimeOnly: true});

 document.getElementById("capturedVideo").src = videoBlobUrl;

 } else {

 //...

 }

 });

}

It should be noted that the Webcam capability in the manifest applies only to the image or video

side of camera capture. If you want to capture audio, be sure to also select the Microphone capability

on the Capabilities tab of the manifest editor.

http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac

744

If you look in the Windows.Media.Capture.CameraCaptureUI object, you’ll also see many other

options you can configure. Its photoSettings property, a CameraCaptureUIPhotoCaptureSettings

object, lets you indicate cropping size and aspect ratio, format, and maximum resolution. Its

videoSettings property, a CameraCaptureUIVideoCaptureSettings object, lets you set the format,

set the maximum duration and resolution, and indicate whether the UI should allow for trimming. All

useful stuff! You can find discussions of some of these in the docs on Capturing or rendering audio,

video, and images, including coverage of managing calls on a Bluetooth device.

Flexible Capture with the MediaCapture Object

Of course, the default capture UI won’t necessarily suffice in every use case. For one, it always sends

output to a file, but if you’re writing a communications app, for example, you’d rather send captured

video to a stream or send it over a network without any files involved at all. You might also want to

preview a video before any capture actually happens, or simply show capture UI in place rather than in

using the built-in full-screen overlay. Furthermore, you may want to add effects during the capture,

apply rotation, and perhaps apply a custom encoding.100

All of these capabilities are available through the Windows.Media.Capture.MediaCapture class:

Properties Description (classes are in the Windows.Media.Capture namespace unless

noted)

audioDeviceController An AudioDeviceController that controls volume and provides the ability to

manage other arbitrary properties that affect the audio stream.

mediaCaptureSettings A MediaCaptureSettings that contains device IDs and mode settings, and lets you

set the source (audio, videoPreview, photo).

videoDeviceController A VideoDeviceController that controls picture properties (brightness, hue,

pan/tilt, zoom, etc.), provides adjustments for backlight and AC power frequency, and

provides the ability to manage other arbitrary properties that affect the video stream.

Events Description

failed Fired when an error occurs during capture.

recordLimitationExceeded Fired when the user tried to record video or audio past the allowable duration.

Methods101 Description

initializeAsync Initialize the MediaCapture object (with defaults or with a

MediaCaptureInitialization-Settings object that contains the same stuff as

MediaCaptureSettings).

addEffectAsync Applies an effect.

clearEffectsAsync Clears all current effects.

100 On this subject you might be interested in Dave Rousset’s blog series, Using WinJS & WinRT to build a fun HTML5

Camera Application for Windows.

101 Note that there are a few additional methods in the documentation that are not projected into JavaScript and thus
aren’t shown here, such as startPreviewToCustomSinkAsync. In JavaScript, you can just pass a preview to

URL.createObjectURL, assign the result to video.src, and then call video.play() to preview.

http://msdn.microsoft.com/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.capture.mediacapture.aspx
http://blogs.msdn.com/b/davrous/archive/2012/09/05/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application.aspx
http://blogs.msdn.com/b/davrous/archive/2012/09/05/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application.aspx

745

capturePhotoToStorageFileAsync

capturePhotoToStreamAsync

Captures an image to a storage file or a random access stream. Both take an instance

of ImageEncodingProperties to control format (JPEG or PNG), type, dimensions,

and other arbitrary Windows Properties, as described in Chapter 11.

getEncoderProperty

setEncoderProperty

setEncodingPropertiesAsync

Manages specific encoder properties.

startRecordToStorageFileAsync

startRecordToStreamAsync

stopRecordAsync

Starts and stops recording to a storage file or random access stream, a

MediaEncodingProfile that determines the audio/video format, along with bitrate,

quality, video dimensions, etc.

getRecordRotation

setRecordRotation

For videos, these manage a VideoRotation value (90-degree increments) to apply to

the recording. These do not affect audio.

startRecordToCustomSinkAsync Starts recording into a custom sink that’s described either by an implementation of

Windows.Media.IMediaExtension or by an ID plus a property set of settings.

startPreviewAsync

stopPreviewAsync

getPreviewRotation

setPreviewRotation

Same as recording but works for previews. In this case, if you call

URL.createObjectURL and pass the MediaCapture object as the first parameter,

the result can be assigned to the src attribute of a video element and the preview

shows in that element when you call the video.play method.

getPreviewMirroring

setPreviewMirroring

Controls preview mirroring, which means to flip the preview horizontally; this

accounts for differences in camera direction, which can be in the same direction as

the user (rear-mounted camera as on a tablet computer) or the opposite direction

(camera mounted on a monitor or built into a laptop display). See the next section,

“Selecting a Media Capture Device.”

prepareLowLagPhotoCaptureAsync

prepareLowLagPhotoSequeceCaptureAsync

prepareLowLagRecordToStorageFileAsync

prepareLowLagRecordToStreamAsync

Works with capture devices that are have low lag shutters, meaning that they can

capture a series of images in a short period of time.

For a very simple demonstration of previewing video in a video element, we can look at the

CameraOptionsUI sample in js/showoptionsui.js. When you tap the Start Preview button, it creates and

initializes a MediaCapture object as follows:

function initializeMediaCapture() {

 mediaCaptureMgr = new Windows.Media.Capture.MediaCapture();

 mediaCaptureMgr.initializeAsync().done(initializeComplete, initializeError);

}

where the initializeComplete handler calls into startPreview:

function startPreview() {

 document.getElementById("previewTag").src = URL.createObjectURL(mediaCaptureMgr);

 document.getElementById("previewTag").play();

 startPreviewButton.disabled = true;

 showSettingsButton.style.visibility = "visible";

 previewStarted = true;

}

The other little bit shown in this sample is invoking the Windows.Media.Capture.Camera-

OptionsUI, which happens when you tap its Show Settings button; see Figure 13-7. This is just a

http://msdn.microsoft.com/library/windows/desktop/dd561977(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/CameraOptionsUI-Sample-44c06873

746

system-provided flyout with options that are relevant to the current media stream being captured:

function showSettings() {

 if (mediaCaptureMgr) {

 Windows.Media.Capture.CameraOptionsUI.show(mediaCaptureMgr);

 }

}

By the way, if you have trouble running a sample like this in the Visual Studio simulator—specifically,

you see exceptions when trying to turn on the camera—try running on the local machine or a remote

machine instead.

FIGURE 13-7 The Camera Options UI, as shown in the CameraOptionsUI sample (empty bottom is cropped).

More complex scenarios involving the MediaCapture class (and a few others) can be found now in

the Media capture using capture device sample, such as previewing and capturing video, changing

properties dynamically (scenario 1), selecting a specific media device (scenario 2), recording just audio

(scenario 3), and capturing a photo sequence (scenario 4).

Starting with scenario 3 (js/AudioCapture.js, the simplest), here’s the core code to create and

initialize the MediaCapture object for an audio stream (see the streamingCaptureMode property in

the initialization settings), where that stream is directed to a file in the music library via

startRecordToStorageFileAsync (some code omitted and condensed for brevity):

var mediaCaptureMgr = null;

var captureInitSettings = null;

var encodingProfile = null;

var storageFile = null;

// This is called when the page is loaded

function initCaptureSettings() {

 captureInitSettings = new Windows.Media.Capture.MediaCaptureInitializationSettings();

 captureInitSettings.audioDeviceId = "";

 captureInitSettings.videoDeviceId = "";

 captureInitSettings.streamingCaptureMode =

 Windows.Media.Capture.StreamingCaptureMode.audio;

}

http://code.msdn.microsoft.com/windowsapps/Media-Capture-Sample-adf87622

747

function startAudioCapture() {

 mediaCaptureMgr = new Windows.Media.Capture.MediaCapture();

 mediaCaptureMgr.initializeAsync(captureInitSettings).done(function (result) {

 // ...

 });

}

function startRecord() {

 // ...

 // Start recording.

 Windows.Storage.KnownFolders.videosLibrary.createFileAsync("cameraCapture.m4a",

 Windows.Storage.CreationCollisionOption.generateUniqueName)

 .done(function (newFile) {

 storageFile = newFile;

 encodingProfile = Windows.Media.MediaProperties

 .MediaEncodingProfile.createM4a(Windows.Media.MediaProperties

 .AudioEncodingQuality.auto);

 mediaCaptureMgr.startRecordToStorageFileAsync(encodingProfile,

 storageFile).done(function (result) {

 // ...

 });

 });

}

function stopRecord() {

 mediaCaptureMgr.stopRecordAsync().done(function (result) {

 displayStatus("Record Stopped. File " + storageFile.path + " ");

 // Playback the recorded audio (using a video element)

 var video = id("capturePlayback" + scenarioId);

 video.src = URL.createObjectURL(storageFile, { oneTimeOnly: true });

 video.play();

 });

}

Scenario 1 is essentially the same code but captures a video stream as well as photos, with results

shown in Figure 13-8. This variation is enabled through these properties in the initialization settings

(see js/BasicCapture.js within initCaptureSettings):

captureInitSettings.photoCaptureSource =

 Windows.Media.Capture.PhotoCaptureSource.auto;

captureInitSettings.streamingCaptureMode =

 Windows.Media.Capture.StreamingCaptureMode.audioAndVideo;

748

FIGURE 13-8 Previewing and recording video with the default device in the Media capture sample, scenario 1. (The

output is cropped because I needed to run the app using the Local Machine option in Visual Studio and I didn’t

think you needed to see a 1920x1200 screen shot with lots of whitespace!)

Notice the Contrast and Brightness controls in Figure 13-8. Changing these will change the preview

video, along with the recorded video. The sample does this through the MediaCapture.videoDevice-

Controller object’s contrast and brightness properties, showing that these (and any others in the

controller) can be adjusted dynamically. Refer to the getCameraSettings function in js/BasicCapture.js

that basically wires the slider change events into a generic anonymous function to update the desired

property.

Selecting a Media Capture Device
Looking now at scenario 2 (js/AdvancedCapture.js), it’s more or less like scenario 1 but it allows you to

select the specific input device. Until now, everything we’ve done has simply used the default device,

but you’re not limited to that, of course. This is a good thing because my current laptop’s default

camera is usually covered when the machine is in its docking station—without the ability to choose

another camera, I’d just get a bunch of black images!

You use the Windows.Devices.Enumeration API to retrieve a list of devices within a particular

device interface class, namely the DeviceInformation.findAllAsync method. To this you give it a

value from the DeviceClass enumeration or another capture selector. The sample, for instance, uses

DeviceClass.videoCapture to enumerate cameras (js/AdvancedCapture.js):

function enumerateCameras() {

 var cameraSelect = id("cameraSelect");

 cameraList = new Array();

 // Enumerate cameras and add them to the list

http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.findallasync.aspx

749

 var deviceInfo = Windows.Devices.Enumeration.DeviceInformation;

 deviceInfo.findAllAsync(Windows.Devices.Enumeration.DeviceClass.videoCapture)

 .done(function (cameras) {

 // ...

 });

 // ...

}

and a selector for microphones:

function enumerateMicrophones() {

 var microphoneSelect = id("microphoneSelect");

 var microphoneDeviceId = 0;

 microphoneList = new Array();

 // Enumerate microphones and add them to the list

 var microphoneDeviceInfo = Windows.Devices.Enumeration.DeviceInformation;

 microphoneDeviceInfo.findAllAsync(

 Windows.Media.Devices.MediaDevice.getAudioCaptureSelector(), null)

 .done(function (deviceInformation) {

 // ...

 }

 // ...

}

In both cases the result of the enumeration (DeviceInformation.findAllAsync) is a

DeviceInformationCollection object that contains some number of DeviceInformation objects.

These collections are used to populate the drop-down lists, as shown below. Here you can see that I

have two cameras (one in my laptop lid and the other hanging off my secondary monitor) and two

microphones (on the same devices):

The selected device’s ID is then copied within to the videoDeviceId and audioDeviceId properties

of the MediaCaptureInitializationSetting object:

captureInitSettings = new Windows.Media.Capture.MediaCaptureInitializationSettings();

var selectedIndex = id("cameraSelect").selectedIndex;

var deviceInfo = deviceList[selectedIndex];

captureInitSettings.videoDeviceId = deviceInfo.id;

var selectedIndex = id("microphoneSelect").selectedIndex;

var microphoneDeviceInfo = microphoneList[selectedIndex];

captureInitSettings.audioDeviceId = microphoneDeviceInfo.id;

http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformationcollection.aspx

750

By the way, you can retrieve the default device ID at any time through the methods of the

Windows.Media.Devices.MediaDevice object and listen to its events for changes in the default

devices. It’s also important to note that DeviceInformation (in the deviceInfo variable above)

includes a property called enclosureLocation:

if (deviceInfo.enclosureLocation) {

 cameraLocation = deviceInfo.enclosureLocation.panel;

}

The enclosureLocation property is an EnclosureLocation object that has inDock, inLid, and

panel properties; the latter is a value from Windows.Devices.Enumeration.Panel, whose values are

front, back, top, bottom, left, right, and unknown. This tells you whether a camera is forward or

backward facing, which you can use to rotate the video or photo as appropriate for the user’s

perspective (also taking the device orientation into account).

The other bit that scenario 2 demonstrates is using the MediaCapture.addEffectAsync with a

grayscale effect, shown in Figure 13-9, that’s implemented in a C++ DLL (the GrayscaleTransform

project in the sample’s solution). This works exactly as it did with transcoding, and you can refer to the

addRemoveEffect and addEffectToImageStream functions in js/AdvancedCapture.js for the details.

You’ll notice there that these functions do a number of checks using the MediaCaptureSettings.-

videoDeviceCharacteristic value to make sure that the effect is added in the right place.

FIGURE 13-9 Scenario 2 of the Media capture sample, in which one can select a specific device and apply an effect.

(The output here is again cropped from a larger screen shot.) Were you also paying attention enough to notice tha t

I switched guitars?

http://msdn.microsoft.com/library/windows/apps/br226802.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.enclosurelocation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.panel.aspx

751

The last piece of the sample, scenario 4, demonstrates capture features related to low shutter lag–

capable cameras. Some cameras, that is, have a long lag between each captured image. If a camera is

low-lag–capable, this enables a capture mode called a photo sequence, which takes a continuous series

of photos in a short period of time. This is configured through the MediaCapture.videoDevice-

Controller.lowLagPhotoSequence property, a LowLagPhotoSequenceControl object whose

supported property tells you if your hardware is suitably capable of this feature. But I’ll let you look at

scenario 4 for all the details involving this and methods like MediaCapture.prepareLowLagPhoto-

CaptureAsync.

Streaming Media and Play To

To say that streaming media is popular is certainly a gross understatement. As mentioned in this

chapter’s introduction, Netflix alone consumes a large percentage of today’s Internet bandwidth

(including that of my own home). YouTube, Amazon Instant Video, and Hulu certainly do their part as

well—so your app might as well contribute to the cause!

Streaming media from a server to your app is easily the most common case, and it happens

automatically when you set an audio or video src attribute to a remote URI. To improve on this, Microsoft

also has a Smooth Streaming Client SDK that helps you build media apps with a number of rich features,

including live playback and PlayReady content protection. I won’t be covering that SDK in this book, so

I wanted to make sure you were aware of it along with the tutorial, Building Your First HTML5 Smooth

Streaming Player.

What we’ll focus on here, in the few pages we have left before my editors at Microsoft Press pull the

plug on this chapter, are considerations for digital rights management and streaming not from a

network but to a network (for example, audio/video capture in a communications app), as well as

streaming media from an app to a Play To device.

Streaming from a Server and Digital Rights Management
Again, streaming media from a server is what you already do whenever you’re using an audio or video

element with a remote URI. The details just happen for you. Indeed, much of what a great media client

app does is talking to web services, retrieving metadata and the catalog, helping the user navigate all

of that information, and ultimately getting to a URI that can be dropped in the src attribute of a video

or audio element. Then, once the app receives the canplay event, you can call the element’s play

method to get everything going.

Of course, media is often protected with DRM, otherwise the content on paid services wouldn’t be

generating much income for the owners of those rights! So there needs to be a mechanism to acquire

and verify rights somewhere between setting the element’s src and receiving canplay. Fortunately,

there’s a simple means to do exactly that:

http://msdn.microsoft.com/library/windows/apps/windows.media.devices.lowlagphotosequencecontrol.aspx
http://visualstudiogallery.msdn.microsoft.com/04423d13-3b3e-4741-a01c-1ae29e84fea6?SRC=Home
http://msdn.microsoft.com/library/jj573656(v=vs.90).aspx
http://msdn.microsoft.com/library/jj573656(v=vs.90).aspx

752

8. Before setting the src attribute, create an instance of Windows.Media.Protection.Media-

ProtectionManager and configure its properties.

9. Listen to this object’s serviceRequested event, the handler for which performs the appropriate

rights checks and sets a completed flag when all is well. (Two other events, just to mention

them, are componentloadfailed and rebootneeded.)

10. Assign the protection manager to the audio/video element with the

msSetMediaProtectionManager extension method.

11. Set the src attribute. This will trigger the serviceRequested event to start the DRM process,

which will prevent canplay until DRM checks are completed successfully.

12. In the event of an error, the media element’s error event will be fired. The element’s error

property will then contain an msExtendedCode with more details.

You can refer to How to use pluggable DRM and How to handle DRM errors for additional details,

but here’s a minimal and hypothetical example of all this in code:

var video1 = document.getElementById("video1");

video1.addEventListener('error', function () {

 var error = video1.error.msExtendedCode;

 //...

}, false);

video1.addEventListener('canplay', function () {

 video1.play();

}, false);

var cpm = new Windows.Media.Protection.MediaProtectionManager();

cpm.addEventListener('servicerequested', enableContent, false); //Remove this later

video1.msSetContentProtectionManager(cpm);

video1.src = "http://some.content.server.url/protected.wmv";

function enableContent(e) {

 if (typeof (e.request) != 'undefined') {

 var req = e.request;

 var system = req.protectionSystem;

 var type = req.type;

 //Take necessary actions based on the system and type

 }

 if (typeof (e.completion) != 'undefined') {

 //Requested action completed

 var comp = e.completion;

 comp.complete(true);

 }

}

http://msdn.microsoft.com/library/windows/apps/windows.media.protection.mediaprotectionmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.protection.mediaprotectionmanager.aspx
http://msdn.microsoft.com/library/windows/apps/hh465953.aspx
http://msdn.microsoft.com/library/windows/apps/hh452779.aspx
http://msdn.microsoft.com/library/windows/apps/hh452767.aspx

753

How you specifically check for rights, of course, is particular to the service you’re drawing from—

and not something you’d want to publish in any case!

For a more complete demonstration of handling DRM, check out the PlayReady sample, which will

require that you download and install the Microsoft PlayReady Client SDK. PlayReady, if you aren’t

familiar with it yet, is a license service that Microsoft provides so that you don’t have to create one from

scratch. The PlayReady Client SDK provides additional tools and framework support for apps wanting to

implement both online and offline media scenarios, such as progressive download, download to own,

rentals, and subscriptions. Plus, with the SDK you don’t need to submit your app for DRM Conformance

testing. In any case, here’s how the PlayReady sample sets up its content protection manager, just to

give an idea of how the WinRT APIs are used with specific DRM service identifiers:

mediaProtectionManager = new Windows.Media.Protection.MediaProtectionManager();

mediaProtectionManager.properties[“Windows.Media.Protection.MediaProtectionSystemId”] =

 ‘{F4637010-03C3-42CD-B932-B48ADF3A6A54}’

var cpsystems = new Windows.Foundation.Collections.PropertySet();

cpsystems[“{F4637010-03C3-42CD-B932-B48ADF3A6A54}”] =

 “Microsoft.Media.PlayReadyClient.PlayReadyWinRTTrustedInput”;

mediaProtectionManager.properties[

 “Windows.Media.Protection.MediaProtectionSystemIdMapping”] = cpsystems;

Streaming from App to Network

The next case to consider is when an app is the source of streaming media rather than the consumer,

which means that client apps elsewhere are acting in that capacity. In reality, in this scenario—audio or

video communications and conferencing—it’s usually the case that the app plays both roles, streaming

media to other clients and consuming media from them. This is the case with Skype and other such

utilities, along with apps like games that include a chat feature.

Here’s how such apps generally work:

1. Set up the necessary communication channels over the network, which could be a peer-to-peer

system or could involve a central service of some kind.

2. Capture audio or video to a stream using the WinRT APIs we’ve seen (specifically Media-

Capture.startRecordToStreamAsync) or capturing to a custom sink.

3. Do any additional processing to the stream data. Note, however, that effects are plugged into

the capture mechanism (MediaCapture.addEffectAsync) rather than something you do in

post-processing.

4. Encode the stream for transmission however you need.

5. Transmit the stream over the network channel.

6. Receive transmissions from other connected apps.

http://code.msdn.microsoft.com/windowsapps/PlayReady-sample-for-bb3065e7
http://visualstudiogallery.msdn.microsoft.com/59be4d26-7f00-463e-9d61-2803c36b576b

754

7. Decode transmitted streams and convert to a blob by using MSApp.createBlobFromRandom-

AccessStream.

8. Use URL.createObjectURL to hook an audio or video element to the stream.

To see such features in action, check out the Real-time communications sample that implements

video chat in scenario 2 and demonstrates working with different latency modes in scenario 1. The last

two steps in the list above are also shown in the PlayToReceiver sample that is set up to receive a media

stream from another source.

Play To
The final case of streaming is centered on the Play To capabilities that were introduced in Windows 7.

Simply said, Play To is a means through which an app can connect local playback/display for audio,

video, and img elements to a remote device.

The details happen through the Windows.Media.PlayTo APIs along with the extension methods

added to media elements. If, for example, you want to specifically start a process of streaming

immediately to a Play To device, invoking the selection UI directly, you’d do the following:

1. Call Windows.Media.PlayTo.PlayToManager APIs:

a. getForCurrentView returns the object.

b. showPlayToUI invokes the flyout UI where the user selects a receiver.

c. sourceRequested event is fired when user selects a receiver.

2. In the sourceRequested handler:

a. Get PlayToSource object from audio, video, or img element (msPlayToSource property)

and pass to e.setSource.

b. Set PlayToSource.next property to the msPlayToSource of another element for

continual playing.

3. Pick up the media element’s ended event to stage additional media.

You can find a demonstration in the Media Play To sample, where it displays a recommended glyph

to programmatically display the Play To flyout using showPlayToUI:

You can also start media playback locally and then let the user choose a Play To receiver from the

Devices > Play charm. In this case you don’t need to do anything special with the Play To API at all

because Windows will pick up the current playback element and direct it accordingly. But the app can

http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtomanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtosource.aspx
http://code.msdn.microsoft.com/windowsapps/Media-PlayTo-Sample-fedcb0f9

755

listen to the statechanged event of the element’s msPlayToSource.connection object (a

PlayToConnection) that will fire when the user selects a receiver and when other changes happen.

One of the limitations of playing media from one machine to a Play To receiver is that DRM-

protected playback isn’t presently possible. Fortunately, there’s another way to do it called play by

reference. This means that your app just sends a URI to cloud-based media to the receiver such that the

receiver can stream it directly. This is done through the PlayToSource.preferredSourceUri property

or through an audio or video element’s msPlayToPreferredSourceUri property (in JavaScript) or x-

ms-playToPreferredSourceUri attribute (in HTML).

Generally speaking, Play To is primarily intended for streaming to a media receiver device that’s

probably connected to a TV or other large screen. This way you can select local content on a Windows

device and send it straight to that receiver. But it’s also possible to make a software receiver—that is, an

app that can receive streamed content from a Play To source. The PlayToReceiver sample does exactly

this, and when you run it on another device on your local network, it will show up in the Devices

charm’s Play group of your first machine as follows (shown here alongside my other hardware receiver):

Note that you might need to add the device through the Add a Device command at the bottom of

the list (or through PC Settings > PC and Devices > Devices > Add a Device).

You can also run the receive app from your primary machine by using the remote debugging tools

of Visual Studio, allowing you to step through the code of both source and receiver apps at the same

time! Another option is to run Windows Media Player on one machine and check its Stream > Allow

Remote Control Of My Player menu option. This should make that machine appear in the Play To

target list. (If it doesn’t, you might need to again add it through PC Settings > PC and Devices >

Devices.)

To be a receiver, an app will generally want to declare some additional networking capabilities in

the manifest—namely, Internet (Client & Server) and Private Networks (Client & Server)—otherwise it

won’t see much action! It then creates an instance of Windows.Media.PlayTo.PlayToReceiver, as

shown in the Play To Receiver sample’s startPlayToReceiver function (js/audiovideoptr.js):

http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtoconnection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtosource.preferredsourceuri.aspx
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed

756

function startPlayToReceiver() {

 if (!g_receiver) {

 g_receiver = new Windows.Media.PlayTo.PlayToReceiver();

 }

Next you’ll want to wire up handlers for the element that will play the media stream:

var dmrVideo = id("dmrVideo");

dmrVideo.addEventListener("volumechange", g_elementHandler.volumechange, false);

dmrVideo.addEventListener("ratechange", g_elementHandler.ratechange, false);

dmrVideo.addEventListener("loadedmetadata", g_elementHandler.loadedmetadata, false);

dmrVideo.addEventListener("durationchange", g_elementHandler.durationchange, false);

dmrVideo.addEventListener("seeking", g_elementHandler.seeking, false);

dmrVideo.addEventListener("seeked", g_elementHandler.seeked, false);

dmrVideo.addEventListener("playing", g_elementHandler.playing, false);

dmrVideo.addEventListener("pause", g_elementHandler.pause, false);

dmrVideo.addEventListener("ended", g_elementHandler.ended, false);

dmrVideo.addEventListener("error", g_elementHandler.error, false);

along with handlers for events that the receiver object will fire:

g_receiver.addEventListener("playrequested", g_receiverHandler.playrequested, false);

g_receiver.addEventListener("pauserequested", g_receiverHandler.pauserequested, false);

g_receiver.addEventListener("sourcechangerequested",

 g_receiverHandler.sourcechangerequested, false);

g_receiver.addEventListener("playbackratechangerequested",

g_receiverHandler.playbackratechangerequested, false);

g_receiver.addEventListener("currenttimechangerequested",

g_receiverHandler.currenttimechangerequested, false);

g_receiver.addEventListener("mutechangerequested",

 g_receiverHandler.mutedchangerequested, false);

g_receiver.addEventListener("volumechangerequested",

 g_receiverHandler.volumechangerequested, false);

g_receiver.addEventListener("timeupdaterequested",

 g_receiverHandler.timeupdaterequested, false);

g_receiver.addEventListeer("stoprequested", g_receiverHandler.stoprequested, false);

g_receiver.supportsVideo = true;

g_receiver.supportsAudio = true;

g_receiver.supportsImage = false;

g_receiver.friendlyName = 'SDK JS Sample PlayToReceiver';

The last line above, as you can tell from the earlier image, is the string that will show in the Devices

charm for this receiver once it’s made available on the network. This is done by calling startAsync:

// Advertise the receiver on the local network and start receiving commands

g_receiver.startAsync().then(function () {

 g_receiverStarted = true;

 // Prevent the screen from locking

 if (!g_displayRequest) {

 g_displayRequest = new Windows.System.Display.DisplayRequest();

 }

 g_displayRequest.requestActive();

});

757

Of all the receiver object’s events, the critical one is sourcechangerequested where

eventArgs.stream contains the media we want to play in whatever element we choose. This is easily

accomplished by creating a blob from the stream and then a URI from the blob that we can assign to

an element’s src attribute:

sourcechangerequested: function (eventIn) {

 if (!eventIn.stream) {

 id("dmrVideo").src = "";

 } else {

 var blob = MSApp.createBlobFromRandomAccessStream(eventIn.stream.contentType,

 eventIn.stream);

 id("dmrVideo").src = URL.createObjectURL(blob, {oneTimeOnly: true});

 }

}

All the other events, as you can imagine, are primarily for wiring together the source’s media

controls to the receiver such that pressing a pause button, switching tracks, or acting on the media in

some other way at the source will be reflected in the receiver—it’s what enables all the system

transport controls (including hardware buttons on keyboards and such) to act as a remote control for

the receiver. There might be a lot of events, but handling them is quite simple, as you can see in the

sample. Also note that if the user switches to a different Play To device, the current receiver is stopped

and everything gets picked up by the new receiver.

What We Have Learned

 Creating media elements can be done in markup or code by using the standard img, svg,

canvas, audio, and video elements.

 The three graphics elements—img, svg, and canvas—can all produce essentially the same

output, only with different characteristics as to how they are generated and how they scale. All

of them can be styled with CSS, however.

 The Windows.Data.Pdf API provides a means to render PDF documents into files or streams.

 The Windows.System.Display.DisplayRequest object allows for disabling screen savers and

the lock screen during video playback (or any other appropriate scenario).

 Both the audio and video elements provide a number of extension APIs (properties, methods,

and events) for working with various platform-specific capabilities in Windows, such as

horizontal mirroring, zooming, playback optimization, 3D video, low-latency rendering, Play To,

playback management of different audio types or categories, effects (generally provided as DLLs

in the app package), and digital rights management.

 Background audio is supported for several categories given the necessary declarations in the

manifest and handlers for media control events (so that the audio can be appropriately paused

and played). Media control events are important to support the system transport control UI.

758

 The Windows.Media.SpeechSynthesis API provides a built-in means to generate audio

streams from plain text as well as Speech Synthesis Markup Language (SSML).

 The WinRT APIs provide for decoding and encoding of media files and streams, through which

the media can be converted or the properties changed. This includes support for custom codecs

as well as custom media stream sources that allow an app to inject processing code directly in

the media rendering pipeline, even to dynamically generate media if desired.

 WinRT provides a rich API for media capture (photo, video, and audio), including a built-in

capture UI, along with the ability to provide your own and yet still easily enumerate and access

available devices.

 Streaming media is supported from a server (with and without DRM, including PlayReady),

between apps (inbound and outbound), and from apps to Play To devices. An app can also be

configured as a Play To receiver.

759

Chapter 14

Purposeful Animations

In the early 1990s, the wonderful world of multimedia first became prevalent on Windows PCs. Before

that time it was difficult for such machines to play audio and video, access compact discs (remember

those?), and otherwise provide the rich experience we take for granted today. The multimedia

experience was new and exciting, and many people jumped in wholeheartedly, including the group of

developer support engineers at Microsoft specializing in this area. Though my team (specializing in UI)

sat more than 100 feet away from their area, we could clearly hear—for most of the day!—the various

chirps and bleeps emitting from their speakers, against the background of a soft Amazon basin rainfall.

At that time too, many consumers of Windows were having fun attaching all kinds of crazy sounds

to every mouse click, window transition, email arrival, and every other system event they could think of.

Yet after a month or two of this sensual overload—not unlike being at a busy carnival—most people

started to remove quite a few of those sounds, if not disable them altogether. I, for one, eventually

turned off all my sounds. Simply said, I got tired of the extra noise.

Along these same lines, you may remember that when DVDs first appeared in their full glory, just

about every title had fancy menus with clever transitions. No more: most consumers, I think, got tired

of waiting for all this to happen and just want to get on with the business of watching the movie as

quickly as possible.

Today we’re reliving this same experience with fluid animations. Now that most systems have highly

responsive touch screens and GPUs capable of providing very smooth graphical transitions, it’s

tempting to use animations superfluously. However, unless the animations actually add meaning and

function to an app, consumers will likely tire of them like they did with DVD menus, especially if they

end up interfering with a workflow by making one constantly wait for the animations to finish. I’ll bet

that every reader of this book has, at least once, repeatedly hit the Menu button on a DVD remote to

no avail….

This is why Windows Store app design speaks of purposeful animations: if there’s no real purpose

behind an animation in your app, ask yourself, “Why am I wanting to use this?” Take a moment, in fact,

to use Windows and some of the built-in apps to explore how animations are both used and not used.

Notice how many animations are specifically to track or otherwise give immediate feedback for touch

interactions, which purposefully help users know that their input is being registered by the system.

Other animations, such as when items are added or removed from a list, are intended to draw attention

to the change, soften its visual impact, and give it a sense of fluidity. In other cases, you may find apps

that overdo animations, simply using them because they’re available or trying too hard to emulate

physical motion where it’s simply not necessary. In this way, excessive animations constitute a kind of

“chrome” with the same effect as other chrome: distracting the user from the content they really care

about. (If you can’t resist the temptation to add little effects that are like this, consider at least

760

providing a setting to turn them off.)

Purposeful animations serve the needs of people rather than just showing off technology. Let me

put it another way. When thinking about animations, ask yourself, “What do they communicate?”

Animations are a form of communication, a kind of visual language. I would even venture to say (as I

am venturing now) that animations really only say one or a combination of three things:

 “Thanks, I heard you,” as when something on the screen moves naturally in response to a user

gesture. Without this communication, the user might think that their gesture didn’t register and

will almost certainly poke at the app again.

 “Hello” and “Goodbye,” as when items appear or disappear from view, or transition one to

another. Without this communication, changes that happen to on-screen elements can be as

jarring as Bilbo Baggins in Lord of the Rings slipping on the Ring of Power and instantly

vanishing. This is not to say that most consumers are incredulous hobbits, of course, but you get

the idea.

 “Hey, look at me!” as when something moves to only gain attention or look cute.

If I were to assign percentages to these categories to represent how often they would or should be

used, I’d probably put them at 80%, 15%, and 5%, respectively (although some animations will serve

multiple purposes). Put another way, the first bit of communication is really about listening and

responding, which is what an app should be doing most of the time. The second bit is about courtesy,

which is another good quality to express within reason—courtesy can, like handshakes, hugs, bows, and

salutes, be overused to the point of annoyance. The third bit, for its part, can be helpful when there’s a

real and sincere reason to raise your hand or offer a friendly wave, but otherwise can easily become just

another means of showing off.

There’s another good reason to be judicious about the use of animations and really make them

count: power consumption. No matter how it’s accomplished, via GPU or CPU, animation is an

expensive process. Every watt of juice in a consumer’s batteries should be directed toward fulfilling

their goals with their device rather than scattered to the wind. Again, this is why this chapter is called

“Purposeful Animations” and not just “Animations”!

In any case, you and your designers are the ultimate arbiters of how and when you’ll use animations.

Let me emphasize here that animations should be part of an app’s design, not just an implementation

detail. Animations are very much part of the overall user experience of an app. Oftentimes app designs

focus on static wireframes and static mockups, neither of which indicate dynamic elements like

animations and transitions. Animations are also tightly coupled to the app’s layout and should be

designed alongside that layout from the earliest stages of design.

In this uncommonly short chapter, then, we’ll first look at what’s provided for you in the WinJS

Animations Library, a collection of animations built on CSS that already embody the Windows look and

feel for many common operations. After that we’ll review the underlying CSS capabilities that you can,

of course, use directly. In fact, aside from games and other apps whose primary content consists of

761

animated objects, you can probably use CSS for most other animation needs. This is a good idea

because the CSS engine is very much optimized to take advantage of hardware acceleration, something

that isn’t true when doing frame-by-frame animations in JavaScript yourself. Nevertheless, we’ll end

this chapter on that latter subject, as there are some tips and tricks for doing it well within Windows

Store apps.

Systemwide Enabling and Disabling of Animations

Before we go any further, take a moment to check PC Settings > Ease of Access > Other Options > Play

Animations in Windows and make sure that it's turned on (see Figure 14-1). If it's off, you won't be

seeing many animations in the system, including those that you trigger through WinJS APIs. This can be

very confusing when writing an app that uses animations!

FIGURE 14-1 A very important setting for animation in the desktop control panel.

The idea behind this check box is that for some users, animations are a real distraction that can

make the entire machine more difficult to use. For medical reasons too, some users might elect to

minimize on-screen movement just to keep the whole experience more calm. So when this option is

checked, the WinJS animations don’t actually do anything, and it’s recommended that apps also disable

many if not all of their own custom animations as well.

The setting value is obtained through the Windows.UI.ViewManagement.UISettings class in its

animationsEnabled property:

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.aspx

762

var settings = new Windows.UI.ViewManagement.UISettings();

var enabled = settings.animationsEnabled;

You can also just call the WinJS.UI.isAnimationEnabled method that will return true or false

depending on this property. WinJS uses this internally to manage its own animation behavior.

WinJS also adds an enablement count that you can use to temporarily enable or disable animations

in conjunction with the animationsEnabled value. You change this count by calling WinJS.UI.-

enableAnimations and WinJS.UI.disableAnimations, the effects of which are cumulative, and the

animationsEnabled property counts as 0 if the PC Settings option is off and 1 if it’s on.

When implementing your own animations either with CSS or with mechanisms like setInterval or

requestAnimationFrame, be sensitive to the animationsEnabled setting where appropriate. I add this

condition because if an animation is essential to the actual content of an app, like a game, then it’s not

appropriate to apply this setting. The same goes for animating something like a clock within a clock

app. It’s really about animations that add a fast-and-fluid effect to the content but can be turned off

without ill effect.

The WinJS Animations Library

When considering animations for your app, the first place you should turn is the Animations Library in

WinJS, found in the WinJS.UI.Animation namespace. Each animation is a function within this

namespace that you call when you want a certain kind of animation or transition to happen. The

benefit of using these is that they directly embody the Windows look and feel and, in fact, are what

WinJS itself uses to animate its own controls, flyouts, and so forth to match the user interface design

guidelines. What’s more, because they are built with CSS transitions and animations, they aren’t

dependent on WinRT and are fully functional within web context pages that have loaded WinJS (but

they do again pay attention to whether animations are enabled as described in the previous section).

All of the animations, as listed in the table below, have guidance as to when and how they should be

applied. These are again really design questions more than implementation questions, as stated earlier.

By being aware of what’s in the animations library, designers can more readily see where animations

are appropriately applied and include them early on in their app design, which makes your life as a

developer all the more predictable.

You can find full guidance in Animating Your UI and its subtopics in the documentation, which will

also contain specific guidelines for the individual animations below. I will only summarize here.

Key point Built-in controls and other UI elements like those we’ve worked with in previous chapters

already make use of the appropriate animations. For example, you don’t need to animate a button tap

in the button element nor animate the appearance or disappearance of controls like WinJS.UI.-

Appbar. You’ll primarily use them when implementing UI directly with HTML layout or when building

custom controls.

http://msdn.microsoft.com/library/windows/apps/br229780.aspx
http://msdn.microsoft.com/library/windows/apps/hh465165.aspx

763

Animation Name WinJS.UI.Animation methods Description and Usage

Page Transition enterPage, exitPage Animates a whole page into or out of view, such as when

bringing in the first page of an app after the splash screen

or when switching between app pages. Avoid using

enterPage when content is already on screen—that is, use

it only when changing the entirety of the content.

Content Transition enterContent, exitContent Animates one or more elements into or out of view,

specifically used for content that wasn’t ready when a page

was loaded or when a section of a page is changing within

a container. If other content needs to move in response to

the container change, such as if it is resizing, you can move

those other elements by using expand/collapse or

reposition animations.

Fade In/Out fadeIn, fadeOut Used to show or hide transient UI or controls, as is done

with scrollbars or when a placeholder is replaced with a

loaded item. These are also good default animations for

situations where other specific animations don’t apply.

Crossfade crossFade Softens the transition between different states of an item.

This is also used in refresh scenarios, such as when a news

app updates all of its content at once.

Pointer Up/Down pointerUp, pointerDown Provides immediate feedback for a successful tap or click

on an item or tile-like elements. Note that built-in controls

like the button and ListView already incorporate these

animations.

Expand/Collapse createExpandAnimation,

createCollapseAnimation

Adds or removes extra space within content, such as

making room for error messages or hiding an option that

isn’t needed.

Reposition createRepositionAnimation Used when moving an element to a new position.

Show/Hide Popup showPopup, hidePopup Used to show and hide popup UI like menus, flyouts,

tooltips, and other contextual UI that appears above an

app canvas (dialogs, however, use Fade In). Avoid using for

elements that are part of that canvas directly—use Content

Transition and Fade In/Out animations instead. You also

don’t need to use these directly when using built-in

controls, as those controls already apply the animations.

Show/Hide Edge UI

Show/Hide Panel UI

showEdgeUI, hideEdgeUI,

showPanel, hidePanel

Used to show and hide edge-oriented UI like app bars and

the soft keyboard. The Edge UI animations are for

elements that only move a short distance onto the screen;

the Panel animations are for those that move longer

distances.

These should not be used for UI that’s not moving from or

toward an edge; use the Reposition animation instead.

Crossfade is also typically applied after showing and

simultaneous with hiding. The built-in edge controls like

the app bar and settings pane already apply these

animations.

Peek (for tiles) createPeekAnimation Animates a tile update when alternating between image

and text areas; see Chapter 16, “Alive with Activity.” Can

also be used to cycle through tile updates. This is the

animation used for live tiles on the Windows Start screen.

Badge Update updateBadge Used to update the number on a tile badge.

Swipe Hint swipeReveal Used in response to a tap-and-hold event to indicate that

an item can be selected with a swipe.

Swipe

Select/Deselect

swipeSelect, swipeDeselect Animates an item when swiped to select or deselect it.

Add/Delete from List createAddToListAnimation, Animates the insertion or deletion of items from a list, as

764

createDeleteFromListAnimation used by the ListView control. The add animation

repositions existing items to make space for the new items

and then brings them; the delete animation pulls items out

and repositions those that remain. Avoid using these to

display or remove a container or to add or remove the

entire contents of the collection; use Content Transitions

instead.

Add/Delete from

Search List

createAddToSearchListAnimation,
createDeleteFromSearchListAnimation

These animations are similar to those for adding and

removing from a list, but they are designed for much more

rapid changes as happens when populating a list of search

results. Simply said, they have shorter durations.

Start/End Drag-Drop dragSourceStart, dragSourceEnd,

dragBetweenEnter, dragBetweenLeave

Provides visual feedback during drag-and-drop operations

as seen on the Start screen when you move tiles around.

The start and end animations are for the item being

moved and should always be used together; the enter and

leave animations are for rearranging the area around a

potential drop point, which helps to show how the content

will appear if the drop happens. For this purpose you’ll

need to define the size of potential target areas

(rectangles) so that you can track pointer movement in

and out of those areas.

If you want to see what these animations are actually doing, you can find all of that in the WinJS

source code’s ui.js file. Just search for the method, and you’ll see how they’re set up. The Crossfade

animation, for example, animates the incoming element’s opacity property from 0 to 1 over 167ms

with a linear timing function, while animating the outgoing element’s opacity from 1 to 0 in the same

way. The Pointer Down animation changes the element’s scale from 100% to 97.5% over 167ms

according to a cubic-bezier curve, while Pointer Up does the opposite.

Knowing these characteristics—known as animation metrics—can be important when creating web-

based content to integrate with your app. Because you cannot presently use WinJS on a remote web

page, knowing how these animations work will help you emulate that behavior on such pages.

Within your app, though, avoid hard-coding the metrics. Instead, acquire them programmatically

through the API in Windows.Core.UI.AnimationMetrics. You can find a demonstration of using this

API in the Animation metrics sample.

As interesting as such details might be, of course, they are always subject to change (hence the API).

And in the end, what’s important is that you choose animations not for their visual effects but for their

semantic meaning, using the right animations at the right times in the right places. So let’s see how we

do that.

Tip #1 All of the WinJS animations are implemented using the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition functions, which you can use for custom animations as well.

Tip #2 While an animation is running, always avoid changing an element’s contents and its CSS styles

that affect the same properties. The results are unpredictable and unreliable and can cause

performance problems.

http://msdn.microsoft.com/library/windows/apps/br241916.aspx
http://code.msdn.microsoft.com/windowsapps/animation-metrics-sample-acb0220c
http://msdn.microsoft.com/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/library/windows/apps/hh779763.aspx

765

Animations in Action
To see all of the WinJS animations in action, run the HTML animation library sample. There are many

different animations to illustrate, and this sample most certainly earns the award for the largest number

of scenarios: twenty-two! In fact, the first thing you should do is go to scenario 22 and see whether

animations are enabled, as that will most certainly affect your experience with the rest of the sample.

The output of that scenario will show you whether the UISettings.animationsEnabled flag is set and

allow you to increment or decrement the WinJS enablement count. So go check that now, because if

you’re like me (I dislike waiting for my task bar to animate up and down), you might have turned off

system animations a long time ago for a snappier desktop experience. I didn’t realize at first that it

affected WinJS in this way!

Clearly, with 22 scenarios in the sample I won’t be showing code for all of them here; indeed, doing

so isn’t necessary because many operate in the same way. The only real distinction is between those

whose methods start with create and those that don’t, as we’ll see in a bit.

All the animation methods return a promise that you can use to take additional action when the

animation is complete (at which point the completed handlers given to then/done will be called). If you

already know something about CSS transitions and animations, you’ll rightly guess that these promises

encapsulate events like transitionend and animationend, so you won’t need to listen for those

events directly if you want to chain or synchronize animations. For chaining, you can just chain the

promises; for synchronization, you can obtain the promises for multiple animations and wait for their

completion using methods like WinJS.Promise.join or WinJS.Promise.any.

Animation promises also support the cancel method, which removes the animation from the

element. This immediately sets the affected property values to their final states, causing an immediate

visual jump to that end state. And whether you cancel an animation or it ends on its own, the promise

is considered to have completed successfully; canceling an animation, in other words, will call the

promise’s completed handler and not its error handler.

Be aware that because all of the WinJS animations are implemented with CSS, they won’t actually

start until you give control back to the UI thread. This means that you can set up multiple animations

knowing that they’ll more or less start together once you return from the function. So even though the

animation methods return promises, they are not like other asynchronous operations in WinRT that

start running on another thread altogether.

Anyway, let’s look at some code! In the simplest case, all you need to do is call one of the animation

methods and the animation will execute when you yield. Scenario 6 of the sample, for instance, just

adds these handlers to the pointerdown and pointerup events of three different elements

(js/pointerFeedback.js):

function onPointerDown(evt) {

 WinJS.UI.Animation.pointerDown(evt.srcElement);

}

function onPointerUp(evt) {

http://code.msdn.microsoft.com/windowsapps/Using-the-Animation-787f3720

766

 WinJS.UI.Animation.pointerUp(evt.srcElement);

}

We typically don’t need to do anything when the animations complete, so there’s no need for us to

call done or provide a completed handler. Truly, using many of these animations is just this simple.

The crossFade animation, for its part (scenario 10), takes two elements: the incoming element and

the outgoing element (all of which must be visible and part of the DOM throughout the animation,

mind you!). Calling it then looks like this (js/crossfade.js):

WinJS.UI.Animation.crossFade(incoming, outgoing);

Yet this isn’t the whole story. A common feature among the animations is that you can provide an

array of elements on which to execute the same animation or, in the case of crossFade, two arrays of

elements. While this isn’t useful for animations like pointerDown and pointerUp (each pointer event

should be handled independently), it’s certainly handy for most others.

Consider the enterPage animation. In its singular form it accepts an element to animate and an

optional initial offset where the element begins relative to its final position. (Generally speaking, you

should omit this offset if you don’t need it, because it will result in better performance—the sample

passes null here, which I’ve omitted in the code below.) enterPage can also accept a collection of

elements, such as the result of a querySelectorAll. Scenario 1 (html/enterPage.html and

js/enterPage.js) provides a choice of how many elements are animated separately:

switch (pageSections) {

 case "1":

 // Animate the whole page together

 enterPage = WinJS.UI.Animation.enterPage(rootGrid);

 break;

 case "2":

 // Stagger the header and body

 enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel], [contentHost,

 footer]]);

 break;

 case "3":

 // Stagger the header, input, and output areas

 enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel],

 [inputLabel, input], [outputLabel, output, footer]]);

 break;

}

When the element argument is an array, the offset argument, if provided, can be either a single

offset that is applied to all elements, or an array to indicate individual offsets for each element. Each

offset is an object whose properties define the offset. See js/dragBetween.js for scenario 13 where this

is used with the dragBetweenEnter animation:

WinJS.UI.Animation.dragBetweenEnter([box1, box2],

 [{ top: "-40px", left: "0px" }, { top: "40px", left: "0px" }]);

Here’s a modification showing a single offset that’s applied to both elements:

767

WinJS.UI.Animation.dragBetweenEnter([box1, box2], { top: "0px", left: "40px" });

Scenario 4 (js/transitioncontent.js) shows how you can chain a couple of promises together to

transition between two different blocks of content:102

WinJS.UI.Animation.exitContent(outgoing, null).done(function () {

 outgoing.style.display = "none";

 incoming.style.display = "block";

 return WinJS.UI.Animation.enterContent(incoming, null);

});

Things get a little more interesting when we look at the create* animation methods, together

referred to as the layout animations, which are for adding and removing items from lists, expanding

and collapsing content, and so forth. Each of these has a three-step process where you (1) create the

animation, (2) manipulate the DOM, and then (3) execute the animation, as shown in scenario 7

(js/addAndDeleteFromList.js):

// Create addToList animation.

var addToList = WinJS.UI.Animation.createAddToListAnimation(newItem, affectedItems);

// Insert new item into DOM tree. This causes the affected items to change position.

list.insertBefore(newItem, list.firstChild);

// Execute the animation.

addToList.execute();

The reason for the three-step process is that in order to carry out the animation on newly added

items or items that are being removed, they all need to be in the DOM when the animation executes.

The process here lets you create the animation with the initial state of everything, manipulate the DOM

(or just set styles and so forth) to create the ending state, and then execute the animation to “let ‘er

rip.” You can then use the done method on the promise returned from execute to perform any final

cleanup. Scenario 5 (js/expandAndCollapse.js) makes this point clear:

// Create collapse animation.

var collapseAnimation = WinJS.UI.Animation.createCollapseAnimation(element, affected);

// Remove collapsing item from document flow so that affected items reflow to their new

// position. Do not remove collapsing item from DOM or display at this point, otherwise the

// animation on the collapsing item will not display.

element.style.position = "absolute";

element.style.opacity = "0";

// Execute collapse animation.

collapseAnimation.execute().done(

 // After animation is complete (or on error), remove from display.

 function () { element.style.display = "none"; },

 function () { element.style.display = "none"; }

102 Note that the sample erroneously passes a variable output as the first parameter to exitContent and enterContent;

the code should appear as shown here, with outgoing passed to exitContent and incoming passed to enterContent.

768

);

As a final example—because I know you’re smart enough to look at most of the other cases on your

own—scenario 21 (js/customAnimation.js) shows how to use the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition methods.

function runCustomShowAnimation() {

 var showAnimation = WinJS.UI.executeAnimation(

 target,

 {

 // Note: this keyframe refers to a keyframe defined in customAnimation.css.

 // If it's not defined in CSS, the animation won't work.

 keyframe: "custom-opacity-in",

 property: "opacity",

 delay: 0,

 duration: 500,

 timing: "linear",

 from: 0,

 to: 1

 }

);

}

function runCustomShowTransition() {

 var showTransition = WinJS.UI.executeTransition(

 target,

 {

 property: "opacity",

 delay: 0,

 duration: 500,

 timing: "linear",

 to: 1

 }

);

}

If you want to combine multiple animations (as many of the WinJS animations do), note that both of

these functions return promises so that you can combine multiple results with WinJS.Promise.join

and have a single completed handler in which to do post-processing. This is exactly what WinJS does

internally.

And if you know anything about CSS animations and transitions already, you can probably tell that

the objects you pass to executeAnimation and executeTransition are simply shorthand expressions

of the CSS styles you would use otherwise. In short, these methods give you an easy way to set up your

own custom animations and transitions through the capabilities of CSS. Let’s now look at those

capabilities directly.

769

Sidebar: Parallax/Panorama Animations

Developers often ask how to create a parallax or panorama background animation as seen on

the Windows Start screen. If you’re not familiar with this concept, go to the Start screen and pan

around a little, noticing how the background pans as well but slower than the tiles. This creates a

sense of the tiles floating above the background.

While it is possible to implement this effect in JavaScript (see the KidsBook example on the

Internet Explorer TestDrive site), we don’t recommend it or at least recommend providing a

setting to turn the effect off. At issue is the fact that such animations run dependently (on the

CPU) rather than independently (on the GPU), as described in the next section. As such, the

threading and rendering model of JavaScript results in choppy movement except on high-power

devices; the effect will be very pronounced on low-power and especially ARM devices. In

addition, such animations can be costly in terms of CPU and battery utilization.

This is one case in which using C++ and DirectX (or even C#/VB and XAML) has a clear

advantage over JavaScript, and would be a consideration if you absolutely must have this effect

in your app.

CSS Animations and Transitions

As noted before, many animation needs can be achieved through CSS rather than with JavaScript code

running on intervals or animation frames. The WinJS Animations Library, as we’ve just seen, is entirely

built on CSS. Using CSS relieves us from writing a bunch of code that worries about how much to move

every element in every frame based on elapsed time and synchronized to the refresh rate. Instead, we

can simply declare what we want to happen (perhaps using the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition helpers as shown earlier in "Animations in Action") and let the app

host take care of the details. Delegation at its best! In this section, then, let’s take a closer look at the

capabilities of CSS for Windows Store apps.

Another huge benefit of performing animations and transitions through CSS—specifically those that

affect only transform and opacity properties—is that they can be used to create what are called

independent animations that run on a GPU thread rather than the UI thread. This makes them smoother

and more power-efficient than dependent animations that are using the UI thread. Dependent

animations happen when you create animations in JavaScript using intervals, use CSS animations and

transitions with properties other than transform and opacity, or run animations on elements that are

partly or wholly obscured by other elements. (If you want to get into the details, refer to Independent

Composition: Rendering and Compositing in Internet Explorer 10, which applies to Windows Store apps

written in JavaScript.)

We’ll come back to this subject in a bit when we look at sample code. Let’s first review how CSS

animations and transitions work (and you can find many more tutorials on the web). I say both

http://ie.microsoft.com/testdrive/HTML5/KidsBook/Default.html
http://msdn.microsoft.com/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/library/windows/apps/hh779763.aspx
http://msdn.microsoft.com/library/windows/apps/jj680148.aspx
http://msdn.microsoft.com/library/windows/apps/jj680148.aspx

770

animations and transitions because there are, in fact, two separate CSS specifications: CSS animations

and CSS transitions. So what’s the difference?

Normally when a CSS property changes, its value jumps immediately from the old value to the new

value, resulting in a sudden visual change. Transitions instruct the app host how to change one or more

property values gradually, according to specific delay, duration, and timing curve parameters. All of this

is declared within a specific style rule for an element (as well as :before and :after pseudo-elements)

using four individual styles:

 transition-property (transitionProperty in JavaScript) Identifies the CSS properties

affected by the transition (the transitionable properties are listed in section 7 of the transitions

spec).

 transition-duration (transitionDuration in JavaScript) Defines the duration of the

transition in seconds (fractional seconds are supported, as in .125s; negative values are

normalized to 0s).

 transition-delay (transitionDelay in JavaScript) Defines the delayed start of the

transitions relative to the moment the property is changed, in seconds. If a negative value is

given, the transition will appear to have started earlier but the effect will not have been visib le.

 transition-timing-function (transitionTimingFunction in JavaScript) Defines how the

property values change over time. The functions are ease, linear, ease-in, ease-out, ease-

in-out, cubic-bezier, step-start, and step-end. The W3C spec has some helpful diagrams

that explain these, but the best way to see the difference is to try them out in running code.

For example, a transition for a single property appears like so:

#div1 {

 transition-property: left;

 transition-duration: 2s;

 transition-delay: .5s;

 transition-timing-function: linear;

}

When defining transitions for multiple properties, each value in each style is separated by a comma:

.class2 {

 transition-property: opacity, left;

 transition-duration: 1s, 0.25s;

}

Again, transitions don’t specify any actual beginning or ending property values—they define how

the change actually happens whenever a new property is set through another CSS rule or through

JavaScript. So, in the first case above, if left is initially 100px and it’s set to 300px through a :hover

rule, it will transition after 0.5 seconds from 100px to 300px over a period of 2 seconds. Doing the

math, the visual movement with a linear timing function will run at 100px/second. Other timing

functions will show different rates of movement at different points along the 2-second duration.

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-transitions/

771

If a bit of JavaScript then sets the value to -200px—ideally after the first transition completes and

fires its transitionend event—the value will again transition over the same amount of time but now

from 300px to -200px (a total of 500px). As a result, the element will move at a higher speed

(250px/second, again with the linear timing function) because it has more ground to cover for the

same transition duration.

What’s also true for transitions is that if you assign a style (e.g., class2 above) to an element,

nothing will happen until an affected property changes value. Changing a style like this also has no

effect if a transition is already in progress. The exception is if you change the transition-property

value, in which case that transition will stop. With this, it’s important to note that the default value of

this property is all, so clearing it (setting it to "") doesn’t stop all transitions—it enables them! You

instead need to set the property to none.

Note Elements with display: none do not run CSS animations and transitions at all, for obvious

reasons. The same cannot be said about elements with display: hidden, visibility: hidden,

visibility: collapsed, or opacity: 0, which means that hiding elements with some means other

than display: none might end up running animations on nonvisible elements, which is a complete

waste of resources. In short, use display: none.

Animations work in an opposite manner to transitions. Animations are defined separately from any

CSS style rules but are then attached to rules. Assigning that style to an element then triggers the

animation immediately applying any delay defined in the animation. (The animation can be initially

paused as well if you want to start it at a later time.) Furthermore, groups of affected properties are

defined together in keyframes and are thus animated together.

A CSS animation, in other words, is an instruction to progressively update one or more CSS property

values over a period of time. The values change from an initial state to a final state through various

intermediate states defined by a set of keyframes. Here’s an example (from scenario 1 of the HTML

independent animations sample we’ll be referring to later in this chapter):

@keyframes move {

 from { transform: translateX(0px); }

 50% { transform: translateX(400px); }

 to { transform: translateX(800px); }

}

More generally:

 Start with @keyframes <identifier> where <identifier> is a name for the animation (like

move above). You’ll refer to this identifier elsewhere in style rules.

 Within this animation, create any number of individual keyframes (also called rule sets), each of

which represents a different snapshot of the animated element at different stages in the overall

animation, demarked by percentages. The from and to keywords, as shown above, are simply

aliases for 0% and 100%, respectively.

http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962
http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962

772

 Within each keyframe, define the desired value of any number of style properties (just

transform in the example above), with each separated by a semicolon as with CSS styles. If a

value for a property is the same as in the previous rule set, no animation will occur for that

property. If the value is different, the rendering engine will animate the change between the

two values of that property across the amount of time equivalent to <overall animation time> *

(<toPercentage> - <fromPercentage>)/100. A timing function can also be specified for each

rule set using the animation-timing-function style. For example:

50% { transform: translateX(400px); animation-timing-function: ease-in;}

One thing you’ll notice here is that while the keyframe can indicate a timing function, it doesn’t say

anything about actual timings. This is left for the specific style rules that refer to the animation. In

scenario 1 of the sample, for instance:

.ball {

 animation-name: move;

 animation-duration: 2s;

 animation-timing-function: linear;

 animation-delay: 0s;

 animation-iteration-count: infinite;

 animation-play-state: running;

}

Here, the animation-name style (animationName in JavaScript) identifies the animation to apply,

and we'll look at the other styles in a moment. Before that, it's essentia l to understand that this ball

style class is what gets added to an element to start the move animation according to the other timing

properties. Again, the animation begins when that class is assigned. In typical practice, you can define a

separate class like this that contains just the animation styles and then add that class to any number of

elements individually. Scenario 1 of the sample does exactly this with two different elements, one that

runs independently and one that runs dependently (js/scenario1.js):103

IndependentAnimationelement.className = 'ball';

DependentAnimation.className = 'ball';

IndependentAnimationelement.style.animationPlayState = 'running';

DependentAnimation.style.animationPlayState = 'running';

Setting the animationPlayState properties here is not actually necessary because the ball class

already sets that. If, however, the style class initially sets paused, setting the play state to running will

then start the animation.

Note too that you can also have any number of classes with different animation* styles that all

refer to the same animation-name, which allows you to reuse the same animation with any number of

timing variations.

103 In this code, any existing style classes will be removed from the elements by virtue of setting className. If you want to

add and remove classes without affecting others, use the WinJS.Utilities.addClass and removeClass methods.

773

In any case, the other animation-* styles describe how the animation should execute:

 animation-duration (animationDuration in JavaScript) The duration of the animation in

seconds (fractions allowed, as in 0.4s) or milliseconds (as in 400ms). Negatives are the same as

0s.

 animation-timing-function (animationTimingFunction in JavaScript) Defines, as with

transitions, how the property values are interpolated over time—ease (the default), linear,

ease-in, ease-out, ease-in-out, cubic-bezier, step-start, and step-end.

 animation-delay (animationDelay in JavaScript) Defines the number of seconds (s suffix) or

milliseconds (ms suffix) after which the animation will start when the style is applied. This can be

negative, as with transitions, which will start the animation partway through its cycle.

 animation-iteration-count (animationIterationCount in JavaScript) Indicates how many

times the animation will repeat (default is 1). This can be a number or infinite, as shown

above. If you want an animation to run forwards and then backwards, such as creating a

temporary swell effect, set this count to 2 and the animation-direction (below) to

alternate, as each direction will count as an iteration.

 animation-direction (animationDirection in JavaScript) Indicates whether the animation

should play normal (forward), reverse, alternate (back and forth), or alternate-reverse

(back and forth starting with reverse). The default is normal. Note again that alternate and

alternate-reverse require you to have at least two iterations because each direction counts

as a separate iteration.

 animation-play-state (animationPlayState in JavaScript) Sets the initial run state of the

animation: the default state of running plays the animation as soon as the style is set on the

element, whereas paused will hold off starting the animation until you set the style to running.

You can use this style from JavaScript to start and pause animations whenever needed until the

animation has completed. After that time, setting the play state has no effect.

 animation-fill-mode (animationFillMode in JavaScript) Defines which property values of

the named keyframe will be applied when the animation is not executing, such as during the

initial delay or after it is completed. The default value of none applies the values of the 0% or

from rule set if the direction is forward and alternate directions; it applies those of the 100%

or to rule set if the direction is reverse or alternate-reverse. A fill mode of backwards flips

this around. A fill mode of forwards always applies the 100% or to values (unless the iteration

count is zero, in which case it acts like backwards). The other option, both, is the same as

indicating both forwards and backwards.

 animation (animation in JavaScript) The shorthand style for all of the above (except for

animation-play-state) in the order of name, duration, timing function, delay, iteration count,

direction, and fill mode.

http://dev.w3.org/csswg/css3-animations/#the-animation-duration-property-
http://dev.w3.org/csswg/css3-animations/#animation-timing-function_tag
http://dev.w3.org/csswg/css3-animations/#the-animation-delay-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-iteration-count-property-"
http://dev.w3.org/csswg/css3-animations/#the-animation-direction-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-play-state-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-fill-mode-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-shorthand-property-

774

Again, applying a style that contains animation-name will trigger the animation for that element if

the play state is running. You can do this by setting an element's className directly, as shown in the

code from the HTML independent animations sample shown earlier, but it's better to use

WinJS.Utilities.addClass because this will not affect any of the element's existing classes.

Triggering an animation will also happen automatically if the animation is named in a style that’s

applied to an element by default in your CSS. You can set the animation property for an element, of

course, and if the play state is initially set to paused in CSS, you can then trigger the animation on

demand by changing the animationPlayState property to running.

The nature of a CSS animation is to run until it's complete, during which time you can pause and

start it through animationPlayState, but once the animation is complete you have to remove the

animation styles from an element and then add them again to restart that animation.

This is where the element's animationend event comes into play: it's the right place to remove the

animation class from the element, ideally using WinJS.Utilities.removeClass, which lets you

remove a specific class from an element without affecting any others. For example, here's how I'd set

up a handler for the event to automatically reset the ball animation for an element:

element.addEventListener("animationend", resetBallAnimation);

WinJS.Utilities.addClass(element, "ball");

function resetBallAnimation(e) {

 e.target.removeEventListener("animationend", resetBallAnimation);

 WinJS.Utilities.removeClass(e.target, "ball");

}

This way, the next time I add the ball class to the element, the animation will run again.

Keyframes, although typically defined in CSS, can also be defined in JavaScript. The first step is to

build up a string that matches what you’d write in CSS, and then you insert that string to the stylesheet.

This is shown in scenario 7 of the HTML independent animations sample (js/scenario7.js, which also has

a demonstration of the animationend event):

var styleSheet = document.styleSheets[1];

var element1 = document.getElementById("ballcontainer");

var animationString = '@keyframes bounce1 {'

 // ...

 + '}';

styleSheet.insertRule(animationString, 0);

window.setImmediate(function () {

 element1.style.animationName = 'bounce1';

});

Note how setImmediate is used to yield to the UI thread before setting the animationName

property to trigger the animation. This ensures that whatever other code follows (not shown here) will

execute first, as it does some other work the sample wants to complete before the animation begins.

775

More generally, it’s good to again remember that CSS animations and transitions start only when

you return from whatever function is setting them up. That is, nothing happens vi sually until you yield

back to the UI thread and the rendering engine kicks in again, just like when you change nonanimated

properties. This means you can set up however many animations and transitions as desired, and they’ll

all execute simultaneously. Using a callback with setImmediate, as shown above, is a simple way to

say, “Run this code as soon as there is no pending work on the UI thread.”104 Such a pattern is typically

for triggering one or more animations once everything else is set up.

Of course, you should ideally prioritize your animation work in relation to other work happening on

the UI thread, using the WinJS scheduler API as discussed in Chapter 3, "App Anatomy and

Performance Fundamentals."

As a final note for this section, you might be interested in The Guide to CSS Animation: Principles

and Examples (Smashing Magazine). This will tell you a lot about animation design beyond just how

CSS animations are set up in your code.

Designing Animations in Blend for Visual Studio
Although you can define CSS animations directly in text, it helps to have a way to immediately visualize

the results and make adjustments. Blend for Visual Studio provides just such a design experience, which

I demonstrate in Video 14-1. (Another demonstration can be found in the //build 2013 session 2-311,

What's New in Blend for HTML Developers, between time indices 42:00 and 46:00.)

You start in the Live DOM pane by selecting the element to which you want to apply an animation.

Under the CSS properties pane, then, expand the Animations group that appears as follows:

104 For more on this topic, see http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html.

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://channel9.msdn.com/Events/Build/2013/2-311
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html

776

Click the + in the upper right (circled) to create an animation with whatever name you enter, and

then set the animation's timing properties in the drop-downs below. This will create the appropriate

animation reference for the element. For example, if I've selected an element with the id divAnimate

and create a simple back-and-forth animation called swell (to briefly enlarge the element, which

requires two iterations), the following will be added to the CSS:

#divAnimate {

 animation: swell 300ms ease-in 0ms 2 alternate forwards;

 animation-play-state: running;

}

Next we need to define the animation's keyframes. Click the Create Animation button at the lower

right and Blend opens up a timeline view:

At this point you're in Recording Mode, which is indicated by the red dot at the left end of the

playback controls and by a red dot and frame around the artboard. Here, set the playback cursor to a

position where you want to define a keyframe. In the CSS Properties pane you'll see the name of the

animation at the top; the list of properties that appear underneath are those that can be animated:

777

Recording Mode means that any properties you set in this CSS properties pane are recorded in the

keyframe for the current timeline position. And as long as you're in this mode, you can move the

timeline position around and edit more keyframes. For example, if I place the playback position to 0s

and set a scaling transform to 1, and then I move the playback position to the end of the first iteration

and set a scaling transform to 1.2 plus, I get the following in CSS:

@keyframes swell {

 0% {

 transform: scale(1, 1);

 }

 100% {

 transform: scale(1.2, 1.2);

 }

}

In the animation timeline you can then use the other playback controls to see the result. You can

also drag the timeline positioner back and forth. The animation will run in Interactive Mode as well.

When you're done editing, turn recording off by clicking the red dot; you'll see the CSS Properties

pane revert to the normal view.

The HTML Independent Animations Sample

Let’s now more fully examine the HTML independent animations sample. Scenario 1 gives a

demonstration of an independent versus a dependent animation by eating some time on the UI thread

(that is, blocking that thread) according to a slider. As a result, the top red ball (see image below)

http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962

778

moves choppily, especially as you increase the work on the UI thread by moving the slider—the

dynamic effect is shown in Video 14-2. The green ball on the bottom, on the other hand, continues to

move smoothly the whole time.

What’s tricky to understand about this sample is that both balls use the same CSS style rule named

ball that we saw earlier. In fact, just about everything about the two elements is exactly the same. So

why does the movement of the red ball get choppy when additional work is happening on the UI

thread?

The secret is in the z-index: -1; style on the red ball in css/scenario1.css (and a corresponding lack

of position: static which negates z-index). For animations to run independently, they must be free

of obstruction. This really gets into the subject of how layout is being composed within the HTML/CSS

rendering engine of the app host—an animating element that’s somewhere in the middle of the z-

order might end up being independent or dependent. The short of it is that the z-index style is the

only lever that’s available for you to pull here.

As I noted before, independent animations are limited to those that affect only the transform and

opacity properties for an element. If you animate any property that affects layout, like width or left,

the animation will run as dependent (and similar results can be achieved with a scaling and translation

transform anyway). Other factors also affect independent animations, as described on the Best

Practices: Animating topic in the documentation. For example, if the system lacks a GPU, if you

overload the GPU with too many independent animations, or if the elements are too large, some of the

animations will revert to dependent. This is another good reason to be purposeful in your use of

animations—overusing them will produce a terrible user experience on lower-end devices, thereby

defeating the whole point of using animations to enhance the user experience!

The other scenarios of the HTML independent animations sample let you play with CSS transitions

and animations by setting values within various controls and then running the animation. Scenarios 2

and 3 work with CSS transitions for 2D and 3D transforms, respectively, with an effect of the latter

shown in Figure 14-2 and both shown more dynamically in Video 14-3. As you can see, the element

that the sample animates is the container for all the input controls! Scenarios 5 and 6 then let you do

similar things with CSS animations. In all these cases, the necessary styles are set directly in JavaScript

rather than using declarative CSS, so look in the .js files and not the .css files for the details.

http://msdn.microsoft.com/library/windows/apps/hh849087.aspx
http://msdn.microsoft.com/library/windows/apps/hh849087.aspx

779

FIGURE 14-2 Output of scenario 3 of the HTML independent animations sample.

Scenarios 4 and 7 show something we've only touched on so far, which are the few simple events

that are raised for transitions and animations (and actually have nothing to do with independent versus

dependent animations). In the former case, any element on which you execute a CSS transition will fire

transitionstart and transitionend events. You can use these to chain transitions together.

With animations, there are three events: animationstart (which comes after any delay has passed),

animationend (when the animation finished), and animationiteration (at the end of each iteration,

unless animationend also fires at the same time). As with transitions, all of these can be used to chain

animations or otherwise synchronize them. The animationiteration event is also helpful if you need

to run a little code every time an animation finishes a cycle. In such a handler you might check

conditions that would cause you to stop an animation, in which case you can set the

animationPlayState to paused when needed.

Rolling Your Own: Tips and Tricks

If you’re anything like me, I imagine that one of the first things you did when you started playing with

JavaScript is to do some kind of animation: set up some initial conditions, create a timer with

setInterval, do some calculations in the handler and update elements (or draw on a canvas105), and

keep looping until you’re done. After all, this sort of thing is at the heart of many of our favorite games!

105 Or possibly multiple layered canvases, where you can isolate different animation groups on their own canvases. For

more on this, see Optimize HTML5 canvas rendering with layering (IBM developerWorks).

http://www.ibm.com/developerworks/web/library/wa-canvashtml5layering/index.html

780

(For an introductory discussion on this, just in case you haven’t done this on your own yet, see How to

animate canvas graphics.)

Considerable wisdom on this subject is available in the community if you decide to go this route. I

put it this way because by now, having looked at the WinJS animations library and the capabilities of

CSS, you should be in a good position to decide whether you actually need to go this route at all. Some

people have estimated that a vast majority of animations needed by most apps can be handled entirely

through CSS: just set a style and let the app host do the rest.106 But if you decide that you still need to

do low-level animation, the first thing you should do is ask yourself this question:

What is the appropriate animation interval?

This is a very important question because oftentimes developers have no idea what kind of interval

to use for animation. It’s not so much of an issue for long intervals, like 500ms or 1s, but developers

often just use 10ms because it seems “fast enough.”

To be honest, 10ms is overkill for a number of reasons. 60 frames per second (fps)—an animation

interval of 16.7ms—is about the best that human beings can even discern and is also the best that most

displays can even handle in the first place. In fact, the best results are obtained when your animation

frames are synchronized with the screen refresh rate.

Let’s explore this a little more. Have you ever looked at a screen while eating something really

crunchy and noticed how the pixels seem to dance all over the place? This is because display devices

aren’t typically just passive viewports onto the graphics memory. Instead, displays typical ly cycle

through graphics memory at a set refresh rate, which is most commonly 60Hz or 60fps (but can also be

as low as 50Hz or as high as 100Hz).

This means that trying to draw animations at an interval faster than the refresh rate is a waste of

time, is a waste of power (it has been shown to reduce battery life by as much as 25%!), and results in

dropped frames. The latter point is illustrated below, where the red dots are frames that get drawn on

something like a canvas but never make it to the screen because another frame is drawn before the

screen refreshes:

This is why it’s common to animate on multiples of 16.7ms using setInterval. However, using 16.7

assumes a 60Hz display refresh, which isn’t always the case. The right solution, then, for both Windows

106 It's also worth noting that you could use the MediaStreamSource that we discussed at the end of Chapter 13, "Media,"
to dynamically generate a video, which is effectively an animation but would then provide playback controls, Play To

capabilities, and so forth.

http://msdn.microsoft.com/library/windows/apps/hh465053.aspx
http://msdn.microsoft.com/library/windows/apps/hh465053.aspx

781

Store apps in JavaScript and web apps is to use requestAnimationFrame. This API simply takes a

function to call for each frame:

requestAnimationFrame(renderLoop);

You’ll notice that there’s not an interval parameter; the function rather gives you a way to align your

frame updates with display refreshes so that you draw only when the system is ready to display

something:

What’s more, requestAnimationFrame also takes page visibility into account, meaning that if

you’re not visible (and animations are thus wasteful), you won’t be asked to render the frame at all. This

means you don’t need to handle page visibility events yourself to turn animations on and off: you can

just rely on the behavior of requestAnimationFrame directly.

Tip If you really want an optimized display, consider doing all your app’s drawing work (not just

animations) within a requestAnimationFrame callback. That is, when processing a change, as in

response to an input event, update your data and call requestAnimationFrame with your rendering

function rather than doing the rendering immediately. And always be mindful to redraw only when

you need to redraw, as we’ll see in a moment, to make the best use of CPU and battery power.

It’s also good to know that attempting to animate a canvas that’s partly obscured by an element with

display: inline-block has been found to result in very poor performance and large gaps between

frames because of excessive region invalidation. Using a different display model such as table-cell

avoids this issue.

Calling this method once will invoke your callback for a single frame. To keep up a continuous

animation, your handler should call requestAnimationFrame again.

Tip Be mindful about JavaScript closures within the callbacks for requestAnimationFrame,

setInterval, and setTimeout, especially when you renew the callback again. An accumulation of

non-garbage-collected closures can accumulate large memory leaks, especially at 60fps!

Keeping up a continuous animation is shown in the Using requestAnimationFrame for power

efficient animations sample (this wins fourth place for long sample names!), which draws and animates

a clock with a second hand:

http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a
http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a

782

The first call to requestAnimationFrame happens in the page’s ready method, and then the

callback refreshes the request (js/scenario1.js):

window.requestAnimationFrame(renderLoopRAF);

function renderLoopRAF() {

 drawClock();

 window.requestAnimationFrame(renderLoopRAF);

}

where the drawClock function gets the current time and calculates the angle at which to draw the

clock hands:

function drawClock() {

 // ...

 // Note: this is modified from the sample to create a Date only once, not each time

 var date = new Date();

 var hour = date.getHours();

 var minute = date.getMinutes();

 var second = date.getSeconds();

 // ...

 var sDegree = second / 60 * 360 - 180;

 var mDegree = minute / 60 * 360 - 180;

 var hDegree = ((hour + (minute / 60)) / 12) * 360 - 180;

 // Code to use the context's translate, rotate, and drawImage methods

 // to render each clock hand

}

Here’s a challenge for you: What’s wrong with this code? Run the sample and look at the second

hand. Then think about how requestAnimationFrame aligns to screen refresh cycles with an interval

like 16.7ms. What’s wrong with this picture?

783

What’s wrong is that even though the second hand is moving visibly only once per second, the

drawClock code is actually executing nearly 50, 60, or 100 times more frequently than that! Thus the

“Efficient and Smooth Animations” title that the sample shows on screen is anything but! Indeed, if you

run Task Manager, you can see that this simple “efficient” clock is ironically consuming a

disproportionate amount of CPU. Yikes! (The percentage depends on your hardware, clearly—the 20%

shown here is on an older laptop; my newer device shows more like 8%).

Remember that an interval aligned with ~16.7ms screen refreshes (on a 60Hz display) implies 60fps

rendering. If you don’t need that much, you should skip frames yourself according to elapsed time,

thereby saving power, and not blindly redraw as this sample is doing. In fact, if all we need is a once-

per-second movement in a clock like this, repeated calls to requestAnimationFrame is sheer overkill.

We could instead use setInterval(function () { requestAnimationFrame(drawClock) },

1000) to coordinate 1s intervals with screen refreshes. If you make this change in the ready method,

for example, the CPU usage will drop precipitously (even down to less than 0.1%):

But let’s say we actually want to put 60fps animation and 20% of the CPU to good use. In that case,

we should at least make the clock’s second hand move smoothly, which can be done by simply adding

milliseconds into the angle calculation in the drawClock method (and reversing the previous

setInterval change):

var date = new Date();

var second = date.getSeconds() + date.getMilliseconds() / 1000;

Still, 8% to 20% is a lot of CPU power to spend on something so simple and 60fps is still serious

overkill. ~10fps is probably sufficient for good effect. In this case we can calculate elapsed time within

renderLoopRAF to call drawClock only when 0.1 seconds have passed:

var lastTime = 0;

function renderLoopRAF() {

 var fps = 10; // Target frames per second

 var interval = 1000 / fps;

 var curTime = Math.floor(Date.now() / interval);

 if (lastTime != curTime) {

 lastTime = curTime;

 drawClock();

 }

 requestAnimationFrame(renderLoopRAF);

}

784

That’s not quite as smooth—10fps creates the sense of a slight mechanical movement—but it

certainly has much less impact on the CPU (about 1/4th of the 60fps usage):

I encourage you to play around with variations on this theme to see what kind of interval you can

actually discern with your eyes. 10fps and 15fps give a sense of mechanical movement; at 20fps I don’t

see much difference from 60fps at all, and the CPU usage is cut in half. You might also try something

like 4fps (quarter-second intervals) to see the effect. In this chapter’s companion content I’ve included a

variation of the original sample where you can select from various target rendering rates.

The other thing you can do in the modified sample is draw the hour and minute hands at fractional

angles. In the original code, the minute hand will move suddenly when the second hand comes around

to the top. Analog clocks don’t actually work this way: their complex gearing moves both the hour and

the minute hand ever so slightly with every tick. To simulate that same behavior, we just need to

include the seconds in the minutes calculation, and the resulting minutes in the hours, like so:

var second = date.getSeconds() + date.getMilliseconds() / 1000;

var minute = date.getMinutes() + second / 60;

var hour = date.getHours() + minute / 60;

In real practice, you’d generally want to avoid just running a continuous animation loop like this: if

there’s nothing moving on the screen that needs animating (for which you might be using

setInterval as a timer) and there are no input events to respond to, there’s no reason to call

requestAnimationFrame. Also, be sure when the app is paused that you stop calling request-

AnimationFrame until the animation starts up again. (You can also use cancelAnimationFrame to stop

one you’ve already requested.) The same is true for setTimeout and setInterval: don’t generate

unnecessary calls to your callback functions unless you really need to do the animation. For this, use the

visibilitychange event to know if your app is visible on screen. While requestAnimationFrame

takes visibility into account (the sample’s CPU use will drop to 0% before it is suspended), you need to

do this on your own with setTimeout and setInterval.

In the end, the whole point here is that really understanding the animation interval you need (that

is, your frame rate) will help you make the best use of requestAnimationFrame, if that’s needed, or

setInterval/setTimeout. They all have their valid uses to deliver the right user experience with the

least consumption of system resources.

Did you know? One change introduced with Windows 8 and Internet Explorer 10 (and thus

supported in subsequent versions) is that setTimeout and setInterval, along with setImmediate,

all support including parameters that you can pass to the callback functions.

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx

785

What We’ve Just Learned

 In PC Settings (or the desktop control panel), users can elect to disable most (that is,

nonessential) animations. Apps should honor this, as does WinJS, by checking the

Windows.UI.ViewManagement.UISettings.animationsEnabled property.

 The WinJS animations library has many built-in animations that embody the Windows

personality. These are highly recommended for apps to use for the scenarios they support, such

as content and page transitions, selections, list manipulation, and others.

 All WinJS animations are built using CSS and thus benefit from hardware acceleration. When the

right conditions are met, such animations run in the GPU and are thus not affected by activity

on the UI thread.

 Apps can also use CSS animations and transitions directly, according to the W3C specifications.

 Apart from WinJS and CSS, apps can also use functions like setInterval and request-

AnimationFrame to implement direct frame-by-frame animation. The requestAnimationFrame

method aligns frames with the display refresh rate, leading to the best overall performance.

786

Chapter 15

Contracts

Some time ago I discovered a delightfully quirky comedy called Interstate 60 that is full of delightfully

quirky characters. One of them, played by Chris Cooper, is a former advertising executive who, having

discovered he was terminally ill with lung cancer, decided to make up for a career built on lies by

encouraging others to be more truthful. As such, he was very particular about agreements and

contracts, especially those in writing.

We really get to see the character’s quirkiness in a scene at a gas station. He’s approached by a

beggar with a sign, “Will work for food.” Seeing this, he offers the man an apple in exchange for

cleaning his car’s windshield. But when the man refuses to honor the written contract on his sign,

Cooper’s character gets increasingly upset over the breach…to the point where he announces his

terminal illness, rips open his shirt, and reveals the dynamite wrapped around his body and the 10-

second timer that’s already counting down!

In the end, he drives away with a clean windshield and the satisfaction of having helped someone—

in his delightfully quirky way—to fulfill their part of a written contract. And he reappears later in the

movie in a town that’s 100% populated with lawyers; I’ll leave it to you to imagine the result, or at least

enjoy the film!

Setting the dynamite and impending threats of bodily harm aside—which have absolutely nothing

to do with this chapter—agreements between two parties are exceptionally important in a well-running

computer system just as they are in a civil society. Agreements are especially important where apps

provide extensions to the system and where apps written by different people at different points in time

cooperate to fulfill certain tasks.

Such is the nature of various contracts within Windows, which as a collection constitute perhaps one

of the most powerful features of the entire system. The overarching purpose of contracts has been

described as “launching apps for a purpose and with context.” That is, instead of just starting apps in

isolation, contracts make it possible to start them in relationship to other apps and in the context of

those other apps. Information can then be shared seamlessly between those apps for a real purpose,

rather than through the generic intermediary of the file system where such context is lost.

With any given contract, one party is the consumer or receiver of information involved in the

contract. The other party is the source or provider of that information. The contract itself is generic:

neither party needs any specific knowledge of the other, just knowledge of their side of the contract. It

might not sound like much, but what this allows is a degree of extensibility that gets richer and richer

as more apps that support contracts are added to the system. When users really start to experience

what these contracts provide, they’ll more and more look for and choose apps from the Windows Store

that use contracts to enrich their system and create increasingly powerful user experiences.

787

Within the apps themselves, consuming contracts typically happens through an API ca ll, such as the

file pickers we've already see in Chapter 11, "The Story of State, Part 2," or is already built into the

system through UI like the Charms bar. Providing information for a contract is often the more

interesting part, because an app needs to respond to specific events (when running), or announce the

capability through its manifest and then handle different contract activations.

The table below summarizes all the contracts and other extensions in Windows (in alphabetical

order), some of which serve to allow apps to work together while others serve to allow apps to extend

system functionality. Full descriptions for most of these can be found on App contracts and extensions.

Those that are covered in this chapter are colored in green, namely share, search, URI scheme

associations, contacts (people), and appointments—contracts that many apps will rely upon. We've also

seen a number of contracts in previous chapters, and a few more will come along later. Also, the

provider side of certain contracts, which are somewhat uncommon for apps to implement, can be

found in Appendix D, "Provider-Side Contracts." The docs and samples picks up a couple of others that

aren't covered in this book.

Tip For a comparison of the different options for exchanging data—the share contract, the clipboard,

and the file save picker contract—refer to Sharing and exchanging data. This topic outlines different

scenarios for each option and when you might implement more than one in the same app.

Also note that there are many WinRT events involved in these different contracts, so be mindful of the

need to call removeEventListener as described in Chapter 3, “App Anatomy and Performance

Fundamentals,” in the section “WinRT Events and removeEventListener.”

Contract/Extension Provider Consumer Description, Documentation, and Samples

Account picture

provider (Chapter 4)

Apps that can take a

picture

Windows (PC

Settings > Accounts

> Your Account)

When user changes an account picture, they can either

select an existing one or acquire a new one from a provider;

see Account picture name sample.

Appointments Windows (system

calendar)

Apps that create

and manage

appointments

Provides the ability for apps to add, remove, and update

appointments on the user’s calendar, with popup UI that

lets the user control each action. See Quickstart: Managing

appointments and the Appointments API sample.

AutoPlay (Chapters

11, 17)

Apps that want to be

listed as an AutoPlay

option

Windows See Auto-launching with AutoPlay and the Removable

storage sample.

Background tasks

(Chapters 16, 4)

Apps that have

background tasks

Windows Allows apps to run small tasks in the background (that is,

when otherwise suspended or not running) without user

interaction. See Introduction to Background Tasks

(whitepaper) as well as Chapter 16. Background file

transfers are a special case supported by specific APIs; see

Transferring data in the background and Chapter 4.

Cached file updater

(Appendix D)

Apps that provide

access to their data

through file pickers

and want to

synchronize updates

Apps using the file

picker API and the

file APIs to manage

them

Provider apps allow the consumer to maintain a cached

copy of a file, and the provider can manage updates

between the local copy and the source copy. See

Integrating with file picker contracts.

Camera settings

(Chapter 13)

Apps with custom

camera UI

Windows Camera

Capture UI

See Developing Windows 8 device apps for cameras.

Contacts (via contact Windows (through Apps exposing A system-provided UI through which the user can take

http://msdn.microsoft.com/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/library/windows/apps/hh464923.aspx
http://code.msdn.microsoft.com/windowsapps/Account-picture-name-sample-912baff1
http://msdn.microsoft.com/library/windows/apps/dn495338
http://msdn.microsoft.com/library/windows/apps/dn495338
http://code.msdn.microsoft.com/windowsapps/Appointments-API-sample-2b55c76e
http://msdn.microsoft.com/library/windows/apps/hh452731.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://www.microsoft.com/download/en/details.aspx?id=27411
http://msdn.microsoft.com/library/windows/apps/hh452979.aspx
http://msdn.microsoft.com/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/hardware/hh454870

788

card) the People app);

other apps can

handle contact card

actions (Appendix D).

actions for contacts specific actions on a contact, without the calling app

needing to access contact information directly. See

Managing contact cards and the Contact manager API

sample.

Contact picker Apps that manage

contact data (like an

address book)

Apps using the

contact picker API

(like email)

Launches an app to provide a list of possible contacts to

select, providing that information to the app. See Managing

user contacts.

File activation (file

type association,

Chapter 11)

Apps that can open

files of a particular

type

Windows Explorer

and apps that use

the launcher API

Launches an app to open/service a file when needed. See

How to handle file activation and Auto-launching with file

and URI associations.

File open/save picker,

folder picker (Chapter

11 and Appendix D)

App with data that

can appear as files to

other apps for

opening and/or

saving (two separate

contracts).

Apps using the file

picker API (also

certain Windows

features)

Makes data that is otherwise hidden inside and managed by

apps appear as if they were part of the file system. See

Integrating with file picker contracts.

Game explorer (not

covered)

Game apps with a

Game Definition File

(GDF)

Windows (parental

controls)

Manages age ratings for games. See Creating a GDF file.

Play To (Chapter 13) Apps that can play

media to a DLNA

device

Windows (Devices

charm > Connect)

See Streaming media to devices using Play To.

Print task settings

(Chapter 17)

Printer device apps Windows (Device

charm > Print)

See Developing Windows 8 device apps for printers.

Protocol activation

(URI scheme

association)

Apps that can open

URIs that begin with

a particular URI

scheme

Windows Explorer

and apps that use

the launcher API

Launches an app to open/service a URI when needed. See

How to handle protocol activation and Auto-launching with

file and URI associations.

Search Apps with searchable

data

Windows (Search

charm)

Provides the ubiquitous ability to search any app from

anywhere. See Adding search to an app.

Settings (Chapter 10) Apps with settings Windows (Settings

charm)

Provides a standard place for app settings. See Adding app

settings.

Share Apps with sharable

data

Apps that can

receive data to

incorporate into

itself or share to a

service

Provides a linkage of data transfer between apps so that

source apps don’t need to be particularly aware of

individual targets like Facebook, Twitter, etc. See Adding

share.

SSL/certificates (not

covered)

Apps that need to

install a certificate

Apps needing to

supply a certificate

to another service

See Encrypting data and working with certificates.

Share

Though Search appears at the top of the Charms bar, the first contract I want to look at in depth is

Share—after all, it’s one of the first things you learn as a child! In truth, I’m starting with Share because

we’ve already seen the source side of the story starting back in Chapter 2, “Quickstart,” with the Here

My Am! app, and our coverage here will also include a brief look at the age-old clipboard at the end of

this section.

Let's review the basic process of Share and its user experience. Note that all object classes referred

http://msdn.microsoft.com/library/windows/apps/dn518237.aspx
http://code.msdn.microsoft.com/windowsapps/Contact-manager-API-sample-319bdcef
http://code.msdn.microsoft.com/windowsapps/Contact-manager-API-sample-319bdcef
http://msdn.microsoft.com/library/windows/apps/hh464939.aspx
http://msdn.microsoft.com/library/windows/apps/hh464939.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/apps/hh465153.aspx
http://msdn.microsoft.com/library/windows/apps/hh465176.aspx
http://msdn.microsoft.com/library/windows/hardware/br259129
http://msdn.microsoft.com/library/windows/apps/hh452686.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh465231.aspx
http://msdn.microsoft.com/library/windows/apps/hh770540.aspx
http://msdn.microsoft.com/library/windows/apps/hh770540.aspx
http://msdn.microsoft.com/library/windows/apps/hh758314.aspx
http://msdn.microsoft.com/library/windows/apps/hh758314.aspx
http://msdn.microsoft.com/library/windows/apps/hh465012.aspx

789

to here come from the Windows.ApplicationModel.DataTransfer namespace unless noted.

 First, if the Share charm is invoked for an app that doesn't participate in the contract at all, the

charm provides options to share a screenshot or a link to the app’s page in the Store (if it’s

published), as shown below left. Screenshots can be disabled for protected content—see

"Sidebar: Disabling Screen Capture" at the end of this section. If an app is not yet published and

doesn’t yet have Share features, such as my game called 15+Puzzle that I’ve been working on

while writing this book, it appears as shown below right:

 To share content, an app listens for the datarequested event from the object returned by

DataTransferManager.getForCurrentView(). This WinRT event (for which you should be

mindful of using removeEventListener) is fired whenever the user invokes the Share charm.

 In its datarequested handler, the app determines whether it has anything to share at the

moment. If it doesn't—for example, the app shares selected content but currently has no

selection—it just returns from the handler:

var dtm =

 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

dtm.addEventListener("datarequested", shareHandler); //Remove this later!

function shareHandler (e) {

 //Nothing to share right now

}

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datatransfermanager.datarequested.aspx

790

You can customize the message by calling the eventArgs.request.failWithDisplayText

method:

function shareHandler (e) {

 e.request.failWithDisplayText(

 "Your score is embarrassing. I don't think you want to share it.");

}

(And no, my real app in the Store doesn't do this, but it was worth a little laugh!)

 If the source app does have data to share, it populates the DataPackage object provided in the

event args (a DataRequestedEventArgs object whose request.data property is the package).

It specifically uses the package's set* methods, like setHtmlFormat, to provide whatever

formats are applicable. You’ll typically want to share as many formats as you can, to increase the

number of potential targets. In the Here My Am! app, for example, we share text and images

together (see pages/home/home.js at the end of the file):

function provideData(e) {

 var request = e.request;

 var data = request.data;

 if (!lastPosition || !lastCapture) {

 return; //Nothing to share, so exit

 }

 data.properties.title = "Here My Am!";

 data.properties.description = "At ("

 + app.sessionState.lastPosition.latitude +

 ", " + app.sessionState.lastPosition.longitude + ")";

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datarequestedeventargs.aspx

791

 //When sharing an image, include a thumbnail

 var streamReference =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(lastCapture);

 data.properties.thumbnail = streamReference;

 data.setStorageItems([lastCapture]);

 data.setBitmap(streamReference);

}

 Based on the data formats in the package, Windows—that is, the share broker that manages the

contract—determines the share target apps to display to the user (as in the first image above).

The user can also control which apps are shown via PC Settings > Search and Apps > Share.

 When the user picks a target, the associated app is activated in a partial overlay and receives the

data package to process however it wants. Because the target is activated in an overlay, the

source app remains on the screen so that the user always remains aware of that origina l context.

The more complete sequence of events between the source app, the share broker, and the target

app is shown in Figure 15-1.

FIGURE 15-1 Processing the Share contract as initiated by the user’s selection of the Share charm.

This whole process provides a very convenient shortcut for users to take something they love in one

app and get it into another app with a simple edge gesture and target app selection, without leaving

the context of the source app. It’s like a semantically rich clipboard in which you don’t have to figure

out how to get connected to other apps. What’s very cool about the Share contract, in other words, is

that the source doesn’t have to care what happens to the data—its only role is to provide whatever

data is appropriate for sharing at the moment the user invokes the Share charm (if, in fact, there is

appropriate data—sometimes there isn’t). This liberates source apps from the burden of having to

predict, anticipate, or second-guess what users might want to do with the data (though there's nothing

792

wrong with providing dedicated controls for specific scenarios). Perhaps they want to email it, share it

via social networking, drop it into a content management app…who knows?

Well, only the user knows, so what the share broker does with that data is let the user decide! Given

the data package from the source, the broker matches the formats in that package to target apps that

have indicated support for those formats in their manifests. The broker then displays that list to the

user. That list can contain apps, for one, but also something called a quicklink (a ShareTarget.-

Quicklink object, to be precise), which is serviced by some app but is much more specific. For

instance, when an email app is shown as an option for sharing, the best it can do is create a new

message with no particular recipients. A quicklink, however, can identify specific email addresses, say,

for a person or persons you email frequently. The quicklink, then, is essentially an app plus specific

configuration information.

Whatever the case, some app is launched when the user selects a target. With the Share contract,

the app is launched with an activation kind of shareTarget. This tells it to not bring up its default UI

but to rather show a specific share pane (with light-dismiss behavior) in which the user can refine

exactly what is being shared and how. A share target for a social network, for instance, will of ten

provide a place to add a comment on the shared data before posting it. An email app would provide a

means to edit the message before sending it. A front-end app for a photo service could allow for

adding a caption, specifying a location, identifying people, and so on. You get the idea. All of this

combines together to provide a smooth flow from having something to share to an app that facilitates

the sharing and allows the user to add customizations.

Overall, then, the Share contract gets apps connected to one another for this common purpose

without any of them having to know anything about the others. This creates a very extensible and

scalable experience: because all the potential target choices appear only in the Share charm pane, they

never need to clutter a source app as we see happening on many web pages. This is the “content

before chrome” design principle in action. (Though you might still implement specific sharing scenarios

directly within the app for purposes other than general sharing, such as a share-to-Facebook function

that rewards the user with some in-app currency.)

Source apps also don’t need to update themselves when a new target becomes popular (e.g., a new

kind of social network): all that’s needed is a single target app. As for those target apps, they don’t have

to evangelize themselves to the world: through the contract, source apps are automatically able to use

any target apps that come along in the future. And from the end user’s point of view, their experience

of the Share charm gets better and better as they acquire more Share-capable apps.

At the same time, it is possible for the source app to know something about how its shared data is

being used. Alongside the datarequested event, the DataTransferManager also fires a

targetApplicationChosen event to those sources who are listening. The eventArgs in this case

contain only a single property: applicationName. This isn’t really useful for any other WinRT APIs,

mind you, but is something you can tally within your own telemetry. Such data can help you

understand whether you’d provide a better user experience by sharing richer data formats, for example,

or, if common target apps also support custom formats that you can support in future updates.

793

Sidebar: Disabling Screen Capture

Some apps, to protect sensitive or rights-managed information, for example, need to disable

screen capture both through the default Share charm and through the Alt+Print Screen and

Windows+Print Screen keyboard combinations.

Screen capture is controlled through the ApplicationView.isScreenCaptureEnabled

property. Setting this to false will disable screen capture, as you'd do when a rights-protected

email message is visible:

Windows.UI.ViewManagement.ApplicationView.getForCurrentView().isScreenCaptureEnabled

 = false;

If you invoke the Share charm with capture disabled, you'll see this message:

Setting isScreenCaptureEnabled to true will reenable capture, as you'd do when protected

content is no longer visible. Both scenarios—which constitute only a single line of code each!—

can be found in the Disabling screen capture sample.

Share Source Apps
Let’s complete our understanding of source apps by looking at a number of details we haven’t fully

explored yet, primarily around how the source populates the data package and the options it has for

handling the request. For this purpose, I suggest you obtain and run the Sharing content source app

sample and the Sharing content target app sample. We’ll be looking at both of these, and the latter

provides a helpful way to see how a target app consumes the data package created in the source.

The source app sample provides a number of scenarios that demonstrate how to share different

types of data. It also shows how to programmatically invoke the Share charm—this isn’t typically

recommended, but it is possible:

Windows.ApplicationModel.DataTransfer.DataTransferManager.showShareUI();

Calling this will, as when the user invokes the charm, trigger the datarequested event where

eventArgs.request object is again a DataRequest object, which contains two properties and two

methods:

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.isscreencaptureenabled.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.aspx

794

 data is the DataPackage to populate. It contains methods to make various data formats

available, though it’s important to note that not all formats will be immediately rendered.

Instead, they’re rendered only when a share target asks for them. Equally important is the

metadata that you configure for the package through data.properties.

 deadline is a Date property indicating the time in the future when the data you’re making

available will no longer be valid (that is, will not render). This recognizes that there might be an

indeterminate amount of time between when the source app is asked for data and when the

target actually tries to use it. With delayed rendering, as noted above for the data property, it’s

possible that some transient source data might disappear after some time, such as when it’s just

part of a cache that the source is managing. By indicating that time in deadline, rendering

requests that occur past the deadline will be ignored.

 failWithDisplayText, as mentioned earlier, is a method to tell the share broker that sharing

isn’t possible right now, along with a string that will tell the user why (perhaps the lack of a

usable selection). You call this when you don’t have appropriate data formats or an appropriate

selection to share, or if there’s an error in populating the data package for whatever reason. The

text you provide will then be displayed in the Share charm (and thus should be localized).

Scenario 8 of the source app sample shows the use of this in the simple case when the app

doesn't provide data in response to the datarequested event.

 getDeferral provides for async operations you might need to perform while populating the

data package (just like other deferrals elsewhere in the WinRT API). That is, once you return

from datarequested, the Share charm assumes you've populated the package; by retrieving

the deferral object, the charm will wait until you call the deferral's complete method. During

this time it will display a progress ring:

Tip Be mindful to always complete the deferral if you use it and to thoroughly test your sharing code

to ensure that your handler always returns. If your datarequested handler crashes, does not return, or

fails to complete a deferral, this Share charm message turns into a spinning donut of death (that is, the

graphic above will last forever!), which your users will likely report in your ratings.

The basic structure of a datarequested handler, then, attempts to populate data formats through

request.data.set*, populates the necessary metadata fields of request.data.properties, and calls

eventArgs.request.failWithDisplayText when errors occur. We see this structure in most of the

scenarios in the sample, which I've generalized here:

795

var dataTransferManager =

 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

// Remove this listener as required

dataTransferManager.addEventListener("datarequested", dataRequested);

function dataRequested(e) {

 var request = e.request;

 // Assume variables like shareTitle, shareDescription, etc., are defined elsewhere.

"" if (/* Check if there is appropriate data to share */) {

 // Populate desired metadata. title is required.

 request.data.properties.title = shareTitle;

"" request.data.properties.description = shareDescription;

 // Highly recommended to set app links

 request.data.properties.contentSourceApplicationLink =

 new Windows.Foundation.Uri(scenario.applink);

 });

 // Call request.data.setText, setUri, setBitmap, setData, etc.

 // Request a deferral if async work is necessary.

 request.data.setText(shareText);

 } else {

 request.failWithDisplayText(/* Error message */);

 }

}

The following sections explore the details of the different aspects of the handler: metadata,

populating data formats, and deferrals.

Populating Metadata

Even though the real "goods" in a Share operation are stored in a data package through the set*

methods, how you describe that information through metadata is very important for how the data is

consumed, how it appears in the system UI, and how that data refers back to the source app. The latter

is especially important because it can help you acquire new users when the shared data ultimately goes

out beyond the local device via email, via sharing to social networks, and so forth.

All metadata for Share is populated through fields of the request.data.properties object, which

is a DataPackagePropertySet. This object is technically a PropertySet and thus has methods like

first, lookup, and remove to support custom properties (when using custom formats) and allows for

future extensibility. We'll talk about custom formats a little later. What's important first are the named

fields in request.data.properties. These fall into two groups—descriptive/UI properties and app

reference properties—as detailed in the following table.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackagepropertyset.aspx

796

Descriptive/UI Properties

title (Required) The text that appears at the top of the Share flyout:

.

description The text that appears below the title in the Share flyout (see image above). This should describe

the contents of the package.

thumbnail A stream containing a thumbnail image; obtaining this image is typically why you’d use the

request.getDeferral method. The target app can choose to display this as a preview instead

of using the full image data from the package. The Reading List app, for example, uses an image

because the thumbnail is typically too small.

square30x30Logo Sets the source app’s logo that the target app can use to identify the source. (The Share charm

works with the source’s logo from its manifest.)

logoBackgroundColor A Color object describing the color to use for the logo background; defaults to the source app’s

background color in the manifest (Visual Assets).

fileTypes A string vector, where strings should come from the StandardDataFormats enumeration but

can also be custom formats.

size The number of items when the data in the package is a collection, e.g., files.

App Reference Properties
applicationName A string that helps target apps gather the same kind of telemetry information that the source

app can obtain from the targetApplicationChosen event. You can set this property directly (if

you want to attribute a different source than the app) or use the value from Windows.-

ApplicationModel.Package.current.id.name.

packageFamilyName The exact identifier of the source app as used in the Windows Store, which is set automatically

to the sane value as Windows.ApplicationModel.Package.current.id.familyName. It allows a

target app wishing to activate the source app to provide this identifier as a fallback when

attempting to launch the contentSourceApplicationLink, such that the user can go acquire

the source app from the Store.

applicationListingUri The URI of your app’s page in the Windows Store, which should be set to the value from

Windows.ApplicationModel.Store.CurrentApp.linkUri. This is a very simple way to increase

your app’s visibility, so don’t skip this step!

contentSourceApplicationLink A Windows.Foundation.Uri object that provides a deep link into the exact location of the

source data in the source app.

contentSourceWebLink A Windows.Foundation.Uri object that provides a web link to the content that’s being shared,

as when the content is hosted in a webview.

http://msdn.microsoft.com/library/windows/apps/windows.ui.color.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.standarddataformats.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.name.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.name.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.familyname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.linkuri.aspx

797

The relationships and uses of the reference properties deserve a little more explanation. In the past,

sharing through mechanisms like the clipboard has been a one-way process: once data leaves the

source app, it loses its relationship with that source (with the exception of sharing a URI with a custom

scheme). The overall purpose of these reference properties is to maintain that connection between the

data and its source, even though the data might go far afield even beyond the immediate target app.

For example, a target that shares to a social network can post the shared data and provide one of the

links back to the source app or the web content that the source app was hosting. This invites

consumers of that data, wherever they encounter it, to navigate back to the source app, possibly

acquiring the app from the Store along the way.

The applicationListingUri, then, clearly provides a link to the source app in the Store. Truly, you

should always set this, because it's one line of code that can very much help you acquire new users. Of

course, until you upload an app to the Store for the first time, you won't know this URI, which is why

you should just assign the value from Windows.ApplicationModel.Store.CurrentApp.linkUri:

e.request.data.properties.applicationListingUri =

 Windows.ApplicationModel.Store.CurrentApp.linkUri;

Tip If you're using the CurrentAppSimulator during development, use that object in place of

CurrentApp in this code snippet. It's best, actually, to have a single app variable that contains either

CurrentApp or CurrentAppSimulator so that you can change it in one place prior to onboarding to

the Store. In any case, when using the CurrentAppSimulator (see Chapter 20, "Apps for Everyone,

Part 2,"), the linkUri property will return whatever is in the <LinkUri> element of your

WindowsStoreProxy.xml file.

The contentSourceApplicationLink and contentSourceWebLink properties are more specific.

Their purpose is to provide direct links to where the content originally came from, be it a section of an

app or a website, respectively.

For example, if you share from an RSS reader app, set contentSourceApplicationLink to a URI

that will activate the app to navigate directly back to that page at a later time. Navigating to an app, of

course, means that the URI is something other than http[s], typically a custom scheme. As a result,

this requires that the app implements protocol activation, as we'll discuss later in this chapter under

"Protocol Activation." The Sharing content source app sample uses the code below to create deep links

to the specific scenario page from which data is shared (this example is from js/text.js):

SdkSample.scenarios.forEach(function (scenario) {

 if (scenario.url === "/html/text.html") {

 request.data.properties.contentSourceApplicationLink =

 new Windows.Foundation.Uri(scenario.applink);

 }

});

Whatever app ultimate consumes this link will likely want to activate it using Windows.System.-

Launcher.launchUriAsync. In that call, the LauncherOptions argument can contain a

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://msdn.microsoft.com/library/windows/apps/hh701484.aspx
http://msdn.microsoft.com/library/windows/apps/hh701484.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.launcheroptions.aspx

798

preferredApplicationPackageFamilyName, which would be set to the packageFamilyName property

from the source app. As a result, if there's no other app handling the URI scheme already, the user will

be invited to install that original source app.

If your app hosts and shares web content in a webview element, things are a little different. Here

you set the contentSourceWebLink to the appropriate http[s] URI. If you remember from Chapter 4,

"Web Content and Services," in the section "Capturing Webview Content," the webview element allows

you to retrieve a DataPackage for whatever content is selected within it (using the captureSelected-

ContentToDataPackageAsync method. You can assign this package directly to request.data within

the datarequested event if you want to share straight through, or you can copy data from this

package to the one provided in request.data. (And of course, if you use an async API like this within

the event handler, you'll need to use the deferral object as well.)

I'd refer you to scenario 7 of the HTML webview control sample in the SDK to see a bit of this, but

unfortunately it doesn't share the selection within a webview (just its URI and a bitmap), and it does

two other things incorrectly. It fails to use the deferral when making an async call, and it uses the

package's deprecated setUri method to set a data type instead of setting the metadata field

contentSourceWebLink. To address these shortcomings, scenario 4 of the Webview extras example in

Chapter 4's companion content provides a more complete and accurate demonstration, specifically

sharing the selected content from the webview, or a bitmap if there is no selection (js/scenario4.js):

//Wrap the webview's capture methods promises.

function getWebviewSelectionAsync(webview) {

 return new WinJS.Promise(function (cd, ed) {

 var op = webview.captureSelectedContentToDataPackageAsync();

 op.oncomplete = function (args) { cd(args.target.result); };

 op.onerror = function (e) { ed(e); };

 op.start();

 });

}

function getWebviewBitmapAsync(webview) {

 return new WinJS.Promise(function (cd, ed) {

 var op = webview.capturePreviewToBlobAsync();

 op.oncomplete = function (args) {

 var ras = Windows.Storage.Streams.RandomAccessStreamReference;

 var bitmapStream = ras.createFromStream(args.target.result.msDetachStream());

 cd(bitmapStream);

 };

 op.onerror = function (e) { ed(e); };

 op.start();

 });

}

function dataRequested(e) {

 var webview = document.getElementById("webview");

 var dataPackage = e.request.data;

799

 //Obtain a deferral

 var deferral = e.request.getDeferral();

 //Set the data package's properties. These are displayed within the Share UI

 //to give the user an indication of what is being shared. They can also be

 //used by target apps to determine the source of the data.

 dataPackage.properties.title = webview.documentTitle;

 dataPackage.properties.description = "Content shared from Webview";

 dataPackage.properties.applicationName = "Webview Extras Example";

 //Web link is the same as the webview's source URI.

 dataPackage.properties.contentSourceWebLink = new Windows.Foundation.Uri(webview.src);

 //To support app links in Share, the app typically uses protocol activation with

 //a custom protocol.

 var applink = "progwin-js-webviewextras:navigate?page=ShareWebview";

 dataPackage.properties.contentSourceApplicationLink = new Windows.Foundation.Uri(applink);

 // Set the data being shared from the webview's selection, or else use the whole webview.

 getWebviewSelectionAsync(webview).then(function (selectionPackage) {

 if (selectionPackage != null) {

 //There's a selection, so use that as the data package. First copy the key

 //properties from the original package to the new one.

 var props = ["title", "description", "applicationName", "contentSourceWebLink",

 "contentSourceApplicationLink"];

 for (var i = 0; i < props.length; i++) {

 selectionPackage.properties[props[i]] = dataPackage.properties[props[i]];

 }

 //Now provide the webview's package as a whole for the data

 e.request.data = selectionPackage;

 //We return a promise to make a chain; in this case we just return a Boolean

 //indicating what was rendered (true for selection).

 return WinJS.Promise.as(true);

 } else {

 //With no selection, render the whole webview and provide its URI as text.

 dataPackage.setText(webview.src);

 dataPackage.setUri(new Windows.Foundation.Uri(webview.src));

 return getWebviewBitmapAsync(webview).then(function (bitmapStream) {

 dataPackage.setBitmap(bitmapStream);

 return false;

 });

 }

 }).done(function (selectionRendered) {

 //Be sure to complete the deferral on success or error either way

 WinJS.log && WinJS.log("Selection rendered: " + selectionRendered, "app");

 deferral.complete();

 }, function (e) {

 deferral.complete();

 });

800

}

Note Setting the contentSourceApplicationLink and contentSourceWebLink properties have

different semantics than populating the data package with the ApplicationLink or WebLink data

formats, which we'll meet in the next section. Specifically, when the only data you're sharing is a link

itself, that's when you use the link formats. If you're sharing other content from an app page or a

webview, that's when you use formats like text and HTML and set the contentSource*Link properties

accordingly, as the code above demonstrates.

Populating Data Formats

Populating metadata to describe the shared content is all well and good, but then we cannot forget

about placing content in the data package itself! This is done in your datarequested handler by

calling the various set* methods in the DataPackage object for as many formats as you can provide.

Supporting more formats will enable more potential targets and thus the likelihood that data from

your app will be shared. This includes calling setData for custom formats and setDataProvider for

deferred rendering, which are described in the two sections that follow this one.

For standard formats identified by values in the StandardDataFormats enumeration, there are

discrete methods: setText, setHtmlFormat, setApplicationLink, setWebLink, setBitmap, and

setStorageItems (for files and folders), and setRtf.107 All of these except for setRtf are represented

in the Sharing content source app sample as follows.

Sharing text—scenario 1 (js/text.js):

var dataPackageText = document.getElementById("textInputBox").value;

request.data.setText(dataPackageText);

Sharing links—scenarios 2 and 3 (js/weblink.js and js/applicationlink.js), used for remote content and

deep linking into the app, respectively:

request.data.setWebLink(

 new Windows.Foundation.Uri(document.getElementById("weblinkInputBox").value));

var dataPackageApplicationLink = document.getElementById("selectionList").value;

request.data.setApplicationLink(new Windows.Foundation.Uri(dataPackageApplicationLink));

Be mindful that when using WebLink or ApplicationLink formats, you're saying that the link itself is

the whole content. This is different from using the package's contentSourceApplicationLink and

contentSourceWebLink properties to indicate the source (app page or web page, respectively) of the

content being shared. In other words, the link formats are generally mutually exclusive with their

associated contentSource*Link properties. It is, however, certainly possible to share a WebLink format

107 RTF stands for rich text format, a comparably ancient and somewhat uncommon precursor to HTML. There is also the

setUri method that is deprecated in favor of setApplicationLink and setWebLink.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.standarddataformats.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84

801

and set a contentSourceApplicationLink to enable deep linking back to the page in the app (or

share both WebLink and ApplicationLink formats).

Sharing an image and a storage item—scenario 4 (js/image.js):

var imageFile; // A StorageFile obtained through the file picker

// In the data requested event

var streamReference =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile);

request.data.properties.thumbnail = streamReference;

// It's recommended to always use both setBitmap and setStorageItems for sharing a

// single image since the Target app may only support one or the other

// Put the image file in an array and pass it to setStorageItems

request.data.setStorageItems([imageFile]);

// The setBitmap method requires a RandomAccessStreamReference

request.data.setBitmap(streamReference);

Sharing files—scenario 5 (js/file.js):

var selectedFiles; // A collection of StorageFile objects obtained through the file picker

// In the data requested event

request.data.setStorageItems(selectedFiles);

As for sharing HTML, this isn't quite as simple as calling setHtmlFormat with a bit of HTML. The

string must be formatted to include a few extra headers that a target app (or the clipboard) requires.

(Refer back to Figure 4-3 in Chapter 4 to see what those headers look like.)

For this purpose you might find the DataTransfer.HtmlFormatHelper object, well, helpful—it

provides methods to build such properly formatted markup. Specifically, its createHtmlFormat

method takes whatever bit of HTML you want to share and gives it the necessary headers:

var htmlString = "<p>A big hi hello to all intelligent life out there...</p>"

var shareString =

 Windows.ApplicationModel.DataTransfer.HtmlFormatHelper.createHtmlFormat(htmlString);

request.data.setHtmlFormat(shareString);

What’s also true with HTML is that it often refers to other content like images that aren’t directly

contained in the markup. So how do you handle that? Fortunately, the designers of this API thought

through this need: you employ the data package’s resourceMap property to associate relative URIs in

the HTML with an image stream. We see this in scenario 7 of the sample (js/html.js):

var path = document.getElementById("htmlFragmentImage").getAttribute("src");

var imageUri = new Windows.Foundation.Uri(path);

var streamReference =

http://msdn.microsoft.com/library/windows/apps/hh738437.aspx

802

 Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(imageUri);

request.data.resourceMap[path] = streamReference;

The other interesting part of scenario 7 is that it replaces the data package in the eventArgs with a

new one that it creates as follows:

var range = document.createRange();

range.selectNode(document.getElementById("htmlFragment"));

request.data = MSApp.createDataPackage(range);

As you can see, the MSApp.createDataPackage method takes a DOM range (in this case a portion

of the current page) and creates a data package from it, where the package’s setHtmlFormat method

is called in the process (which is why you don’t see that method called explicitly in scenario 7). For what

it’s worth, there is also MSApp.createDataPackageFromSelection, which does the same job with

whatever is currently selected in the DOM. You would obviously use this if you have editable elements

on your page from which you’d like to share.

Also, as noted in the previous section, the webview element's captureSelectedContentToData-

PackageAsync method makes it simple to extract content from a webview for use with the Share

contract. In this case, any HTML format that's contained in the package from the webview already has

the necessary headers, which is what's shown in Figure 4-3 of Chapter 4.

Custom Data Formats: schema.org

Long ago, I imagine, API designers decided it was an exercise in futility to try to predict every data

format that apps might want to exchange in the future. The WinRT API is no different, so alongside the

format-specific set* methods of the DataPackage we find the generic setData method. This takes a

format identifier (a string) and the data to share. This is illustrated in scenario 8 of the Sharing content

source app sample using the format “http://schema.org/Book” and data in a JSON string (js/custom.js):

request.data.setData(dataFormat, JSON.stringify(book));

Because the custom format identifier is just a string, you can literally use anything you want here; a

very specific format string might be useful, for example, in a sharing scenario where you want to target

a very specific app, perhaps one that you authored yourself. However, unless you’re very good at

evangelizing your custom formats to the rest of the developer community (and have a budget for

such!), chances are that other share targets won’t have any clue what you’re talking about.

Fortunately, there is a growing body of conventions for custom data formats maintained by

http://schema.org. This site is the point of agreement where custom formats are concerned, so we

highly recommend that you draw formats from it. See http://schema.org/docs/schemas.html for a

complete list.

Here’s the JSON book data used in the sample:

var book = {

 type: "http://schema.org/Book",

 properties: {

 image: "http://sourceuri.com/catcher-in-the-rye-book-cover.jpg",

http://msdn.microsoft.com/library/windows/apps/Hh831247.aspx
http://msdn.microsoft.com/library/windows/apps/hh831248.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://schema.org/
http://schema.org/docs/schemas.html

803

 name: "The Catcher in the Rye",

 bookFormat: "http://schema.org/Paperback",

 author: "http://sourceuri.com/author/jd_salinger.html",

 numberOfPages: 224,

 publisher: "Little, Brown, and Company",

 datePublished: "1991-05-01",

 inLanguage: "English",

 isbn: "0316769487"

 }

};

You can easily express this same data as plain text, as HTML (or RTF), as a link (perhaps to a page

with this information), and an image (of the book cover). This way you can populate the data package

with all the standard formats alongside specific custom formats.

Deferrals and Delayed Rendering

Deferrals, as mentioned before, are a simple mechanism to delay completion of the datarequested

event until the deferral’s complete method is called within an async operation’s completed handler.

The documentation for DataRequest.getDeferral shows an example of using this when loading an

image file:

var deferral = request.getDeferral();

Windows.ApplicationModel.Package.current.installedLocation.getFileAsync(

 "images\\smalllogo.png")

 .then(function (thumbnailFile) {

 request.data.properties.thumbnail = Windows.Storage.Streams.

 RandomAccessStreamReference.createFromFile(thumbnailFile);

 return Windows.ApplicationModel.Package.current.installedLocation.getFileAsync(

 "images\\logo.png");

 })

 .done(function (imageFile) {

 request.data.setBitmap(

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile));

 deferral.complete();

 });

Another example was shown with the webview example in the "Populating Metadata" section

earlier.

Delayed rendering is a different matter, though the process typically employs the deferral. The

purpose here is to avoid rendering the shared data until a target actually requires it, referred to as a

pull operation. The set* methods that we’ve seen so far all copy the full data into the package. Delayed

rendering means calling the data package’s setDataProvider method with a data format identifier

and a function to call when and if the data is needed. Here’s how it’s done in scenario 6 of the Sharing

content source app sample where imageFile is selected with a file picker (js/delay-render.js):

// When sharing an image, don't forget to set the thumbnail for the DataPackage

var streamReference =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile);

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.getdeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.setdataprovider.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84

804

request.data.properties.thumbnail = streamReference;

request.data.setDataProvider(

 Windows.ApplicationModel.DataTransfer.StandardDataFormats.bitmap,

 onDeferredImageRequested);

As indicated in the comments, it’s a really good idea to provide a thumbnail with delayed rendering

so that the target app has something to show the user. Then, when the target needs the full data, the

data provider function gets called—in this case, onDeferredImageRequsted—where we see a good

flashback to the encoding processes we learned about in Chapter 13, "Media":

function onDeferredImageRequested(request) {

 if (imageFile) {

 // Here we provide updated Bitmap data using delayed rendering

 var deferral = request.getDeferral();

 var imageDecoder, inMemoryStream;

 imageFile.openAsync(Windows.Storage.FileAccessMode.read).then(function (stream) {

 // Decode the image

 return Windows.Graphics.Imaging.BitmapDecoder.createAsync(stream);

 }).then(function (decoder) {

 // Re-encode the image at 50% width and height

 inMemoryStream = new Windows.Storage.Streams.InMemoryRandomAccessStream();

 imageDecoder = decoder;

 return Windows.Graphics.Imaging.BitmapEncoder.createForTranscodingAsync(

 inMemoryStream, decoder);

 }).then(function (encoder) {

 encoder.bitmapTransform.scaledWidth = imageDecoder.orientedPixelWidth * 0.5;

 encoder.bitmapTransform.scaledHeight = imageDecoder.orientedPixelHeight * 0.5;

 return encoder.flushAsync();

 }).done(function () {

 var streamReference = Windows.Storage.Streams.RandomAccessStreamReference

 .createFromStream(inMemoryStream);

 request.setData(streamReference);

 deferral.complete();

 }, function (e) {

 // didn't succeed, but we still need to release the deferral to avoid

 //a hang in the target app

 deferral.complete();

 });

 }

}

The request argument passed to this function is a simplified hybrid of the DataRequest and

DataPackage objects called a DataProviderRequest. This contains a deadline property (with the

same meaning as in DataRequest), a formatId property, a getDeferral method, and a setData

method through which you provide the data that matches formatId.

Note that the sample here doesn't actually check request.formatId before proceeding because it

calls setDataProvider only once for a single format. If you make multiple calls to setDataProvider

with different formats and use the same handler, be sure to check formatId and render the proper

data. Of course, you can use discrete handlers for each format.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.dataproviderrequest.aspx

805

Share Target Apps
Looking back to Figure 15-1, we can see that while the interaction between a source app and the share

broker is driven by the single datarequested event, the interaction between the broker and a target

app is a little more involved. For one, the broker needs to determine which apps can potentially handle

a particular data package, for which purpose each target app includes appropriate details in its

manifest. When an app is selected, it gets launched with an activation kind of shareTarget, in

response to which it should show a specific share UI rather than the full app experience.

Let’s see how all this works with the Sharing content target app sample, whose appearance is shown

in Figure 15-2 (borrowing from Figure 2-20 we saw ages ago). Be sure to load this app in Visual Studio

and run it once so that it’s effectively installed and it will appear on the list of apps when we invoke the

Share charm.

FIGURE 15-2 The appearance of the Sharing content target app sample (the right-hand nonfaded part).

The first step for a share target is to declare the data formats it can accept in the Declarations

section of its manifest, along with the page that will be invoked when the app is selected as a target. As

shown in Figure 15-3, the target app sample declares it can handle text, URI, bitmap, html, and the

http://schema.org/Book formats, and it also declares it can handle whatever files might be in a data

package (you can indicate specific file types here). Way down at the bottom it then points to

target.html as its Share target page.

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://schema.org/Book

806

FIGURE 15-3 The Share content target app sample’s manifest declarations.

Tip The Share Description field on the Share Target Declarations page in the manifest determines the

subtext below the app name in the share charm. That is, if this field is left empty, only the target app's

logo and name appears in the charm:

807

Here's how it looks with "Examine the shared data" in the Share Description field:

The Share start page, target.html, is just a typical HTML page with whatever layout you require for

performing the share task. This page typically operates independently of your main app: when your

app is chosen through Share, this page is loaded and activated by itself and thus has an entirely

separate script context. This page should not provide navigation to other parts of the app and should

thus load only whatever code is necessary for the sharing task. (The Executable and Entry Point options

are not used for apps written in HTML and JavaScript; those exist for apps written in other languages.)

Tip Because the Share start page is activated separately from the main app, you can use the

document.onbeforeunload event to detect when the user dismisses it.

Much of this structure is built for you automatically through the Share Target Contract item

template provided by Visual Studio and Blend, as shown in Figure 15-4; the dialog appears when you

right-click your project and select Add > New Item or select the Project > Add New Item menu

command.

FIGURE 15-4 The Share Target Contract item template in Visual Studio and Blend.

This item template will give you HTML, JS, and CSS files for the share target page and will add that

page to your manifest declarations along with text and URI formats. So you’ll want to update those

declarations as appropriate.

808

Before we jump into the code, a few notes about the design of a share target page, summarized

from Guidelines for sharing content:

 Maintain the app’s identity and its look and feel, consistent with the primary app experience.

 Keep interactions simple to quickly complete the share flow: avoid text formatting, tagging, and

setup tasks, but do consider providing editing capabilities especially if posting to social

networks or sending a message. (See Figure 15-5 from the Mail app for an example.) A social

networking target app would generally want to include the ability to add comment; a photo-

sharing target would probably include the ability to add captions.

 Avoid navigation: sharing is a specific task flow, so use inline controls and inline errors instead of

switching to other pages. Another reason to avoid this is that the share page of the target app

runs in its own script context, so being able to navigate elsewhere in the app within a separate

context could be very confusing to users.

 Keep sign-in and configuration interactions simple—that is, have one step to sign in instead of a

multistep process. If more steps are necessary, encourage the user to open the full app to

perform them.

 Avoid links that would distract from or take the user away from the sharing experience.

Remember that sharing is a way to shortcut the oft-tedious process of getting data from one

app to another, so keep the target app focused on that purpose.

 Avoid light-dismiss flyouts because the Share charm already works that way.

 Acknowledge user actions when you start sending the data off (to an online service, for

example) so that users know something is actually happening.

 Put important buttons within reach of the thumbs on a touch device; refer to Windows 8 Touch

Posture topic in the documentation for placement guidance.

 Make previews match the actual content—in other words, don’t play tricks on the user!

With this page design, it’s good to know that you do not need to worry about different views—this

page really just has one view as a flyout. It does need to adapt itself well to varying dimensions, mind

you, but not to random widths. Basing the layout on a CSS grid with fractional rows and columns is a

good approach here.

Caution Because a target app can receive data from any source app, it should treat all such content as

untrusted and potentially malicious, especially with HTML, URIs, and files. The target app should avoid

adding such HTML or file contents to the DOM, executing code from URIs, navigating to the URI or

some other page based on the URI, modifying database records, using eval with the data, and so on.

http://msdn.microsoft.com/library/windows/apps/hh465251.aspx
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture

809

FIGURE 15-5 The sharing UI of the Windows Mail app (the bottom blank portion has been cropped); this UI allows

editing of the recipient, subject, and message body, and managing attachments.

Let’s now look at the contents of the template’s JavaScript file as a whole, because it shows us the

basics of being a target. First, as you can see, we have the same structure as a typical default.js for the

app, using the WinJS.Application object’s methods and events.

(function () {

 "use strict";

 var app = WinJS.Application;

 var share;

 function onShareSubmit() {

 document.querySelector(".progressindicators").style.visibility = "visible";

 document.querySelector(".commentbox").disabled = true;

 document.querySelector(".submitbutton").disabled = true;

 // TODO: Do something with the shared data stored in the 'share' var.

 share.reportCompleted();

 }

 // This function responds to all application activations.

 app.onactivated = function (args) {

 var thumbnail;

 if (args.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.shareTarget) {

 document.querySelector(".submitbutton").onclick = onShareSubmit;

 share = args.detail.shareOperation;

810

 document.querySelector(".shared-title").textContent =

 share.data.properties.title;

 document.querySelector(".shared-description").textContent =

 share.data.properties.description;

 thumbnail = share.data.properties.thumbnail;

 if (thumbnail) {

 // If the share data includes a thumbnail, display it.

 args.setPromise(thumbnail.openReadAsync().then(

 function displayThumbnail(stream) {

 document.querySelector(".shared-thumbnail").src =

 window.URL.createObjectURL(stream);

 }));

 } else {

 // If no thumbnail is present, expand the description and

 // title elements to fill the unused space.

 document.querySelector("section[role=main] header").style

 .setProperty("-ms-grid-columns", "0px 0px 1fr");

 document.querySelector(".shared-thumbnail").style.visibility = "hidden";

 }

 }

 };

 app.start();

})();

When this page is loaded and activated, during which time the app’s splash screen will appear in the

flyout, its WinJS.Application.onactivated event will fire—again independently of your app’s main

activated handler that’s typically in default.js. As a share target you just want to make sure that the

activation kind is shareTarget, after which your primary responsibility is to provide a preview of the

data you’ll be sharing along with whatever UI you have to edit it, comment on it, and so forth.

Typically, you’ll also have a button to complete or submit the sharing, on which you tell the share

broker that you’ve completed the process.

The key here is the args.detail.shareOperation object provided to the activated handler. This

is a ShareTarget.ShareOperation object, whose data property contains a read-only package called a

DataPackageView from which you obtain all the goods:

 To check whether the package has formats you can consume, use the contains method or the

availableFormats collection.

 To obtain data from the package, use its get* methods such as getTextAsync, getBitmap-

Async, and getDataAsync (for custom formats), among others (and note that getUriAsync is

deprecated). When pasting HTML you can also use the getResourceMapAsync method to get

relative resource URIs. The view’s properties like the thumbnail are also useful to provide a

preview of the data.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.shareoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx

811

As you can see, the Share target item template code above doesn’t do anything w ith shared data

other than display the title, description, and thumbnail; clearly your app will do something more by

requesting data from the package, like the examples we see in the share target sample. Its js/target.js

file contains an activated handler for the target.html page (in the project root), and it also displays

the thumbnail in the data package by default. It then looks for different data formats and displays

those contents if they exist:

if (shareOperation.data.contains(

 Windows.ApplicationModel.DataTransfer.StandardDataFormats.text)) {

 shareOperation.data.getTextAsync().done(function (text) {

 displayContent("Text: ", text, false);

 });

}

The same kind of code appears for the simpler formats. Consuming a bitmap is a little more work

but straightforward:

if (shareOperation.data.contains(

 Windows.ApplicationModel.DataTransfer.StandardDataFormats.bitmap)) {

 shareOperation.data.getBitmapAsync().done(function (bitmapStreamReference) {

 bitmapStreamReference.openReadAsync().done(function (bitmapStream) {

 if (bitmapStream) {

 var blob = MSApp.createBlobFromRandomAccessStream(bitmapStream.contentType,

 bitmapStream);

 document.getElementById("imageHolder").src = URL.createObjectURL(blob,

 { oneTimeOnly: true });

 document.getElementById("imageArea").className = "unhidden";

 }

 });

 });

}

For HTML, it looks through the markup for img elements and then sets up their src attributes from

the resource map. The iframe used to display the content (which could also be a webview) already has

the HTML content from the package by this time:

var images = iFrame.contentDocument.documentElement.getElementsByTagName("img");

if (images.length > 0) {

 shareOperation.data.getResourceMapAsync().done(function (resourceMap) {

 if (resourceMap.size > 0) {

 for (var i = 0, len = images.length; i < len; i++) {

 var streamReference = resourceMap[images[i].getAttribute("src")];

 if (streamReference) {

 // Call a helper function to map the image element's src

 // to a corresponding blob URL generated from the streamReference

 setResourceMapURL(streamReference, images[i]);

 }

 }

 }

 });

}

812

The setResourceMapURL helper function does pretty much what the bitmap-specific code did,

which is call openReadAsync on the stream, call MSApp.createBlobFromRandomAccessStream, pass

that blob to URL.createObjectURL, set the img.src with the result, and close the stream.

After the target app has completed a sharing operation, it calls the ShareOperation.report-

Completed method, as shown earlier with the template code. This lets the system know that the data

package has been consumed, the share flow is complete, and all related resources can be released. The

share target sample does this when you explicitly click a button for this purpose, but normally you

automatically call the method whenever you’ve completed the share. Do be aware that calling

reportCompleted will close the target app’s sharing UI, so avoid calling it as soon as the target

activates: you want the user to feel confident that the operation was carried out.

Long-Running Operations

To provide a fast and fluid user experience, a target app can dismiss the Share pane when it wants by

calling the ShareOperation.dismissUI method. After this, the target app has 10 seconds to complete

its processes or else it will be terminated.

If you need more time, it’s necessary to tell Windows that you have a long-running operation. When

you run the Sharing content target app sample and invoke the Share charm from a suitable source app,

there’s a little expansion control near the bottom labeled “Long-running Share support.” If you expand

that, you’ll see some additional controls and a bunch of descriptive text, as shown in Figure 15-6. The

buttons shown here tie into a number of other methods on the ShareOperation object alongside

reportCompleted. These help Windows understand exactly how the share operation is happening

within the target: reportStarted, reportDataRetrieved, reportSubmittedBackgroundTask, and

reportError. As you can see from the descriptions in Figure 15-6, these generally relate to telling

Windows when the target app has finished cooking its meal, so to speak, and the system can clean the

dishes and put away the utensils:

 reportStarted informs Windows that your sharing operation might take a while, as if you’re

uploading the data from the package to another place or sending an email attachment with

what ends up being large images and such. This specific method indicates that you’ve obtained

all necessary user input and that the share pane can be dismissed.

 reportDataRetrieved informs Windows that you’ve extracted what you need from the data

package such that it can be released. If you’ve called MSApp.createBlobFromRandomAccess-

Stream for an image stream, for example, the blob now contains a copy of the image that’s

local to the target app. If you’re using images from the package’s resourceMap, on the other

hand, don't call reportDataRetrieved unless you explicitly make a copy of those references

whose URIs refer to bits inside the data package. In any case, if you need to hold on to the

package throughout the operation, you don’t need to call this method because you’ll later call

reportCompleted to release the package.

 reportSubmittedBackgroundTask tells Windows that you’ve started a background transfer

using the Windows.Networking.BackgroundTransfer.BackgroundUploader class (see

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.shareoperation.dismissui.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx

813

Chapter 4). As the sample description in Figure 15-6 indicates, this lets Windows know that it

can suspend the target app and not disturb the sharing operation. If you call this method with a

local copy of the data being uploaded, go ahead and call reportCompleted method so that

Windows can clean up the package; otherwise wait until the transfer is complete.

 reportError lets Windows know if there’s been an error during the sharing operation.

FIGURE 15-6 Expanded controls in the Sharing content target app sample for Long-Running Share Support. The

Report Completed button is always shown and isn’t specific to long-running tasks despite its placement in the

sample’s UI. Don’t let that confuse you!

Quicklinks

The last aspect of the Share contract for us to explore is something we mentioned early on in this

section: quicklinks. These serve to streamline the Share process such that users don’t need to re-enter

information in a target app. For example, if a user commonly shares data with particular people

through email, each contact can be a quicklink for the email app. If a user commonly shares with

different people or groups through a social networking app, those people and/or groups can be

represented with quicklinks. And as these targets are much more user-specific than target apps in

814

general, the Share charm UI shows these at the top of its list (see Figure 15-7 below).

Each quicklink is associated with and serviced by a particular target app and simply provides an

identifier to that target. When the target is invoked through a quicklink, it then uses that identifier to

retrieve whatever data is associated with that quicklink and prepopulates or otherwise configures its UI.

It’s important to understand that quicklinks contain only an identifier, so the target app must store and

retrieve the associated data from some other source, typical ly local app data where the identifier is a

filename, the name of a settings container, etc. The target app could also use roaming app data or the

cloud for this purpose, but quicklinks themselves do not roam to another device—they are strictly local.

Thus, it makes the most sense to store the associated data locally.

A quicklink itself is just an instance of the Quicklink class. You create one with the new operator

and then populate its title, thumbnail, supportedDataFormats, supportedFileTypes, and id

properties. The data formats and file types are what Windows uses to determine if this quicklink should

be shown in the list of targets for whatever data is being shared from a source app (independent of the

app’s manifest declarations). The title and thumbnail are used to display that choice in the Share

charm, and the id is what gets passed to the target app when the quicklink is chosen.

Tip For the thumbnail, use an image that’s more specifically representative of the quicklink (such as a

contact photo) rather than just the target app. This helps distinguish the quicklink from the general use

of the target app.

An app then registers a quicklink with the system by passing it to the ShareOperation.report-

Completed method. As this is the only way in which a quicklink is registered, it tells us that creating a

quicklink always happens as part of another sharing operation. It’s a way to create a specific target that

might save the user some time and encourage her to choose your target app again in the future.

Let’s follow the process within the Sharing content target app sample to see how this all works. First,

when you invoke the Share charm and choose the sample, you’ll see that it provides a check box for

creating a quicklink (Figure 15-7). When you check this, it provide fields in which you can enter an id

and a title (the thumbnail just uses a default image). When you press the Report Completed button, it

calls reportCompleted and the quicklink is registered. On subsequent invocations of the Share charm

with the appropriate data formats from the source app, this quicklink will then appear in the list, as

shown in Figure 15-8 where the app servicing the quicklink is always indicated under the provided title.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.quicklink.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

815

FIGURE 15-7 Controls to create a quicklink in the Sharing content target app sample.

FIGURE 15-8 A quicklink from the Sharing content target app sample as it appears in the Share charm target list.

Here’s how the share target sample creates the quicklink within the function reportCompleted

(js/target.js) that’s attached to the Report Completed button (some error checking omitted):

if (addQuickLink) {

 var quickLink = new Windows.ApplicationModel.DataTransfer.ShareTarget.QuickLink();

 var quickLinkId = document.getElementById("quickLinkId").value;

 quickLink.id = quickLinkId;

 var quickLinkTitle = document.getElementById("quickLinkTitle").value;

 quickLink.title = quickLinkTitle;

 // For quicklinks, the supported FileTypes and DataFormats are set independently

 // from the manifest

816

 var dataFormats = Windows.ApplicationModel.DataTransfer.StandardDataFormats;

 quickLink.supportedFileTypes.replaceAll(["*"]);

 quickLink.supportedDataFormats.replaceAll([dataFormats.text, dataFormats.uri,

 dataFormats.bitmap,

 dataFormats.storageItems, dataFormats.html, customFormatName]);

 // Prepare the icon for a QuickLink

 Windows.ApplicationModel.Package.current.installedLocation.getFileAsync(

 "images\\user.png").done(function (iconFile) {

 quickLink.thumbnail = Windows.Storage.Streams.RandomAccessStreamReference

 .createFromFile(iconFile);

 shareOperation.reportCompleted(quickLink);

 });

Again, the process just creates the Quicklink object, sets its properties (perhaps settings a more

specific thumbnail such as a contact’s picture), and passes it to reportCompleted. In the share target

sample, you can see that it doesn’t actually store any other local app data; for its purposes the

properties in the quicklink are sufficient. Most target apps, however, will likely save some app data for

the quicklink that’s associated with the quicklink.id property and reload that data when activated

later on through the quicklink.

When the app (that is, the target page) is activated in this way, the eventArgs.detail.-

shareOperation object within the activated event handler will contain the quicklinkId. The sample

simply displays this id, but you would certainly use it to load app data and prepopulate your share UI:

// If this app was activated via a QuickLink, display the QuickLinkId

if (shareOperation.quickLinkId !== "") {

 document.getElementById("selectedQuickLinkId").innerText = shareOperation.quickLinkId;

 document.getElementById("quickLinkArea").className = "hidden";

}

Note that when the target app is invoked through a quicklink, it doesn’t display the same UI to

create a quicklink, because doing so would be redundant. However, if the user edited the information

related to the quicklink, you might provide the ability to update the quicklink, which means to update

the data you save related to the id, or to create a new quicklink with a new id.

You should also provide a means through which a user can delete a quicklink. This is done by calling

the ShareOperation.removeThisQuickLink method, which deletes the one identified in the

quickLinkId property.

The Clipboard
Before the Share contract was ever conceived, the mechanism we know as the Clipboard was once the

poster child of app-to-app cooperation. And while it may not garner any media attention nowadays,

it’s still a tried-and-true means for apps to share and consume data, including data coming from any

kind of source, including the browser, desktop apps, and other Windows Store apps. Any necessary

translation work between these layers is handled automatically.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.shareoperation.removethisquicklink.aspx

817

For Windows Store apps, clipboard interactions build on the same DataPackage mechanisms we’ve

already seen for sharing, so everything we’ve learned about populating that package, using custom

formats, and using delayed rendering still applies. Indeed, if you make data available on the clipboard,

you should make sure the same data is available for the Share contract!

The question is how to wire up commands like copy, cut, and paste—from the app bar, a context

menu, or keystrokes—if an app provides them for its own content (many controls handle the clipboard

automatically). In the web context, you can use the window.clipboardData object like you would in a

browser, but attempting to access it will throw an Access Denied exception in the local context. There

we must instead turn to the Windows.ApplicationModel.DataTransfer.Clipboard class.

As shown in the Clipboard app sample, the processes here are straightforward. For copy and cut:

 Create a new DataPackage (or use MSApp.createDataPackage or MSApp.createData-

PackageFromSelection), and populate it with the desired data.

var dataPackage = new Windows.ApplicationModel.DataTransfer.DataPackage();

dataPackage.setText(textValue);

//...

 (Optional) Set the package’s requestedOperation property to values from

DataPackageOperation: copy, move, link, or none (the latter is used with delayed rendering).

Note that these values can be combined using the bitwise OR operator, as in:

var dpo = Windows.ApplicationModel.DataTransfer.DataPackageOperation;

dataPackage.requestedOperation = dpo.copy | dpo.move | dpo.link;

 Pass the data package to Clipboard.setContent:

Windows.ApplicationModel.DataTransfer.Clipboard.setContent(dataPackage);

To perform a paste:

 Call Clipboard.getContent to obtain a read-only data package called a DataPackageView:

var dataView = Windows.ApplicationModel.DataTransfer.Clipboard.getContent();

 Check whether it contains formats you can consume with the contains method (alternately,

you can check the contents of the availableFormats vector):

if (dataView.contains(

 Windows.ApplicationModel.DataTransfer.StandardDataFormats.text)) {

 //...

}

 Obtain data using the view’s get* methods such as getTextAsync, getBitmapAsync, and

getDataAsync (for custom formats), among others. When pasting HTML, you can also use the

getResourceMapAsync method to get relative resource URIs. The view’s properties like the

thumbnail are also useful, along with the requestedOperation value or values.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.clipboard.aspx
http://code.msdn.microsoft.com/windowsapps/Clipboard-App-sample-309ec122
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx

818

dataView.getTextAsync().done(function (text) {

 // Consume the data

}

If at any time you want to clear the clipboard contents, call the Clipboard class’s clear method.

You can also make sure data is available to other apps even if yours is shut down by calling the flush

method (which will trigger any deferred rendering you might have set up).

Apps that use the clipboard also need to know when to enable or disable a paste command

depending on available formats. At any time you can get the data package view from the clipboard

(Clipboard.getContent) and use its contains method or availableFormats property and decide

accordingly. You should also then listen to the Clipboard object’s contentChanged event (a WinRT

event), which will be fired when you or some other app calls the clipboard’s setContent method. At

that time you’d again enable or disable the commands. You won’t receive this event when your app is

suspended, so you should refresh the state of those commands within your resuming handler.

Again, the Clipboard app sample provides examples of these various scenarios, including copy/paste

of text and HTML (scenario 1); copy and paste of an image (scenario 2); copy and paste of files

(scenario 3); and clearing the clipboard, enumerating formats, clearing the content (scenario 4), and

handling contentChanged (also scenario 4).

Note, finally, that pasted data can come from anywhere. Apps that consume data from the clipboard

should, like a share target, treat the content they receive as potentially malicious and take appropriate

precautions.

Launching Apps with URI Scheme Associations

Back in Chapter 11, in the section "File Association and Launching," we learned about the

Windows.System.Launcher API and the launchFileAsync method that allows one app to start

another through a file association. It's time now to complete that story with the other launcher method:

launchUriAsync. This launches another app through a protocol (URI scheme) association and supports

variations through a LauncherOptions argument just like launchFileAsync.

Note With both launchFileAsync and launchUriAsync, Windows specifically blocks apps from

launching any file or URI scheme that is handled by a system component and for which there is no

legitimate scenario for a Windows Store app to insert itself into that process. The How to handle file

activation and How to handle protocol activation topics generally list the specific file types and URI

schemes in question, though these are specifically those you cannot implement as an association (the

exact list of blocked associations is not published). Also, the file:// URI scheme is allowed in

launchUriAsync but only for intranet URIs when you have declared the Private Networks (Client &

Server) capability in the manifest. Furthermore, launchUriAsync does not recognize ms-appx, ms-

appx-web, or ms-appdata URIs, because these already map to the current app and that app should just

display those pages directly.

http://msdn.microsoft.com/library/windows/apps/windows.system.launcher.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.launcher.launchuriasync.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452686.aspx

819

The result of the launchUriAsync call, as passed to your completed handler, is a Boolean: true if

the launch succeeded, false if not. That is, barring a catastrophic failure, such as a low memory

condition where the async operation will outright fail, launchUriAsync normally reports success to

your completed handler with a Boolean indicating the outcome. You’ll get a false result, for example,

if you try to launch a URI that's blocked for security reasons.

However, you cannot know ahead of time what the result will be. This is the reason for the

LauncherOptions parameter, through which you can provide fallback mechanisms:

 treatAsUntrusted (a Boolean, default is false) displays a warning to the user that they’ll be

switching apps if they proceed (see image below). This is good to use when you’re unsure about

the source of the association, such as launching a URI found inside a PDF or other document,

and want to prevent the user from experiencing a classic bait-and-switch!

 displayApplicationPicker (a Boolean, default is false) lets the use choose which app to

launch as part of the process (see image below, which is using the protocol from the SDK

sample). Note that the UI allows the user to change the default app for subsequent invocations.

Also, the LauncherOptions.ui property (a LauncherUIOptions object) can be used to control

the placement of the app picker through its invocationPoint, selectionRect, and

preferredPlacement properties. Beyond this, however, the picker cannot be customized.

 desiredRemainingView A value from Windows.UI.ViewManagement.ViewSizePreference

(see Chapter 8, "Layout and Views"), indicating how the calling app should appear af ter the

launch: default, useLess, useHalf, useMore, useMinimum, or useNone. This helps when

implementing cross-app scenarios, although the choice is not guaranteed.

http://msdn.microsoft.com/library/windows/apps/windows.system.launcheroptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.launcheruioptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.viewsizepreference.aspx

820

 preferredApplicationDisplayName and preferredApplicationPackageFamilyName

provide a suggestion to the user to acquire a specific app from the Windows Store if no other

app is available to service the request (similar to what a Share source app uses, as described

earlier under "Populating Metadata"). This is very useful with a particular URI scheme for which

you provide an app yourself.

 Similarly, fallbackUri specifies a URI to which the user will be taken if no app can be found to

handle the request and you don’t have a specific suggestion in the Windows Store.

 Finally, the contentType option identifies the content type associated with a URI that controls

which app is launched. This is primarily useful when the URI doesn’t contain a specific scheme

but simply refers to a file on a network using a scheme such as http or file that would

normally launch a browser for file download. With contentType, the default app that’s

registered for that type, rather than the scheme, will be launched. That app, of course, must be

able to them use the URI to access the file. In other words, this option is a way to pass a URI,

rather than a whole file, to a handler app that you know can work with that URI.

Scenarios 2 of the Association launching sample provides a basic demonstration of using

launchUriAsync (js/launch-uri.js):

var uri = new Windows.Foundation.Uri(document.getElementById("uriToLaunch").value);

// Launch the URI.

Windows.System.Launcher.launchUriAsync(uri).done(function (success) {

 // success indicates whether the URI was launched.

});

Scenario 2 also shows how to use options to launch with a warning, display the Open With dialog,

and to control the view, through the following functions (js/launch-uri.js):

function launchUriWithWarning() {

 var uri = new Windows.Foundation.Uri(document.getElementById("uriToLaunch").value);

 var options = new Windows.System.LauncherOptions(); // Set the show warning option.

 options.treatAsUntrusted = true;

 Windows.System.Launcher.launchUriAsync(uri, options).done(function (success) {

 // success indicates whether the URI was launched.

 });

}

function launchUriOpenWith() {

 var uri = new Windows.Foundation.Uri(document.getElementById("uriToLaunch").value);

 var options = new Windows.System.LauncherOptions(); // Set the show picker option.

 options.displayApplicationPicker = true;

 // Position the Open With dialog so that it aligns with the button.

 // An alternative to using the rect is to set a point indicating where

 // the dialog is supposed to be shown.

 options.ui.selectionRect = getSelectionRect(

http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec

821

 document.getElementById("launchUriOpenWithButton"));

 options.ui.preferredPlacement = Windows.UI.Popups.Placement.below;

 Windows.System.Launcher.launchUriAsync(uri, options).done(function (success) {

 // success indicates whether the URI was launched.

 });

}

function launchUriSplitScreen() {

 var uri = new Windows.Foundation.Uri(document.getElementById("uriToLaunch").value);

 // Request to share the screen.

 var options = new Windows.System.LauncherOptions();

 // code omitted: Set options.desiredRemainingView from a drop-down list selection, e.g.:

 options.desiredRemainingView = Windows.UI.ViewManagement.ViewSizePreference.useHalf;

 Windows.System.Launcher.launchUriAsync(uri, options).done(function (success) {

 // success indicates whether the URI was launched.

 });

}

Scenario 4 then demonstrates handling protocol activation—that is, implementing the Protocol

Activation contract (scenarios 2 and 4 deal with file type associations, which are covered in Chapter 11).

In comparison to file type associations, custom URI schemes are somewhat likely to launch your

particular app. That is, a custom URI scheme offers the best route to have one app specifically launch

another, as when you want to delegate certain tasks. The Maps app in Windows, for example, supports

a bingmaps scheme for accomplishing mapping tasks. You can imagine the same for a stocks app, an

email app (beyond mailto), line-of-business apps, and so forth. If you create such a scheme and want

other apps to use it, you’ll certainly need to provide documentation for its usage details, which means

that another app can implement the same scheme and thus offer itself as another choice in the

Windows Store. So there’s no guarantee even with a very specific scheme that you can know for certain

that you’ll be launching another known app, but this is about as close as you can get to that

capability.108

As with file types, the target app declares the URI schemes it wishes to service in the Declarations

section of manifest. Here you add a Protocol declaration as shown in Figure 15-9.

108 In any case, it’s a good idea to register your URI scheme with the Internet Assigned Numbers Authority (IANA). RFC 4395

is the particular specification for defining new URI schemes.

http://msdn.microsoft.com/library/windows/apps/jj635237.aspx
http://www.iana.org/
http://tools.ietf.org/html/rfc4395#section-5

822

FIGURE 15-9 The Declarations > Protocol UI in the Visual Studio manifest designer.

Under Properties, the Logo, Display Name, and Name all have the same meaning as with file type

associations (see Chapter 11). Similarly, while you can specify a discrete start page, you’ll typically

handle activation in your main activation handler, as demonstrated in js/default.js of the Association

launching sample (where the code path leads into js/scenario4.js). The last field is then the view in

which you’d like the app to be launched (useLess in this case).

In the main activation handler you’ll receive the activation kind of protocol, in which case

eventArgs.detail is a WebUIProtocolActivatedEventArgs: its uri property contains the URI that

the launching app passed to launchUriAsync. The sample doesn't make use of this itself, but just

opens the page for scenario 4 passing the launching URI as an argument:

var url = null;

var arg = null;

// [Other activation kind checks omitted]

if (e.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.protocol) {

 url = scenarios[3].url; // Maps to /html/receive-uri.html

 arg = e.detail.uri;

}

if (url !== null) {

 e.setPromise(WinJS.UI.processAll().then(function () {

 return WinJS.Navigation.navigate(url, arg);

 }));

}

The receiving page—/html/receive-uri.html in this case—just outputs the URI to the console, but a

real app will, of course, take other actions. Be warned, though, that URIs with some unique scheme can

come from anywhere, including potentially malicious sources. Be wary of any data or queries in the URI,

and avoid taking permanent actions with it. For instance, you can perhaps navigate to a new page, but

don’t modify database records or try to eval anything in the URI.

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuiprotocolactivatedeventargs.aspx

823

The last thing you'll need to know is how to debug protocol activation when the app isn't running,

which means getting the app into the debugger when it's activated through a protocol. To do this,

open the project’s properties (Project > Properties menu command in Visual Studio) and then, under

Configuration Properties > Debugging, set Launch Application to No:

Then set a breakpoint within your app's activated event handler; in the Association launching

sample, you can do this within the function called activated. Then start the debugger in Visual Studio,

which then waits until the app is launched some other way. To launch a protocol, then, you can just

enter an appropriate URI like alsdkjs://HelloWorld into the Windows Run dialog (Win+R), and you'll see

the app start up and hit your breakpoint in the debugger.

You can also just use scenario 2 of the Association launching sample, which allows you to try out the

different launcher options. Do note that if you run this sample in the debugger with a breakpoint in the

activated handler, you can observe how protocol activation will trigger that event when the app is

already running.

Search

It hardly needs saying that Search is one of the most, if not the most, important capability in a world

where the amount of data available to us continues to grows significantly faster than our ability to

consume it. It's almost quaint, in fact, that we still refer to web browsers when most of the time they're

really acting as viewports onto search. Sure, we still do some browsing here and there, but search is

clearly where most of us begin because we typically know at the outset what it is we're seeking.

Recognizing this, user experience designers at Microsoft started, with Windows 8, to build a search

paradigm directly into the fabric of the operating system that could quickly and efficiently get you to

whatever it is you're looking for. In Windows 8 we first saw the idea that universal search was always

available through the Search charm, shown in Figure 15-10, which is easily accessible alongside Share,

Devices, and Settings.

824

FIGURE 15-10 The Search charm experience of Windows 8, with results shown in the Games and Photos apps.

Tip In both Windows 8 and Windows 8.1, you can determine which side of the screen the Search pane

appears on through the Windows.UI.ApplicationSettings.SettingsPane.edge property. This can

be used to lay out your results page if you don't want certain results obscured.

This design created a single go-to place to search for (and launch) apps on the Start screen with the

keyboard, search settings (which are often hard to find), search files (whether local or cloud-based), and

search within an app. And because you could use a browser like Internet Explorer as a target app, you

also had the ability to search the web as well.

The Search charm meant that apps whose primary function wasn't oriented around search didn't

need to provide their own UI controls but could simply implement whatever extent of the search

contract was appropriate. And if a user didn't find what they were looking for in the app, the Search

charm made it very quick and easy to search elsewhere by simply selecting a different search target.

Users did not need to switch to a different app first before searching on the same term there—the

current search is automatically applied as soon as a new target is selected. This again made search both

quick and efficient.

When work began on Windows 8.1, the designers had lots of user feedback, telemetry, and

experience to draw from to make search even better. The key, they realized, was to continue to

improve efficiency by removing extra steps.

User telemetry also revealed the most common search targets: the foreground app, Internet

Explorer, the Windows Store, and Settings. Very rarely did users actually select a different app target—I

suspect this is because doing a generic search in different apps doesn’t typically produce meaningful

results, so users learned to not even bother. Thus search was revamped for Windows 8.1 with several

key characteristics:

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.edge.aspx

825

 Searching everywhere—files, apps, settings, and the web—is now the default when the Search

charm is invoked, which saves the step of switching targets.

 For in-app search, the recommendation is to implement a search control directly on the app

canvas. The WinJS.UI.SearchBox control is included in WinJS for this purpose. Be sure to refer

to Guidelines for search for the full UI recommendations for in-app search.

 For apps that want to provide a search capability but aren't yet prepared to provide a full in-

app experience, you can also have a simple button that invokes the Search charm directly and

work with the Search contract from there. In this case the Search charm will be scoped to the

app by default instead of “everywhere.”

We'll look at all of these options in this section, but first let's do what we've done for other aspects

of Windows by exploring the user experience of the Search charm as well as in-app search.

The Search Charm UI
When you invoke the search charm in Windows 8.1 (which is done quickly by pressing Win+Q or

Win+S), under most circumstances you see a Search Everywhere UI:

The exception is when the foreground app implements the Search contract and invokes the search

charm programmatically, in which case the search is scoped to that app by default. In either case, you

can tap the header with the down arrow to quickly change the scope, as shown here with the Search

contract sample that we'll be seeing later:

http://msdn.microsoft.com/library/windows/apps/hh465233.aspx

826

For our present purposes, though, let's assume a search scoped to Everywhere. As soon as you start

typing a search phrase, results begin to immediately appear from all targets thanks to the file system

indexer and the Bing search engine—something called "Smart Search." The idea with Smart Search is

that it surfaces the most likely result suggestions at the top, results that include apps, settings, files, and

high-confidence web results as they are available. This is what appears above the separator (see below

left). Below the separator (below right) are then query suggestions based on what you've entered so far:

Results suggestions save you the trouble of going to a separate results page and selecting a result

there: these suggestions take you straight to that result. Each one might activate an app for tha t result

(if the app fits the query), launch an app through file association, open PC Settings to a specific page,

and so on. What's also very cool with certain results like music tracks or albums is that the system adds

specific one-click actions in the Search charm, such as playing that track or album. These actions invoke

a target app appropriately, such as starting playback (as the system media controls indicate) through

the default media player without having to switch to that app at all, as shown below. That is, the app is

launched directly to the background. At present, however, such actions are not extensible by apps.

 ⇨

|

Selecting a query suggestion below the separator, pressing Enter in the text box, or tapping the

827

search icon next to the text box takes you to a larger view of results, as shown in Figure 15-11 and in

Figure 15-12, which includes local and web content together (this view is part of the Windows shell; it's

not a separate app even though it appears as such). Depending on the search in question, you might

see a large hero result (Figure 15-11) after local files and before specific web results. Also, if any web

result can be serviced by an app—such as the Amazon result highlighted in Figure 15-12—invoking

that result will launch the app. (You can swipe-select or right-click that item, as shown in the figure, for

other options, such as opening a browser or copying the appropriate link.) These app-mapped web

results (also known as Smart Search), provide an appcentric experience for web content. In Chapter 20

we'll see how to create this linkage between your website and your app.

The web results as shown in Figure 15-12 are curated over time based on real usage data so that the

most common results that people use are shown first. Other results, if you pan to the right, are shown

in a more condensed view, and more results will keep appearing as you continue to pan.

FIGURE 15-11 A large hero result in the search results view, showing in beautiful fashion the most common results

that people typically look for. These are followed by additional web results if you pan to the right.

828

FIGURE 15-12 Search results without a large hero, also showing files on left. The first Amazon result will open the

Amazon app by default, but you can also open in the browser or copy a link by selecting the item and using the app

bar commands, as shown here.

You can see that the Search charm itself is much richer and more powerful than it was in Windows 8.

And because it defaults to a universal search, the UI guidance for in-app search changed as well.

Whereas Windows 8 recommended that an app did not have its own search control in favor of the

charm (which you can still do in Windows 8.1 as shown in the image above), it's now recommended

that apps do have their own search controls for in-app content.

Having a search control on the app canvas—especially where search is a key feature for the app—

keeps the user immersed in that app's content all the time, without going to the Search charm at all.

That is, the app can show results (often filtered content) for the search term immediately right

alongside the search control, rather than having the user go to the charm, enter a search term there,

and have the app navigate to a separate results page. In other words, the recommended approach for

Windows 8.1 keeps everything about search directly in the app.

For this purpose, WinJS provides the powerful WinJS.UI.SearchBox control with support for search

history, type to search, suggested results, query suggestions, and filtering suggestions as a search term

is being typed. As this is what most search-capable apps are expected to use, we'll be looking at it first

in the sections that follow.109

109 The SearchBox makes use of the Windows.ApplicationModel.Search.Core.SearchSuggestionManager class, which

you'd use if you needed to implement a custom search control.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.core.searchsuggestionmanager.aspx

829

Then we'll take a look at a few matters of content indexing, which is applicable in this context, and

we’ll explore the Search contract in finer detail as you'd use when implementing your own search

controls or participating in the contract directly.

Note Because the SearchBox API and the search contract employ the same events and concepts, be

sure to read the SearchBox sections even if you're planning to implement the contract, as the contact

section at the end is fairly short and relies on the SearchBox material.

The WinJS.UI.SearchBox Control

The WinJS.UI.SearchBox control is the last control in all of WinJS that we haven't discussed so far in

this book, so let's remedy that situation!

You typically place the SearchBox on the upper right of your app pages (or left with right to left

languages), unless it should be nearer to the content that you can search. In the Mail app, for example,

it’s placed directly above the messages, thus indicating that messages are what’s specifically being

searched. Also, make sure the SearchBox is available in all views of a page; you can reduce it down to a

button that then expands to show the full control , but don’t make it disappear altogether.

In its most basic usage, the SearchBox is an edit field with a search button that fires a

querysubmitted event (as does pressing Enter). That is, with this minimal markup:

<div id="searchBoxId" data-win-control="WinJS.UI.SearchBox"></div>

and a little event code:

var searchBox = document.getElementById("searchBoxId").winControl;

searchBox.addEventListener("querysubmitted", querySubmittedHandler);

function querySubmittedHandler(eventObject) {

 var queryText = eventObject.detail.queryText;

}

you'll get the entered text (up to 2048 characters) in the queryText variable110 at which point you can

do anything you want with it. Whatever the case, here's how the control will appear with default styling

(which includes its size):

The magnifying glass icon is specifically set in the WinJS stylesheets as follows, so you can override it

with the same selector:

110 The query is always available through the control's queryText property, and eventArgs.detail.queryText is also

included with the queryChanged events. The eventArgs.detail properties also include language (the current locale),
linguisticDetails (a SearchQueryLinguisticDetails object that provides information related to input method

editors), and, for querysubmitted, keyModifiers to indicate the state of the Ctrl, Shift, Menu, and Windows keys.

http://msdn.microsoft.com/library/windows/apps/dn301949.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchquerylinguisticdetails.aspx

830

.win-searchbox-button.win-searchbox-button:before {

 content: "\E094";

}

For all the other win-searchbox* styles, see the ”SearchBox Styling” section later in this chapter.

Sidebar: The Search Results Page Item Template

Obtaining a query from a SearchBox is one thing, but displaying the results of a query is

another. As this typically involves showing results in a ListView control, Visual Studio and Blend

provide a Search Results Page item template. Right-click your project and select Add > New

Item, or use the Project > Add New Item… menu command and choose Search Results Page from

the list of templates. This adds page control files (.html, .js. and .css) for a search results page.

There’s not much exciting to show here visually because the template code very much relies on

there being some real data to work with. Nevertheless, the template gives you a great structure

to start from, including a filtering mechanism, and it’s wholly expected that you then rework the

layout and use styling that integrates with the rest of your app’s experience. Some further details

can be found on Adding a Search results item template.

Beyond a text box with a button, the SearchBox has a number of other features:

 As the user types, the SearchBox raises querychanged events, indicating that the search term in

its queryText property has changed. Handling this is appropriate if you have logic you need to

run outside of providing suggestions, such as previewing results (that is, immediate filtering)

directly in the app itself. Typically, if you do active filtering or previewing, submitting the query

(and the querysubmitted event, see below) is a moot point because it has already been

processed.

 When the control receives focus and as the user types, the control also raises

suggestionsrequested events. In response to this you populate a collection of suggested

search terms (query suggestions), including default suggestions before the user has entered

anything. You can use existing in-app content for this or make an HTTP request, if you like,

because the SearchBox supports providing suggestions asynchronously.

 You can also tell the SearchBox to produce query suggestions from an Advanced Query Syntax

(AQS) query on the file system through its setLocalContentSuggestionSettings method.

 When the user presses Enter in the SearchBox, taps the magnifying glass button, or selects a

query suggestion, the SearchBox fires a querysubmitted event—this tells you to take the user

to a results page. Also, if you set the chooseSuggestionOnEnter property to true, pressing

Enter in the SearchBox automatically chooses the first query suggestion and sends that string

with the querysubmitted event.

http://msdn.microsoft.com/library/windows/apps/hh923025.aspx
http://msdn.microsoft.com/library/windows/apps/dn301950.aspx
http://msdn.microsoft.com/library/windows/apps/dn301956.aspx
http://msdn.microsoft.com/library/windows/apps/dn301951.aspx
http://msdn.microsoft.com/library/windows/apps/dn301954.aspx
http://msdn.microsoft.com/library/windows/apps/aa965711.aspx
http://msdn.microsoft.com/library/windows/apps/dn301961.aspx
http://msdn.microsoft.com/library/windows/apps/dn301951.aspx
http://msdn.microsoft.com/library/windows/apps/dn301943.aspx

831

 If, on the other hand, the user selects a result suggestion, the control fires a

resultsuggestionschosen event (note the "suggestions" in the middle is plural), which is

intended to take the user directly to that content rather than a results page.

 By setting its focusOnKeyboardInput flag to true, you instruct the SearchBox to automatically

take the focus on keyboard input. This makes it easy to implement type-to-search behavior as

you have on the Windows Start screen. When this happens, the control raises a receiving-

focusonkeyboardinput event in response to which you can do things like make other UI

visible. Be mindful to enable this on a page-by-page basis: disable the feature on pages where

you have any other text input controls. Typically, type-to-search is enabled on an app's main

page, a search results page, and gallery pages. See Guidelines for search in the section "Enabling

type-to-search."

 The SearchBox automatically tracks automatic search history, which can be turned off by

setting the searchHistoryDisabled property to true. You can have a single SearchBox

manage different histories by changing the searchHistoryContext property. Note, however,

that the history itself isn't accessible, and if an app wants to clear the history (a capability you

should ideally offer through Settings), call the Windows.ApplicationModel.Search.Core.-

SearchSuggestionManager.clearHistory method.

 The placeholderText property lets you assign text that appears in the SearchBox when there

is no user-entered text. Always set placeholder text to something that describes what kind of

data can be searched—this immediately tells the user the applicable scope for searches. For

example, as described in Guidelines for search, a music app might use "Album, artist, or song

name" here. The Sports app uses "Enter a team name or player name." Having good placeholder

text goes a long way to helping your users understand and have appropriate expectations of

your search feature (saving them time and frustration).

 The SearchBox fully supports IME input for east-Asian languages.

Let's now take a look at the details of working with query suggestions and result suggestions in the

next two sections. Then we'll check out the APIs for indexing your own content, which can very much

help improve the performance of your searches.

Providing Query Suggestions
Handling the SearchBox control's suggestionsrequested event is how you provide the kind of auto-

complete feature that many users have come to expect (beyond matching search terms in the control's

history). It's not required, of course, because sometimes there just isn't space in your app's UI to show

those suggestions, or your content is so varied that you really can't make suggestions in the first place.

That is, if you're essentially doing a full-text search, like the Mail app does over email messages, then

making guesses at what the user is looking for doesn't make sense. But for a general topic search,

making topic suggestions can shortcut the user’s path between searching and enjoying your content.

http://msdn.microsoft.com/library/windows/apps/dn301953.aspx
http://msdn.microsoft.com/library/windows/apps/dn301948.aspx
http://msdn.microsoft.com/library/windows/apps/dn301952.aspx
http://msdn.microsoft.com/library/windows/apps/dn301952.aspx
http://msdn.microsoft.com/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/library/windows/apps/dn301960.aspx
http://msdn.microsoft.com/library/windows/apps/dn301959.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.core.searchsuggestionmanager.clearhistory.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.core.searchsuggestionmanager.clearhistory.aspx
http://msdn.microsoft.com/library/windows/apps/dn301955.aspx
http://msdn.microsoft.com/library/windows/apps/hh465233.aspx

832

The SearchBox control is set up to handle two types of suggestions: those coming directly from the

app, and those coming from the local file system.

To supply the first type, in your handler for the suggestionsrequested event you populate the

eventArgs.detail.searchSuggestionCollection with your suggested strings using the collection's

methods named appendQuerySuggestion (for a single string) or appendQuerySuggestions (plural,

which takes an array). Each string can be up to 512 characters.

Supporting multiple or east-Asian languages? Here you want to pay attention to the BCP-47 tag in

the eventArgs.detail.language property if you support multiple languages and also to the

linguisticDetails property that provides more information about text entered through an Input

Method Editor (IME), specifically linguistic alternatives. If you expect to have Japanese or Chinese users,

it’s highly recommended to also search for these alternatives.

Here’s how it’s done in scenario 1 of the SearchBox control sample, where suggestionList is just a

hard-coded list of city names and this handler is wired up to suggestionsrequested (js/S1-

SearchBoxWithSuggestions.js):

function suggestionsRequestedHandler(eventObject) {

 var queryText = eventObject.detail.queryText,

 query = queryText.toLowerCase(),

 suggestionCollection = eventObject.detail.searchSuggestionCollection;

 if (queryText.length > 0) {

 for (var i = 0, len = suggestionList.length; i < len; i++) {

 if (suggestionList[i].substr(0, query.length).toLowerCase() === query) {

 suggestionCollection.appendQuerySuggestion(suggestionList[i]);

 }

 }

 }

}

So if query contains “ba”, the first 5 names in suggestionList will be Bangkok, Baghdad,

Baltimore, Bakersfield, and Baton Rouge:

Ideally, your event handler returns in half a second or less, and it’s important to know that all the

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchsuggestioncollection.appendquerysuggestion.aspx
http://msdn.microsoft.com/library/windows/apps/br225103.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanequerychangedeventargs.linguisticdetails.aspx
http://code.msdn.microsoft.com/windowsapps/SearchBox-control-sample-0f64f94d

833

suggestions must be in the collection when your handler returns. Of course, a real app will be often

drawing suggestions from its own database or from a service. In the process you might need to do

some asynchronous work—to plug into the control's deferral mechanism, obtain a promise for your

async work and pass it to eventArgs.detail.setPromise. Scenario 4 of the sample, for instance, calls

an OpenSearch service via WinJS.xhr to provide suggestions (js/S4-SuggestionsOpenSearch.js):

xhrRequest = WinJS.xhr({ url: suggestionUri });

eventObject.detail.setPromise(xhrRequest.then(

 function (request) {

 if (request.responseText) {

 var parsedResponse = JSON.parse(request.responseText);

 if (parsedResponse && parsedResponse instanceof Array

 && parsedResponse.length >= 2) {

 var suggestions = parsedResponse[1];

 if (suggestions) {

 suggestionCollection.appendQuerySuggestions(suggestions);

 }

 }

 }

 }));

OpenSearch, in case you're unfamiliar with it, is a standard JSON format for search suggestions. See

the OpenSearch Suggestions specification. The advantage of this, as we see in the code above, is that

the JSON response can be directly parsed into an array and passed in one call to appendQuery-

Suggestions. There is also an XML format for search suggestions that's documented in the XML Search

Suggestions Format Specification and demonstrated in scenario 5 of the sample. In this case, a function

named generateSuggestions provides a generic parser routine for such a response, sending them

onto appendQuerySuggestion[s] as well as appendResultSuggestion, which we’ll see shortly.

In some cases you might want to group query suggestions together and divide those groups by

separators (or divide result suggestions from query suggestions). For this, call the collection's

appendSearchSeparator method with a label for the group, which is done in scenario 5 of the sample.

Or, as a simpler demonstration, if you insert the following line before the for loop in the sample's

scenario 1 (in js/S1-SearchBoxWithSuggestions.js):

suggestionCollection.appendSearchSeparator("Group 1");

you'll see the following in the SearchBox suggestions:

http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://msdn.microsoft.com/library/cc891508.aspx
http://msdn.microsoft.com/library/cc891508.aspx

834

Now the other source for query suggestions is the local file system, as defined by one or more

StorageFolder objects. Here you can have the SearchBox automatically provide suggestions by

calling its setLocalContentSuggestionsSettings method. You need only do this once for any

particular configuration, so you typically make the call when initializing the page or changing the

page's data context, rather than from inside an event handler.

Here, you first create a new LocalContentSuggestionSettings object (in the Windows.-

ApplicationModel.Search namespace), set its enabled flag to true, populate its locations vector

with the StorageFile objects you want to search, and then provide an Advanced Query Syntax filter

string and/or an array of Windows Properties (like System.Title) that defines the scope of the search (in

the aqsFilter and propertiesToMatch properties).

For example, scenario 3 of the SDK sample looks for music files in the Music library (js/S3-

SuggestionsWindows.js, in the page control's ready method):

var localSuggestionSettings = new

 Windows.ApplicationModel.Search.LocalContentSuggestionSettings();

localSuggestionSettings.enabled = true;

localSuggestionSettings.locations.append(Windows.Storage.KnownFolders.musicLibrary);

localSuggestionSettings.aqsFilter = "kind:=music";

searchBox.winControl.setLocalContentSuggestionSettings(localSuggestionSettings);

Because enumerating files in the locations folders requires programmatic access to those folders,

you need to make sure your app has the appropriate capabilities set in its manifest, retrieves the folder

from the Windows.Storage.AccessCache, or has obtained programmatic access through the folder

picker. In the latter case, the app would provide UI elsewhere to configure the search locations

(through the Settings pane, for instance).

The aqsFilter property determines which files in the folders vector will be searched. If you leave

this blank, all files will be searched. The propertiesToMatch property (a string vector) then determines

which file properties are involved. If you leave this blank, all properties will be searched; by setting this

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.setlocalcontentsuggestionsettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.localcontentsuggestionsettings.aspx
http://msdn.microsoft.com/library/windows/apps/aa965711.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977(v=vs.85).aspx

835

you can limit the scope however specifically you want. For details on AQS and Windows properties,

refer to Chapter 11 in the section "Custom Queries."

Providing Result Suggestions
Providing query suggestions, as described in the previous section, is just a matter of providing possible

search strings that will ultimately be passed to the app through to the SearchBox control's

querysubmitted event. Typically this is used to give the user a list of possible search results.

Result suggestions are different in that they pinpoint a specific result right away, such that selecting

one of those results goes immediately to that item, bypassing any search results page and streamlining

the whole process. For example, when searching for a team name or player name in the Sports app,

specific results can be identified from the underlying data set:

To provide result suggestions, you still handle the SearchBox.onsuggestionsrequested event as

before but now take the extra step of calling the appendResultSuggestion method of the

eventArgs.detail.searchSuggestionCollection. In fact, you'll typically want to populate result

suggestions first, add a separator, and then populate query suggestions.

Caveat If you're using the search box's setLocalContentSuggestionSetting method to provide

automatic query suggestions, any result suggestions you add will end up at the bottom of the list and

won't be visible unless there are only a couple of query suggestions.

The appendResultSuggestion method takes five arguments in the following order, which fully

describe the result. Be mindful of any necessary localization here:

 text The first line of text for the suggestion, such as "San Francisco 49ers" in the earlier graphic.

 detailText The second line of text for the suggestion, as with "NFL" in the graphic.

 tag The string you want to receive in the resultSuggestionChosen event (see below).

 image A RandomAccessStreamReference for the image to display (see below).

 imageAlternateText The alt attribute for the image.

http://msdn.microsoft.com/library/windows/apps/hh700542.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.aspx

836

For the image argument, you can easily obtain the necessary object through the static

createFromFile, createFromUri, and createFromStream methods that you'll find on the

RandomAccessStreamReference class, depending on your image source (a StorageFile, a

Windows.Foundation.Uri, or RandomAccessStream, respectively). The base size of this image is 40x40

for 100% scale, 56x56 for 140%, and 72x72 for 180%. Take these sizes into account if you dynamically

generate images for the result suggestions or request them from a service, but the SearchBox will scale

whatever image you provide.

Tip createFromUri accepts ms-appx:/// and ms-appdata:/// URIs along with http[s]://. Be sure

to have a default image in your package in case you can't obtain a more specific one; there is no built -

in default.

Here's a simple example to add a single suggestion that just reflects the query text and uses the

app's store logo as a hack, but it shows the code you need:

var searchBox = document.getElementById("mainSearchBox").winControl;

searchBox.addEventListener("suggestionsrequested", suggestResults);

function suggestResults(e) {

 var uri = new Windows.Foundation.Uri("ms-appx:///images/storelogo.png")

 var stream = Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(uri);

 e.detail.searchSuggestionCollection.appendResultSuggestion(

 "Result for " + e.detail.queryText, "Detail text", "result1", stream, "A suggestion");

}

This will produce the following result:

As noted in the previous section, the generateSuggestions function found in scenario 5 the

SearchBox control sample provides a generic parser that turns XML search suggestions into the

appropriate appendResultSuggestion calls. (You just have to follow through all the code.)

Providing a result suggestion, of course, is valuable only if the user can tap on it and get to that

result immediately. For this you must also handle the resultsuggestionchosen event. For example, if

you have a page called resultItem.html in which you'll show the result, you might handle the event as

follows, where the eventArgs.detail.tag property is the same as the tag argument passed to

appendResultSuggestion:

searchBox.addEventListener("resultsuggestionchosen", navToResult);

function navToResult(e) {

 WinJS.Navigation.navigate("/pages/resultItem.html", { item: e.detail.tag });

}

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromfile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromuri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromstream.aspx
http://code.msdn.microsoft.com/windowsapps/SearchBox-control-sample-0f64f94d

837

To summarize, handling the querysubmitted event means that you’re taking the query text and

populating a list of results in your own page. Each of those items will then navigate to an appropriate

detail page. The resultSuggestionChosen event tells you that the same thing has happened directly

within the SearchBox with a result that you placed there. For the most part, the detail pages to which

you'll navigate are likely the same from either part of your UI.

SearchBox Styling
As we've done with other controls in this book, the following annotated images identify which win-

searchbox-* style classes are attached to which parts of the control. First of all, it's helpful to

understand that the control as a whole (which is given the win-searchbox style as well as win-

searchbox-disabled), is made up of three child elements:

 An <input> element where you type the query, which has the win-searchbox-input style class

and win-searchbox-input-focus if it has the focus.

 A <button>, with the magnifying glass, which has the win-searchbox-button style class and

win-searchbox-button-focus when it has the focus.

 A flyout containing the suggestions, tagged with win-searchbox-flyout.

With a few styles of our own, then, we can change the overall appearance like so:

838

Note that it's necessary to use the .win-searchbox input[type] selector to style the <input>

element rather than .win-searchbox-input because of CSS specificity. That is, although the latter

class does identify this particular element, the WinJS stylesheet rules that affect it have a higher

specificity and thus take precedence over any win-searchbox-input styles you assign yourself. So you

have to use .win-searchbox input[type] to match that specificity. Note also the use of the –ms-

input-placeholder pseudo-class for the placeholder text.

Tip You can see all this in Visual Studio's DOM Explorer. If you add styles for win-searchbox-input,

the DOM Explorer will show that they're generally being overruled by styles from WinJS. Fortunately,

that tool also shows the exact selectors that are involved, allowing you to write rules with the necessary

specificity as I'm showing here.

Now let's look at the content in the flyout, namely the sections that contain the result suggestions,

separator, and query suggestions. I've used atrocious styles here so that we can clearly see what's going

on—I hope you and your designers don't follow such a terrible example!

839

Each suggestion, as well as the separator, have their own component elements. For example, you

can style the <hr> element of the separator specifically:

The query suggestions are made up of a for the whole string, with a child for the

highlighted letters:

Finally, a result suggestion consists of a div, an img, the main result text, and the detail text. Here

I'm still showing a styled separator so that you can see how the result div overlaps a bit, but it's where

you'd adjust the margins between the image and the result text or otherwise set styles that affect the

whole text area:

840

Indexing and Searching Content
A big part of implementing search capabilities in your app is not so much integrating the SearchBox UI

as it is actually performing a search over your data for the querysubmitted event, as well as suggesting

queries and results for that data. You can, of course, use the local content suggestions API of the

SearchBox to easily search over the local file system, but how do you approach doing the same for

your own local content, such as what exists in your app data? (For online data on a back-end service,

you'll want to have that service implement search capabilities so that you can just submit a URI query

string and get back the appropriate results.)

If you're using some kind of query-capable database for your storage, you'll simply perform your

searches that way and translate the query results into the appropriate forms for your SearchBox

suggestions and your results page. We talked about some of the options back in Chapter 10, "The Story

of State, Part 1," in the section "IndexedDB, SQLite, and Other Database Options." (IndexedDB is not an

inherently queryable database, by the way—to make it work like that, you have to build keyword

indexes manually.)

Proper databases aside, there are two other options in the WinRT APIs: using indexed app data files

and using the Content Indexer API for nonfile data, as the following sections describe.

Sidebar: Semantic Text Queries, Text Segmentation, and Unicode

For searching in-memory text, you can of course use any facilities that JavaScript provides, such

as regular expressions. WinRT also provides an API in Windows.Data.Text that helps you identify

segments in text that match a specific Advanced Query Syntax string, such that you can highlight

those segments and so forth. This is very handy if you want to take content that the indexer APIs

in this section identify as part of a result set and show the exact locations of search terms within

those results. For a simple demonstration, refer to the Semantic text query sample.

Similarly, Windows.Data.Text has APIs to delineate individual words (the WordsSegmenter

class) or selection ranges (SelectableWordsSegmenter) within a piece of text, with sensitivity to

http://code.msdn.microsoft.com/windowsapps/Semantic-Text-Query-sample-29334be1
http://msdn.microsoft.com/library/windows/apps/windows.data.text.wordssegmenter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.text.selectablewordssegmenter.aspx

841

the user’s language. These can be useful if you want to do your own segment highlighting and

are demonstrated in the Text segmentation API sample.

A third sample of interest here is the Unicode string processing API sample, which shows using

the Windows.Data.Text.UnicodeCharacters class “to tokenize lexical identifiers within a

string…[detecting] surrogate pairs and [delimiting] the identifiers....” This class also works with

different languages.

Using Indexed AppData Folders

If your content is file-based, store those files in a folder called Indexed (not case-sensitive) within your

local or roaming app data (also mentioned in Chapter 10). By doing so, the system indexer will

automatically process those files such that queries using StorageFolder.createFileQuery and

createFileQueryWithOptions will return very quickly, as is essential when providing suggestions.

For more about these APIs, refer to Chapter 11 in the sections "Simple Enumeration and Common

File Queries" and "Custom Queries." The short of it is that you use Advanced Query Syntax strings to

write the query, as we'll see in a moment.

Any term in the AQS string that doesn't identify a particular Windows property is used in a full-text

search, which is again very fast because the file contents are fully indexed (to whatever extent they can

be indexed, of course, because some files are purely binary and/or do not support metadata). Those

terms that do identify a Windows property (such as System.Author: Jo) will perform a search against file

metadata. In the latter case you want to make sure to populate that metadata. If you're generating files

in the Indexed folder programmatically, perhaps saving responses from HTTP requests into a cache, you

can set each StorageFile object's properties directly by using its properties object and its

getBasicPropertiesAsync method. Refer back to Chapter 11 in the section "File Properties" for all

the details.

Alternately, you can generate what are called appcontent-ms files (with that extension, as in

datafile.appcontent-ms) and place them in the Indexed folder. The appcontent-ms format is an XML

format in which you can specify both properties and content together in text, which is typically a

simpler way to go about it than writing file metadata through the StorageFile API. It also allows for

indexing metadata with files whose formats don’t support open metadata (like a .txt file). The Windows

Reading List app takes advantage of this, for instance, generating an appcontent-ms file every time you

add something to the list. To create some example files, then, just share content to the Reading List app

through the Share charm, and then go to %localappdata%\packages\Microsoft.WindowsReadingList_

<hash>\RoamingState\indexed and you'll see a file with content like the following, which I’ve

annotated with comments to explain the schema:

<?xml version="1.0" encoding="utf-8"?>

<!-- Root element can have any name -->

<ReadingListData>

 <Version>1.2</Version>

http://code.msdn.microsoft.com/windowsapps/Text-Segmentation-API-be73de71
http://code.msdn.microsoft.com/windowsapps/Unicode-string-processing-b9c65246
http://msdn.microsoft.com/library/windows/apps/windows.data.text.unicodecharacters.aspx
http://msdn.microsoft.com/library/windows/apps/br227255.aspx
http://msdn.microsoft.com/library/windows/apps/br211591.aspx
http://msdn.microsoft.com/library/windows/apps/dn575215.aspx

842

 <!-- Properties can contain Name, Keywords, Comment, and AdditionalProperties elements. -->

 <Properties xmlns="http://schemas.microsoft.com/Search/2013/ApplicationContent">

 <!-- Name corresponds to System.ItemName and System.ItemNameDisplay -->

 <Name>{00000000-0000-0000-7E31- 86D9A26AE4F}.appcontent-ms</Name>

 <!-- Keywords corresponds to System.Keywords and contains one or more Keyword children -->

 <Keywords>

 <Keyword>{69851795-6131-4b39-9079-3f592b6bd585}</Keyword>

 </Keywords>

 <!-- Comment corresponds to System.Comment -->

 <Comment>

 <!-- Any string -->

 </Comment>

 <!-- Name, Keywords, and Comment are the only strongly-typed properties; any others

 can be specified under AdditionalProperties with specific property names in

 the Key attribute. -->

 <AdditionalProperties>

 <Property xml:lang="en-US" Key="System.Title">

 Specs for built-in animations (animation metrics)

 </Property>

 <Property xml:lang="en-US" Key="System.Author">Internet Explorer</Property>

 <Property xml:lang="en-US" Key="System.Comment">The question occasionally comes up about

 the exact specifications for the built-in Windows animations that express the Windows

 look and feel. Often this is because someone wants to replicate the ef...</Property>

 <!-- Dates are ISO 8601 format -->

 <Property Key="System.DateAcquired">2013-12-12T15:32:18.6350000-08:00</Property>

 <Property Key="System.IsDeleted">false</Property>

 <Property Key="System.IsFlagged">false</Property>

 </AdditionalProperties>

 </Properties>

 <!-- Adjacent to the Properties elements, apps can include any other children for its

 own use. The Reading List app include an ItemData element, but this is not part

 of the appcontent-ms format) -->

 <ItemData>

 <!-- Other data -->

 </ItemData>

</ReadingListData>

In some cases a property might allow for multiple values, such as System.Contact.EmailAddresses, in

which case each value is specified with a <Value> child element:

<Property xml:lang="en-US" Key="System.Contact.EmailAddresses">

 <Value>bryan@contoso.com</Value>

 <Value>vincent@contoso.com</Value>

</Property>

You can find additional examples in the Indexer sample, where scenarios 5, 6, and 7 demonstrate

use of the Indexed folder and appcontent-ms files. The files here show that you can include any other

custom elements in the XML (outside <Properties>) with the IndexableContent="true" attribute to

http://code.msdn.microsoft.com/windowsapps/Indexer-sample-f6188121

843

include it in the indexing process (appcontent-ms/sample1.appcontent-ms):

<IndexerSampleSpecificElement sc:IndexableContent="true"

 xmlns:sc="http://schemas.microsoft.com/Search/2013/ApplicationContent">

 The text included here will be indexed, enabling full-text search.

</IndexerSampleSpecificElement>

To query the contents of an Indexed folder, you again use the StorageFolder.createQuery*

methods and an AQS string. The query produces an array of StorageFile objects. You then use the

metadata and contents of each individual file to generate your result suggestions and/or results page.

If you want to display any kind of preview of each result, you could use this data if you like parsing

XML, but it’s generally easier to use the Windows.Data.Text APIs, which also have locale-sensitive

support for word breaking, as noted earlier in “Sidebar: Semantic Text Queries, Text Segmentation, and

Unicode.”

Scenario 6 of the Indexer sample demonstrates querying, though nothing is different from what we

saw in Chapter 11: the query will just complete quickly because the content is indexed. And this kind of

query will work whether or not you’re using appcontent-ms files (js/retrieveWithAppContent.js):

function retrieveAllItems() {

 var applicationData = Windows.Storage.ApplicationData.current,

 localFolder = applicationData.localFolder;

 var output;

 localFolder.createFolderAsync("Indexed",

 Windows.Storage.CreationCollisionOption.openIfExists).then(function (indexedFolder) {

 // Queries for all files in the "LocalState\Indexed" folder and sorts the

 // results by name

 var queryAll =

 indexedFolder.createFileQuery(Windows.Storage.Search.CommonFileQuery.orderByName);

 return queryAll.getFilesAsync();

 }).then(function (indexedItems) {

 var promiseArray = [];

 output = "";

 for (var i = 0, len = indexedItems.length; i < len; i++) {

 promiseArray[i] = indexedItems[i].properties.retrievePropertiesAsync(

 [Windows.Storage.SystemProperties.itemNameDisplay,

 Windows.Storage.SystemProperties.comment,

 Windows.Storage.SystemProperties.keywords,

 Windows.Storage.SystemProperties.title])

 .then(function (map) {

 // Retrieves the ItemNameDisplay, Comment, Keywords, and Title

 // properties for the item

 output += "Name: " + map[Windows.Storage.SystemProperties.itemNameDisplay];

 output += "\nKeywords: " + IndexerHelpers.createKeywordString(

 map[Windows.Storage.SystemProperties.keywords]);

 output += "\nComment: " + map[Windows.Storage.SystemProperties.comment];

 output += "\nTitle: " + map[Windows.Storage.SystemProperties.title] + "\n\n";

 });

 }

 return WinJS.Promise.join(promiseArray);

844

 }).done(function () {

 });

}

Scenario 7 then shows how to apply a custom search term in a query—as you’d get from a

SearchBox—where we employ a QueryOptions object and its applicationSearchFilter or

userSearchFilter AQS strings (simplified from js/retrieveWithAppContent.js):

function retrieveMatchedItems() {

 var applicationData = Windows.Storage.ApplicationData.current,

 localFolder = applicationData.localFolder,

 queryOptions = new Windows.Storage.Search.QueryOptions();

 queryOptions.indexerOption = Windows.Storage.Search.IndexerOption.onlyUseIndexer;

 // Create an AQS (Advanced Query Syntax) query which will look for ItemNameDisplay

 properties which contain "Sample 1"

 queryOptions.applicationSearchFilter =

 Windows.Storage.SystemProperties.itemNameDisplay + ":\"Sample 1\"";

 var output;

 localFolder.createFolderAsync("Indexed",

 Windows.Storage.CreationCollisionOption.openIfExists).then(function (indexedFolder) {

 var query = indexedFolder.createFileQueryWithOptions(queryOptions);

 return query.getFilesAsync();

 }).done(function (indexedItems) {

 // Process the results

 });

}

Again, you don’t have to query against any specific properties. If you set queryOptions.user-

SearchFilter to something without any property names, such as "CSS styling", you’ll use that term

in a full text search against the file contents.

To remove files from the index, simply remove them from the Indexed folder by using methods like

StorageFile.deleteAsync or moveAsync.

Using the ContentIndexer API

The second option for using the system indexer applies to nonfile content or content that cannot live in

an Indexed folder. Here you employ the Windows.Storage.Search.ContentIndexer API, which allows

you to do per-app indexing of just about any content you want (including language-specific content)

using Windows Properties and full text. Once indexed, you can then query that content using AQS. This

is convenient for many scenarios, and the index persists across app sessions so it's not necessary to re-

create it every time the app is launched. Note, however, that because the index can be reset at any

time, and because you cannot retrieve the indexed content itself, treat the index as just a durable cache

and not as storage mechanism in itself.

You start with a call to the static method ContentIndexer.getIndexer, which takes an optional

name argument that lets you maintain multiple independent indexes within the same app. To just use

http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.getindexer.aspx

845

the default index, use this code:

var indexer = Windows.Storage.Search.ContentIndexer.getIndexer();

The object you get back is a ContentIndexer instance, whose sole property, revision, is

automatically incremented with each add, update, or delete operation. We’ll look at how to use this in

a moment, because it won’t mean anything until we add some content to the indexer through its

addAsync method. To this you pass an instance of the Windows.Storage.Search.IndexableContent

class that has the following properties:

Property Name Description
Id A unique app-defined string identifier for the content item.

properties A Map (an object with the Windows.Foundation.Collections.IMap interface) of the content's

properties (key-value pairs). You populate the map through its insert method using standard

Windows property names (a string or a value from Windows.Storage.SystemProperties) and a

value. What you set here determines what you can search for in the index, and can include the full

textual content if needed.

stream A RandomAccessStream object through which you can provide the full text of the content if it exists in

a file or other data stream.

streamContentType A string identifying the MIME content type of the stream property, if stream is used.

Examples of this are found in the SDK’s Indexer sample, specifically scenarios 1, 2, 3, and 4. First,

here's a bit of code from js/helperFunctions.js (in a routine called _addItemsToIndex, slightly simplified

for clarity). This just adds three basic items to the default index and maintains a local appdata setting

against which to match the revision property:

// Initialize the value used to track the expected index revision number.

var localSettings = Windows.Storage.ApplicationData.current.localSettings;

if (!localSettings.values["expectedIndexRevision"]) {

 localSettings.values["expectedIndexRevision"] = 0;

}

var indexer = Windows.Storage.Search.ContentIndexer.getIndexer();

var content = new Windows.Storage.Search.IndexableContent();

var numberOfItemsToIndex = 3;

var promiseArray = [];

for (var i = 0; i < numberOfItemsToIndex; i++) {

 var itemKeyValue = "SampleKey" + i.toString(),

 itemNameValue = "Sample Item Name " + i.toString(),

 itemKeywordsValue = "Sample keyword " + i.toString(),

 itemCommentValue = "Sample comment " + i.toString();

 content.properties.insert(Windows.Storage.SystemProperties.itemNameDisplay, itemNameValue);

 content.properties.insert(Windows.Storage.SystemProperties.keywords, itemKeywordsValue);

 content.properties.insert(Windows.Storage.SystemProperties.comment, itemCommentValue);

 content.id = itemKeyValue;

 promiseArray[i] = indexer.addAsync(content);

}

WinJS.Promise.join(promiseArray).then(function (resultArray) {

 // We can now query the index

http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.revision.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.addasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.indexablecontent.aspx
http://msdn.microsoft.com/library/windows/apps/br226042.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.systemproperties.aspx
http://code.msdn.microsoft.com/windowsapps/Indexer-sample-f6188121

846

 if (localSettings.values["expectedIndexRevision"] !== indexer.revision) {

 // There is a mismatch between the expected and reported index revision numbers

 if (indexer.revision === 0) {

 // The index has been reset, so code would be added here to re-push all data

 } else {

 // The index hasn't been reset, but it doesn't contain all expected updates, so

 // add code to get the index back into the expected state.

 }

 // After doing the necessary work to get back to a synchronized state, set the expected

 // index revision number to match the reported revision number

 localSettings.values["expectedIndexRevision"] = indexer.revision;

 }

});

Each item in the index here has three properties—a display name, keywords, and a comment—but

you can add properties with any other Windows property key.

The addAsync method returns a promise, so all the promises are joined together so that we can take

further action once we know all the items have been processed. Notice that the IndexableContent

object can be reused after each addAsync call.

Important If you use the IndexableContent.stream property to index content, rather than a specific

property, the objects you get back from queries will not include that content, only the properties. That

is, whatever stream content exists in the IndexableContent object when you add it will be indexed,

yes, and will be included in searches but will not be accessible through the search results. If you want

to display that content in your results UI, make sure that the IndexableContent.id property is

sufficient to retrieve the full content from wherever it’s stored.

To remove content from the ContentIndexer, use its deleteAsync (passing an id),

deleteMultipleAsync (passing an array of id’s), and deleteAllAsync methods (see scenario 2 in the

sample). To update an item (also in scenario 2), use the updateAsync method passing the updated

IndexableContent object. Note that updateAsync will throw an exception if the index doesn’t contain

an item with the given id.

Tip To remove a property from an indexed item, use the properties.insert method for the same

property name with a value of null, then call updateAsync.

Now that we understand how we manage the indexed content, we can talk about using the

ContentIndexer.revision property. This specifically tells you about the state of the index itself:

 The revision value always starts at zero when you first obtain the ContextIndexer.

 Each successful add, remove, and update operation increments revision.

 If the index is cleared out—which should be a rare occurrence but can happen if the index

becomes corrupted or the user manually rebuilds the index—then revision is reset to zero.

http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.deleteasync.aspx
http://msdn.microsoft.com/library/windows/apps/dn298349.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.deleteallasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.updateasync.aspx

847

In most cases, you want to check revision anytime your app is activated or resumed—that is,

whenever the app becomes active again after an indeterminate amount of time since it was last

running. If the index was reset during that time, revision will be zero and you should repopulate all of

your items. If revision is not zero and doesn’t match your expectations, you have the very rare

situation where some but not all of your items are in the index, perhaps due to an app crash or loss of

power while the indexing was going on. At this point, if your number of items is small, you could just

repopulate them all again. If you have a larger number of items, it makes sense to track (in your app

data) which batches of items fall within which range of the revision count so that you can then just

repopulate the affected batch.

As shown in the earlier code, you can take similar steps after a given batch if updates are complete.

It’s again possible that the index was reset during that time or that for some reason one or more items

didn’t make it in. Either way, you should you should attempt to repopulate the necessary items to get

the index into the expected state. And then, of course, be sure that your expected count local setting

matches the value of revision once you’re all done so that the two don’t get out of sync with later

changes to the index.

Once you have content in the indexer, the next step is to use it for searches. In scenario 2 of the

sample you’ll also see calls to ContentIndexer.retrievePropertiesAsync. This is how you do a

lookup of item properties in the indexer, because there isn’t a method to retrieve the original

IndexableContent object. That is, this method, given an item id and an array of property names,

results in a map of property names and values:

indexer.retrievePropertiesAsync(itemKeyValue,

 [Windows.Storage.SystemProperties.keywords]).then(function (map) {

 var originalRetrievedKeywords = map[Windows.Storage.SystemProperties.keywords];

 // ...

 }

The last step with the indexer is querying its content (scenario 3 in the sample) through the

ContentIndexer.createQuery method. The first two required arguments are searchFilter, the AQS

string to apply, and propertiesToRetrieve, an array of Windows property names that you want returned.

Optional arguments are sortOrder, an array of SortEntry objects (each of which indicates a property to

sort by and the order, and multiple SortEntry objects are applied in the order they appear in the

array), and searchFilterLanguage, a BCP-47 language tag (e.g., en-US) that indicates what language

should be used to parse searchFilter. Here’s a simple example that looks for any item with “0” in any of

its properties (js/retrieveWithAPI.js):

var query = indexer.createQuery("0", [Windows.Storage.SystemProperties.itemNameDisplay,

 Windows.Storage.SystemProperties.keywords, Windows.Storage.SystemProperties.comment]);

The result of createQuery is a ContentIndexerQuery object through which you run the query and

access the results:

http://msdn.microsoft.com/library/windows/apps/dn298353.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexer.createquery.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.sortentry.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.contentindexerquery.aspx

848

Member Description

getCountAsync (Method) Provides the number of items in the query results.

getAsync (Method) Runs the query, resulting in a vector of IndexableContent objects. Two optional integer

arguments control how many items are returned from which position in the result set.

getPropertiesAsync (Method) Retrieves a vector (array) of property-value maps. Two optional integer arguments control

how many items are returned from which position in the result set. The vector will contain a map for

each item in the result set, where the map contains each matching property and that property’s value.

queryFolder (Property, read-only) The StorageFolder that contains the indexed items. This allows use of the

ContextIndexer API with all the StorageFolder query APIs that we saw in Chapter 11, which is

convenient if you’re using a ListView and a StorageDataSource, for example.

Using the query created in the previous bit of code (in scenario 3 again), here’s the code to retrieve

and process the results (js/retrieveWithAPI.js, slightly modified):111

var output;

query.getAsync().done(function (indexedItems) {

 output = createItemString(indexedItems);

 WinJS.log && WinJS.log(output, "sample", "status");

});

function createItemString(indexedItemArray) {

 var output;

 var wsp = Windows.Storage.SystemProperties;

 if (indexedItemArray) {

 output = "";

 for (var i = 0, len = indexedItemArray.length; i < len; i++) {

 var retrievedItemName = indexedItemArray[i].properties[wsp.itemNameDisplay],

 retrievedItemComment = indexedItemArray[i].properties[wsp.comment],

 retrievedItemKey = indexedItemArray[i].id,

 retrievedItemKeywords = indexedItemArray[i].properties[wsp.keywords];

 output += "Key: " + retrievedItemKey;

 output += "\nName: " + retrievedItemName;

 output += "\nKeywords: " +

 IndexerHelpers.createKeywordString(retrievedItemKeywords);

 output += "\nComment: " + retrievedItemComment;

 if (i < len - 1) {

 output += "\n\n";

 }

 }

 }

 return output;

}

111 A comment in the sample erroneously states that getAsync retrieves an array of StorageItem objects. These are, as

indicated in the table, IndexableContent objects.

849

The Search Contract
Although the SearchBox is the preferred way for an app to provide search capabilities, you can also

implement the search contract directly to interact with the Search charm. In addition, if you register

your app with Bing for Smart Search, this contract also comes into play (see Chapter 20).

In many ways, the interaction between the app and the Search pane is very similar to the

SearchBox, with the same event names and other classes. I won't be going into details about those; I’ll

be referring to the previous sections instead.

Implementing the contract is demonstrated in the Search contract sample and begins with the

Search target declaration in the app manifest. All you need here in Windows 8.1 is the declaration itself;

you can leave the Start Page field blank because you’ll search the app from the charm only when the

app is in the foreground.

Next, instead of working with a SearchBox control for search-related events, you instead obtain the

Windows.ApplicationModel.Search.SearchPane object. For example:

var searchPane = Windows.ApplicationModel.Search.SearchPane.getForCurrentView();

searchPane.onquerysubmitted = function (eventArgs) {

 WinJS.Navigation.navigate(searchPageURI, eventArgs);

};

Note The SearchBox control will interact with the Search charm and contract on your behalf, so you

should not attempt to implement the contract directly. Doing so will throw an Access Denied

exception when you try to obtain the SearchPane object.

The SearchPane object has many of the same features as the SearchBox, including

placeholderText, setLocalContentSuggestionsSettings, searchHistoryEnabled, and

searchHistoryContext. For type-to-search, the property is called showOnKeyboardInput because this

involves showing the Search pane as a whole and not just changing focus.

The SearchPane has a few unique features. Its show method allows you to show the pane

programmatically, its visible property and visibilitychanged event will tell you its status, and the

trySetQueryText is what you use to update the search term instead of just settings its queryText

property directly.

Like the SearchBox, the SearchPane also has querychanged, querySubmitted,

suggestionsrequested, and resultsuggestionchosen events that are identical to those of the

SearchBox except for the fact that these are WinRT events, so you must call removeEventListener

appropriately to avoid memory leaks.

The other difference with events is that the eventArgs.request.getDeferral for

suggestionsrequested provides a deferral mechanism like other WinRT events, rather than the

WinJS-style setPromise mechanism that we have with the SearchBox.

http://code.msdn.microsoft.com/windowsapps/Search-app-contract-sample-118a92f5
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanesuggestionsrequest.getdeferral.aspx

850

The piece you need to be aware of with the Search contract in a Windows 8.1 app is that it will

again be used only for in-app searches and to invoke apps that have registered with Bing to have their

content appear as web-powered search results. In the latter case, the app can be activated with

ActivationKind.search through the search contract from the Smart Search results pane, and this is

the only place where such activation will occur. The Search contract sample implements code for this

activation path, but it won't ever be called through using the Search charm.

Contacts

When you first played around with a Windows 8 or Windows 8.1 device, you probably fired up the

People app and added a few accounts such as Outlook (Live), Facebook, Twitter, Google+, LinkedIn,

Skype, and so on. In doing so you could see that the People app nicely aggregates all those contacts

into a single collection, combining whatever phone numbers, email addresses, and IM user names it

can find from those sources.

What you probably didn’t know is that the People app also serves as the systemwide, indexed

repository of all those contacts, and that it provides contact-related features to all other apps. It’s a

glorified address book, in other words! But this means that as you implement people-related

capabilities into your own app, you can save yourself a lot of time and trouble by working with those

features instead of trying to manage contact information directly.

There are two ways to do this. The first is through a Windows 8.1 feature called contact cards, which

have the significant benefit of keeping contact information isolated from the app (for security and

privacy) and still provides many different actions for that contact. What’s more, it’s simple to use, and

it’s expected that most apps that simply want to display contact information and actions, and otherwise

have no need to process contact information directly, will use contact cards.

The second, which is available in both Windows 8 and Windows 8.1, is to invoke the Contact Picker.

This brings up a contact provider app (which is the People app by default) through which the user can

select one or more contacts, the information for which is then returned to the app directly. The app is

responsible for protecting that information, of course, but can otherwise do whatever it needs with it.

We’ll dive into each in turn in the following sections. For the provider/target side of each story—

apps that handle contact card actions and/or serve as contact picker providers—see Appendix D.

Contact Cards
A contact card is a bit of system-provided UI that you invoke with whatever bits of contact information

you have, which at minimum requires an email address or a phone number. Windows then does its best

to find a matching contact and displays its contact card, drawing information from the system database

and ignoring whatever you passed in. If no match is found, however, the contact card provides the

option to add the contact to the database using the information you provide. Genera lly speaking, you

want to give as much information as you can when invoking a contact card, which helps Windows find

851

an existing contact and makes it easy for the user to add that contact if needed.

A few examples of contact cards are shown below:

Tip The contact card’s color scheme uses the app’s tile background color setting in the manifest.

However, if Windows determines that there’s not enough contrast between this color and a black or

white font color, it will revert to a black font on a white background to ensure legibility. Also note that

if you change colors in the manifest and run the app from Visual Studio, you might not immediately

see the proper change. Try running the app again, or, if needs be, uninstall first and then run again.

In addition to displaying contact information along with icons indicating the source of the contact’s

information, the user can take a number of actions directly from the card depending on what

information is available (these have the same UI as the People app). The down arrows that appear on

the right side of an action let you choose from different emails, phone numbers, messaging transports

if available.

In general, contact card actions are handled by provider apps that implement that side of the

contract, as discussed in Appendix D. The user can control the associations here through PC Settings >

Search and Apps > Defaults. The Email action is an exception; it’s handled by launching a mailto: URI.

Phone numbers can also be handled through the tel: URI, but it’s better for provider apps to

852

implement the contract for that purpose.

What actions appear also depend on the contact information. In the above left image, for example,

the contact isn’t IM-capable, so a mapping option appears instead. More actions might be possible, of

course, but the card displays up to the three most common ones. The rest are accessed through a More

Details command that can appear on the lower right of the card and that opens the contact in the

People app.

Again, there are two ways to invoke a contact card, which uses the API in the Windows.-

ApplicationModel.Contacts namespace. The first way is to provide minimal information and let

Windows fill in the rest:

 Create an instance of the Contact class.

 Populate whatever properties of that object you can, at minimum either an emailAddress (a

ContactEmail object) or phoneNumber (a ContactPhone object). This guarantees that

something will appear in the contact card if no other information is found.

 Call ContactManager.showContactCard with the Contact object and placement information

(to position the flyout in your UI).

These steps are shown in scenario 1 of the Contact manager API sample in the SDK. It starts by

defining a few constants (js/ScenarioShowContactCard.js):

var ContactsNS = Windows.ApplicationModel.Contacts;

// Length limits allowed by the API

var MAX_EMAIL_ADDRESS_LENGTH = 321;

var MAX_PHONE_NUMBER_LENGTH = 50;

Then we create the Contact:

var contact = new ContactsNS.Contact();

The sample provides an input field for an email address and another for a phone number.

Whichever ones aren’t blank are added to the contact (code slightly simplified):

var emailAddress = document.getElementById("inputEmailAddress").value;

var phoneNumber = document.getElementById("inputPhoneNumber").value;

if (emailAddress.length > 0 && emailAddress.length <= MAX_EMAIL_ADDRESS_LENGTH) {

 var email = new ContactsNS.ContactEmail();

 email.address = emailAddress;

 contact.emails.append(email);

}

if (phoneNumber.length > 0 && phoneNumber.length <= MAX_PHONE_NUMBER_LENGTH) {

 var phone = new ContactsNS.ContactPhone();

 phone.number = phoneNumber;

 contact.phones.append(phone);

}

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
http://code.msdn.microsoft.com/windowsapps/Contact-manager-API-sample-319bdcef

853

Tip As noted earlier, you can supply as much other information as you want when invoking the card,

such as names (first and/or last), an address, job information, alternate phone numbers, a website URI,

a thumbnail, and so on. However, all of this is ignored if Windows finds a match in the People app’s

aggregated data, which it will use for the contact card. If no data exists for the contact, however, the

information you supply is what’s shown in the card and the user will have an option to add the contact

to the People app’s database, as we’ll see shortly.

Contact pictures To provide a picture for the contact, set the Contact.thumbnail property to a

RandomAccessStreamReference, as obtained from that class’s static methods createFromFile,

createFromUri, and createFromStream. We’ve seen this for thumbnails elsewhere in this chapter.

Next we create an object describing where the information exists in our UI that was used to invoke

the contact card. This could be an email address in a message header, a phone number in an IM, an

address on a map, and so forth. In this case, evt.srcElement is a button, so we use its rectangle:

var boundingRect = evt.srcElement.getBoundingClientRect();

var selectionRect = { x: boundingRect.left, y: boundingRect.top,

 width: boundingRect.width, height: boundingRect.height };

Lastly, we invoke the contact card with the Contact and selection rectangle, along with an optional

value from Windows.UI.Popups.Placement to indicate where the contact card should appear relative

to that rectangle:

ContactsNS.ContactManager.showContactCard(contact, selectionRect,

 Windows.UI.Popups.Placement.default);

The placement values are default, above, below, left, or right. Unless you have a reason to do

otherwise, though, use default so that Windows can place the flyout where it’s fully visible.

At the same time, there are cases when you do want to specify a placement directly, especially with

the second means to invoke a contact card: ContactManager.showDelayLoadedContactCard. This

method allows the app to go out and get its data asynchronously, perhaps through a database lookup

or HTTP request.

To call this method, as demonstrated in scenario 2 of the Contact manager API sample, we create a

Contact instance as before with whatever information we’d like to initially appear in the contact card

(js/ScenarioShowContactCardDelayLoad.js):

var contact = new ContactsNS.Contact();

contact.firstName = "Kim";

contact.lastName = "Abercrombie";

var email = new ContactsNS.ContactEmail();

email.address = "kim@contoso.com";

contact.emails.append(email);

var boundingRect = evt.srcElement.getBoundingClientRect();

var selectionRect = { x: boundingRect.left, y: boundingRect.top,

 width: boundingRect.width, height: boundingRect.height };

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.thumbnail.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromfile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromuri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.randomaccessstreamreference.createfromstream.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.placement.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactmanager.showdelayloadedcontactcard.aspx

854

var delayedDataLoader = ContactsNS.ContactManager.showDelayLoadedContactCard(

 contact, selectionRect, Windows.UI.Popups.Placement.below);

This displays a small contact card with just a name and a progress control (if you don’t set the

firstName/lastName properties, the email address will appear instead):

Note the use of Placement.below in this example rather than default. By default, a small contact

card like this will likely be placed above the given rectangle, but once the rest of the data is populated,

the contact card will likely become larger. As a result, the automatic placement could move the contact

card to appear below the rectangle. To prevent that visual switch, the sample here is just forcing

placement below the rectangle to begin with.

As before, you must provide either an email address or a phone number initially so that there’s at

least one action that can be taken from the contact card, especially if the app provides no other

additional information.

The return value of showDelayLoadedContact card is an object of type ContactCardDelayed-

DataLoader. It has two methods of concern for apps written in JavaScript:

 setData Supplies a fully populated Contact object to the card and instruction Windows to

show it.

 close Tells Windows that you don’t have any more data and thus won’t be calling setData.

Windows will then just display the card with what you provided to showDelayLoadedContact.

Tip You have four seconds to call setData, otherwise the contact card will time out and call close.

To demonstrate, scenario 2 of the sample uses setTimeout inside a promise to simulate making an

async call to retrieve the contact data, transferring it into the contact object created earlier

(js/ScenarioShowContentCardDelayLoad.js):

function downLoadContactDataAsync(contact) {

 return new WinJS.Promise(function (comp) {

 // Simulate the download latency by delaying the execution by 2 seconds.

 setTimeout(function () {

 // Add more data to the contact object.

 var workEmail = new ContactsNS.ContactEmail();

 workEmail.address = "kim@adatum.com";

 workEmail.kind = ContactsNS.ContactEmailKind.work;

 contact.emails.append(workEmail);

 var homePhone = new ContactsNS.ContactPhone();

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactcarddelayeddataloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactcarddelayeddataloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactcarddelayeddataloader.setdata.aspx

855

 homePhone.number = "(444) 555-0001";

 homePhone.kind = ContactsNS.ContactPhoneKind.home;

 contact.phones.append(homePhone);

 var workPhone = new ContactsNS.ContactPhone();

 workPhone.number = "(245) 555-0123";

 workPhone.kind = ContactsNS.ContactPhoneKind.work;

 contact.phones.append(workPhone);

 var mobilePhone = new ContactsNS.ContactPhone();

 mobilePhone.number = "(921) 555-0187";

 mobilePhone.kind = ContactsNS.ContactPhoneKind.mobile;

 contact.phones.append(mobilePhone);

 var address = new ContactsNS.ContactAddress();

 address.streetAddress = "123 Main St";

 address.locality = "Redmond";

 address.region = "WA";

 address.country = "USA";

 address.postalCode = "23456";

 address.kind = ContactsNS.ContactAddressKind.home;

 contact.addresses.append(address);

 comp({ fullContact: contact, hasMoreData: true });

 },

 2000);

 });

}

Here’s how it’s used with the ContactCardDelayedDataLoader (code simplified):

downLoadContactDataAsync(contact).then(

 function complete(result) {

 if (result.hasMoreData) {

 delayedDataLoader.setData(result.fullContact);

 }

 else {

 delayedDataLoader.close();

 }

 }

}

Assuming all goes well and result gets the object from the promise that contains the updated

Contact, you’ll see a fuller contact card:

856

Here, the “Add contact” command at the bottom right—which appears also with showContactCard

if the contact isn’t found in the People app’s data—will take the user to a page in the People app

where all the information is prepopulated in a new contact form. The user just has to save that contact,

and it’ll be added to the system database.

If the app doesn’t call setData within the four-second timeout or if it calls close instead of

setData, you’ll see a card with only the initial data:

You can simulate this either by setting the interval in setTimeout to something greater than 4000

(simulating a timeout) or by changing the app’s hasMoreData property in the promise’s result

(simulating a case where the app didn’t retrieve any further data).

Using the Contact Picker
Contact cards, as we saw in the previous section, provide a convenient way to display information

about a contact that appears somewhere in the app’s UI. But how does such a contact get into the

app’s UI in the first place?

857

A user can, of course, just enter contact information into an app form of some kind, but this is

terribly inconvenient for contacts that already exist in the system database. For this reason Windows

provides the Contact Picker UI much along the same lines as the File Pickers we’ve already seen. Here

the user can just select one or more contacts and have that information returned to the app.

An obvious place you’d need a contact is when composing an email, as shown in Figure 15-13 with

the Mail app. Here, tapping the To or Cc controls will open the contact picker, which defaults to the

Windows People app, as shown in Figure 15-14 (its splash screen) and Figure 15-15 (its multiselect

picker view, where I have blurred my friends’ identities so that they don’t start blaming me for

unwanted attention!). As we saw with the File Picker UI, the provider app supplies the UI for the middle

portion of the screen while Windows supplies the top and bottom bars, the header, and the down-

arrow menu control using information from the provider app’s manifest. Figure 15-16 shows the

appearance of the Contact Picker app sample in its provider mode (which we’ll talk about more in

Appendix D), as well as the menu that allows you to select a different provider (those who have

declared themselves as a contact provider).

When I select one or more contacts in any provider app and press the Select button along the

bottom of the screen, those contacts are then brought directly back to the first app—Mail in this case.

Just as the file picker contract allows the user to navigate into data surfaced as files by any other app,

the contact contract (say that ten times fast!) lets the user easily navigate to people you might select

from any other source.

FIGURE 15-13 The Mail app uses the contact picker to choose a recipient.

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

858

FIGURE 15-14 The People app on startup when launched as a contact provider.

FIGURE 15-15 The picker UI within the People app, shown for multiple selection (with my friends blurred because

they’re generally not looking for fame amongst developers). The selections are gathered along the bottom in the

basket.

859

FIGURE 15-16 The Contact Picker sample’s UI when used as a provider, along with the header flyout menu allowing

selection of a picker provider.

Invoking the contact picker happens through the ContactPicker object (in Windows.Applica-

tionModel.Contacts). After creating an instance of this object, you can set the commitButtonText for

the first (left) button in the picker UI (as with “Select” in the earlier figures). You can also set the

selectionMode property to a value from the ContactSelectionMode enumeration: either contact

(the default) or fields. In the former case, the whole contact information is returned; in the latter, the

picker works against the contents of the picker’s desiredFields. Refer to the documentation on that

property for details.

When you’re ready to show the UI, call the picker’s pickSingleContactAsync or pickMultiple-

ContactsAsync methods. These provide your completed handler with a single Contact object or a

vector of them, respectively, at which point you can work with whatever information in that object or

objects you need.

Picking a single contact and displaying its information is demonstrated in scenario 1 of the Contact

Picker app sample (js/scenarioSingle.js):

var picker = new Windows.ApplicationModel.Contacts.ContactPicker();

picker.commitButtonText = "Select";

// Open the picker for the user to select a contact

picker.pickSingleContactAsync().done(function (contact) {

 if (contact !== null) {

 // Consume the contact information...

 }

});

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactpicker.desiredfields.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

860

Choosing multiple contacts (scenario 2, js/scenarioMultiple.js) works the same way, just using

pickMultipleContactsAsync. In either case, the calling app then applies the Contact data however it

sees fit, such as populating a To or Cc field like the Mail app. Be mindful that a number of properties,

such as addresses, emails, and phones (among others), are themselves vectors of other object types, such

as ContactAddress, ContactEmail, and ContactPhone, with their own set of properties. I don’t want to

bore you by going into the details, so look through the documentation for the Contact class as

appropriate. Scenario 1 of the sample has some code that shows how to consume these vector properties

by iterating them with their forEach methods.

Appointments

Working with the user’s calendar is very similar to working with their address book through contact

cards. Every user has some kind of calendar (typically associated with their Microsoft account), for

which the built-in Calendar app is the default provider. Most apps, however, don’t need to own or

manage the entire calendar—they just need to create and manage individual appointments on that

calendar, as with booking travel, making restaurant reservations, or arranging meetings with friends

over other communication channels.

That said, it’d be sheer lunacy to just let any arbitrary app create and remove appointments

programmatically without some kind of user consent—some creative soul, if we’re generous enough to

refer to them that way, would surely delight themselves by subjecting your calendar to outrageous

spamming experiments!

The Windows.ApplicationModel.Appointments API serves as a broker between apps and the

user’s calendar (managed by whatever app is serving as the provider), giving users control over the

process. As with contact cards, an app populates the suitable object instance, in this case an

Appointment, and then asks the AppointmentManager to add, remove, or update that entry. In

response, the API launches the appointments provider and gives it a space in which to display

appropriate UI for the operation. For details on writing an appointment provider app, refer to

Appendix D.

An Appointment is a rather detailed object whose properties are described in the following table:

Property Type (max length) Description

startTime Date The date and time for the beginning of the appointment.

duration Number The length of the appointment in milliseconds. (Note that if you

see references to 100ns TimeSpan units, that’s how it appears in

other languages; it’s projected into JavaScript as miliseconds.)

allDay Boolean If true, indicates that the appointment occupies the entire date in

startTime and that duration should be ignored.

subject string (255 char max) The appointment’s title.

location string (32K char max) The location of the appointment.

details string (1M char max) A description body.

organizer AppointmentOrganizer An object that describes the person making the appointment.

invitees Vector of AppointmentInvitee objects The list of invited attendees.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactaddress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactemail.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactphone.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointment.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentorganizer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentsensitivity.aspx

861

recurrence AppointmentRecurrence An object describing the appointment’s recurrence, if needed.

reminder Number The time in milliseconds before the appointment to issue a

reminder.

busyStatus AppointmentBusyStatus Indicates how an attendee’s status will show during the

appointment, one of busy (default), tentative, free,

outOfOffice, and workingElsewhere.

sensitivity AppointmentSensitivity Indicates public (default) or private.

uri Windows.Foundation.Uri A URI to associate with the appointment that can bring the user

back to the source app from the calendar.

For a demonstration of creating and populating an Appointment object, refer to scenario 1 of the

Appointments API sample (about 200 lines of code in js/AppointmentProperties.js), as there are

additional details for populating objects like AppointmentInvitee. Scenario 6 is there you’ll find code

to set up a recurring appointment.

Note that scenario 1 here, although it’s described as “Create an Appointment,” only creates an

Appointment object; it does not add it to the user’s calendar. To take that step, look at scenario 2, or

better still, copy the following bit of code from scenario 2 into scenario 1 at the end of the create-

Appointment function. Note that I’ve added the e argument to the function so that we get the

bounding rectangle of the invoking button):

function createAppointment(e) {

 var boundingRect = e.srcElement.getBoundingClientRect();

 var selectionRect = { x: boundingRect.left, y: boundingRect.top,

 width: boundingRect.width, height: boundingRect.height };

 Windows.ApplicationModel.Appointments.AppointmentManager.showAddAppointmentAsync(

 appointment, selectionRect, Windows.UI.Popups.Placement.default)

 .done(function (appointmentId) {

 // appointmentId is non-null if the appointment was added

 });

}

As you can see here, the AppointmentManager.showAddAppointmentAsync method is what you

call to add the appointment, where the Placement value is optional. This displays a piece of UI from

the appointments provider app, shown below, in which the user confirms the addition by tapping Add

or rejects it by tapping outside the popup:

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentrecurrence.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentbusystatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentsensitivity.aspx
http://code.msdn.microsoft.com/windowsapps/Appointments-API-sample-2b55c76e
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentmanager.showaddappointmentasync.aspx

862

Again, this bit of UI comes from the appointments provider app, not Windows specifically—in fact,

you’ll see the app’s splash screen appear in the popup at first. The title bar of the popup also reflects

the provider app’s branding of course.

If the appointment is added successfully, the completed handler you give to showAddAppointment-

Async will receive a unique appointment id that you can save in your local or roaming app data for

later reference on any of the user’s devices (as they will all be tied to the same user’s calendar).

If you will later want to manage the appointments you’ve created, be sure to save their ids. To

remove an appointment, pass its id to the showRemoveAppointmentAsync method, in which case

another bit of provider-supplied UI will appear, asking the user to confirm:

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentmanager.showremoveappointmentasync.aspx

863

Similarly, you can update an appointment by passing its id and the new Appointment object to the

showReplaceAppointmentAsync method, which will again show a little provider UI through which the

user confirms the action.

The one other method of the AppointmentManager object, showTimeFrame, lets you conveniently

invoke the appointments provider app for a particular date and time range. Scenario 5 of the sample

uses the current date with a range of one hour (js/ShowTimeFrame.js):

var dateToShow = new Date();

Windows.ApplicationModel.Appointments.AppointmentManager.showTimeFrameAsync(

 dateToShow, (60 * 60 * 1000)).done(function () {

 // ...

 });

In this case, the API launches the provider app separately in a side-by-side view and not in a flyout.

How the provider then displays that particular time frame is up to it—the built-in Calendar app, for its

part, shows the current day and the next day together. Other implementations could show just the

current day. What’s important, though, is that you’d use this API from an app to let the user see what

other appointments are near to one they’re trying to create, so the exact details aren’t important.

864

What We’ve Just Learned

 Contracts provide the ability for any number of apps to extend system functionality as well as

extend the functionality of other apps. Through contracts, installing more apps that support

them creates a richer overall environment for users.

 The Share contract provides a shortcut means through which data from one app can be sent to

another, eliminating many intermediate steps and keeping the user in the context of the same

app. A source app packages data it can share when the Share charm is invoked; target apps

consume that data, often copying it elsewhere (in an email message, text message, social

networking service, and so forth).

 The Share target provides for delayed rendering of items (such as graphics), for long-running

operations (such as when it’s necessary to upload large data files to a service), and for providing

quicklinks to specific targets within the same app (such as frequent email recipients).

 The Search contract provides integration between an app and the Search charm. From the

charm users can search the current app as well perform broad searches on local content and the

web. The search contract allows apps to also provide query suggestions and result suggestions.

 In-app search is more commonly implemented by using the WinJS.UI.SearchBox control,

whose interface is very similar to the search contact and provides the same capabili ties.

 To simplify searches, apps can store files in the Indexed folder in local app data, using

appcontent-ms XML files to include metadata for searches. Alternately, apps can use the

ContentIndexer API to add arbitrary content and metadata to the system index.

 File type and URI scheme associations are how apps can launch other apps. An app’s associa -

tions are declared in its manifest allowing it to be launched to service those associations. URI

scheme associations are an excellent means for an app to provide workflow services to others.

 Working with contacts can happen through contact cards, which provide the users with

convenient actions for a contact, or through the Contact Picker wherein the user can choose

one or more contacts for the app to manipulate.

 The user’s calendar is made available to apps through the Appointments API, where the

provider app supplies bits of UI to confirm additions, updates, and deletions. Apps can also ask

the provider to display appointments for a particular time frame.

865

Chapter 16

Alive with Activity: Tiles,

Notifications, the Lock Screen, and

Background Tasks

At the risk of seriously dating myself once again, I still remember how a friend and I marveled when we

first acquired modems that allowed us to do an online chat. At that time the modems ran at a

whopping 300 baud (not Kb, not Mb—just b) and we connected by one of us calling the other’s phone

number directly. It would have been far more efficient for us to just talk over the phone lines we were

tying up with our bitstreams! Such were the early days of the kind of connectivity we enjoy today,

where millions of services are ready to provide us with just about any kind of information we seek with

transfer speeds that once challenged the limits of believability.

Even so, almost from the genesis of online services it’s been necessary to enter some kind of app, be

it a client app or a web app, to view that information and get updates. When computers could run only

a single app at a time (like the one I was using with that 300 baud modem112), this could become quite

cumbersome, and it made it difficult, if not impossible, to move data from one program to another.

With the advent of multitasking operating systems like Windows, you could run apps side-by-side and

transfer information between them, a model that has stuck with us for several decades now. Even many

web apps, for the most part, still operate this way. There have been innovations in this space, certainly,

such as mashups that bring disparate information together into a more convenient place, but such an

experience is still often hidden within an app.

Windows 8 changed that. As one columnist put it, “Using Windows 8 is like living in a house made

out of Internet…The Start screen is a brilliant innovation, [a] huge improvement on the folder-littered

desktops on every other OS, which serve exactly no purpose except to show a background photo. The

Start screen makes it possible to check a dozen things”—if not more, I might add!—“in five seconds—

from any app, just tap the Windows key and you can check to see if you have a new email, an

upcoming appointment, inclement weather, or any breaking news. Tap the Windows key again and

you’re back to your original app.”113 He goes on to suggest how long this would take if you had to go

into individual apps to check the same information, even with high-speed broadband!

What makes the Start screen come alive in this way are what we call live tiles, Microsoft’s answer to

112 If you want the actual make and model, you’ll have to look for it in the footnotes of Chapter 1 of my book Mystic

Microsoft, found on mysticmicrosoft.com or through my website, kraigbrockschmidt.com.

113 From This is my next: Windows 8, by David Pierce.

http://mysticmicrosoft.com/
http://www.kraigbrockschmidt.com/
http://www.theverge.com/2012/8/16/3246185/this-is-my-next-windows-8

866

the need to bring information from many sources together at the core of the user experience, an

experience that “is constantly changing and updating,” as the same writer puts it, “because its every

fiber is connected to the Internet.” With live tiles, each one is a small window onto whatever wealth of

information an app is built around; the app is essentially extracting the most important pieces of that

information according to each user’s particular interests. And as the user adds more apps to the

system—which adds more tiles to the Start screen that the user can rearrange and group however he

or she likes—the whole information experience becomes richer.

Even so, live tiles and the Start screen are just the beginning of the story. It’s ironic that this chapter

has one of the longest titles in this book, listing off four things that do not, at first glance, appear to be

related: tiles, notifications, the lock screen, and background tasks. Maybe you’re just thinking that I

couldn’t figure out where else to put them all! In truth, they together form what is essentially a single

topic: how apps work with Windows to create an environment that is constantly alive with activity while

those apps often are not actually running or are allowed to run just a little bit.

Let’s begin by exploring those relationships and the general means through which apps wire their

tiles and other notifications to their information sources.

Before going further Refer back to “Systemwide Enabling and Disabling of Animations” early in

Chapter 14, “Purposeful Animations,” and check the PC Settings > Ease of Access > Other Options >

Play Animations in Windows option. If animations are turned off, live tiles won’t be animated and you

won’t see the complete experience they can provide.

Second, because all the topics of this chapter are related to one another, various aspects that I’ll

discuss in one part of this chapter—in the context of tiles, for example—also apply to other parts—

such as toast notifications. For this reason it is best to read this chapter from start to finish.

Third, many aspects of what we cover in this chapter are not enabled within the Windows Simulator,

such as live tiles, toast notifications, and the lock screen. When running some of the samples within

Visual Studio, be sure to use the Local Machine or Remote Machine debugging options.

Finally, the tile and notifications API is generally found within Windows.UI.Notifications, which is a

lot to spell out every time. Unless noted, assume that the WinRT APIs we’re talking about come from

that namespace.

Alive with Activity: A Visual Tour

After an app is acquired from the Windows Store and installed on a device, a user can pin its primary

app tile is to the Start screen. As shown in Figure 16-1, these tiles can appear in four sizes: small (70x70

at 100% scaling), medium (150x150), wide (310x150), and large (310x310). The available options

depend on what graphics the app provides in its package (for that full list, refer back to Chapter 3,

“App Anatomy and Performance Fundamentals”). To customize a tile, the user can tap-and-hold (using

touch) or right-click (using the mouse) a tile to bring up tile commands, as shown in Figure 16-2. Here

she can unpin the tile, uninstall the app, change the tile size, and disable updates.

867

FIGURE 16-1 A typical Start screen with a variety of tile sizes. This happens to be my current configuration, where

you can see a few development tools on the right.

FIGURE 16-2 The app bar commands (left, for touch) and the menu (right, for mouse right-click and the keyboard

menu key or Shift+F10) for a tile, including the options for changing a tile’s size. The Turn Live Tile Off command

will disable updates for a given tile, so be careful not to annoy your customers with too much noise! Note also that

the mouse right-click menu is available starting with Windows 8.1 Update 1.

When you first install Windows on a device, you’ll be greeted with a Start screen that lights up quite

quickly, even before you’ve run any apps.114 Tiles for new apps that you install from the Windows Store

but haven’t yet run can also become active right away (there’s a way to do this in the app manifest). In

114 This is assuming you have Internet connectivity, which I mention with great irony because when I first wrote this chapter
there was a fiber optic breakdown between Sacramento and Oakland, California, that had myself and many thousands of

others completely offline!

868

short, whatever Start screen you see when you first install Windows or get a new device won’t stay that

way for long! Many tiles will change every few seconds as you can easily see by returning to your own

Start screen.

What can appear on any given tile is quite extensive and varied. As you can see in Figure 16-1,

everything but the smallest tiles can display text, images, and an app name or logo (at the lower left).

All tiles, including the small size, can also show small glyphs or numbers called badges at the lower

right. Here are some examples of all of these:

A key feature of “alive with activity” is that tiles can receive updates when the app is suspended or

not otherwise running, as we’ll see next in “The Four Sources of Updates and Notifications.” Tiles can

also cycle through up to five updates, an important feature that reduces the overall number of updates

that actually need to be retrieved from the Internet (thus using less power). That is, by cycling through

different updates, a tile can appear very alive without constantly pinging a service.

Copious inspiration! Hidden in the documentation at the end of the lengthy Tile template catalog is

a section on Using live tiles that gives many examples of different design possibilities. It’s a great place

to spend some time during the design phase of your project.

Tip Even though live tiles can be updated frequently through push notifications, be careful not to

abuse that right. Think of live tiles as views into app content rather than gadgets: avoid trying to make

a live tile an app experience unto itself (like a clock) because you cannot rely on high-frequency

updates or update order. Furthermore, a tile update consists only of XML that defines the tile

content—updates cannot trigger the execution of any code. In the end, think about the real

experience you want to deliver through your live tile and use the longest update period that will still

achieve that goal.

In the introduction I mentioned how acquiring more apps from the Windows Store is a way that the

Start screen becomes increasingly richer. But new apps are not the only way that more tiles might

appear. Apps can also create secondary tiles with all the capabilities of the app tile. Secondary tiles are

essentially bookmarks into an app. A secondary tile is created from within an app, typically through a

Pin command on its app bar. Upon the app’s request to create the tile, Windows automatically prompts

the user for confirmation, as shown for the Weather app in Figure 16-3, thus always keeping the user in

control of the Start screen (that is, apps cannot become litterbugs on that real estate!).

In this case the Weather app lets you pin secondary tiles for each location you’ve configured; the

secondary tile always includes specific information that is given back to the app when it’s launched,

allowing it to navigate to the appropriate page. The secondary tile flyout also lets the user choose the

size of the tile. Apps must support at least small and medium tile sizes; wide and large sizes are

http://msdn.microsoft.com/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx#using_live_tiles

869

optional (supporting large requires that you also support wide). In addition, apps can provide a

selection of images for each tile size, all of which are available through the flyout’s FlipView.

FIGURE 16-3 Pinning a secondary tile in the Weather app by using a Pin To Start app bar command, shown here

with the automatic confirmation flyout in which you can select a tile size and image.

In the People app, similarly, you can pin—that is, create secondary tiles for—specific individuals. In

the Mail app you can pin different accounts and folders. In Internet Explorer you can pin your favorite

websites. You get the idea: secondary tiles let you populate the Start screen with very personalized

views into different apps. The user can also unpin any app tile at any time, including the primary app

tile (as can happen when one has created a number of secondary tiles for more specific views). An app

can itself ask to unpin a secondary tile programmatically, in response to which Windows will again

prompt the user for confirmation.

User tip The default customization view of the Start screen (which appears when you tap-and-hold a

tile, or invoke the Customize command on the app bar) lets you rearrange individual tiles and name

groups. To rearrange the groups as a whole, do a semantic zoom out on the Start screen (a pinch

gesture, Ctrl+mouse wheel down, or the Ctrl+minus key), then drag-and-drop groups as you’d like.

In many ways, live tiles might reduce the need for a user to ever launch the app that’s associated

with a tile. Yet this isn’t really the case. Because tiles are limited in size and must adhere to predefined

configurations (templates), they provide essential details while simultaneously serving as teasers. They

give you enough useful information for an at-a-glance view but not so much that your appetite for

details is fully satisfied. Instead of being a deterrent to starting apps, they’re actually an invitation: they

both inform and engage. For this reason, live tiles should be considered an essential app feature where

they are appropriate.

I encourage you to get creative with what kinds of interesting information you might surface on a

tile, even if your app doesn’t draw from web-based content. Games, for example, can cycle through tile

updates that show progress on various levels, high scores, new challenges, and so forth—all of which

invite the user to re-engage with that app. Do remember, though, that the user can always disable

870

updates for any given tile, so don’t give them a reason to defeat your purpose altogether!

As additional background on live tiles, check out the Updating live tiles without draining your

battery post on the Building Windows blog. It’s good background on the system’s view of efficiently

managing tiles.

Now, for all the excellence of live tiles, the Start screen isn’t actually where users will be spending

the majority of their time—we expect them, of course, to mostly be engaged in apps themselves. Even

so, users may want to be notified when important events occur, such as the arrival of an email, the

triggering of an alarm, or perhaps a change in traffic conditions that indicates a good time to head

home for the day (or a change in weather conditions that indicates a great time to go out skiing!).

For this purpose—surfacing typically time-sensitive information from apps that aren’t in the

foreground—Windows provides toast notifications. These transient messages pop up (like real toast but

without the bread crumbs) in the upper right corner of the screen (or the upper left in right-to-left

languages). They appear on top of the foreground app, as shown in Figure 16-4, as well as on the Start

screen, the desktop, and in certain cases the lock screen. Up to three toasts can appear at any one time,

and each can be accompanied by a predefined sound, if desired. Apps can issue toasts to appear

immediately or can schedule them to appear sometime in the future.

Toasts are, like tile updates, created using predefined templates and can be composed of images,

text, and logos; they always use the originating app’s color scheme, as defined in that app’s manifest

(the Foreground Text and Background Color settings in the Visual Assets section).

The purpose of toasts is, again, to give the user alerts and other time-sensitive information, but by

default they appear only for a short time before disappearing. The default toast duration is five

seconds, but this can be set to as long as five minutes in PC Settings > Ease of Access > Other Options,

as shown in Figure 16-5. Apps can create long-duration toasts that remain visible for 25 seconds or the

Ease of Access setting, whichever is longer. Furthermore, apps can create a toast with looping audio for

events like a phone call or other situation where another human being might be waiting on the other

end and it’s appropriate to keep the notification active for some time.

There is also a special case for alarm toast notifications, as employed by the Windows Alarms app.

Alarm toasts can include Snooze and Dismiss commands:

A few similar commands are also available for VoIP apps, as we’ll see later.

http://blogs.msdn.com/b/b8/archive/2011/11/02/updating-live-tiles-without-draining-your-battery.aspx
http://blogs.msdn.com/b/b8/archive/2011/11/02/updating-live-tiles-without-draining-your-battery.aspx

871

FIGURE 16-4 Up to three toast notifications can appear on top of the foreground app (including the desktop and

the Start screen). Each notification can also play one of a small number of predefined sounds.

FIGURE 16-5 Toast duration settings (a drop-down list) in PC Settings > Ease of Access > Other Options.

As with tile updates, the user has complete control over toast notifications: for the entire system, for

the lock screen, and for individual apps. Users do this through PC Settings > Search & Apps >

Notifications, as shown in Figure 16-6. Here the user can turn notifications on and off completely, turn

them on and off for the lock screen specifically, and enable or disable sounds. This area of PC Settings

872

also controls quiet hours, a part of the day where the user probably wants to stay asleep! (Most

background activity is disabled during quiet hours as well; see Updates to background task

management for specifics.) And further down the user can control notifications for any individual app.

All of this ultimately means that you want to make your notifications valuable to the user. If you toss up

lots of superfluous toast, chances are that the user will turn them off for your app or for the whole

system (and give you bad reviews in the Windows Store).

FIGURE 16-6 The user can exercise fine control over notifications in PC Settings > Search & Apps > Notifications,

including the configuration of “Quiet Hours,” during which notifications are turned off temporarily.

As with secondary tiles, each toast notification contains specific data that is given to its associated

app if the user taps the toast to activate the app. If the app is suspended, of course, Windows switches

to that app and fires its activated event with the notification data. If the app isn’t running, Windows

will launch it. (The Win+V key, by the way, will cycle the keyboard focus through active toasts, and

pressing Enter will activate the one with the focus.)

This brings up the point that toast notifications, like tile updates, can originate from sources other

than a running app—which should be obvious because nonforeground apps will typically be

suspended! Again, we’ll talk about those sources soon. At the same time, you might be wondering if

the last item in this chapter’s subtitle—background tasks—comes into play here.

Indeed it does. Background tasks are an essential part of the whole “alive with activity” story. As

we’ve already seen with background transfers in Chapter 4, “Web Content and Services,” geofencing in

Chapter 12, “Input and Sensors,“ and background audio in Chapter 13, “Media,” it’s not a hard-and-fast

rule that apps are always suspended in the background. It’s just that Windows, on its quest to optimize

battery life, doesn’t allow arbitrary apps to keep themselves running for arbitrary reasons. Instead,

http://msdn.microsoft.com/library/windows/apps/bg182890.aspx#backgroundtask
http://msdn.microsoft.com/library/windows/apps/bg182890.aspx#backgroundtask

873

Windows allows apps to run focused background tasks for specific purposes—called triggers—subject

to specific quotas on CPU time and network I/O. As you might expect, an app declares such

background tasks in its manifest.

Triggers include a change in network connectivity, a time zone change, an update of an app, the

expiration of a timer (with a 15-minute resolution), or the arrival of a push notification from an online

source (that is, a notification sent in response to a condition that’s completely external to the device

itself). Each trigger can also be configured with conditions such as whether there’s Internet connectivity.

Whatever the case, the whole purpose of background tasks is not to launch an app—in fact,

background tasks cannot display arbitrary UI. It is rather to allow them to update their internal state

and, when needed, issue tile updates or toast notifications through which the user can make the choice

to activate the app for further action.

One additional aspect of background tasks is that Windows also places a limit on the total number

of apps that can handle certain kinds of triggers: timers, receipt of push notifications, and receipt of

network traffic on a control channel as used by real-time communications apps. The limit is imposed by

the fact that such apps must be added to the lock screen for their tasks to run at all.

The lock screen, as you certainly know by now and as shown in Figure 16-7, is what’s displayed

anytime the user must log into the device. A device will be locked directly by the user or after a period

of inactivity. An exception is made when an app has disabled auto-locking through the Windows.-

System.Display.DisplayRequest API, as discussed in Chapter 13 in “Disabling Screen Savers and the

Lock Screen During Playback.”

FIGURE 16-7 A typical lock screen. Up to seven apps can display badges along the bottom of the screen; one app

can display text next to the clock.

874

Yet Windows doesn’t want to force the user to log in just to see the most important information

from their most important apps. Through PC Settings, as shown in Figure 16-8 (where I’ve panned up a

bit), the user can add up to seven apps to the lock screen (provided those apps have requested access,

which is subject to user consent). These apps must be registered for lock screen–related background

tasks during which they can issue badge updates to the lock screen—these are what you see above

along the bottom of Figure 16-7, where each badge glyph (the numbers) is also accompanied by a

monochrome graphic, referred to as the Badge Logo in the app manifest. This graphic is 24x24 at

100%, 33x33 at 140%, and 43x43 at 180%, and it must contain only white or transparent pixels.

In addition, the user can indicate a single app that can display a piece of text (but not an image)

next to the clock, and a single app to show alarms. Note that toast notifications raised by these apps

will surface on the lock screen; if tapped, the lock screen will bounce and the app will be activated once

the user signs in.

FIGURE 16-8 Configuring the lock screen and lock screen apps in PC Settings > PC and Devices > Lock Screen (I’ve

panned the view on the right up a bit to show the Lock Screen Apps section).

Thus we complete the story of how Windows works with apps to be alive with activity—on the Start

screen, on the lock screen, and while the user is engaged in other apps—while yet conserving battery

power by intelligently managing how and when apps can issue their various updates. Let’s now see

exactly how that’s accomplished, ideally without needing apps to run at all.

875

The Four Sources of Updates and Notifications

When an app is active in the foreground, it can clearly issue whatever notifications it wants: updates to

any of its tiles, badge updates, and toast notifications. A background task running on the app’s behalf

can do the same. Together these updates are simply referred to as local updates because they originate

from running app code and are applied immediately, as shown in Figure 16-9. A running news app, as

an example, might issue up to five updates to its tiles so that recent headlines continue to cycle when

the user switches to another app. Such updates can also be set to expire at some date and time in the

future so that they’ll disappear automatically (perhaps fulfilling the adage, “No news is good news”!).

With toasts, note that a foreground app should use inline messages, flyouts, and message dialogs for

errors that pertain to the currently visible content; toasts are only appropriate for alerts about content

in some other part of the app.

FIGURE 16-9 Local updates from a running app are applied immediately.

The second source of updates are scheduled notifications that apply to tile updates and toasts. A

running app or background task issues these to the system with the date and time when the update or

notification should appear, regardless of whether the app will be running, suspended, or not running at

that future time. This is illustrated in Figure 16-10. A calendar app, for example, would typically use

scheduled notifications for appointment reminders. An alarms app uses scheduled toasts as well but

also requests alarm access such that its scheduled notifications appear on the lock screen and can be

accompanied by Snooze and Dismiss commands, as shown earlier in “Alive with Activity: A Visual Tour.”

FIGURE 16-10 Scheduled notifications are managed by the system and will appear at the requested time

irrespective of the state of the originating app.

876

The third way an app can issue updates—in this case for tiles and badges only—is through a periodic

update. As illustrated in Figure 16-11, a running app configures the system’s tile and badge updaters to

request an update from a specific URI at low-frequency intervals (the minimum is 30 minutes)

beginning at a specified time, if desired. You can also specify the URI directly in the app manifest

(Application tab > Tile Update) to get a live tile going as soon as the app is installed (but not badges).

That is, when your app is installed, Windows checks the manifest for your URI and recurrence settings.

It then makes the periodic update request on your behalf so that updates begin immediately. After this,

any periodic updates configured from the running app will take precedence.

The REST endpoint or web service at the specified URI (which I’ll typically just refer to as a service)

responds to these HTTP requests with an XML payload that’s equiva lent to what a running app would

provide in a local update, and updates can be set with an expiration date/time so that they’re

automatically removed from the update cycle when appropriate. With all these capabilities, periodic

updates are wholly sufficient for many apps to create very dynamic live tiles with relatively little effort.

FIGURE 16-11 Periodic updates for tiles and badges are registered with the system’s tile updater, which will request

an update from a given REST endpoint or web service at regular intervals.

Of course, a 30-minute minimum interval is simply not fast enough when an app wants to notify a

user as soon as possible. Thus we have the fourth means for updates—push notifications—and this

method applies across tiles and toasts, as well as non-UI (raw) notifications.

Push notifications are, as the name implies, sent directly to a device not at the request of an app but

at the request of some associated server process that is typically monitoring information or other

conditions around the clock. As illustrated in Figure 16-12, that server process employs the free

Windows Push Notification Service (WNS for short) to send notifications to those apps that have

created a channel for this purpose. Each channel is specific to a user and the device. This requires the

app to be run at least once, because it’s during that first launch that the app establishes a WNS channel

for its host device. On subsequent launches the app typically refreshes the channel, as it will otherwise

expire after 30 days. A background task can also periodically refresh the channel.

877

Note Although push notifications can happen at any time with much greater frequency than other

update methods, be aware that Windows will throttle the amount of push notification traffic on a

device if it’s on battery power, if it’s in connected standby mode, or if notification traffic becomes

excessive. This means there is no guarantee that all notifications will be delivered (especially if the

device is turned off). So don’t try to use push notifications to implement a clock tile or other tile

gadgets with a similar kind of frequency or time resolution. Instead, think about how you can use push

notifications to connect tiles and notifications to a backend service that has interesting and meaningful

information to convey to the user, which invites them to re-engage with your app.

A push notification can contain an XML payload as with other tile updates and toast notifications, or

it can contain a raw notification with arbitrary data (see Guidelines for raw notifications for appropriate

uses). A raw notification must be received by a running app or a by lock screen app with a background

task for with the push notification trigger—otherwise the system clearly won’t know what to do with it!

A standard update or toast can be handled either by the system or app code.

FIGURE 16-12 Push notifications originate with an always-running server process and are then sent to the Windows

Push Notification Service for delivery to specific clients (a specific app on a specific user device) through their

registered WNS channels.

A helpful summary of these different update mechanisms can be found on Choosing a notification

delivery method in the documentation, a topic that includes various examples of when you might use

each method. I’ve also summarized the available options for different types of notifications in the table

below. Whatever the case, we’re now ready to see the deta ils of how we employ all of them in an app

to help keep a system alive with activity.

http://msdn.microsoft.com/library/windows/apps/hh761463.aspx
http://msdn.microsoft.com/library/windows/apps/Hh779721.aspx
http://msdn.microsoft.com/library/windows/apps/Hh779721.aspx

878

Notification type Cycling Scheduled Expiring Recurring Audio Periodic Push

Tile ✔ ✔ ✔ ✔ ✔

Badge ✔ ✔ ✔

Toast ✔ ✔ ✔ ✔ ✔

Raw ✔

Sidebar: Connectivity and Remote Images in Live Tiles and Toasts

Periodic updates and push notifications are completely dependent on connectivity and will not

operate without it. A running app, on the other hand, can still issue updates when the device is

offline and can schedule updates and notifications for some time in the future when the device

could then be offline. Under such circumstances, references to remote images will not be

resolved without connectivity because the tile and toast systems do not presently support the use

of local fallback images. When using remote images, then, consider whether to cache those

images and use local image references instead (ms-appx:/// or ms-appdata:/// URIs), or opt

for text-only tile and toast templates.

Sidebar: Windows Azure Mobile Services

Windows Azure Mobile Services is a set of cloud tools and a client library that together help you

create a scalable backend for an app, including structured cloud data, identity, service endpoints

(as for a periodic update service), scheduled jobs, and push notifications. In short, a mobile

service (as I’ll refer to it), provides a prebuilt solution via REST endpoints that is very handy for a

number of things we’ll need in this chapter! Various introductions and documentation can be

found at the link above, and we’ll cover some parts in appropriate contexts.

Tiles, Secondary Tiles, and Badges

The first thing you should know about your app tile is that if you want to enable live wide or large tiles

(including secondary ones), you must include wide and large logo images in the Visual Assets section of

your manifest, as shown below (condensing the UI). Without these, you can still have live medium tiles

(which is the only required size), but wide and large tile updates will be ignored. Small tiles (70x70) are

always static but can display badges like all the other sizes.

http://www.windowsazure.com/en-us/develop/mobile/

879

At this point I encourage you to go back to Chapter 3 and review “Branding Your App 101,” where I

discuss how different bits in the manifest affect your tiles, such as the Short Name and Show Name

settings. As also covered there, remember to provide different scaled versions of each logo image for

best quality. Even though you might issue tile updates as soon as your app is run, your static tiles will

be essential to the user’s first impression of your app after it’s acquired from the Windows Store. The

static tiles are also what the user will see if he or she turns your live tiles off or if all your updates expire.

So, even if you plan for live tiles, be sure to still invest in great static tile designs as well.

Note If you don’t provide a small 70x70 image, Windows will automatically scale down the 150x150

asset. You can also provide different sizes for secondary tiles independent of the images provided in

the manifest.

Again, providing static tiles for the 150x150, 310x150, and 310x310 sizes enables you to issue live

tile updates for all of them, including secondary tiles of those sizes. In all cases, try to think through

what the user would most want to see. When users select a wide or large tile—that is, electing to have

your tile occupy more prime real estate on the Start screen—it’s likely that they’re looking for content

that adds value to the Start screen. If users choose a medium tile, on the other hand, they’re probably

more interested in only the most essential information: the number of new email messages (as

expressed through a badge), for example, rather than the first line of those messages, or the current

temperature in a location rather than a more extended forecast. And don’t worry if the user selects a

small tile for your app, where only badges will appear: it typically means that they spend so much time

in the app itself that they don’t need any info on the Start screen!

The Guidelines for tiles and badges topic in the documentation provides rather extensive design

guidance where all this is concerned, along with appropriate use of logos, names, badges, and updates.

Also see Using live tiles at the end of the Tile Template Catalog for inspiration. Here we’ll concern

ourselves with how such updates and badges are sent to a tile, a process that involves tile templates,

which are predefined configurations that you populate with text, images, and other properties via XML

updates. These templates (which are also defined as XML, but don’t confuse them with the update

schema) apply to all forms of tiles and update methods, which we’ll exam ine in a moment. First,

however, let’s see how secondary tiles are managed, because everything we talk about thereafter

applies equally to all tiles for the app.

http://msdn.microsoft.com/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx#using_live_tiles

880

Secondary Tiles
A secondary tile is a kind of bookmark into an app, to achieve what’s also cal led deep linking: a way to

launch an app into a particular state or to a particular page. Secondary tiles allow the user to

personalize the Start screen with more specific views of an app. As suggested on Guidelines for

secondary tiles (a topic I highly recommend you read), offering the ability to create a secondary tile is a

good idea whenever you have app state that could be a useful target or destination unto itself. But

don’t abuse secondary tiles, such as using them for virtual command buttons—that would only educate

customers that they shouldn’t bother to pin tiles from your app!

An app creates a secondary tile in response to a Pin command that it typically includes on its app

bar (using the WinJS.UI.AppBarIcon.pin icon). Offer this command when the app is displaying

pinnable content or the user has made an appropriately pinnable selection; hide or disable the

command if the content or selection is not pinnable. In addition, change it to an Unpin command if the

content is already pinned. For details on managing commands in the app bar, refer to Chapter 9,

“Commanding UI.”

When the Pin command is invoked, the app makes the request to create the tile. Windows then

prompts the user for their consent, as shown earlier in Figure 16-3.

Once created, a secondary tile has all the same capabilities as your app tile, including the ability to

receive updates from any source. They key difference between the app tile and secondary tiles is that

the former launches the app into its default (or current) state, whereas the latter launches the app with

specific arguments that your activation handler uses to launch (or activate) the app into a specific state.

Let’s see how it all works.

Note Although the tile and notifications API is found within Windows.UI.Notifications, the API for

creating secondary tiles come from Windows.UI.StartScreen. Assume that is our context in the next

four sections unless otherwise noted.

Creating Secondary Tiles

The process for creating a secondary tile in response to a pin command is quite simple: first create an

instance of Windows.UI.StartScreen.SecondaryTile with the desired options, and then call either

its requestCreateAsync or requestCreateForSelectionAsync method. If the user confirms the

creation of the tile, it will be added to the Start screen and your completed handler will receive a result

argument of true. If the user dismisses the flyout (by tapping outside it), the completed handler will be

called with a result argument of false. The error handler for these methods will be called if there is an

exception, such as if you fail to provide required properties in the SecondaryTile.

When creating a SecondaryTile object, you can use one of three different constructors (there are

two others, but they are deprecated in Windows 8.1):

 SecondaryTile() Creates a SecondaryTile with default properties; you must then set

required properties directly before attempting to pin, update, or delete the tile.

http://msdn.microsoft.com/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

881

 SecondaryTile(tileId) Initializes the SecondaryTile with a specific ID, typically used when

creating an object before an update or when unpinning the file.

 SecondaryTile(tileId, displayName, arguments, logo, tileSize) Creates a

SecondaryTile with the properties for a default medium tile (whose image is in logo).

The constructor arguments clearly correspond to the following SecondaryTile properties, all of

which are required to be set when you call a requestCreate* method:

 tileId A unique string (a maximum of 64 alphanumeric characters including . and _) that

identifies the tile within the package. You need this when you want to update or delete a tile,

and it should always be set. This value is typically derived from the content related to the file. If

you create secondary tiles with a tileId that already exists, the new one will takes its place.

 displayName The tile’s display name that will be shown in the tile’s tooltip, next to the app in

the Start screen’s All Apps view, and in a few other areas within Windows. This can be whatever

length you want and can contain any characters.

 arguments A string that’s passed to the app’s activation handler when the tile is invoked.logo

A URI for the square (medium) 150x150 tile image. This can use either the ms-appx:/// or ms-

appdata:///local schema. Be sure to avoid storing a dynamically generated image in

temporary storage, and avoid deleting it unless all secondary tiles that reference it are deleted.

In addition to these you can set any of the other properties described in the following table before

attempting to pin a secondary tile:

Property Description
roamingEnabled Indicates that the secondary tile is roamed to the cloud and replicated on

other devices where the same user installs the same app.

lockScreenBadgeLogo

lockScreenDsiplayBadgeAndTileText

Indicate the secondary tile’s relationship to the lock screen; see “Lock

Screen Dependent Tasks and Triggers” later in this chapter.

phoneticName For setting UI sort ordering in some languages.

visualElements A SecondaryTileVisualElements object (see the properties below)

visualElements.backgroundColor A Windows.UI.Color value that overrides the app’s manifest color.

visualElements.foregroundText A ForegroundText value, either dark or light.

visualElements.square30x30Logo

visualElements.square70x70Logo

visualElements.square150x150Logo

visualElements.wide310x150Logo

visualElements.square310x310Logo

ms-appx:/// or ms-appdata:///local URIs for logo images, overriding

the defaults in the manifest.

visualElements.showNameOnSquare150x150Logo

visualElements.showNameOnWide310x150Logo

visualElements.showNameOnSquare310x310Logo

Booleans that indicate whether the app name is shown on specific tiles,

overriding settings in the manifest.

Note The following SecondaryTile properties are deprecated in Windows 8.1 because they are

handled through the visualElements property instead: backgroundColor, foregroundText,

shortName, logo, smallLogo, wideLogo, and most values of tileOptions. The

tileOptions.copyOnDeployment value is also replaced by of roamingEnabled.

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytilevisualelements.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.color.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.foregroundtext.aspx

882

At run time, you can also retrieve any of these properties to check the state of the secondary tile if

needed. If you modify any properties for a SecondaryTile that has already been pinned, be sure to

call its updateAsync method to propagate those changes.

The requestCreate* methods also have variations to control the placement of the user consent

flyout (the flyout that’s shown in Figure 16-3). Calling requestCreateAsync by itself results in a default

placement in a lower corner of the display. It’s usually better, however, for that flyout to appear close to

the command that invoked it. For this purpose requestCreateAsync accepts an optional

Windows.Foundation.Point, specifying where to place the lower right corner of the flyout.

requestCreateForSelectionAsync has two variations itself. The first takes a Windows.-

Foundation.Rect describing the selection. The flyout will appear above that rectangle if possible. If

you expect that this default placement will obscure the secondary tile’s content, you can also pass an

optional value from Windows.Popup.Placement to indicate where the flyout should appear relative to

that rectangle: above, below, left, and right.

You can play around with all of these options in the Secondary tiles sample. Scenarios 1 and 2 pin

and unpin a secondary tile using on-canvas buttons, respectively, with scenario 7 doing the same

through the app bar. We’ll see some of the other scenarios in the sections that follow. For the moment,

the pinning function in scenario 1 shows the creation process using requestCreateForSelection-

Async (js/pintile.js, copious comments removed):

function pinSecondaryTile() {

 var Scenario1TileId = "SecondaryTile.Logo";

 var square70x70Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/square70x70Tile-sdk.png");

 var square150x150Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/square150x150Tile-sdk.png");

 var wide310x150Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/wide310x150Tile-sdk.png");

 var square310x310Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/square310x310Tile-sdk.png");

 var square30x30Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/square30x30Tile-sdk.png");

 // Create activation arguments...

 var currentTime = new Date();

 var newTileActivationArguments = Scenario1TileId + " WasPinnedAt=" + currentTime;

 var tile = new Windows.UI.StartScreen.SecondaryTile(Scenario1TileId,

 "Title text shown on the tile",

 newTileActivationArguments,

 square150x150Logo, Windows.UI.StartScreen.TileSize.Square150x150);

 // Setting other options

 tile.visualElements.wide310x150Logo = wide310x150Logo;

 tile.visualElements.square310x310Logo = square310x310Logo;

 tile.visualElements.square70x70Logo = square70x70Logo;

 tile.visualElements.square30x30Logo = square30x30Logo;

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.updateasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.placement.aspx
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178

883

 tile.visualElements.showNameOnSquare150x150Logo = false;

 tile.visualElements.showNameOnWide310x150Logo = true;

 tile.visualElements.showNameOnSquare310x310Logo = true;

 tile.visualElements.foregroundText = Windows.UI.StartScreen.ForegroundText.dark;

 tile.roamingEnabled = false;

 var selectionRect = document.getElementById("pinButton").getBoundingClientRect();

 tile.requestCreateForSelectionAsync(

 { x: selectionRect.left, y: selectionRect.top, width: selectionRect.width,

 height: selectionRect.height },

 Windows.UI.Popups.Placement.below)

 .done(function (isCreated) {

 if (isCreated) {

 // The tile was successfully created

 } else {

 // The tile was not created

 }

 });

}

Note As mentioned in Chapter 9, the system flyout displayed when creating a secondary tile (and

when removing it, see “Managing Secondary Tiles” below) will cause the app to lose focus and will

dismiss a nonsticky app bar as a result. For this reason, scenario 7 of the Secondary tiles sample keeps

the app bar visible by setting its sticky property to true before calling the secondary tile API.

Supplying Multiple Tile Graphics

In Figure 16-3 we saw that the secondary tile flyout lets the user flip through different tile sizes

depending on what you’re provided in the SecondaryTile.visualElements property, but this is only

the beginning of the story. To help apps create a truly engaging Start screen presence with their

secondary tiles, it’s possible to provide up to three sets of additional tile graphics for each size, all of

which are then shown in the flyout’s FlipView. This is done by responding to the SecondaryTile

object’s visualelementsrequested event (a WinRT event, so remember to remove it).

This event is fired when you call a requestCreate* method, before the flyout appears. Its

eventObj.request is a VisualElementsRequest object, and you specifically populate its

alternateVisualElements vector with one or more additional SecondaryTileVisualElements

objects. For reference. eventObj.request.visualElements is a copy of the original visualElements

property from the SecondaryTile; that way you can avoid adding logos that are identical to the

defaults.

Scenario 9 of the Secondary tiles sample provides a demonstration. First it sets an event handler

before calling requestCreateForSelectionAsync (js/PinTileAlternateVisualElements.js):

// Most other details omitted

var tile = new Windows.UI.StartScreen.SecondaryTile(/* Includes 150x150 tile... */);

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.visualelementsrequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.visualelementsrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytilevisualelements.aspx
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178

884

tile.visualElements.square70x70Logo = square70x70Logo; // Must set this to provide alternates

tile.visualElements.wide310x150Logo = wide310x150Logo;

tile.visualElements.square310x310Logo = square310x310Logo;

tile.onvisualelementsrequested = visualElementsRequestedHandler;

tile.requestCreateForSelectionAsync(/* ... */).done(function (isCreated) {

 // ...

});

Its handler then adds three sets of (admittedly uninspiring) 70x70, 150x150, 310x150, and 310x310

logos to the alternateVisualElements vector. To prevent you from nodding off while reading highly

redundant code, let me just show the first of these (omitting some temporary variables as well;

js/PinTileAlternateVisualElements.js):

function visualElementsRequestedHandler(args) {

 args.request.alternateVisualElements[0].square70x70Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/alternate1Square70x70Tile-sdk.png");

 args.request.alternateVisualElements[0].square150x150Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/alternate1Square150x150Tile-sdk.png");

 args.request.alternateVisualElements[0].wide310x150Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/alternate1Wide310x150Tile-sdk.png");

 args.request.alternateVisualElements[0].square310x310Logo = new Windows.Foundation.Uri(

 "ms-appx:///Images/alternate1Square310x310Tile-sdk.png");

 args.request.alternateVisualElements[0].backgroundColor = Windows.UI.Colors.green;

 args.request.alternateVisualElements[0].foregroundText =

 Windows.UI.StartScreen.ForegroundText.dark;

 args.request.alternateVisualElements[0].showNameOnSquare310x310Logo = true;

 // Setting up alternativeVisualElements[1] and [2] omitted

}

Note that if you provide alternate square70x70Logo URIs this way, you must have set the default

square70x70Logo property in the original visualElements. In any case, the result of all this is shown

in Figure 16-13, which is easier seen in Video 16-1 where you can see all the alternates. The sample, of

course, is simply providing tiles with different colors, which isn’t that much of a differentiation and also

bad for branding. I fully expect that your apps will be much more creative! For example, if you’re

pinning a tile for a person, you can provide alternate portraits, and if you’re pinning a location, you can

supply different images of key landmarks. If you’re pinning a news article or web page, you can provide

different images from that page as options.

885

FIGURE 16-13 Flipping through alternate tile images in the Secondary tiles sample. The blue tiles are the defaults

set in the SecondaryTile object. The green, purple, and red images, available in all sizes, are set through the

visualelementsrequested event handler.

There are times, of course, when you want to use an image that you don’t necessarily have on hand

already. For example, if you’re working with images of people in a contact database, you might need to

run a query to retrieve them, or perhaps you simply need to open a file to get that information. These

might be async operations, so the VisualElementsRequest object includes a getDeferral method

and a deadline property (about five seconds from when the event is raised), These work like all other

deferrals we’ve seen: once you call getDeferral for the deferral object, you can return from your

handler and Windows will just display a progress ring in the flyout until you call the deferral’s complete

method or the deadline has passed. If the deadline had passed by the time you return from your

handler, all of your alternates will be ignored.

Using the deferral is demonstrated in scenario 10 of the sample, which just uses a 3-second delay to

simulate async work (js/PinTileAlternateVisualElementsAsync.js):

function visualElementsRequestedAsyncHandler(args) {

 var deferral = args.request.getDeferral();

 WinJS.Promise.timeout(3000).then(function () {

 assignVisualElements(args);

 deferral.complete();

 });

}

The code in assignVisualElements is the same as in scenario 8 except that it checks whether we’re

still within the deadline before populating the alternateVisualElements vector:

if (args.request.deadline > new Date()) {

 args.request.alternateVisualElements[0].square70x70Logo = /* ... */;

 // And so on...

}

App Activation from a Secondary Tile

Secondary tiles provide a way to activate an app to something other than its default sta te, according to

886

the contents of the secondary tile’s arguments property. When a secondary tile is tapped or clicked,

the app’s activated event is fired with an activation kind of launch and the tile’s arguments value in

eventArgs.detail.arguments. The app then takes whatever action is appropriate for that data, such

as navigating to a particular page of content, retrieving a piece of content from an online source, and

so on. In the Secondary tiles sample, the activation code in js/default.js navigates to its scenario 5 page,

where we pass arguments as the options parameter of WinJS.Navigation.navigate:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.launch) {

 if (eventObject.detail.arguments !== "") {

 // Activation args are present (declared when the secondary tile was pinned)

 eventObject.setPromise(WinJS.UI.processAll().done(function () {

 // Navigate to scenario 5, where the user will be shown the activation args

 return WinJS.Navigation.navigate(scenarios[4].url,eventObject.detail.arguments);

 }));

 } else {

 // Activate in default state

 }

 }

}

The page control (js/LaunchedFromSecondaryTile.js) receives the arguments string in the options

parameter of both the processed and ready methods. In the case of the sample it just copies that

string to the display:

var page = WinJS.UI.Pages.define("/html/LaunchedFromSecondaryTile.html", {

 processed: function (element, options) {

 if (options) {

 document.getElementById("launchedFromSecondaryTileOutput").innerHTML += "<p>" +

 "App was activated from a secondary tile with the following activation" +

 "arguments : " + options + "</p>";

 }

 },

 ready: function (element, options) {

 }

});

That’s the whole mechanism. Your own app, of course, will do something much more interesting

with arguments!

Managing Secondary Tiles

In addition to the methods and properties to create secondary tiles, the SecondaryTile class has two

static methods to manage your app’s secondary tiles:

 exists Returns a Boolean indicating whether a secondary tile, identified with its tileId, is

present on the Start screen. This tells you whether calling a requestCreate* method for a tile

with that same tileId will replace an existing one. This is demonstrated in scenario 4 of the

Secondary tiles sample.

http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.exists.aspx
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178

887

 findAllAsync Retrieves a vector of SecondaryTile objects that have been created by the

app. This will include any tiles roamed from another device (those created with the

roamingEnabled option).115 This is demonstrated in scenario 3 of the sample.

In addition, here are a few other methods for working with a specific SecondaryTile instance:

 requestDeleteAsync and requestDeleteForSelectionAsync Direct analogs, with the same

placement variations, to the requestCreate* methods, because unpinning a secondary tile is

also subject to user consent. This is demonstrated again in scenarios 2 and 7.

 updateAsync Propagates any changes made to the SecondaryTile properties since it was

added to the Start screen. This is demonstrated in scenario 8.

If you’ve been keeping score, you might have noticed that I’ve yet to mention scenario 6 of the

sample. That’s because it shows how to make a secondary tile into a live tile with updates. To

understand that, we need to look at updates more generally because the mechanisms involved apply

to all tiles alike. This just so happens to be the next topic in this chapter—and yes, I planned it that way!

Basic Tile Updates
A local update for a tile, as described earlier in this chapter, is one that an app issues directly while it’s

running or issues from a background task. This is clearly efficient because running app code generally

has the information it needs for making updates to any of its tiles. In a number of cases—especially

when an app is not related to a server—the information needed for the app’s live tiles is available only

to the app’s code. A game, for example, can send updates showing best scores, new challenges,

progress toward achievements, and other kinds of compelling invitations to re-engage with the app. (I

must personally admit that this works quite well with the Fruit Ninja game.)

The process of sending a local tile update is very straightforward using the APIs in the

Windows.UI.Notifications namespace:

 Create the XML payload, as it’s called, that describes the update within an XmlDocument object

(this is in Windows.Data.Xml.Dom). The XML must always match one of the predefined tile

templates. You can start with a system-provided XmlDocument, create it from scratch, or use the

Notifications Extensions Library, which provides an object model and IntelliSense for this.

 Create a TileNotification object with that XML. The XML becomes the TileNotification

object’s content property and can be set separately.

 Optionally set the expirationTime and tag properties of the TileNotification. By default, a

locally issued update does not expire and is removed only if it’s evicted by a newer update or

explicitly cleared. Setting expirationDate will automatically remove it at that particular time.

115 The SecondaryTile class also has a variant of findAllAsync that takes a different app name along with findAllFor-
PackageAsync that’s described as enumerating secondary tiles for all apps in the same package. These were meant for

packages that contain multiple apps, a feature that is not currently supported through the Windows Store.

http://msdn.microsoft.com/library/windows/apps/br242208.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.requestdeleteasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.requestdeleteforselectionasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.updateasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.xml.dom.xmldocument.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tilenotification.aspx

888

(Cloud-issued notifications automatically expire after three days by default.) The tag property is

a string of 16 or fewer characters that is used to manage the stack of updates that are cycled on

the tile. More on this a little later.

 Call TileUpdateManager.createTileUpdaterForApplication to obtain a TileUpdater

object that’s linked to your app tile; call TileUpdateManager.createTileUpdater-

ForSecondaryTile (chew on that name!) to obtain a TileUpdater object for a secondary tile

with a given tileId.

 Call TileUpdater.update with your TileNotification object. (The animation used to bring

the update into view is similar to WinJS.UI.Animation.createPeekAnimation, as described in

Chapter 14.)

Tip If you issue tile updates or other notifications when your app is running, think about whether it’s

also appropriate to issue updates within a resuming event handler if you aren’t going to use other

means like periodic updates or push notifications to refresh the tile. It may have been a while since you

were suspended, so being resumed is a good opportunity to send updates.

Let’s turn now to the App tiles and badges sample for how updates appear in code. Because the

Visual Studio simulator doesn’t enable live tiles and toasts, remember to run the sample with the Local

Machine or Remote Machine option, and be sure that animations are enabled in PC Settings.

Assuming that we have our update XMLDocument in a variable named tileXml, sending the update

takes only two lines of code (derived from the end of js/sendTextTile.js):

var tileNotification = new Windows.UI.Notifications.TileNotification(tileXml);

Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication()

 .update(tileNotification);

and similarly for secondary tiles in scenario 6 of the Secondary tiles sample (js/SecondaryTile-

Notification.js):

var tileNotification = new Windows.UI.Notifications.TileNotification(tileXml);

Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForSecondaryTile(

 "SecondaryTile.LiveTile").update(tileNotification);

The more interesting question is how we create that tileXml payload in the first place. This involves

choosing one of the predefined visual tile templates and understanding the options we can exercise

within them, which are covered in the next two sections. Then it’s a matter of choosing one of three

methods to create the XMLDocument, which we’ll also explore individually. Finally, we’ll see how to

properly reference images with the updates. Localization and accessibility are additional concerns for

tile updates, but we’ll return to that subject later in Chapter 19, “Apps for Everyone, Part 1.”

Choosing a Tile Template

The first step in creating a tile update is to select an appropriate template from the Tile template

catalog. Here you will find descriptions, images, and the exact XML for the 10 available medium

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforapplication.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforsecondarytile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforsecondarytile.aspx
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx

889

templates, the 36 available wide templates, and the 29 available large templates—yes, 75 different

templates in all, so I hope you understand why I’m not showing them all here! Some are text-only,

some are image-only, and some are text and image both. Here are a few examples:

In addition, some of the options for medium and wide tiles are referred to as peek templates. These,

if you look at them in the topic linked to above,116 are really composed of two stacked sections that

are each the size of the whole tile, as shown below for medium tiles (left) and wide tiles (right):

With peek templates you effectively get to show twice the content as the other templates. When a

peek update is shown on a live tile, the upper portion will appear first and then the tile will flip or give

you a “peek” at the lower portion, and then it will switch back to the upper portion, after which the live

tile will switch to the next update in the cycle, if one exists. (The Travel app uses peek templates on its

medium and wide tiles, if you want an example; and the animation that’s employed here is again

similar to WinJS.UI.Animation.createPeekAnimation.) Of course, both sections should contain

related content because they are part of the same singular update.

116 A more succinct list of templates is also found on the reference page for TileTemplateType. This includes the name of

the template and a representative image but doesn’t include the XML.

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx

890

Hidden gems Among all the wide peek templates, the TileWide310x150PeekImageAndText01 and 02

templates often go unnoticed because they don’t look particularly distinctive in the template catalog.

They’re unique, though, in that on both sides of the peek they always show part of the text and part of

the image. Check them out in scenario 6 of the App tiles and badges sample that we’ll see shortly.

Why templates? Although it might seem limiting that you must choose from a predefined template

for your tile design, this helps ensure a consistency amongst all the tiles on the Start screen. Templates

also describe the relationships between different parts of the tile content, which can then be rendered

uniquely (as on Windows and Windows Phone) without changing those relationships. Also, be sure to

check out Using live tiles at the end of the catalog page, which is easy to miss in what is a long page in

the documentation!

There are a number of important details with the template layouts. First, when you look at the

template catalog, you’ll see both version 1 (Windows 8) names like TileSquareText01 and version 2

(Windows 8.1) names like TileSquare150x150Text01. Within an app, always use the latest version. When

implementing a service that supplies updates to both version 1 and version 2 clients, you can include

both names in the same XML payload. We’ll come back to this in the next section.

Second, in many of the templates at present, the last line of text will not display if you’re also

showing a logo or a short name on the tile (to avoid overlaps). It’s OK to include the extra text in the

update, though—there’s no penalty for doing so.

Third, images are limited to 1024x1024 and 200KB maximum; if an image exceeds these limits, the

entire update is silently ignored. Clearly, it’s better to avoid large images if you can help it because

they’ll just increase memory consumption and possibly network usage (if the image is being

downloaded). It’s also good to take the 80%, 100%, 140%, and 180% scale factors into account for tile

images. However, if you don’t want to deal with individual scaling factors, size your tile images for

180% and let the system scale them down (which uses a high-quality algorithm so that images will look

as good as if you scaled them down with photo-editing software). Also, for photographs, consider

using JPEG instead of PNG as the former has better compression for such images.

Fourth, if you supply an image that doesn’t match the final aspect ratio, the image will be scaled and

cropped to fit according to heuristics that generally produce good results with a variety of tes t images.

Note too that a wide tile is not exactly a 2:1 aspect ratio; at 100% the wide tile is 310x150 pixels,

meaning that an image occupying half of it will be something like 160x150 pixels depending on the

template. Images in a collection view (the upper right portion of the rightmost image above) will also

be special dimensions of their own. The tile template catalog documents all the sizes of these

secondary images, and you can also find them in scenario 11 of the App tiles and badges sample.

Fifth, with some of the templates such as TileWide310x150ImageCollection, TileWide310x150Peek-

ImageCollection01, and TileSquare310x310SmallImagesAndTextList02, which are the ones shown earlier

with multiple images in the tile, there are specific dimensions for the small images that you should find

in the template catalog. This can be helpful if you’re creating a backend to serve up those images and

want to size them appropriately.

http://msdn.microsoft.com/library/windows/apps/hh761491.aspx#using_live_tiles
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148

891

And finally, as a last resort you can always use an image-only template (TileSquare150x150Image,

TileWide310x150Image, and TileSquare310x310Image) with a graphic you generate at run time. Be

mindful that images with text won’t scale well, and don’t mislead users by making it look like the tile

has buttons or other separately clickable areas: the tile always acts as a single unit to invoke the app.

Scenario 6 of the App tiles and badges sample provides a very helpful experimentation and design

tool for tiles, the core of which is shown in Figure 16-14. This part of the sample is intended as a tool

rather than code would use directly in an app. It lets you easily play around with all the templates and

their contents, including images referenced from local and remote sources, without having to write

specific code every time. It also lets you exercise the various options for branding the app and sending

the result as an update to the sample’s tile on the Start screen. Scenario 11 of the sample, similarly, is a

tool that lets you resize images for different parts of any selected template.

FIGURE 16-14 Scenario 6 of the App tiles and badges sample is a tool for testing out all the different tile templates

and understanding how to populate them.

Tile Template Schema: Versioning, Branding, and Other Options

Before we look at the different methods for creating a tile payload, it’s helpful to look at the overall

XML schema for tile updates, which reveals otherwise hidden features:

<?xml version="1.0" encoding="utf-8" ?>

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148

892

<tile>

 <visual version? = "integer" lang? = "string" baseUri? = "anyURI"

 branding? = "string" addImageQuery? = "boolean" >

 <!--One or more binding elements: place large tiles last for compatibility -->

 <binding template = "TileSquare150x150Image" | "TileSquare150x150Block" | ...""

 fallback? = "TileSquareImage" | "TileSquareBlock" | …=""

 contentId = "string" lang? = "string" baseUri? = "anyURI"

 branding? = "string" addImageQuery? = "boolean" >

 <!--Some combination of image and text. Id’s used to de-dupe updates -->

 <image id = "integer" src = "string"

 alt? = "string" addImageQuery? = "boolean" />

 <text id = "integer" lang? = "string" />

 </binding>

 </visual>

</tile>

Note I know that this isn’t an exact schema, because that’s hard to capture in a concise view. For the

precise details, refer to the Tile schema reference pages.

To begin with, the visual.version attribute must be 2 to support Windows 8.1 templates,

including large tile sizes; version 1 supports only medium and wide Windows 8.0 templates. This

matters when you have a service that supports both Windows 8 and Windows 8.1 apps through the

same URI. In this case you want the service to provide a version 2 payload with the Windows 8.1

template name in the binding.template attribute and the Windows 8 template name in the

binding.fallback attribute. This is what makes a single template compatible with both systems.

Next, the lang attribute that you see on all elements is where you can specify the current app

language. This helps Windows determine the right font to use when rendering the tile and determine

which localized images to pull from your resources. It’s also possible to localize text strings in the tile

payload, but we’ll come back to that in Chapter 19. Note that any lang attribute on binding overrides

that on visual, and any lang attribute on a text element overrides that of visual and binding.

The baseUri, alt, and addImageQuery attributes apply to images, which we’ll cover later in “Using

Local and Web Images.”

Next, I noted in a comment that the single visual element can contain one or more binding

elements. This is how you provide updates for medium, wide, and large tile sizes in a single payload,

which allows the user to change tile sizes without losing information. The question here, though, is how

you can maintain compatibility with Windows 8 apps when providing a version 2 payload that includes

a large tile binding. The trick here is simple: always place the large binding last. A Windows 8 system

will then process medium and wide bindings and ignore the large. Otherwise Windows 8 will stop

processing the XML at the large binding and ignore anything that comes after it.

The ability to mix medium, wide, and large updates in single payload raises another issue, however,

which is that some large updates can contain as much information as a two or three medium or wide

updates. If you issue only a single update for your tile, this isn’t a problem. If, however, you use cycling

http://msdn.microsoft.com/library/windows/apps/br212859.aspx

893

to rotate through as many as five updates (discussed later in “Cycling, Scheduled, and Expiring

Updates”), it will sometimes be necessary to send the same large tile content in payloads that contain

different medium and wide tile content. However, Windows will naturally think that each large tile

update is unique and cycle through them as it would the medium and wide updates. As a result, the

user will see a large tile animation that doesn’t change the tile’s content at all!

This is where the binding.contentId attribute comes in for the large tile. Set this to any string you

want so long as it uniquely identifies the particular content for that binding. That is, if you send three

payloads that contain different medium and wide bindings but the same large binding, make sure that

each large binding has an identical contentId. Windows will then know that there’s really only one

large binding for the tile and won’t do any cycling. For a demonstration, refer to scenario 12 of the App

tiles and badges sample.

The final bit in the schema is the branding attribute of the visual and binding elements. This can

be set to none, logo (the default), or name to indicate whether to include the app’s 30x30 logo or short

name on the tile, both of which are provided in the app’s manifest. Scenario 6 of the aforementioned

sample lets you play with these variations.

Tip Large tile templates were designed with the assumption that you’d include branding elements at

the bottom (hence the extra open space). Consider always including branding with large tile updates.

With branding, the Foreground Text and Background Color settings in the app manifest’s Visual

Assets section define how tile text appears for all updates (and toasts for that matter), and they cannot

be altered in the tile payload. This keeps the branding of the app consistent between updates; users

would certainly find it confusing if multiple tiles from the same app showed up in different colors.

As a quick example, the App tiles and badges sample uses Light foreground text and a background

color of #00b2f0. If you go to scenario 5, choose the TileWide310x150Text09 template, add some text,

and select Logo for the branding, the result is shown below. (The small logo here contains a block with

“SDK” in it, which is not a design to emulate. Logos should be iconic and not textual.)

Now that we’ve seen everything we can do with a tile template, let’s see how to create the XML

payloads themselves.

Creating the Payload, Method 1: Populating Template Content

The first way to create the XML payload for a given template is to use the TileUpdateManager.-

getTemplateContent method, to which you pass the name of a template (a value from

TileTemplateType). This is shown in scenario 1 of the sample (js/sendTextTile.js; note that I’ve added

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx

894

the wn, tum, and tt variables for brevity in all the code snippets):

var wn = Windows.UI.Notifications;

var tum = Windows.UI.Notifications.TileUpdateManager;

var tt = Windows.UI.Notifications.TileTemplateType;

function sendTileTextNotificationWithXmlManipulation() {

 var square150x150Xml = tum.getTemplateContent(tt.tileSquare150x150Text04);

This method returns an XmlDocument object that contains the structure of the XML for the template

but not any specific content. If you run the sample and examine tileXml just after the call above, it will

contain only the following—elements but no real data values:

<tile>

 <visual version="2">

 <binding template="TileSquare150x150Text04" fallback="TileSquareText04">

 <text id="1"></text>

 </binding>

 </visual>

</tile>

The next step is to fill in the blanks (primarily attributes) by using the XmlDocument methods you

probably already know (and may or may not love):

 var squareTileTextAttributes = square150x150Xml.getElementsByTagName("text");

 squareTileTextAttributes[0].appendChild(square150x150Xml.createTextNode(

 "Hello World! My very own tile notification"));

In general, if you supports wide and large tiles, include XML for medium, wide, and large formats in

the same payload, because the user can change the tile size any time. The sample does it this way:

 var wide310x150Xml = tum.getTemplateContent(tt.tileWide310x150Text03);

 var tileTextAttributes = wide310x150Xml.getElementsByTagName("text");

 tileTextAttributes[0].appendChild(wide310x150Xml.createTextNode(

 "Hello World! My very own tile notification"));

 var square310x310Xml = tum.getTemplateContent(tt.tileSquare310x310Text09);

 square310x310Xml.getElementsByTagName("text")[0].setAttribute("id", "1");

 square310x310Xml.getElementsByTagName("text")[0].appendChild(

 square310x310Xml.createTextNode("Hello World! My very own tile notification"));

 node = square150x150Xml.importNode(wide310x150Xml.getElementsByTagName("binding")

 .item(0), true);

 square150x150Xml.getElementsByTagName("visual").item(0).appendChild(node);

 var node = square150x150Xml.importNode(square310x310Xml.getElementsByTagName("binding")

 .item(0), true);

 square150x150Xml.getElementsByTagName("visual").item(0).appendChild(node);

Notice how we’re adding the wide and large templates directly into the original XmlDocument for

the medium template by appending additional binding within the visual element, taking care to add

the large binding last for compatibility with version 1 XML. The resulting structure (without the data)

looks like this, where you’ll also notice that there’s no fallback for the large tile because version 1

templates don’t support that size:

895

<tile>

 <visual version="2">

 <binding template="TileSquare150x150Text04" fallback="TileSquareText04">

 <text id="1"></text>

 </binding>

 <binding template="TileWide310x150Text03" fallback="TileWideText03">

 <text id="1"></text>

 </binding>

 <binding template="TileSquare310x310Text09">

 <text id="1"></text>

 </binding>

 </visual>

</tile>

With our XML payload build, we’re now ready to create the TileNotification object and send the

update to the tile:

 var tileNotification = new wn.TileNotification(square150x150Xml);

 // send the notification to the app's tile

 tum.createTileUpdaterForApplication().update(tileNotification);

}

Once this payload is sent, the default tile (below left) will show the updates on the right for the

different tile sizes:

Creating the Payload, Method 2: XML Strings

Instead of calling TileUpdateManager.getTemplateContent to obtain an XmlDocument with the tile

template contents, you can just create that XmlDocument directly from a string. This is just like creating

elements in the DOM by using innerHTML instead of the DOM API—it takes fewer overall function calls

to create the payload you need and lends itself well to predefining a bunch of mostly populated tile

updates ahead of time.

This method is simple: define an XML string with the update contents, create a new XmlDocument,

and use its loadXml method to turn the string into the payload. In scenario 1 of the sample we see how

this is done to create the exact same payload as in the previous section (js/sendTextTile.js):

function sendTileTextNotificationWithStringManipulation() {

 // create a string with the tile template xml

896

 var tileXmlString = "<tile>"

 + "<visual version='2'>"

 + "<binding template='TileSquare150x150Text04' fallback='TileSquareText04'>"

 + "<text id='1'>Hello World! My very own tile notification</text>"

 + "</binding>"

 + "<binding template='TileWide310x150Text03' fallback='TileWideText03'>"

 + "<text id='1'>Hello World! My very own tile notification</text>"

 + "</binding>"

 + "<binding template='TileSquare310x310Text09'>"

 + "<text id='1'>Hello World! My very own tile notification</text>"

 + "</binding>"

 + "</visual>"

 + "</tile>";

 var tileDOM = new Windows.Data.Xml.Dom.XmlDocument();

 tileDOM.loadXml(tileXmlString); // Good idea to put this in a try/catch block

 var tile = new Windows.UI.Notifications.TileNotification(tileDOM);

 Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication()

 .update(tile);

}

Clearly, this method is very simple but has the drawback of requiring you to do manual escaping

when necessary. It is also more difficult to debug. (Looking for tiny errors in strings is not my favorite

pastime!) Fortunately, there is a third available method: the Notifications Extensions Library, which

offers the simplicity of using strings with a high degree of reliability.

Creating the Payload, Method 3: The Notifications Extensions Library

The third means of creating the necessary XmlDocument for a tile update is to use what’s called the

Notifications Extensions Library. (Yes, it’s a double plural.) This is a WinRT component written in C#

that’s included with a number of the SDK samples, including the App tiles and badges sample we’re

looking at here. (Notice that it’s included in the project’s References.) We’ll be looking at the structure

of such components in Chapter 18, “WinRT Components.” It’s possible that this library will become part

of the Windows API in the future, so we do encourage developers to leverage it.

The library makes it easier to populate a template through object properties rather than

XmlDocument methods, and because it’s been very well-tested within Microsoft it’s a more robust

approach than creating an XmlDocument directly from strings. Here’s how it’s used in scenario 1 to

create, once again, the same payload we’ve already seen (js/sendTileText.js; I’ve added the factory

variable for brevity):

function sendTileTextNotification() {

 var factory = NotificationsExtensions.TileContent.TileContentFactory

 var tileContent = factory.createTileSquare310x310Text09();

 tileContent.textHeadingWrap.text = "Hello World! My very own tile notification";

 var wide310x150Content = factory.createTileWide310x150Text03();

 wide310x150Content.textHeadingWrap.text = "Hello World! My very own tile notification";

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148

897

 var square150x150Content = factory.createTileSquare150x150Text04();

 square150x150Content.textBodyWrap.text = "Hello World! My very own tile notification";

 wide310x150Content.square150x150Content = square150x150Content;

 tileContent.wide310x150Content = wide310x150Content;

 Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication()

 .update(tileContent.createNotification());

}

Simply said, the library’s TileContentFactory object provides methods to create objects equivalent

to the XML documents provided by TileUpdateManager.getTemplateContent. As shown in the code

above, those objects have properties equivalent to each field in the template, and when you’re ready to

pass it to TileUpdater.update, you just call its createNotification method.

Note The medium tile object is stored in the square150x150Content property of the wide tile object,

and the wide tile object is stored in the wide310x150Content property of the large tile object. This

hierarchy implies that you should support progressively larger sizes rather than using an arbitrary mix.

The other reason this library exists is to simplify the process of creating an ASP.NET service for

periodic updates and push notifications (where the latter can send tile updates, badge updates, and

toast notifications). Instead of creating the XML payloads manually—a fragile and highly error-prone

practice at best—the service can use the Notifications Extensions Library to easily and consistently

create the XML for all these notifications.

Because the object model in the library clearly describes the XML, it’s fairly easy to use. There is also

a topic in the documentation for it called Quickstart: Using the NotificationsExtensions library in your

code. The samples we look at in this chapter also show most use cases.

Using Local and Web Images

Scenario 1 of the sample, as we’ve seen, shows tile updates using text, but the more interesting ones

include graphics as well (provided that the images stay under the 200KB and 1024 pixel limits). For tile

updates, these can come either from the app package, local app data, or the web, using ms-appx:///,

ms-appdata:///local, and http[s]:// URIs. These URIs are simply assigned to the src attributes of

image elements within the XML tile templates. (These are image, not img as in HTML.) Note again that

the first two URIs typically have three slashes at the beginning to denote “the current app”; http://

URIs also require that the Internet (Client) capability be declared in the app’s manifest.

Note If you plan on using remote images, review “Sidebar: Connectivity and Remote Images in Live

Tiles and Toasts” at the end of “The Four Sources of Updates and Notifications” earlier in this chapter,

because tiles do not support fallback images when a device is offline.

Scenario 2 of the sample (js/sendLocalImage.js) shows the use of ms-appx:/// for images within the

app package, with variants for all three methods we’ve just seen to create the payload. When using

http://msdn.microsoft.com/library/windows/apps/hh969156.aspx
http://msdn.microsoft.com/library/windows/apps/hh969156.aspx

898

XmlDocument methods, setting an image source looks like this:

var tileImageAttributes = wide310x150Xml.getElementsByTagName("image");

tileImageAttributes[0].setAttribute("src", "ms-appx:///images/redWideWide31x150.png");

The Notifications Extensions Library gives us properties to which we can assign a URI:

var tileContent = NotificationsExtensions.TileContent.TileContentFactory

 .createTileWide310x150ImageAndText01();

tileContent.textCaptionWrap.text = "This tile notification uses ms-appx images";

tileContent.image.src = "ms-appx:///images/redWide310x150.png";

And when using XML strings, you can just include the URI directly in the image element. Note also

that you can add alt attributes to each image element that are aggregated into accessibility text for

the tile (as used by screen readers).

Scenario 3 (js/sendWebImageTile.js) shows the same things except you can enter an http:// URI of

your choice. This is a good way to see the effects of pointing to images that have varying aspect ratios

as well as those that exceed the allowable 1024px dimensions and 200KB file size. As you’ll see, the

updates simply aren’t shown in those cases.

As for ms-appdata:///local URIs (roaming and temp are not allowed), their use is demonstrated

in scenario 9 where you choose an image with the file picker and the sample copies it to the local app

data folder. It then references that file with an ms-appdata:///local URI in the update payload

(js/imageprotocols.js):

tileContent = NotificationsExtensions.TileContent.TileContentFactory

 .createTileWide310x150Image();

tileContent.image.src = “ms-appdata:///local/” + imageRelativePath;

Because a number of tile templates let you specify multiple images, it’s convenient to provide a

common base URI for the entire update (or for each binding element) so that you can just use relative

paths in each image.src. This is the purpose of the visual.baseUri and binding.baseUri attributes.

For example, if you were always referencing images from ms-appdata:///local/, you could store that

string just once in visual.baseUri. The default is ms-appx:///.

Scenario 9 in the sample lets you play with in-package and remote URIs as well, as does the tile

update designer in scenario 6. I also updated the Here My Am! app for this chapter (in the companion

content) with a medium and wide peek tile updates containing the most recent image and the location,

along with a large tile that combines image and text; see “Sidebar: PNG vs. JPEG Image Sizes” below.

Speaking of tools and images, check out scenario 11 again where you can crop and adjust images

according to varying pixel densities so that they’ll work well with a selected tile template. You can save

the images you adjust for inclusion in your app package. The code for the scenario can also be used to

adjust images at run time. Like I said, very helpful!

A final capability with images is an option to have Windows automatically append a query string to

http[s]:// URIs that describes the current scaling factor, contrast setting (for accessibility), and

language. This enables your backend service to adjust images accordingly, avoiding the need to handle

899

such concerns in the app itself. As described in the Tile schema reference, specifically for the image

element, you indicate this option by setting the addImageQuery attribute of image to true (also

supported on the visual and binding elements):

// XmlDocument form

var tileImageAttributes = tileXml.getElementsByTagName("image");

tileImageAttributes[0].setAttribute("addImageQuery", "true");

// XML string form (other lines omitted)

var tileXmlString = /* ... */ "<image id='1' addImageQuery="true"

 src='ms-appx:///images/redWide310x150.png'/>" /* ... */

// If using Notifications Extensions Library (see scenario 9 in the sample)

var tileContent = NotificationsExtensions.TileContent.TileContentFactory

 .createTileWideImageAndText01();

tileContent.image.src = "ms-appx:///images/redWide310x150.png";

tileContent.image.addImageQuery = true;

In all of these cases, the appended string will be of the form

?ms-scale=<scale>&ms-contrast=<contrast>&ms-lang=<language>

where <scale> is 80, 100, 140, or 180, <contrast> is standard, black, or white, and <language> is a

BCP-47 language tag such as en-US, jp-JP, de-DE, and so forth. All of these are described on the

Globalization and accessibility for tile and toast notifications in the documentation, including how to

localize update text.

Sidebar: PNG vs. JPEG Image Sizes

When considering tile images for the larger 140% and 180% scales, the encoding you use for

your images can make a big difference and keep them below the 200K size limit. As we saw in

“Branding Your App 101” in Chapter 3, a wide tile at 180% is 558x270 pixe ls, a medium is

270x270 pixels, and a large is 558x558 pixels. With the wide and large tile sizes, a typical

photographic PNG at this size will easily exceed 200K. I encountered this when first adding tile

support to Here My Am! for this chapter, where it makes a smaller version of the current photo in

the local appdata folder and uses ms-appdata:///local URIs in the tile XML payload. Originally

the app was capturing PNG files that were too large, so I borrowed code from scenario 11 of the

App tiles and badges sample, as we’ve been working with here, to create a smaller PNG from the

img element using a temporary canvas and the blob APIs. This worked fine for a 270x270

medium tile image (a 180% scale that can be downsized), but for 558x270 and 558x558 the fil e

was too large. So I borrowed code from scenario 3 of the Simple Imaging sample to directly

transcode the StorageFile for the current image into a JPEG, where the compression is much

better and we don’t need to use the canvas. For this second edition’s example I just capture

JPEGs to begin with, which are already small enough, but I’ve preserved the code anyway for

reference. You can find it in the transcodeImageFile function in pages/home/home.js, a

routine that we’ll also rewrite in Chapter 18 using C# in a WinRT component.

http://msdn.microsoft.com/library/windows/apps/br212859.aspx
http://msdn.microsoft.com/library/windows/apps/br230844.aspx
http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

900

Such considerations are certainly important for services that handle the addImageQuery

parameters for scale. For larger image sizes, it’s probably wise to stick with the JPEG format to

avoid going over the 200K limit.

Cycling, Scheduled, and Expiring Updates
Although you might read the heading above and think we’ll now be covering a grab bag of

randomness, all it really means is that we’re looking at additional methods of the TileUpdater object

and revisiting the two properties of the TileNotification object that we already mentioned. Simply

said, now that we’ve seen how to do all the basic tile updates, we’re ready to start exploring the

additional capabilities. Again, everything here applies to all tiles in the app, including secondary tiles.

First is the ability to programmatically clear all updates and reset the tile to its default state as

defined in the manifest. This happens with a simple call to TileUpdater.clear (shown in scenario 1 of

the App tiles and badges sample, js/sendTileText.js):

Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication().clear();

The next capability, as already mentioned, is to set the TileNotification.expirationTime

property before sending that notification to TileUpdater.update. This ensures that a locally issued

notification will be automatically removed, and it lets you override the default three-day expiration

period for cloud-issued updates. The update will appear immediately (at the next tile refresh, that is)

and will then be removed from the tile after it expires. This is demonstrated in scenario 8 of the

sample—sending an update with an expiration date will display an update as on the left below. When it

expires, it’s removed, which in this case causes the tile to revert to its default state, shown on the right:

To delay the appearance of an update until a specified time, with or without an expiration, you do

something a little different at the beginning: instead of creating a TileNotification object to send to

the updater, create a ScheduledTileNotification and send it to TileUpdater.addToSchedule.

A ScheduledTileNotification is exactly the same as a TileNotification (including the

expiration time) except that it contains an extra property called deliveryTime that indicates when—in

UTC time, not local time!—the tile should first appear. For an example of this we have to take a brief

detour to scenario 1 of the Scheduled notifications sample. But all that’s really different is that we take

whatever XmlDocument we’ve created with the payload—through any of the methods covered earlier—

and create the notification with the delivery time. Here’s a condensation of the code in the sample’s

js/scenario1.js file:

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtilenotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.addtoschedule.aspx
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093

901

// Namespace variable

var Notifications = Windows.UI.Notifications;

// The delay in delivery time from the sample's control

var dueTimeInSeconds = parseInt(document.getElementById("futureTimeBox").value);

// The actual delivery date and time

var currentTime = new Date();

var dueTime = new Date(currentTime.getTime() + dueTimeInSeconds * 1000);

// In here we create the XmlDocument in the variable tileDOM

// Now create the update with the delivery date

var futureTile = new Notifications.ScheduledTileNotification(tileDOM, dueTime);

Notifications.TileUpdateManager.createTileUpdaterForApplication().addToSchedule(futureTile);

Other than these small changes, everything else about the tile update is the same as before.

It’s certainly possible, as you can guess, to queue up many scheduled updates. At any time you can

call TileUpdater.getScheduledTileNotifications to obtain a vector of active ScheduledTile-

Notification objects. You can also remove any of those updates with TileUpdater.removeFrom-

Schedule.

What happens if you schedule a series of updates that will end up being active at the same time? In

the Scheduled notifications sample, for instance, issue a series of tile updates for 10 seconds from now,

and then quickly switch to the Start screen to see the results. Those updates will appear in sequence,

and one of them might actually be dropped if another update is scheduled right on its heels. And once

you reach the last update, it just stays there until it expires, the ti le is cleared, or some new update

comes along.

In such cases it would be better to have the tile cycle through a series of tiles, thereby keeping the

tile active with more than just the last update.

Live tiles support cycling through up to five updates, where the duration of each is controlled by the

system so that the whole Start screen has a consistent look and feel. To enable this, you must first call

TileUpdater.enableNotificationQueue(true) or one of its enableNotifcationQueueFor<size>

siblings (such as enableNotifcationQueueForSquare150x150), and you can call these with false to

disable cycling for all tiles or a specific size. The queue itself is first in, first out (you cannot control the

order otherwise), so the oldest notification is removed if a new one is added when the queue is already

at maximum. In other words, if you enable the queue and issue updates as we’ve been doing, the five

most recent updates will cycle.

Tip If you’re sending duplicate large tile updates in payloads with distinct medium and wide updates,

remember to set the contentId property of the large size binding element to prevent duplicates in the

queue. Refer back to “Tile Template Schema” earlier in this chapter.

You might want to selectively replace existing updates already in the queue rather than rely on the

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.getscheduledtilenotifications.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.removefromschedule.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.removefromschedule.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueue.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueueforsquare150x150.aspx

902

first-in first-out behavior (or calling TileUpdater.clear and reissuing the update you want to retain).

This is the purpose of the tag property in TileNotification and ScheduledTileNotification. The

tag is again just a maximum 16-character string that identifies a particular update. If the queue is

enabled, a new update with any given tag will replace any update already in the queue with the same

tag. If that tag doesn’t exist, the update will replace the oldest in the queue. So, for example, a news

app might have five tags for different categories of headlines such as world, local, politics, business, and

health; a stock app would obviously use tags for different ticker symbols. Similarly, a weather app might

tag updates with a zip code or other location identifier.

You can play with all this in scenario 6 of the App tile and badges sample. In the process you might

note that when activating an app from a cycling live tile, it does not receive an indication as to which

update is currently shown. For this reason, it’s currently recommended that activating a cycling live tile

opens the app on a hub page that displays relevant content for all the updates together.

Badge Updates

The last bit you can use to update a live tile is a badge. I’ve kept this topic separate because it works

through a separate API and is not part of the tile update XML payloads we’ve been using.

To review, badges are simply small glyphs—a one- or two-digit number, or one of a small number

of symbols—that appear on a tile regardless of any other update activity. They are meant to indicate

the status of the app rather than provide a piece of content, and they’re animated independently

(using WinJS.UI.Animations.updateBadge, as briefly noted in Chapter 14).

How you send badges to your tile is structurally similar to a tile update. Start by creating an

XmlDocument payload for the badge update by using a template from the Badge overview or using the

Notifications Extensions Library, which contains full support for badges. In the case of badges, it’s

overkill to speak of an XML “document” because it contains only one element, badge, with one

attribute, value, for which you can indicate a number from 1–99 (anything over that will display 99+)

or one of 12 specific glyphs, as shown below. Note that although the glyphs are shown here against a

blue background, the actual color will be the Background Color in your manifest:

Value Glyph XML

(none) n/a <badge value="none"/>

(number 1-99)

<badge value="1"/>

(number over 99)

<badge value="123456"/>

activity

<badge value="activity"/>

alarm

<badge value="alarm"/>

alert

<badge value="alert"/>

available

<badge value="available"/>

http://msdn.microsoft.com/library/windows/apps/hh761458.aspx

903

away

<badge value="away"/>

busy

<badge value="busy"/>

newMessage

<badge value="newMessage"/>

paused

<badge value="paused"/>

playing

<badge value="playing"/>

unavailable

<badge value="unavailable"/>

error

<badge value="error"/>

attention

<badge value="attention"/>

If you like, you can use the BadgeUpdateManager.getTemplateContent function to obtain an

XmlDocument with such contents; there’s a bit of sample code on this method’s reference page that

shows how. But because the XML is so simple, it’s just as easy to create the object from a string by

using new Windows.Data.Xml.Dom.XmlDocument followed by a call to its loadXml method, as we’ve

seen with tiles. The Notifications Extensions Library also has methods for this and doing updates. Both

of these approaches are demonstrated in scenario 4 of the App tiles and badges sample.

However you create it, the next step is to instantiate a BadgeNotification with that XmlDocument:

var badge = new Windows.UI.Notifications.BadgeNotification(badgeDOM);

This notification object also supports an expirationTime property just like tiles do. That aside, the

last step is to call BadgeUpdateManager.createBadgeUpdaterForApplication to obtain a

BadgeUpdater for your app tile or—you can predict this one—BadgeUpdateManager.createBadge-

UpdaterForSecondaryTile to obtain a BadgeUpdater for a secondary tile with a given tileId. After

you obtain your BadgeNotification (and again, the Notifications Extensions Library can help here),

you then call BadgeUpdate.update:

Windows.UI.Notifications.BadgeUpdateManager.createBadgeUpdaterForApplication().update(badge);

or:

Windows.UI.Notifications.BadgeUpdateManager.createBadgeUpdaterForSecondaryTile(

 "SecondaryTile.LiveTile").update(badge);

And as with tiles, BadgeUpdater.clear removes the badge entirely, which is equivalent to sending

an update with the value of none.

Beyond that, the BadgeUpdater class has just two additional methods, startPeriodicUpdate and

stopPeriodicUpdate, which are also found on the TileUpdater class. And wouldn’t you know it?

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.gettemplatecontent.aspx
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgenotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforapplication.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforsecondarytile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforsecondarytile.aspx

904

Periodic updates just so happen to be our next topic—yes, I planned it this way too!

Sidebar: How Much Network Traffic for Tiles?

Included with the many improvements to Task Manager is the ability to track your app’s network

traffic for tile updates. Run Task Manager, make sure you click More Details in the lower left, and

then click the App History tab. Network traffic for tile updates is shown on the rightmost column.

This number will typically be small, but it’s a metric you can monitor to see whether updates

become excessive.

Periodic Updates

As described earlier in this chapter, periodic updates configure the system to automatically request tile

and/or badge updates from a service on behalf of an app. Provided that the app has declared the

Internet (Client) capability, this enables the app to continually keep its live tiles fresh without needing to

run at all. Periodic updates for tiles (but not badges) can also be configured in your app manifest so

that tile updates begin upon install, without the need to run the app.

Periodic updates are great proof that Microsoft listens to developer feedback. When the first

Developer Preview of Windows 8 was released in September 2011, many developers were interested in

implementing live tiles but it could only be done with push notifications and the Windows Push

Notification Service, even if the tiles needed only low-frequency updates. In other words, push

notifications were total overkill for apps that needed to get only a bit of data from a service every once

in a while to create their updates. So developers asked, “Is it possible to have my app just run in the

background, periodically request data from my service, and then issue tile or badge updates?”

905

It was a completely legitimate request, but, as described earlier, background tasks are carefully

controlled and allowed only for very specific scenarios. Hearing this feedback, the tiles and notifications

team at Microsoft studied the problem and found that creating a new class of background task would

also be overkill for low-frequency tile updates. Furthermore, they found that even if apps could use a

background task for this purpose, they’d all pretty much do the same thing: poll data from a service

and populate a tile or badge template. So, instead of adding a background task, they added an API for

system-managed periodic updates for Windows 8 and then added the ability to configure periodic

updates from the manifest in Windows 8.1.

This API for setting up periodic updates from the app consists of the following methods of the

TileUpdater and BadgeUpdater classes:

 TileUpdater.startPeriodicUpdate and BadgeUpdater.startPeriodicUpdate Configure

Windows to request an update from a given URI with a specified period (see below). These calls

remove any previous URIs registered for the tile. An app can specify an optional date and time

around which regular polling should begin, and in all cases the first request will happen

immediately (very helpful for debugging!). A good time to call these is when the app is

launched, when it’s resumed, and when a configuration changes that might alter the URI.

 TileUpdater.stopPeriodicUpdate and BadgeUpdater.stopPeriodicUpdate Cancels the

current periodic update process but does not clear the tile of existing updates. To do that, call

the updater’s clear method.

 TileUpdater.startPeriodicUpdateBatch For tile updates only, is identical to

startPeriodicUpdate but accepts an array of up to five URIs, automatically creating an update

queue with the results (replacing any previous URIs). Note that TileUpdater.enable-

NotificationQueue must be set to true prior to using this method, as described earlier in

“Cycling, Scheduled, and Expiring Updates.”

In all these cases, each URI is represented by a Windows.Foundation.Uri object and the polling

period is set with a value from the PeriodicUpdateRecurrence enumeration. Values are halfHour,

hour, sixHours, twelveHours, and daily giving a clear indication that periodic updates are meant for

content that changes relatively infrequently, like the weather, daily offers from local retailers, or the

phases of the moon. For anything that requires more timely delivery, like appointment reminders,

traffic conditions, current sports scores, or online auction status, you’ll need to use push notifications.

In addition, all these updates can employ tags and expiration times like local updates. One detail is

that for any given polling request, a service can respond with only a single update payload—hence the

need for startPeriodicUpdateBatch. That said, if the notification queue is enabled and the updates

from the same service URI contain different tags, the live tile will behave the same as if those updates

were issued locally: the most recent update for each tag (up to five) will be cycled through the queue.

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.uri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.periodicupdaterecurrence.aspx

906

Hint The periodic update API does not directly provide a means to authenticate with the service. This

typically isn’t necessary because periodic updates are not designed to be user-specific. However, you

can certainly include encrypted credentials in the URI with a query string. You might also be able to

use the Enterprise Authentication capability if the app is running on a domain-joined system.

The app side of the periodic update scene is demonstrated in the Push and periodic notifications

client-side sample (which I’ll often refer to as just the Push notification sample). Specifically, see

scenarios 4 and 5, which are somewhat general tools to employ the TileUpdater and BadgeUpdater

methods with a given service URI as I’ve just described. A few lines of that code (condensed from

js/scenario4.js) appear as follows:

var notifications = Windows.UI.Notifications;

var updater = notifications.TileUpdateManager.createTileUpdaterForApplication();

updater.enableNotificationQueue(true);

updater.startPeriodicUpdate(urisToPoll[0], recurrence);

updater.startPeriodicUpdateBatch(urisToPoll, recurrence);

To configure a periodic update through the app manifest, you specify the recurrence and the URI in

the Application > Tile Update section:

When the app is installed, Windows will take these two settings and call startPeriodicUpdate on

your behalf, with the result that tile updates will begin before the app is even run the first time.

Updating the tile from any other app code (including background tasks) will then override the settings

in the manifest unless the app is uninstalled and reinstalled. This means that if you clear all updates

from the tile and don’t reestablish other updates, the tile will revert to your static logo images.

Tip The {language} and {region} tokens that you can place in the URI (as indicated in the manifest

editor) are used to localize tile updates from the server. We’ll cover these in Chapter 19.

As you can see, setting up periodic updates from the app is simple: the real work lies in the service

itself, whose responsibility it is to return the appropriate XML with which Windows can create a local

update. Indeed, being able to even run the client-side sample requires a service to which you can make

requests, and unfortunately the Windows SDK does not provide one. So let’s remedy that situation with

a service of our own.

Because you’ll likely use the client-side sample to play around with your own update service,

though, you should make two changes, specifically to clear existing updates in the functions that stop

http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603

907

polling. In js/scenario4.js, change the stopTilePolling function to read as follows:

function stopTilePolling() {

 var updater = notifications.TileUpdateManager.createTileUpdaterForApplication();

 updater.clear();

 updater.stopPeriodicUpdate();

 WinJS.log && WinJS.log("Stopped polling.", "sample", "status");

}

Similarly, change stopBadgePolling in js/scenario5.js to read as follows:

function stopBadgePolling() {

 var updater = notifications.BadgeUpdateManager.createBadgeUpdaterForApplication();

 updater.clear();

 updater.stopPeriodicUpdate();

 WinJS.log && WinJS.log("Stopped polling.", "sample", "status");

}

Without these changes, old updates will persist on the tile even after you stop the updates. If you

then change your service but it has an error in the XML, you won’t see any change on the tile and

might think that the update worked when it really didn’t. Trust me: making these small changes will

simplify your life!

Creating an Update Service
Creating a service for periodic updates means creating a web page at some given URI whose sole

purpose is to respond to an HTTP request with XML content for a TileNotification or Badge-

Notification object. Ideally, such a page also handles the scaling, accessibility, and localization

parameters provided in the query string described earlier in “Using Local and Web Images.”

The page can be implemented using whatever language, tools, and host you want. In fact, unless

you enjoy programming in Notepad, you’ll want to utilize a good web development tool! One option

covered later is to create an API through Windows Azure Mobile Services, but le t’s talk first about the

Visual Studio tools. Visual Studio Express for Windows is not itself equipped for the task of creating

websites or services: you’ll need either the full version of Visual Studio or the free Visual Studio Express

for Web; more on this in a moment. And if you use ASP.NET for your service, you can employ the

Notifications Extensions Library for creating the tile XML.

As a minimal example, here is a functional one-line PHP page that generates XML for a badge

update with the current day of the month:

<?php echo "<badge value='".date("j")."'/>"; ?>

For proper XML we should also include a header element (the tile works with or without it):

<?php echo '<?xml version="1.0" encoding="utf-8"?>';

 echo "<badge value='".date("j")."'/>"; ?>

Drop this code into a .php file (see HelloTiles/dayofmonthservice.php in the companion content) on

whatever web server you might have access to and—voila!—there’s a basic service that delivers badge

http://msdn.microsoft.com/library/windows/apps/hh969156.aspx

908

updates. In fact, I’ve deployed this to a test service I created for this book on Windows Azure:

http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/dayofmonthservice.php. I’ll walk through

this process in “Windows Azure and Azure Mobile Services.” Note that I created this for the first edition

of the book when the present chapter was Chapter 13 instead; I’ve kept that original URI to

demonstrate that the service side of things can be independent of the client, as we’ll also see with tile

updates.

Anyway, you can use all this in scenario 5 of the Push and periodic notifications client-side sample—

enter your service URI in the box, press the button to start polling, and then check the sample’s tile on

the Start screen. In a few seconds you should see the day of the month appear as a badge. (Of course,

with this ultrasimplistic example the date will reflect the local time on the server rather than the device,

which could be completely mismatched. A real service would be sensitive to time zone and other

locale-specific considerations.)

Tip If your service generates an error when handling the update request, you might see exceptions in

your app code that otherwise don’t make any sense. With such mystery exceptions, carefully debug

your service locally as described in “Debugging a Service Using the Localhost” later on.

Tip The tile and badge updaters are very sensitive to properly formed XML. In the PHP code above,

leaving off the closing / for the badge element will cause the update to fail (that is, not appear).

Avoiding such trivial errors is again why the Notifications Extensions Library was created, at least for

ASP.NET. I’m hoping that some enterprising reader might consider a similar project for PHP and other

server-side languages!

Another good option besides PHP is ASP.NET Razor syntax (typically in a .cshtml file), introduced

with Microsoft WebMatrix. Razor/WebMatrix, along with tools such as Visual Studio Express for Web

and a whole lot else, can be installed through the Web platform installer. To familiarize yourself with

Razor, which works much in the same way as PHP, start with Walkthrough: Creating a Web Site using

Razor Syntax in Visual Studio.

To make that long story short, here are the steps in Visual Studio Express for Web to create a simple

tile update service with Razor:

 Select File > New Web Site from the menu.

 In the New Web Site dialog, select ASP.NET Web Site, give it a project name and folder, and

press OK. Call this site HelloTiles.

 Once the project is created, you should see the Default.cshtml file opened.

http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/dayofmonthservice.php
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://go.microsoft.com/fwlink/?LinkId=196115
http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/library/gg606533.aspx
http://msdn.microsoft.com/library/gg606533.aspx

909

 Copy and paste the following Razor code (that begins with @{) into that file, replacing the

default contents. The little piece of C# code at the top for the weekDay variable is something

we’ll use later to demonstrate debugging; it’s not used in generating the XML. Here, note that I

tested and generated the XML contents by using the tile designer in scenario 6 of the App tiles

and badges sample (refer back to Figure 16-14); this saved me lots of time wondering whether

my XML was correct.

@{

 //

 // This is where any other code would be placed to acquire the dynamic content

 // needed for the tile update. In this case we'll just return static XML to show

 // the structure of the service itself.

 //

 var weekDay = DateTime.Now.DayOfWeek;

}

<?xml version="1.0" encoding="utf-8" ?>

<tile>

@* version="2" enables Windows 8.1 templates but retains compatibility *@

 <visual version ="2" lang="en-US">

@* The fallback attribute specifies the Windows 8 template name *@

 <binding template="TileSquare150x150PeekImageAndText02" branding="none"

 fallback="TileSquarePeekImageAndText02" contentId="1">

 <image id="1" src="http://www.kraigbrockschmidt.com/images/Liam07.png"/>

 <text id="1">Liam--</text>

 <text id="2">Giddy on the day he learned to sit up!</text>

 </binding>

 <binding template="TileWide310x150SmallImageAndText04" branding="none"

 fallback="TileWideSmallImageAndText04" contentId="1">

 <image id="1" src="http://www.kraigbrockschmidt.com/images/Liam08.png"/>

 <text id="1">This is Liam</text>

 <text id="2">Exploring the great outdoors!</text>

 </binding>

@* Always put the large tile at the end for compatibility with Windows 8 systems *@

 <binding template="TileSquare310x310SmallImagesAndTextList03" branding="none"

 contentId="1">

 <image id="1" src="http://www.kraigbrockschmidt.com/images/Liam07.png"/>

 <text id="1">Liam--</text>

 <text id="2">Giddy on the day he learned to sit up!</text>

 <image id="2" src="http://www.kraigbrockschmidt.com/images/Liam08.png"/>

 <text id="3">This is Liam</text>

 <text id="4">Exploring the great outdoors!</text>

 <image id="3" src="http://www.kraigbrockschmidt.com/images/Liam13a.jpg"/>

 <text id="5">Still Liam</text>

 <text id="6">He's older now, almost 7</text>

 </binding>

 </visual>

</tile>

 Run the website in Internet Explorer using the Debug > Start Debugging command or the

Internet Explorer toolbar button (where you’d find the Local Machine or Simulator options in

Visual Studio Express for Windows). This will launch Internet Explorer with a URI like

http://localhost:52568/HelloTiles/Default.cshtml where the port number is what routes the URI

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148

910

to the site running in the debugger. If you need to set up your localhost server, see “Debugging

a Service Using the Localhost.”

 Run the Push notifications sample, switch to scenario 4, paste the URI into the URL 1 field, and

press the Start periodic updates.

 If all is well, you should see the wide tile update as follows. (OK, so it’s another shameless

picture of my kid…what can I say? You have to give us fathers a break!) If you don’t see the

update right away, try right-clicking and changing the tile size.

 If you make the tile smaller (to the medium size), you’ll see another gratuitous picture of my kid

and peek text (below left), and the large tile size gives you yet more (below right):

The complete website code for all this can be found in the HelloTiles example in this chapter’s

companion content (and the page itself is deployed to my Windows Azure host at

http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/Default.cshtml). As simple as it is, it

provides the basic framework in which you can add code to generate more dynamic results. In the top

part of the file, within the @{ }, you can write whatever C# code you need.

http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/Default.cshtml

911

Let me point out that although the tile update from Default.cshtml is a version 2 XML payload, I’m

hosting it at the same URI on Azure that I used for the first (Windows 8) edition of this book that

supported only version 1 payloads. Everything in the Windows 8 samples will still work because I’ve

made sure to place the large tile update last, thereby keeping the rest of the payload v1 compatible.

Furthermore, there is a second page named Default2.cshtml in HelloTiles (and on my Azure host)

that has different medium and wide tile payloads but the same large tile payload. In this XML you can

see that I’ve used the same contentId for the large tile so that it appears only once while the medium

and wide tiles cycle through two. You can again use scenario 4 of the Push notifications sample to put

in either localhost (or Azure) URIs to see the effect.

Finally, the HelloTiles example includes another page called DefaultNE.aspx that shows how to use

the Notifications Extensions Library on a web server. This requires that the library be compiled for use

on an ASP.NET host rather than as a WinRT component, which I explain in my blog post Alive with

Activity, part 2: Writing and debugging services for live tiles , under “Writing Services.” The companion

content has a modified version of the library in the Notifications Extensions for Web folder.

Debugging a Service Using the Localhost

Debugging a tile and badge update service with periodic notifications can be a difficult proposition.

You can just enter your service’s URI in a browser and use its View Source command to examine the

XML, but how do you step through your server-side code to isolate problems?

The solution is to run your service on your local machine, as we just did in the previous section,

where the URI references your localhost server, however you want to set it up. You can install a server

like Apache or you can use the Internet Information Services (IIS) that’s built into Windows and

integrated with the Visual Studio tools. To turn on IIS, go to Control Panel > Programs and Features >

Turn Windows Features On Or Off as we saw also in Chapter 4. At the top level, check the Internet

Information Services box at the top level, and when you click OK the core features will be installed:

Once installation is complete, the http://localhost/ URI is mapped to c:\inetpub\wwwroot. That’s

where you drop something like the PHP page described in the last section so that you can use a URI

like http://localhost/dayofmonthservice.php in the Push notifications sample (scenario 5, in this case, for

badge updates). In doing so, you can now use your favorite server-side tools for debugging.

http://blogs.msdn.com/b/windowsappdev/archive/2013/03/04/alive-with-activity-part-2-writing-and-debugging-services-for-live-tiles.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2013/03/04/alive-with-activity-part-2-writing-and-debugging-services-for-live-tiles.aspx

912

To use PHP with IIS, you might need to install it through Microsoft’s Web platform installer or the

server-side code won’t execute properly. After PHP installation, try entering the URI for the PHP page in

your browser. If you get an error message that says “Handler PHP53_via_FastCGI has a bad module”

(yeah, that’s really helpful!), return to the Turn Windows Features On Or Off dialog, navigate to Internet

Information Services > World Wide Web Services > Application Development Features, check the box

for CGI, and press OK. Once the CGI engine is installed, your PHP page should work.

If you plan to work in ASP.NET or Razor, I highly recommend you also install Visual Studio Express

for Web through the Web platform installer. When you run a website in its debugger, it assigns a port

on localhost such as http://localhost:53528 and launches Internet Explorer with that URI. The port links

the browser to the debugger, so if you set a breakpoint in the page code, the debugger will stop at

that point whenever there’s a page request, allowing you to step through the code with the same

features we’ve been enjoying with writing Windows Store apps.

For example, load up the HelloTiles example site with this chapter in Visual Studio Express for Web,

set a breakpoint on the var weekDay line at the top (which is there only to give you something on

which to set a breakpoint), and start debugging. Once Internet Explorer has loaded default.cshtml, copy

and paste its URI into scenario 4 of the Push notifications sample. Press the Stop Periodic Updates

button followed by the Start Periodic Update button to force a new request to the URI and—magic!—

you should hit the breakpoint in the service:

Windows Azure and Azure Mobile Services

Generally speaking, a real service that provides tile and badge updates would typically be connected on

the server side to some other useful source of information, perhaps to an always-running process that

can monitor other sites, extract the desired data, and generate updates. Those updates can be returned

from page requests, as we’ve seen here, or fed directly to the Windows Push Notification Service (WNS)

so that they can be pushed directly to specific clients (as we’ll see later).

This is where the various capabilities of Windows Azure come in very handy, especially those of

Windows Azure Mobile Services. But let’s take a step back for a moment and consider the bigger

picture of Windows Azure.

http://www.microsoft.com/web/downloads/platform.aspx

913

When you’re ready to upload an app to the Windows Store and have real customers using your

service, you’ll need to consider where, exactly, you’ll host that service so that it can scale to what

hopefully becomes a very large customer base! During your development and testing process, of

course, you can host the service anywhere you want because only a few instances of your app will ever

call upon it. But if your app is acquired by many customers and each instance of that app starts

banging on the host server for tile and badge updates, that host might soon become overloaded!

Windows Azure is thus a system that allows you to add more server power when it’s necessary and

scale back when it’s not (and you pay only for what is actually used). To get started, visit

http://www.windowsazure.com where you can set up a free 90-day trial for a hosted site and continue

working within a free pricing tier indefinitely. The Windows Azure site also provides direct support and

SDKs for .NET, node.js, PHP, Java, and Python, along with Visual Studio Express with Web for Windows

Azure SDK—all available again through the Web platform installer. More importantly, many of the

features you will likely need for apps are again provided through Windows Azure Mobile Services.

As a brief walkthrough to get you going, I started my Windows Azure trial, installed the Windows

Azure SDK for .NET, and deployed the HelloTiles example service with these steps:

 Go to the Windows Azure Management Portal, and sign in with your account.

 Create a new website with some URI. I used ProgrammingWin8-JS-CH13-HelloTiles (originally

for the first edition of this book), making the full site URI http://programmingwin8-js-ch13-

hellotiles.azurewebsites.net/. This shows up in my portal under Web Sites:

 To upload the site, you must set up FTP credentials. Click the site in the list, which takes you to

its specific dashboard. Under Publish Your App, click Set Up Deployment Credentials and enter

a username and password.

 Click Dashboard along the top of the window, and scroll down the right side to find the FTP

hostname:

http://www.windowsazure.com/
http://www.microsoft.com/web/downloads/platform.aspx
http://manage.windowsazure.com/
http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/
http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/

914

 In Visual Studio Express for Web, right-click the project and select Copy Web Site. In the dialog

that appears, click Connect along the top to open the Open Web Site dialog (below). Select FTP

site on the left, enter the FTP hostname on the top, enter site/wwwroot in Directory, and then

enter your credentials at the bottom. Make sure to prefix your username with the site name and

a backslash (for example, ProgrammingWin8-JS-CH13-HelloTiles\JohnQUser) or you’ll be

confused by Azure’s refusal to let you through the door! Finish by clicking Open.

 Once Visual Studio Express for Web is connected to the Azure site, you can upload your files

through the Copy Web Site pane.

 When that’s complete, you should be able to use the site URI plus a page name as the

URI for the badge and tile update services. Again try http://programmingwin8-js-ch13-

hellotiles.azurewebsites.net/dayofmonthservice.php with the Push and periodic notifications

client-side sample, scenario 5, and both http://ProgrammingWin8-JS-ch13-

HelloTiles.azurewebsites.net/Default.cshtml and Default2.cshtml with scenario 4, and you’ll see

the same results as when using the localhost. You can also just visit these URIs in a browser to

see the XML they’re producing.

With this, you now have the ability to scale up your Windows Azure hosting, with your app

supplying the hosted URI to the periodic update API. This also puts you in a good position to use push

notifications, as we’ll see later, which specifically employs Windows Azure Mobile Services (which I refer

to as AMS rather than its slang name “Zumo”).

Put simply, a mobile service on Azure is a collection of REST endpoints that provide powerful

capabilities that apps need:

 Service endpoints (APIs), such as those to provide periodic tile and badge updates.

http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603

915

 Scheduled background jobs that can make requests to other services and store the results in

your database. An example of this, to obtain tweets from Twitter, can be found on the Schedule

recurring jobs in Mobile Services topic.

 Cloud storage in a SQL Server database, which is accessible like any other web-hosted SQL

Server database and as tables through the client-side JavaScript library. The database can serve

as a central data-gathering point from any number of web sites, services, scheduled jobs, and so

forth, as shown in Figure 16-15 (coming up).

 Support for scalable push notifications (tiles, badges, toasts, and raw notifications alike).

 Authentication through different identity providers.

You can learn much more about mobiles services and the Mobile Services SDK on the How to use an

HTML/JavaScript client For Windows Azure Mobile Services.

The utility of a central database becomes apparent when you think about creating a periodic

notification service that draws data from other services. Although your service’s code could send off

other HTTP requests to get data, those requests are asynchronous and are prone to a variety of failure

conditions. This makes it difficult to just respond with an XML payload for a tile or badge update.

To simplify matters, we can take advantage of the fact that Windows will make requests to your

service only at 30-minute or longer intervals, as enforced by the client API. This means you have lots of

time during which other server-side processes—scheduled jobs, for example—can make external

requests to monitor weather alerts, leaderboards, RSS feeds, and just about anything else for which

there’s a web API. Those processes store results in your database, which are then ready for your

periodic notification service to query (synchronously) when it receives its next request.

Indeed, any number of agents can update the same database. For example, users might be entering

data through your website. They might be using mobile phone apps to track their activities, with results

being automatically uploaded to a database. The database might also be getting updated by friends

who are using the same app on their devices.

Such an arrangement is again illustrated in Figure 16-15, showing how the database serves as the

central store for your backend state, with the periodic notification service acting only as a simple

consumer of that state.

http://www.windowsazure.com/en-us/develop/mobile/tutorials/schedule-backend-tasks/
http://www.windowsazure.com/en-us/develop/mobile/tutorials/schedule-backend-tasks/
http://www.windowsazure.com/en-us/develop/mobile/developer-tools/
https://www.windowsazure.com/en-us/documentation/articles/mobile-services-html-how-to-use-client-library/
https://www.windowsazure.com/en-us/documentation/articles/mobile-services-html-how-to-use-client-library/

916

FIGURE 16-15 Using a central database to gather information that can be easily and synchronously consumed from

a periodic notification service.

In any case, let’s return for the moment to the question of creating a periodic update endpoint,

which takes only a bit of node.js code within AMS. To create the mobile service, click Mobile Services

on the left side of the Azure portal, click + New on the bottom, and enter your details. As you can see, I

have two mobile services in my Azure account:

Clicking the mobile service’s name takes you to the dashboard where all the capabilities are arrayed

along the top:

917

The most interesting parts here are the Data section, where you can create cloud storage tables that

your app and services can easily access through the client library; API, where you can create endpoints

to serve up badge and tile updates; Scheduler, where you create server jobs to accumulate data for

your tiles; Push, where you configure push notifications; and Identity, where you can set up

authentication services.

Because we’re been talking about periodic updates, let’s use the API feature to create the same

badge update service that we implemented earlier with PHP. Click API, click Create a Custom API, and

give a name such as dayOfWeekBadge. Also, make sure the permissions for GET are set to “Everyone” or

else a nonauthenticated user—namely the Windows tile manager—will not get the response!

A few moments after you create the API, it will appear on the API page. Click that name and you’ll

open a script editor where you implement the service using node.js. Here’s a bit of script that responds

with the same badge XML payload as the PHP page:

exports.get = function (request, response) {

 var date = new Date();

 var day = date.getDate();

 var xml = "<?xml version='1.0' encoding='UTF-8'?><badge value='" + day + "'/>";

 response.set('content-type', 'application/xml');

 response.send(200, xml);

};

Once you save the script, your service endpoint is ready to go! The URI of the endpoint will be

http[s]://<service_name>.azure-mobile.net/api/<api_name>. With my service shown here, it’s

http://programmingwin-js-ams.azure-mobile.net/api/dayOfWeekBadge. Put this URI again into scenario

4 of the Push notifications sample, and you’ll see the badge on the tile. Put the URI into a browser, and

you’ll see the raw XML.

For more on node.js, see the Server script reference and Script debugging in the Azure

documentation along with //build 2013 session 2-509 Node.js on Windows Azure.

Toast Notifications

So far we’ve exhausted the subject of tiles and tile updates, which is a great prelude to our next topic,

toast notifications. This is because the process of creating and issuing toasts is quite similar to that for

tiles and is simplified by the fact that toasts do not get periodic updates: they either come from the

running app, from background tasks, or through push notifications, as we’ll see in “Push Notifications

and the Windows Push Notification Service” below. Fortunately, the topic of toasts is considerably

shorter than that of tiles. Here are the salient aspects:

 Toasts always use the app’s Background Color and Foreground Text settings in the manifest for

branding, along with the small logo. There are no means to override this; the branding

attribute in the XML is ignored for toasts.

http://programmingwin-js-ams.azure-mobile.net/api/dayOfWeekBadge
http://msdn.microsoft.com/library/windowsazure/jj554226.aspx
http://msdn.microsoft.com/library/windowsazure/jj631636.aspx
http://channel9.msdn.com/Events/Build/2013/2-509

918

 An app must set the Toast Capable setting in its manifest for any toasts to appear on its behalf.

This is found in the Application > Notifications area show below. Alarms, VoIP, and certain other

apps also set the Lock Screen Notifications option here as well.

 As shown long ago in Figure 16-6, the user can disable toasts for a particular app or disable

them globally (which I find helpful when recording a screencast!). System administrators can

also disable toasts by policy. To check this status programmatically, look at the Toast-

Notifier.setting property, a value from the NotificationSetting enumeration that will be

enabled, disabledForApplication, disabledForUser, disabledByGroupPolicy, or

disabledByManifest (meaning that you didn’t set Toast Capable to Yes).

 When enabled, toasts always appear in the upper right corner of the screen (left-to-right

languages) or the upper left corner (right-to-left languages). This is not configurable.

 Toasts are managed through instances of the ToastNotification or ScheduledToast-

Notification classes (for in Window.UI.Notificatons). The first supports an

expirationTime property; the scheduled toast supports deliveryTime, snoozeInterval, and

maximumSnoozeCount properties.

 As with tiles, the content of toasts are created with an XML payload from one of four text-only

and four image-plus-text templates, as shown on the Toast template catalog. These are the

same for Windows 8 and Windows 8.1 (that is, there is only one version). Toast templates are

acquired from the ToastNotificationManager object’s getTemplateContent method, can be

created from strings, or can be created through the Notifications Extensions Library. Various

options can be set in the XML:

 Toasts can include text and an image, where the image can come from the app package,

app data, or a remote source (given Internet Client capability). Images have the same limits

as with tiles: 1024x1024 maximum resolution and 200KB maximum file size. Unlike tiles,

however, if the image exceeds the limits, the notification will still show but with a gray

placeholder image instead.

 Toasts can specify a predefined sound to play when the toast appears, with a looping

option. Custom sounds are not supported.

 Toasts for alarms and incoming calls can display additional commands.

 By default, toasts appear for seven seconds (five seconds opaque plus a two-second fade)

or until activated or dismissed. The user can control this time through PC Settings > Ease of

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.setting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.setting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtoastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtoastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/hh761494.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotificationmanager.aspx

919

Access > Other Options, and the opaque duration is available through the

Windows.UI.ViewManagement.UISettings.messageDuration property. You can issue

long-duration toasts, looping toasts, and recurring toasts that appear a given number of

times with some interval in between.

 A toast is issued through the ToastNotifier class, namely the show and addToSchedule

methods for immediate and scheduled toasts, respectively. The ToastNotifier also provides

methods to manage previously scheduled toasts.

 Like secondary tiles, toast notifications can (and generally should) be created with specific

arguments in the XML payload that will be passed to the app’s activated event handler with

the activation kind of launch. Without such arguments, no activated event is raised, but

otherwise an app handles toast notifications exactly as it would a secondary tile. Alternately, an

app can listen to specific events that the toast itself will raise when it’s activated or dismissed.

Now we’ll examine a number of these steps, using the Toast notifications sample and Scheduled

notifications sample for reference. I also recommend you review the Guidelines for toast notifications.

The Lock screen call SDK sample involves toasts too, but we’ll come back to that when we talk about

the lock screen and background tasks.

Tip As noted before, toasts are not enabled within the Visual Studio simulator; you must run these

samples on the Local Machine or a Remote Machine to see the toasts.

Creating Basic Toasts
Let’s start with scenarios 1, 2 and 3 of the Toast notifications sample, which shows how to issue toasts

from a running app using the text and text+image templates. As shown in Figure 16-16 and Figure 16-

17 (for text-only and text+image toasts, respectively), up to three toasts can be visible at one time.

Remember that you must have Toast Capable set to Yes in the app manifest for any of thi s to work.

FIGURE 16-16 Issuing text toasts through scenario 1 of the Toast notifications sample. (The bottom of the app is

cropped.)

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.messageduration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.aspx
http://code.msdn.microsoft.com/windowsapps/toast-notifications-sample-52eeba29
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://msdn.microsoft.com/library/windows/apps/hh465391.aspx
http://code.msdn.microsoft.com/windowsapps/Lock-Screen-Call-SDK-Sample-fb701f9f

920

FIGURE 16-17 Issuing text+image toasts through scenario 3 of the sample (the bottom of the app is again

cropped). Scenario 2 does the same thing with in-package images that aren’t nearly as interesting, in my paternal

opinion, as my cute kid!

Just as we saw earlier with tiles, the sample shows how to create the XML payloads for toasts by

using template content from ToastNotificationManager.getTemplateContent, the Notifications

Extensions Library, or XML strings. The resulting XmlDocument is then used to create a Toast-

Notification object that is then passed to the ToastNotifier.show method.

For example, here’s how scenario 1 (js/scenario1.js) issues a toast using the toastText01 template (a

value from the ToastTemplateType enumeration) through getTemplateContent:

var Notifications = Windows.UI.Notifications;

function displayToastUsingXmlManipulation(e) {

 // toastTemplateName is set according to the button you click

 var notificationManager = Notifications.ToastNotificationManager;

 var toastXml = notificationManager.getTemplateContent(

 Notifications.ToastTemplateType[toastTemplateName]);

 // Populate the XmlDocument in toastXml (code omitted)

 var toast = new Notifications.ToastNotification(toastXml);

 notificationManager.createToastNotifier().show(toast);

}

The following code from scenario 3 (js/scenario3.js) demonstrates creating a toast with XML str ings

(toastImageAndText01). As with tiles, you can use ms-appx:///, ms-appdata:///local, or http://

URIs to refer to images (in-package, app data, and remote images, respectively), and beware of

connectivity when using remote images, as explained earlier in the chapter in “Sidebar: Connectivity

and Remote Images in Live Tiles and Toasts.”

function displayWebImageToastWithStringManipulation(e) {

 // toastTemplateName is set according to the button you click

 var notificationManager = Notifications.ToastNotificationManager;

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotificationmanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toasttemplatetype.aspx

921

 var toastXmlString;

 if (templateName === "toastImageAndText01") {

 toastXmlString = "<toast>"

 + "<visual version='1'>"

 + "<binding template='toastImageAndText01'>"

 + "<text id='1'>Body text that wraps over three lines</text>"

 + "<image id='1' src='" + urlBox.value + "' alt='" + altText + "'/>"

 + "</binding>"

 + "</visual>"

 + "</toast>";

 } else {

 // Other cases omitted

 }

 var toastDOM = new Windows.Data.Xml.Dom.XmlDocument();

 toastDOM.loadXml(toastXmlString);

 var toast = new Notifications.ToastNotification(toastDOM);

 notificationManager.createToastNotifier().show(toast);

}

Butter and Jam: Options for Your Toast
Beyond the properties you can assign when creating a ToastNotification object (or a Scheduled-

ToastNotification), there are additional bits you can include within the XML, as described in the

Toast schema:

 The root toast element in the XML has optional launch and duration attributes. The launch

attribute can be assigned a string that will be passed to the app’s activated handler as

eventArgs.detail.arguments, exactly as happens with a secondary tile. (See “App Activation

from a Secondary Tile” earlier in this chapter.) The duration attribute can have values of short

(five seconds or the value from PC Settings > Ease of Access > Other Options) or long (25

seconds or the value from PC Settings, whichever is longer; refer back to Figure 16-6).

 The visual and binding elements in the XML can have addImageQuery attributes that act

exactly like they do with tiles; refer back to “Using Local and Web Images” under “Tiles,

Secondary Tiles, and Badges.” The image element also supports addImageQuery for scale,

language, and contrast settings.

 The branding attribute in the visual and binding elements is ignored.

 The visual, binding, and text elements support a lang attribute to identify the current app

language, which helps Windows find the right font for your text.

 Toasts that are used for alarms or incoming calls can include a commands element with a

scenario attribute that can be alarm or incomingCall. It then contains one or more command

children with id attributes. For alarms, the command ids are snooze and dismiss; for calls we

have video, voice, and decline. We’ll see alarms soon; see “Lock Screen-Dependent Tasks and

Triggers” for a bit more on calls.

http://msdn.microsoft.com/library/windows/apps/br230849.aspx

922

The toast element can also have a child audio element through which you can add a sound to a

toast notification provided that the user has not disabled notification sounds altogether in PC Settings

> Search and Apps > Notifications. (Refer to Figure 16-6.) The particular sound is set with the src

attribute whose value must be one of the following string values as described in the Toast audio

options catalog:117

 ms-winsoundevent:Notification.Default

 ms-winsoundevent:Notification.IM

 ms-winsoundevent:Notification.Mail

 ms-winsoundevent:Notification.Reminder

 ms-winsoundevent:Notification.SMS

 ms-winsoundevent:Notification.Looping.Alarm[n] where n is an optional number from 2

to 10. These sounds are clearly used with alarms.

 ms-winsoundevent:Notification.Looping.Call[n] where n is an optional number from 2

to 10. These sounds are clearly used with incoming calls.

Separately, the audio.silent attribute controls whether audio plays at all (false, the default) or is

muted (true). If the toast.duration attribute is set and you set audio.src to one of the “Looping”

sounds above, you can also set audio.loop to true (to repeat the sound) or false (to play the sound

only once, the default).

Scenario 4 in the Toast notifications sample lets you play with the different notification sounds—

different buttons choose different sounds. The text of each button (in a variable named toast-

SoundSource) is appended to the ms-winsoundevent:Notification., as in this XML used to create

the notification:

"<audio src='ms-winsoundevent:Notification." + toastSoundSource + "'/>"

Scenario 6 shows the use of the loop attribute in the XML as well (but not all the sounds):

"<audio loop='true' src='ms-winsoundevent:Notification.Looping.Alarm'/>"

Did you actually hear any sounds? When I first ran these samples, I sure didn’t! It took me a while

to figure out why, so let me save you the trouble.

The values in the audio.src attribute simply map to various system sounds that are assigned in

Control Panel > Hardware and Sounds > Change System Sounds, which displays the dialog box below.

Having tired of all the beeps, boings, and dingalings that were once all the rage on personal

computers, I routinely select the “No Sounds” option under Sound Scheme. As a result, there were no

sounds assigned to anything in the Program Events list, so there were no sounds whatsoever for toast

117 With all the catalogs we’ve seen in this chapter, it feels like we’ve been shopping! More seriously, the fact that you must

use audio from this list means that custom audio is not supported.

http://msdn.microsoft.com/library/windows/apps/br230842.aspx
http://msdn.microsoft.com/library/windows/apps/Hh761492.aspx
http://msdn.microsoft.com/library/windows/apps/Hh761492.aspx

923

notifications. When I selected the Windows Default scheme, I then heard sounds with the toasts.

In short, the user does have ultimate control over the sounds, both generally in PC Settings and

specifically in the dialog box below. So, if it’s appropriate to use a sound at all, just choose the one

that’s closest to the nature of your toast and leave it at that.

Tea Time: Scheduled Toasts and Alarms

Issuing toasts from a running app is all well and good, but it’s not actually a common scenar io because

the user is already looking at that same app. What’s more interesting are cases where the app isn’t

necessarily running when a notification appears. This is why toasts are often used with push notifica -

tions and background tasks, as we’ll see in the last two sections of this chapter, but the other means is a

scheduled toast that will simply appear at some later time regardless of whether the app is running,

which is especially important for alarms apps. Scheduled toasts are a great way to invite the user to

activate the app again.

A basic scheduled toast (we’ll come back to the special case of alarms) is created using the

ScheduledToastNotification class instead of the usual ToastNotification. There are two forms of

scheduled notification, as indicated by its pair of constructors:

 ScheduledToastNotification(content, deliveryTime) Creates a one-time scheduled

toast with the toast’s XmlDocument in content and the UTC DateTime when it should appear in

deliveryTime.

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtoastnotification.aspx

924

 ScheduledToastNotification(content, deliveryTime, snoozeInterval,

maximumSnoozeCount) Creates a recurring scheduled toast whose content will appear at

deliveryTime. If the toast is dismissed either explicitly or by letting it disappear on its own, it

continues to appear a total of maximumSnoozeCount times at intervals defined by the number

of milliseconds in snoozeInterval. The snoozeInterval must be set between 60 seconds and

60 minutes; for longer intervals it’s best to just schedule separate toasts altogether.

A ScheduledToastNotification also has an id property, a maximum 16-character string that’s

used to identify that toast. If you schedule a toast with the same id as an existing one, the new one will

replace the old.

In all cases, the toast is scheduled by calling the ToastUpdater.addToSchedule method passing in

the notification object. Here’s the process in code, as found scenario 1 of the Scheduled notifications

sample (js/scenario1.js), where toastDOM is the XmlDocument containing the content and dueTime is

determined by a UI control in the sample. First, for a one-time notification:

var Notifications = Windows.UI.Notifications;

toast = new Notifications.ScheduledToastNotification(toastDOM, dueTime);

Notifications.ToastNotificationManager.createToastNotifier().addToSchedule(toast);

Second, for a notification that will repeat five times at 60-second intervals (the option that’s

exercised if you check the Repeat checkbox in the sample’s UI):

var Notifications = Windows.UI.Notifications;

toast = new Notifications.ScheduledToastNotification(toastDOM, dueTime, 60 * 1000, 5);

Notifications.ToastNotificationManager.createToastNotifier().addToSchedule(toast);

To enumerate currently scheduled toasts, call ToastNotifier.getScheduledToastNotifications.

This returns a vector of ScheduledToastNotification objects, any of which can be canceled through

ToastNotifier.removeFromSchedule. These methods are demonstrated in scenario 2 of the

Scheduled notifications sample that I will leave you to examine more closely. Also, there are some

debugging tips on the Guidelines for scheduled notifications topic in the documentation, mostly to

note that the system has a limit of 4096 total notifications and to make sure you’ve set Toast Capable

in the manifest to Yes.

Let’s talk about alarms now. If you refer back to Figure 16-8 (PC Settings > PC and Devices > Lock

Screen), you’ll see an option at the bottom under Lock Screen Apps that says Choose An App to Show

Alarms. This indicates that there is one app on the system that has the privilege to schedule alarms

notifications and also have them appear on the lock screen, just like one calendar app can display

detailed status. (That said, any alarms app that isn’t chosen for the lock screen can still issue scheduled

toasts while it’s running and have them pop up more or less when they’re supposed to.)

http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.getscheduledtoastnotifications.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.removefromschedule.aspx
http://msdn.microsoft.com/library/windows/apps/hh761464.aspx

925

To be a privileged alarms app, you must meet the following requirements:

 The app is toast capable (of course!) and declares a lock screen notification in its manifest.

 The app declares a background task of along with the windows.alarms extension in its

manifest (making it lock screen capable).

 The app calls Windows.ApplicationModel.Background.AlarmApplicationManager.-

requestAccessAsync, which prompts the user for consent to make this app the alarms app as

shown below. Consent is necessary for alarms to appear on the lock screen; without it,

scheduled toasts will still work as with any other app.

 The app then schedules toasts as always for its alarms, and can also include Snooze and Dismiss

commands in the toast XML payload. These will appear with the toast only if the app is the one

selected for the lock screen:

The Alarm toast notification sample in the SDK, from which the above images were taken, provides a

simple demonstration of all these requirements. First is the declaration of toast capability and lock

screen notification style on the manifest editor’s Application tab:

For the lock screen, of course, you’ll also need to provide badge graphics on the Visual Assets tab.

Next, on the Declarations tab of the manifest, add a Background Task declaration and check one of

the task types like Timer (the sample also has Audio checked, but this isn’t necessary.) You also have to

put something in the Entry Point field for the background task just to make the manifest XML schema

happy. The sample actually includes a real entry point to a real file js/backgroundtask.js for this, but

that code will never be invoked. You can just write “not used” and the app will still work fine.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.alarmapplicationmanager.requestaccessasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.alarmapplicationmanager.requestaccessasync.aspx

926

What’s most important in the manifest is an extension with the category windows.alarms, which

you must add in the XML. Altogether, then, the applicable XML within the Application element looks

like this, using Timer as the most benign background task type:

<Extensions>

 <Extension Category="windows.backgroundTasks" StartPage="not used" >

 <BackgroundTasks>

 <Task Type="timer" />

 </BackgroundTasks>

 </Extension>

 <m2:Extension Category="windows.alarm" />

</Extensions>

With all this in place, we ask to be the alarms app with one call (js/toast.js):

Windows.ApplicationModel.Background.AlarmApplicationManager.requestAccessAsync().done(

 function (status) {

 });

The result of requestAccessAsync is an AlarmAccessStatus value that indicates whether the user

granted consent. The values are denied, allowedWithWakeupCapability, allowedWithoutWakeup-

Capability, and unspecified (status isn’t known yet). The request can also be denied if the user has

indicated through PC Settings to not allow alarms at all on the lock screen.

If at any time you want to check whether you are the privileged alarms app, the getStatusAsync

method will return the current AlarmAccessStatus value.

Beyond this, it’s now just a matter of scheduling toasts as before, except that you can include a

commands element within the XML payload alongside the visual element. Under commands you can

include one or more command elements for snooze or dismiss features. Here’s the full payload as the

sample builds in js/toast.js, shown as XML rather than the JavaScript string used to build it:

<toast duration="long">

 <visual>

 <binding template="ToastText02">

 <text id="1">Alarms Notifications SDK Sample App</text>

 <text id="2">Wake up Time with Default Snooze!</text>

 </binding>

 </visual>

 <commands scenario="alarm">

 <command id="snooze"/>

 <command id="dismiss"/>

 </commands>

 <audio src="ms-winsoundevent:Notification.Looping.Alarm2" loop="true" />

</toast>

Toast Events and Activation
As far as toasts are concerned, we have perhaps saved the best topic for last! The whole purpose of a

toast is to get the user’s attention and have them activate your app to take some kind of action. An app

will commonly navigate to an appropriate page for whatever the content of the toast implies.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.alarmaccessstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.alarmapplicationmanager.getaccessstatus.aspx

927

The most straightforward case of activation is with a scheduled toast, one that has been put up by a

background task, or one that’s come through a push notification. In all of these cases the app won’t be

running, so Windows will start it with the activation kind of launch, where the value of the payloads

toast.launch attribute will be in the activated event’s eventArgs.detail.arguments property.

This is, once again, identical to the way secondary tiles work and you can process the arguments value

however you wish.

If the app is not running when the toast is activated, it will still be launched even if the toast.-

launch attribute is empty. That is, toasts that occur under nonrunning conditions can be used to just

launch the app, if desired. On the other hand, if a running app issues a toast with no toast.launch

value, Windows will bring the app to the foreground but the app’s activated event will not be fired at

all. This is a way of saying that activation through a toast with no additional information would never

cause the app to navigate in the first place, so what’s the point of firing the activated event? None

whatsoever. Thus, if a running app issues a toast with the intent that activating that toast will switch to

a different part of the app, rather than just bringing the app to the foreground, a launch value is

essential. (Of all the scenarios in the Toast notifications sample, only scenario 5 provides a launch

value; set a breakpoint in the activated event of js/default.js, and you’ll see that scenario 5 is the only

time that event will fire when you tap a toast.)

Still, a running app might want to know when the user interacts with a toast, launch arguments

aside. For this purpose it can listen to a ToastNotification object’s activated, dismissed, and

failed events, a few of which are demonstrated in scenario 5 of the sample. The activated event has

no specific eventArgs, but dismissed comes with a ToastDismissalReason in eventArgs.reason

(values are userCanceled, applicationHidden, and timedOut), and the failed event comes with an

error code in eventArgs.errorCode. (These are all events from a WinRT object, so be sure to manage

them with removeEventListener as appropriate. See “WinRT Events and removeEventListener” in

Chapter 3.)

Note that a ScheduledToastNotification does not support any of these events because the

assumption is that the app probably won’t be running by that time anyway.

Push Notifications and the Windows Push Notification Service

We’ve now finally arrived in this chapter where we can leave running apps behind and look at more of

the fun things that can happen behind the scenes. Earlier, in “Periodic Updates,” we learned that the

shortest interval you can use with that approach is pretty darn long by a computer’s reckoning: 30

minutes. That’s even long by many human standards, especially those of a user who really wants to

know what’s happening with whatever information source your app is connected to.

To update a tile, set a badge, or issue a toast as quickly as the system allows, and to personalize the

content (as with calendar reminders and email alerts), it’s necessary to be a little pushy and use push

notifications. These are notifications that come to a system from an outside agent, typically a service

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.activated.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.dismissed.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.failed.aspx

928

that is monitoring some other source of information and detects conditions for which notifications are

appropriate. We saw the mechanism in “The Four Sources of Updates and Notifications” and Figure 16-

12 early in this chapter. To summarize:

 When launched, an app requests a channel URI for each of its live tiles and then sends those

URIs to its associated backend service. An app should do this each time it’s launched, as the

expiration period for a WNS channel is 30 days and use of the app at least once a month is a

good indicator that the service should maintain that channel. Each channel URI is unique for the

combination of user, tile, and device.

 The service stores the channel URI and associates it with a user to customize the user’s

notification content (as again with email and calendar alerts, notifications from friends’

activities, etc.).

 When needed, the service issues updates (XML payloads) to that channel.

 WNS then sends the notification to the client devices where the app acquired the channel URI.

Those notifications can update tiles, update badges, issue toasts, and update the lock screen

(with appropriate lock screen apps and background tasks).

It’s also possible for the service and WNS to send a raw notification, which can contain any payload

you want: there just needs to be someone listening as Windows won’t know what to do with the data.

A foreground app can listen through the PushNotificationChannel.onpushnotificationreceived

event; a lock screen app can listen with a background task. In the latter case, raw notifications are

generally used to deliver information to the background task that then issues other notifications in

response and/or updates app data.

Design tip You’ve probably fallen victim of apps that display interesting content on their tiles or in

toasts, only to activate the app and find that the content isn’t yet available. The Windows News app is

guilty of this: it sends new headlines from its backend through push notifications before the app can

acquire the story. This disconnect between the notifications and the app content results in a poor user

experience. To avoid this, use a raw notification to instruct a background task to acquire the content

and store it in app data, and once that’s done, have the background task issue the toast or tile update

such that activating either one will navigate the app to that specific content. The Sports app, in my

observation, does a much better job of this with its tile.

Before you do anything in your app for push notifications, you must follow the instructions on How

to authenticate with the Windows Push Notification Service (WNS) on the Windows Developer Center

(which is part of a whole series on Push notifications). This will walk you through the steps on the

Windows Store Dashboard to obtain a Package Security Identifier (SID) and a client secret with which

your app’s web service authenticates itself with WNS.

In the sections that follow we’ll first go through each of the steps in turn, using scenarios 1–3 of the

same Push and periodic notifications client-side sample we used earlier for periodic updates. This will

illustrate the nature of the work that’s needed to make push notifications work. Then we’ll take a look

http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465460.aspx
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603

929

at how Windows Azure Mobile Services (AMS) and other third-party offerings can do most of the work

for you—I suspect that you’ll definitely want to employ such tools!

Tip To use the SDK sample to test push notifications, create an app for it in your Store account (don’t

worry, you won’t publish it), and then use the Store > Associate App With The Store command in

Visual Studio to set its identity. You’ll also need the SID and client secret from the Store dashboard so

that your backend (including the example service we’ll be using) can authenticate with WNS.

Let me also point out that because channel URIs are unique for an app+user+device, using push

notifications can become an expensive proposition for your backend, which must record and maintain

a channel for every unique tile on every user’s device and then figure out when to send which

notifications to which channels. If your app becomes popular, this will require scaling up your service to

potentially manage thousands or even millions of channel URIs. A feature of AMS called notification

hubs helps with this, and third-party services do as well. Still, it’s worth taking the time to seriously

evaluate whether periodic notifications would be sufficient for your scenario, especially for updates that

aren’t user-specific, because they will be much simpler on the server side of the picture and less

expensive to sustain and maintain.

Requesting and Caching a Channel URI (App)

Requesting a channel URI is done through the PushNotificationChannelManager object. This

manager has only two methods: createPushNotificationChannelForApplicationAsync and

createPushNotificationChannelForSecondaryTileAsync. The first is clearly linked to the app tile

as well as toast notifications; the second is clearly for use with secondary tiles and takes a tileId

argument to identify the specific one.

The result of both async operations is a PushNotificationChannel object that will be passed to

your completed handler, as shown in scenario 1 of the sample (start in js/scenario1.js, then go into

js/notifications.js):

var channelOperation;

// Channel for the app tile

if (isPrimaryTile) {

 channelOperation = Windows.Networking.PushNotifications.PushNotificationChannelManager

 .createPushNotificationChannelForApplicationAsync();

} else {

 // Channel for a secondary tile

 channelOperation = Windows.Networking.PushNotifications.PushNotificationChannelManager

 .createPushNotificationChannelForSecondaryTileAsync(itemId);

}

channelOperation.done(function (newChannel) {

 // Send channel to service

}, /* error handler */

);

http://msdn.microsoft.com/library/windows/apps/windows.networking.pushnotifications.pushnotificationchannelmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.pushnotifications.pushnotificationchannel.aspx

930

The PushNotificationChannel object (newChannel in the code above) is a simple object with just

a few members, but they are important ones:

 expirationTime A read-only property indicating when the channel expires—notifications

sent to this channel after expiration will be rejected. Apps must be sure to refresh their channels

when needed to avoid an interruption in notifications.

 uri A read-only URI to which the backend service sends notifications to WNS.

 close A method that explicitly invalidates the channel.

 pushnotificationreceived An event that’s fired when a push notification is received on the

client device from this notification channel. This will be fired only for apps that are in the

foreground and includes raw notifications as well as tile, badge, and toast payloads.

Your app should go through this short process to obtain the necessary channel URIs whenever it’s

launched and when it’s resumed (especially if any channel’s expirationTime has passed). It’s unlikely

that an app would stay suspended for that long, but it’s still possible! Furthermore, if you’re concerned

that your app might not run for more than 30 days, you can implement a background task on a

maintenance trigger for this purpose. See “Tasks for Maintenance Triggers” later in this chapter and

scenario 2 of the sample.

Again note that you’ll have multiple channel URIs if you’re using push notifica tions for both

secondary tiles and your app tile. In this case you’ll be managing separate channel URIs for each tile.

Also, save the channel URI for each tile in your local app state. This is so that you can check on

subsequent runs if the URI is the same as one you’ve already obtained and sent to your service, and

thus avoid unnecessary network traffic.

Sending the URI to your service can be done with a simple HTTP POST, as in the sample (inside

channelOperation.done). Here we also see the checks for whether the URI is the same as before:

channelOperation.done(function (newChannel) {

 // _urls[] is an array of channel ids for primary and secondary tiles

 var tileData = that._urls[itemId];

 // Upload the channel URI if the client hasn't recorded sending the same

 // uri to the server

 if (tileData && newChannel.uri === tileData.channelUri) {

 // This saves the URI to local app data

 that._updateUrl(url, newChannel.uri, itemId, isPrimaryTile);

 completed(newChannel);

 } else {

 WinJS.xhr({

 type: "POST",

 url: url, // Best practice: use https URIs

 headers: { "Content-Type": "application/x-www-form-urlencoded" },

 data: "channelUri=" + encodeURIComponent(newChannel.uri) +

 "&itemId=" + encodeURIComponent(itemId)

 }).done(function (request) {

931

 // Only update the data on the client if uploading the channel URI succeeds.

 // If it fails, you may consider setting another background task, trying

 // again, etc. (An exception will be thrown if it fails, ending up in the

 // error hander instead.)

 that._updateUrl(url, newChannel.uri, itemId, isPrimaryTile);

 completed(newChannel);

 }, failed);

 }

}, failed);

Managing Channel URIs (Service)

If you use the code in the previous section, your service (the one that generates push notifications) will

receive HTTP POST requests with unique channel URIs for each and every tile. This isn’t the only way to

transport channel URIs, of course; in fact, because a channel URI might be used to transmit personal

information through notifications, it should ideally be encrypted with a private key before it’s sent to

the server, and even sent over HTTPS. Otherwise someone could possibly intercept that URI and use it

to redirect user-specific notifications.

In any case, the service must expect to receive—and then manage—a unique URI for each

app/user/device combination. This underscores the fact that push notifications are best used for user-

specific notifications rather than broadcast notifications. In the latter case, setting up a service for

periodic updates is again a much easier solution.

Once the service receives a channel URI along with any data to identify the user and the purpose of

the channel, it should securely save that information in persistent storage of some kind, such as a SQL

Server database (for an ASP.NET service or Azure Mobile Service) or a MySQL (for a PHP service).

It’s important that the service also removes obsolete channel URIs. If it receives a new URI for the

same user and the same purpose, it should replace the old with the new. It should also remove any

URIs if it receives an HTTP 404 or 410 error back from WNS, indicating an obsolete channel.

A simple ASP.NET service page that can receive a post from scenario 1 of the Push and periodic

notifications client-side sample is the receiveuri.aspx page found in the HelloTiles website project in this

chapter’s companion content. To run this service, make sure you have the localhost established, as

described earlier in “Debugging a Service Using the Localhost.” You may also need to install ASP.NET

on your localhost. An easy way to do this is to obtain the Background transfer sample, go into its Server

folder, and then from an administrator command prompt run powershell -ExecutionPolicy

unrestricted -file serversetup.ps1. If you then run the site in Visual Studio Express for Web as we did

before, you’ll have a localhost port for the service like http://localhost:52568/HelloTiles/receiveuri.aspx.

You can then set a breakpoint in the service code, paste the service URI into scenario 1 of the Push

notifications sample, and press its Reopen Channel And Send To Server button. This should hit the

breakpoint in the service and allow you to step through the code that processes the request. Here

you’ll find that the request contains channelUri and itemId values (along with LOGON_USER), which can

be saved for when the service needs to send a notification to WNS.

http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61

932

Note that the receiveuri.aspx example page saves the URI into a text file with a hardcoded name

(see its SaveChannel method), meaning that it’s good for just one channel URI! If you use this example

as a basis for your own service, be sure to replace that code with something that can handle any

number of URIs (or use tools so that you don’t have to do all the work manually).

Sending Updates and Notifications (Service)

Before a service can send updates, it must authenticate itself with WNS by sending the Package

Security Identifier (SID) and client secret as obtained through the Windows Store Dashboard. This is a

matter of sending a request to WNS (via HTTPS) that looks like this:

POST /accesstoken.srf HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Host: https://login.live.com

Content-Length: 211

grant_type=client_credentials&client_id=ms-app%3a%2f%2fS-1-15-2-2972962901-2322836549-

3722629029-1345238579-3987825745-2155616079-

650196962&client_secret=Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7&scope=notify.windows.com

where you must make sure the values of client_id and client_secret match the package SID and

client secret. If the authentication works, you’ll receive a 200 OK response with the access token you

need for sending notifications:

HTTP/1.1 200 OK

Cache-Control: no-store

Content-Length: 422

Content-Type: application/json

{

 "access_token":"EgAcAQMAAAAALYAAY/c+Huwi3Fv4Ck10UrKNmtxRO6Njk2MgA=",

 "token_type":"bearer"

}

Tip For everything that can go into a request to WNS and come back in the response, see Push

notification service request and response headers. This includes setting an expiration time, setting

cache policy, and tagging tile payloads.

Code that accomplishes these steps for a service written in C# can be found on How to authenticate

with the Windows Push Notification Service, where your service would use the GetAccessToken

method shown there to obtain an OAuthToken object with the information from the response. Services

written in other languages will obviously need to use the appropriate means to send the request and

receive the response.

Whatever the case, once you have the access token, you’re ready to start sending updates and

notifications via HTTP requests to the channel URIs maintained by the service.

For tile updates, badge updates, and toast notifications, sending a notification means generating the

XML payload as for any other update or notification, and then sending it to WNS with the previously

acquired access token. The only real difference between these requests, besides the specific XML, is the

http://msdn.microsoft.com/library/windows/apps/hh465435.aspx
http://msdn.microsoft.com/library/windows/apps/hh465435.aspx
http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465407.aspx

933

value of X-WNS-Type in the request header: wns/badge, wns/tile, wns/toast, or wns/raw (see the

next section). Otherwise the code is the same.

Generic code for a C# service can be found on Quickstart: Sending a push notification. I’ve included

a badge update version in sendBadgeToWNS.aspx in the HelloTiles example site with this chapter,

where the SID and client secret are old ones I once obtained for my copy of the Push notifications

sample. You’ll need to change these for your copy of the sample that you’ve registered with the Store.

To test this now, run the HelloTiles website in Visual Studio Express for Web and set a breakpoint at

the beginning of sendBadgeToWNS.aspx. Assuming you’re running scenario 1 of the Push notifications

sample in Visual Studio Express for Windows to upload a channel URI to receiveuri.aspx, there should

be a file called channeluri_aspx.txt in the website project that contains the uploaded data.

Now switch to scenario 3 of the Push Notifications sample, and press the button to start listening to

the pushnotificationreceived event. In js/scenario3.js of that sample, set a breakpoint within the

pushNotificationReceivedHandler function. With all this in place, open a browser and enter the

address of sendBadgeToWNS.aspx on the Localhost, such as: http://localhost:52568/HelloTiles/

sendBadgeToWNS.aspx. This should hit the breakpoint in Visual Studio Express for Web, where you can

walk through that page’s code and see it loading the channel URI from channeluri_aspx.txt, to which it

then sends a badge update. When that happens, you should hit the breakpoint in the Push

notifications app where you can walk through that code. Note that when you get to the line e.cancel

= true, skip over it—right-click the line below it and select Set Next Statement—or just make sure the

value is false before your return. This will allow Windows to process the notification and update the

badge for the Push notifications sample, which should now look like the following with a * (alert) badge

on the lower right:

Note again that if you receive an HTTP 404 or 410 error back from WNS, the channel URI is no

longer valid and you should remove it from your list. It’s also good for the app to notify your service

whenever it no longer needs updates for a particular channel (no point in paying for unproductive

bandwidth). And if WNS returns an error, avoid posting the update again unless it makes sense for your

scenario.

404 or 410 errors are different, by the way, from an inability to deliver a notification because the

client is offline. In this case WNS will cache the tile, badge, or raw notification until the client

reconnects. In other words, it’s not a condition that your service has to worry about. Send notifications

as you always would, and let WNS handle the delivery details.

Raw Notifications (Service)
If you use wns/raw as the push notification type, the payload included with the push notification can

http://msdn.microsoft.com/library/windows/apps/xaml/hh868252.aspx

934

be anything you want, not just XML, as long as it’s under 5KB (see Guidelines for raw notifications). Of

course, Windows cannot do anything with this payload directly, so an app has to provide a handler for

receipt of the notification, as we’re about to see.

Receiving Notifications (App)
A running app receives push notifications through the PushNotificationChannel.onpushnotifi-

cationreceived event. This is again required to process wns/raw payloads but can be used for any

type. If the app is not running, of course, it won’t receive this event. Instead, the app must be on the

lock screen with a PushNotificationTrigger background task for this purpose. (See “Lock Screen

Dependent Tasks and Triggers” later in this chapter.) That piece of code will then receive the XML

payload, process it, and issue whatever tile/badge updates or toast notifications are necessary. Besides

saving some state to the app data folders, this is really all that the background task can do, but it’s

enough to keep that sense of aliveness going as well as invite the user to launch the app in response.

In the running app, the pushnotificationreceived event is fired for the other notification types

as well. Scenario 3 of the Push notifications sample shows this in its event handler—I’ve modified this

code a little bit for simplicity:

function startListening() {

 // Assume channel has been obtained and validated

 channel.addEventListener("pushnotificationreceived", pushNotificationReceivedHandler);

}

function pushNotificationReceivedHandler(e) {

 // Extract notification payload for each notification type

 var notificationPayload;

 switch (e.notificationType) {

 case pushNotifications.PushNotificationType.toast:

 notificationPayload = e.toastNotification.content.getXml();

 break;

 case pushNotifications.PushNotificationType.tile:

 notificationPayload = e.tileNotification.content.getXml();

 break;

 case pushNotifications.PushNotificationType.badge:

 notificationPayload = e.badgeNotification.content.getXml();

 break;

 case pushNotifications.PushNotificationType.raw:

 notificationPayload = e.rawNotification.content;

 break;

 }

 // Process the notification: set e.cancel to true to suppress automatic handling.

}

The last bit in the comment above is important. When you receive this event in a running app, it

wouldn’t be necessary to display a toast unless it pertains to some other part of the app that isn’t

http://msdn.microsoft.com/library/windows/apps/hh761463.aspx

935

visible. For example, if you have an app that handles both email and a calendar, you might want to

show email toasts when the user is looking at the calendar and calendar toasts when the user is looking

at email. In this case, setting e.cancel to true will suppress the toast.

With the pushnotificationreceived event, the running app gets first crack at raw notifications. If

the app doesn’t process it, the notification will be sent to any lock screen background task configured

for the PushNotificationTrigger. In either case, refer to the Raw notifications sample for details.

Debugging Tips

When using push notifications, experience shows that if notifications aren’t getting through, it’s

typically not a problem with WNS. Here’s a list of things to check (thanks to Hans Andersen):

 Check the return status of your HTTP POSTs to WNS. If it’s returning an HTTP 200 response,

check the X-WNS-NotificationStatus and other headers you get back. Look particularly for

the status of “Received,” which indicates that a notification has gone to the client.

 Lacking anything conclusive in the headers, run Event Viewer and check the events under

Application And Services Logs > Microsoft > Windows > Push Notifications Platform >

Operational to see the activity.

 Also look under Application And Services Logs > Microsoft > Windows > Immersive-Shell >

Microsoft-Windows-TWinUI > Operational to see if there are error messages related to XML

parsing about the same time you expected to receive a notification.

 Even if the XML is well-formed, an update might not show up if a referenced image is either too

large (pixel dimensions or file size), if the image is the wrong format (for example, TIF), if the

image is corrupt, if the server handling the image request can’t handle the query parameters for

the tile (scaling, contrast, language), or if the server is encountering other errors as might be

revealed in its own logs.

 If updates appear but after a considerable delay, it could just mean internal timeouts or other

network latency within the tile and notification infrastructure. If this happens, just accept that

the world isn’t always perfect and operations must sometimes be retried!

Tools and Providers for Push Notifications

Now that we’ve gone through the intricate details of working with push notifications, even omitting the

question of storage, you’re probably wondering, “Is there any way to make all this simpler?” Just

imagine what it would take to manage potentially thousands or millions of channel URIs for a hopefully

large and expanding customer base!

Fortunately, you’re not the first to ask such questions. First of all, a number of third parties provide

solutions for push notifications, which you can find listed on http://services.windowsstore.com/ and

filtering on the “Push Notifications” service type. There you’ll see providers such as Urban Airship, Push

IO, and Parse, all of which I can recommend with confidence. You can also employ Windows Azure

http://watwindows8.codeplex.com/wikipage?title=Raw%20Notifications%20Sample
http://services.windowsstore.com/

936

Mobile Services (AMS) and its JavaScript client library for this purpose as described on Get started with

push notifications in Mobile Services. Here’s how it fulfills all the requirements:

 App Registration with the Windows Store Once you obtain the client secret and SID for

your app from the Windows Store, go to the Push section of the mobile service and save those

value under Windows Application Credentials.

 Obtaining and Refreshing Channel URIs Requesting and managing channel URIs in the app

is purely a client-side concern and is the same as before.

 Sending Channel URIs to the Service This step becomes far easier with AMS. First you create

a table in the mobile service under the Data section. Using the AMS client library, the app can

then simply insert records with channel URIs and any other key information you need to attach.

The client library takes care of the HTTP request behind the scenes and even updates the client-

side record with any changes made on the server. Furthermore, AMS can automatically handle

authentication through the user’s Microsoft Account or through three other OAuth providers—

Facebook, Twitter, or Google—if you’ve registered your app with one of them. See Get started

with authentication in Mobile Services.

 Sending the Notification Within the mobile service, you can attach scripts (written in node.js)

to database operations, and also create scheduled jobs. In these scripts, a simple call to the

push.wns object with a channel URI and a payload generates the necessary HTTP request to the

channel. It’s also a simple matter to capture push failures and record the response with

console.log. Those logs are easily reviewed on the Windows Azure portal.

For extensive details, see these two sample tutorials: Tile, Toast, and Badge Push Notifications using

Windows Azure Mobile Services and Raw Notifications using Windows Azure Mobile Services. Also refer

to my post on the Windows Developer Blog, Alive with Activity, Part 3: Push notifications and Windows

Azure Mobile Services where I show the relevant highlights. The short of it is that you create an

instance of the MobileServiceClient object in the AMS client library:

var mobileService = new Microsoft.WindowsAzure.MobileServices.MobileServiceClient(

 "https://{mobile-service-url}.azure-mobile.net/",

 "{mobile-service-key}");

This class encapsulates all the HTTP communication with the service, relieving you from all that low-

level plumbing that you probably don’t want to think about. For example, instead of sending a channel

URI and other to the service, you can just store it in a data table. In the mobile service, a node.js script

can pick up that insertion and then send a push notification in response.

In my post I also elaborate on how you might use push notifications in different real -world

scenarios, such as using social networks, issuing updates and alerts for news and weather, and

messaging. The basic idea in all of them relates back to Figure 16-15 at the end of “Periodic Updates,”

where you use a central database to gather information for your update services. With push

notifications, you can use database inserts or other modifications as triggers to issue push notifications

to the appropriate channels.

http://www.windowsazure.com/en-us/documentation/articles/mobile-services-windows-store-dotnet-get-started-push/
http://www.windowsazure.com/en-us/documentation/articles/mobile-services-windows-store-dotnet-get-started-push/
http://www.windowsazure.com/en-us/develop/mobile/tutorials/get-started-with-users-js/
http://www.windowsazure.com/en-us/develop/mobile/tutorials/get-started-with-users-js/
http://code.msdn.microsoft.com/windowsapps/Tile-Toast-and-Badge-Push-90ee6ff1
http://code.msdn.microsoft.com/windowsapps/Tile-Toast-and-Badge-Push-90ee6ff1
http://code.msdn.microsoft.com/windowsapps/Raw-Notifications-using-adb63a01
http://blogs.msdn.com/b/windowsappdev/archive/2013/03/13/alive-with-activity-part-3-push-notifications-and-windows-azure-mobile-services.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2013/03/13/alive-with-activity-part-3-push-notifications-and-windows-azure-mobile-services.aspx

937

Background Tasks and Lock Screen Apps

At the end of the introduction to this chapter, I described how everything we’ve talked about so far

helps to “create an environment that is constantly alive with activity while those apps are often not

actually running or are allowed to run just a little bit.” That last phrase—being allowed to run just a little

bit through background tasks—is our last topic, and it relates to the lock screen because apps that are

allowed to work behind the lock screen employ background tasks to do so.

Let me reiterate that we’ve already seen many scenarios in which users can experience app-related

activity without apps having to run. Periodic tile updates, push notifications, scheduled toasts, and even

sharing data through the Share contract all provide for activity when an app is suspended or not

running. Apps can also configure background data transfers to occur while the app isn’t running, as

we’ve seen in Chapter 4. And background audio provides for that specific class of apps that need to

continue running to maintain VoIP sessions, audio playback, online meetings, device firmware updates,

and so forth.

What’s left in the story are those little pieces of app code that Windows can run in response to

specific triggers. Triggers in some cases can be further refined with optional conditions so that the

background task runs only when it really needs to, thereby minimizing needless background activity

that drain a device’s battery. Some types of triggers, in fact, require that the user has placed the app on

the lock screen to specifically limit the number of apps that can respond to those triggers. Windows

also limits the amount of CPU time that background tasks can consume:

 Lock screen background tasks Two seconds of cumulative CPU time per 15 minutes.

 Other background tasks One second of cumulative CPU time every two hours.

Consumption of network bandwidth is also limited on battery power. What that limit is, exactly, I

cannot say, because the system analyzes energy usage more so than bytes transferred. A means of

estimating the limit can be found on Supporting your app with background tasks. (While we’re at it,

you might also be interested in Guidelines and checklists for background tasks, the Introduction to

background tasks whitepaper, and Being productive in the background – background tasks on the

Windows Developer Blog.)

“Whoa!” you’re probably saying, “Is Windows really that restrictive?”

The short answer is yes, because Windows wants to save battery power for the foreground app with

which a user is engaged and to help the foreground app deliver the best user experience. This means it

isn’t competing with background apps that would, if allowed, take up as many resources as they

possibly can (like background services on the desktop seem to do!).

It’s likely that you’ve experienced situations like this directly, where you’ve started an app but it

takes for-EV-er to get going because some other dark and mysterious service is chewing on the hard

drive, pounding the network, flaring up the CPU, and so forth. I, for one, have dug through Task

Manager and the Resource Monitor to figure out—and kill off—whatever process is pouring molasses

http://msdn.microsoft.com/library/windows/apps/hh977046.aspx
http://msdn.microsoft.com/library/windows/apps/Hh977043.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27411
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27411
http://blogs.msdn.com/b/windowsappdev/archive/2012/05/24/being-productive-in-the-background-background-tasks.aspx

938

on my system, let come what will. This is the kind of user experience that Microsoft is trying to avoid

with Windows Store apps.

“OK,” you say (assuming that I’ve actually convinced you to some small degree) , “does that mean

that there isn’t any way to do some background work like indexing data, creating picture thumbnails,

processing video, and so on?”

Actually, there are ways to do this. For one, when an app is visible (and thus in for foreground,

though it might not have the focus), it can do however much it wants of all these things because it’s

ultimately responsible for its own user experience.

Second, when a device is on AC power instead of battery, Windows allows apps to run background

tasks in response to maintenance triggers on 15-minute or longer intervals (whatever is appropriate for

the app). These are still limited in the total amount of CPU time they can consume, but tasks that don’t

involve UI—and background tasks are not allowed to alter UI—can burn through a few billion

instructions in one or two seconds on a gigahertz CPU!

What we have in this whole story, then, are three distinct classes of background tasks and their

associated triggers:

 Tasks for maintenance triggers that run on AC power only.

 Tasks for potentially conditioned system triggers that run on AC or battery and don’t require

being on the lock screen.

 Tasks for those privileged apps that the user has added to the lock screen.

We’ll look at each of these in detail, but let’s first examine a few aspects that all of them share:

declaring background tasks in the manifest, the general process of building the task with the WinRT

API, and applying conditions.

Lock screen personalization Configuring the lock screen image or slide show is not dependent on

background tasks. This is discussed in Chapter 4 in “The User Profile (and Lock Screen Image)” and

demonstrated through the Lock screen personalization sample.

Background Tasks in the Manifest

All background tasks for an app are declared in the manifest, where each declaration indicates the type

of task as well as the code to execute for that task, as shown in Figure 16-18. We’ve seen this section of

the manifest before in Chapter 12 and Chapter 13 where we checked Location and Audio, respectively,

for background geolocation monitoring and background audio, respectively. As for the other options,

System Event is used for maintenance and non–lock screen triggers; Control Channel, Timer, and Push

Notification are used with lock screen apps.

http://code.msdn.microsoft.com/windowsapps/Personalization-App-sample-9ebfe147

939

FIGURE 16-18 The manifest editor for declaring background tasks, showing the option for Background Tasks in the

drop-down list of Available Declarations (left), the background task types (center), and the Start Page field to

indicate the JavaScript code to run for the task (bottom). Background tasks can also be written in other languages, in

which case the Executable and Entry Point fields are used.

In all cases, the Start Page field is where you indicate the JavaScript file to execute for the task, but

do note that because background tasks execute independently of the app itself, sharing state only

through app data, you can choose whatever language you want. Given the quotas on CPU time, writing

a background task in a language like C++ or C# will allow you to do some tasks more efficiently, in

which case you’ll use the Entry Point field (if the task is in a DLL in the package) and perhaps the

Executable field (if the task is in another EXE in the package) to identify the code module and specific

function to call.

It’s also good to note that even though the Start Page field suggests a page, you always point to a

piece of JavaScript that runs as a web worker, and thus no HTML or CSS can be loaded here. Indeed,

issuing tile updates, badge updates, and toasts is as much UI work as a background task is allowed. For

anything else, the background task must write values to app data that the main app can pick up within

its handlers for background task events, as we’ll see shortly.

You might also notice that triggers aren’t represented in the manifest. This is done in code when

you build the task, as we’ll see next.

Building and Registering Background Tasks
The declaration of a background task in the manifest is only that—a declaration that tells the system

that the app intends to use a background task. The app must still register the background task from

940

code for it to execute at all, which is accomplished using the BackgroundTaskBuilder (whose

namespace, Windows.ApplicationModel.Background, contains everything we’ll be referring to in the

context of background tasks). Simply said, you create an instance of the builder, set its name and

taskEntryPoint properties, call its setTrigger and addCondition methods to specify exactly when

the task should run, and then call register.

Generic code for this is found in the Background task sample within js/global.js. This module

declares a global object BackgroundTaskSample that contains a number of properties and methods.

The one that concerns us here is a method called registerBackgroundTask that registers a given

entry point (the name of a JavaScript file or the name of a class in C#, Visual Basic, or C++), with a

given name, and applying some trigger and condition:

var BackgroundTaskSample = {

 // Properties with names and entry points of the sample's tasks are omitted

 // Register a background task with the specified taskEntryPoint, taskName, trigger,

 // and condition (optional).

 "registerBackgroundTask": function (taskEntryPoint, taskName, trigger, condition) {

 var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();

 builder.name = taskName;

 builder.taskEntryPoint = taskEntryPoint;

 builder.setTrigger(trigger);

 if (condition !== null) {

 builder.addCondition(condition);

 }

 var task = builder.register();

 BackgroundTaskSample.attachProgressAndCompletedHandlers(task);

 // [Sample-specific code omitted]

 // Remove previous completion status from local settings.

 var settings = Windows.Storage.ApplicationData.current.localSettings;

 settings.values.remove(taskName);

 },

In this code, the BackgroundTaskBuilder.register method returns a BackgroundTaskRegi-

stration object through which you manage a registered task. A registered task will have a name

property and a system-assigned taskId property, the latter of which you can use to tag app data that’s

unique to the task. It also has an unregister method (which you would call for an obvious purpose)

and two events: completed and progress. Handlers for those events are assigned in the usual manner

with addEventListener, as seen within the BackgroundTaskSample.attachProgressAndCompleted-

Handlers function in the sample:

 "attachProgressAndCompletedHandlers": function (task) {

 task.addEventListener("progress",

 new BackgroundTaskSample.progressHandler(task).onProgress);

 task.addEventListener("completed",

 new BackgroundTaskSample.completeHandler(task).onCompleted);

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskbuilder.aspx
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskregistration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskregistration.aspx

941

 },

One of the key uses of these handlers—which are part of the running app—is to perform UI update

tasks in response to data left behind by the background tasks. Those tasks themselves cannot work with

UI, but they can save data to the app data areas that they share with the main app. The completed and

progress events, then, are how the main app with the UI thread can pick up those events from the

background task to read values from app data and do the necessary updates. The Background task

sample does this in each of its scenarios.

There is also one static property, BackgroundTaskRegistration.allTasks, a MapView through

which you can retrieve the BackgroundTaskRegistration object for each registered task.

It’s very important to note that Windows allows you to register the same background task twice and

will assign unique taskId values to both, so be careful to avoid duplicate tasks. Furthermore,

background task registration will persist across app updates, so if you update your tasks be sure to

check for and unregister old ones when your update is launched.

With this structure, the question now becomes: what do we provide for the triggers and the

conditions? The answer is what differentiates the various kinds of background tasks.

Conditions

The specific conditions you can specify through BackgroundTaskBuilder.addCondition are instances

of the SystemCondition class. A background task registered with one or more conditions—each call to

addCondition is cumulative—will run only if the conditions are met. Each instance can be one of the

following types as defined in the SystemConditionType enumeration:

Condition Description
internetAvailable Run only when the device is online.

internetNotAvailable Run only when the device is offline.

sessionConnected The user is logged in.

sessionDisconnected The user is logged out (lock screen only, obviously)

userPresent User has been recently active.

userNotPresent User has not been active for a time.

freeNetworkAvailable Network data is unlimited.

backgroundWorkCostNotHigh Run only if the cost of background work is low.

Clearly, each complementary pair of these conditions is mutually exclusive: if you register a task with

internetAvailable and internetNotAvailable, Windows will recognize that you never really

wanted to run the task in the first place, so it will let it sit on the roadside, forever undisturbed!

Otherwise, you can use these to make sure that your task is run only when needed. If you want to

execute a background task that renews push notification channels, for example, there’s no point in

trying if there’s no connectivity. (We’ll see an example next in “Tasks for Maintenance Triggers.”) On the

other hand, if you have a background task that you want to make sure never interferes with the overall

user experience, you can add the userNotPresent condition.

Note that because the sessionDisconnected condition implies that the user has logged out, it’s

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskbuilder.addcondition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemcondition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemconditiontype.aspx

942

useful only for background tasks that require the lock screen.

The backgroundWorkCostNotHigh condition relates to the static property BackgroundWorkCost.-

currentBackgroundWorkCost. This contains a hint of the current resource availability for background

tasks that comes from the BackgroundWorkCostValue enumeration. The values are low, medium, and

high, so the condition here applies when the current hint is low or medium.

Tasks for Maintenance Triggers
Background tasks that use a maintenance trigger are the most generic kind of task—they run any kind

of code you want to run every now and then when the system is on AC power.118 Such tasks are best

for “checking up on something” or other activity that you want to run periodically but don’t really care

when. As such, maintenance triggers aren’t appropriate for something like synchronizing data with a

server because that should happen in a more timely manner and is best done with the background

transfer API that we saw in Chapter 4.

A maintenance trigger—what you pass to BackgroundTaskBuilder.setTrigger—is an instance of

the MaintenanceTrigger class. When creating the instance, you provide two parameters. The first is

basically the refresh period you need (the freshnessTime property, in minutes), and you should use

the longest period that’s reasonable for your scenario; the system will always wait at least this long

before first running the task. The second parameter is a flag that indicates if the task needs to be run

only once (the oneShot property).

Scenario 2 of the Push and periodic notifications client-side sample demonstrates using a

maintenance trigger to periodically refresh its WNS channels, as described earlier in “Requesting and

Caching a Channel URI.” The code here is condensed from js/scenario2.js, some of which is in an

internal function called registerTask:

var background = Windows.ApplicationModel.Background;

var pushNotificationsTaskName = "UpdateChannels";

var maintenanceInterval = 10 * 24 * 60; // 10 days

var taskBuilder = new background.BackgroundTaskBuilder();

var trigger = new background.MaintenanceTrigger(maintenanceInterval, false);

taskBuilder.setTrigger(trigger);

taskBuilder.taskEntryPoint = "js\\backgroundTask.js";

taskBuilder.name = pushNotificationsTaskName;

var internetCondition = new

 background.SystemCondition(background.SystemConditionType.internetAvailable);

taskBuilder.addCondition(internetCondition);

taskBuilder.register();

118 This is about the only API for which a clear distinction is made for battery vs. AC power; WinRT does not offer a specific
API to detect the power source. What this means is that apps should design for running on the battery but assign AC-

only tasks to maintenance triggers, allowing Windows to manage power on a systemwide basis.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundworkcost.currentbackgroundworkcost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundworkcost.currentbackgroundworkcost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundworkcostvalue.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.maintenancetrigger.aspx
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603

943

Because the expiration period for channel URIs is 30 days, the sample creates a trigger on a

recurring 10-day interval (10 days * 24 hours/day * 60 minutes/hour). It also wisely adds the

internetAvailable condition because it’s again pointless to attempt to renew channel URIs when

there’s no connectivity.

The task itself can be found in the js/backgroundTask.js file of the sample, as indicated in the

taskEntryPoint property:

(function () {

 // Import the Notifier helper object

 importScripts("//Microsoft.WinJS.2.0/js/base.js");

 importScripts("notifications.js");

 var closeFunction = function () {

 close();

 };

 var notifier = new SampleNotifications.Notifier();

 notifier.renewAllAsync().done(closeFunction, closeFunction);

})();

This task code pulls in a couple of other script files using importScripts, the second of which,

notifications.js, is the sample’s set of helper functions for notifications where renewAllAsync refreshes

the app’s list of previously saved channel URIs.

Important Notice that the completed and error handlers given to the promise from renewAllAsync

both go to closeFunction, which makes this mysterious call to close. What close is this? Well, it’s

not window.close but rather WorkerGlobalScope.close. Background tasks in an app written in

JavaScript run as web workers, so the global scope within the code is WorkerGlobalScope rather than

window. Calling this makes sure the independently running background task is shut down and

guarantees that the resources that were allocated for the task are properly released.

Sidebar: The Task Instance and Background Task Deferrals

Within a JavaScript background task, the Windows.UI.WebUI.WebUIBackgroundTask-

Instance.current property contains a WebUIBackgroundTaskInstanceRuntimeClass object

with additional details about the running task: its instanceId, its associated BackgroundTask-

Registration object in the task property, a progress property in which the task can store a

percentage value, a succeeded flag to indicate that the task has completed, a suspended count

(when the task is suspended due to the resource quota being exceeded), and a canceled event

that informs the task that the app as a whole has been terminated.

This object also provides a getDeferral method that, once again, returns a deferral object

whose completed method you call when the task is complete. As always, you employ the deferral

if you need to perform asynchronous operations within the background task. Just be sure to

always call close when everything is finished.

http://www.w3.org/TR/workers/#workerglobalscope
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuibackgroundtaskinstanceruntimeclass.aspx

944

Tasks for System Triggers (Non-Lock Screen)
The next class of background tasks contains those tied to a variety of system triggers, specifically

instances of the SystemTrigger class. You again create the trigger object with new and pass two

parameters: a SystemTriggerType value (available afterwards as the triggerType property) and a

oneShot Boolean flag. The triggers that operate independently of the lock screen are described in the

following table:

SystemTriggerType119 When Triggered and Usage Scenarios
internetAvailable Internet becomes available. This is typically used for apps that need to start a synchronization

process when connectivity is restored from an offline state. Note that this trigger is different

from the condition with the same name.

lockScreenApplicationAdded User has added the app to the lock screen, signaling that lock screen–dependent background

tasks will now be executed.

lockScreenApplicationRemoved User has removed the app from the lock screen, signaling that lock screen–dependent

background tasks will no longer run.

networkStateChange Change in network (cost, connectivity, etc.). A running app can detect the same event through

NetworkInformation.onnetworkstatuschanged, and this provides a means for apps to

execute a small piece of code when the app is suspended or otherwise not running. This trigger

combined with the internetAvailable or internetNotAvailable conditions offers the app

full awareness of connectivity states. For a review of connectivity, refer back to Chapter 4 and

the Network status background sample.

onlineIdConnectedStateChange The user’s Microsoft account has changed. This is a relatively rare occurrence, but the trigger is

essential for any app that caches any part of the Microsoft account for its own user identity.

servicingComplete App has been updated from the Windows Store. Use this trigger to unregister obsolete

background tasks and to migrate app data from one version to another as soon as the update

happens. Refer to Chapter 10, “The Story of State, Part 1,” for more on versioning app data.

timeZoneChange A time zone or daylight savings time change has occurred. An app might refresh its locale

settings at such a time, as well as adjust any internal timekeeping. This can be important to

adjust scheduled notifications.

The Background task sample provides a few examples of these triggers. In scenario 1, js/sample-

background-task-with-condition.js, we can see the use of timeZoneChange along with the

userPresent condition (where BackgroundTaskSample is again a helper object in global.js):

BackgroundTaskSample.registerBackgroundTask(BackgroundTaskSample.sampleBackgroundTaskEntryPoint,

 BackgroundTaskSample.sampleBackgroundTaskWithConditionName,

 new Windows.ApplicationModel.Background.SystemTrigger(

 Windows.ApplicationModel.Background.SystemTriggerType.timeZoneChange, false),

 new Windows.ApplicationModel.Background.SystemCondition(

 Windows.ApplicationModel.Background.SystemConditionType.userPresent));

119 There is an additional trigger called smsReceived that is only for apps provided by mobile operators.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9

945

This is clearly a case where I’d use another variable to not type the Windows.Application-

Model.Background namespace out every time, but at least you can’t make a mistake in reading this

code! In any case, the same sample, in scenario 4 and js/global.js, also shows use of the servicing-

Complete trigger within a helper function registerServicingCompleteTask, which also checks if the

task is already registered:

"registerServicingCompleteTask": function () {

 // Check whether the servicing-complete background task is already registered.

 var iter =

 Windows.ApplicationModel.Background.BackgroundTaskRegistration.allTasks.first();

 var hascur = iter.hasCurrent;

 while (hascur) {

 var cur = iter.current.value;

 if (cur.name === BackgroundTaskSample.servicingCompleteTaskName) {

 BackgroundTaskSample.updateBackgroundTaskStatus(

 BackgroundTaskSample.servicingCompleteTaskName, true);

 return;

 }

 hascur = iter.moveNext();

 }

 // The servicing-complete background task is not already registered.

 BackgroundTaskSample.registerBackgroundTask(

 BackgroundTaskSample.servicingCompleteTaskEntryPoint,

 BackgroundTaskSample.servicingCompleteTaskName,

 new Windows.ApplicationModel.Background.SystemTrigger(

 Windows.ApplicationModel.Background.SystemTriggerType.servicingComplete, false),

 null);

},

In the sample, the tasks associated with these triggers are implemented in C#, within a WinRT

component found in the Tasks project of the solution. I won’t show the code here because we’ll be

looking at the general structure of WinRT components in Chapter 18. What it does demonstrate ,

though, is that you can use a mixed-language approach for background tasks. In these cases, the Entry

Point field for the tasks in the manifest point to the C# class/method that implements the background

task, such as Tasks.ServicingComplete. If you go to the Background task sample page, you can also

download the C# and C++ versions of the sample to see even more structural variants.

Lock Screen–Dependent Tasks and Triggers
The last group of background tasks are those that require the app be also added to the lock screen. For

this there are four applicable SystemTrigger options from SystemTriggerType, along with the four

other distinct types that are represented in the manifest editor: LocationTrigger, TimeTrigger,

PushNotificationTrigger, and Windows.Networking.Sockets.ControlChannelTrigger. These are

described here, along with pointers to available samples that demonstrate their usage:

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.locationtrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.timetrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.pushnotificationtrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.controlchanneltrigger.aspx

946

SystemTriggerType When Triggered, Scenarios, and Samples

controlChannelReset See ControlChannelTrigger below.

sessionConnected User has logged in from the lock screen.

userAway Device has become inactive (e.g., blank screen) due to user inactivity.

userPresent User has returned; device wakes up from an inactive state.

backgroundWorkCostChange The cost of background work (BackgroundWorkCost.currentBackgroundWorkCost) has

changed

Other lock screen triggers When Triggered, Scenarios, and Samples
LocationTrigger The device has entered or exited a geofence region; see scenario 5 of the Geolocation

sample.

TimeTrigger A period of time as configured in the trigger has elapsed; see scenario 5 of the Background

task sample demonstrates and scenario 3 of the Geolocation sample.

PushNotificationTrigger A raw push notification for the app has arrived from WNS. Because Windows cannot handle

a raw notification directly, this kind of background task is necessary to take action on a raw

notification when the app isn’t running. A running app, on the other hand, can use the

pushnotificationreceived event, as described earlier in “Receiving Notifications (App).”

For an example, refer to the Raw notifications sample.

Windows.Networking.Sockets.-

ControlChannelTrigger

Real-time notifications have been received through the control channel—that is, a

networking channel typically using sockets or another networking transport, if it’s not

possible to use WNS and raw notifications for the same purpose. This trigger is used for

real-time communication apps such as VoIP, IM, and Mail so that they are “always

reachable” if the user places them on the lock screen. A deep dive on this subject is beyond

the scope of this book, so refer to the How to set background connectivity options in the

documentation along with the following samples, all of which employ C# or C++ and are

not available in JavaScript:

 ControlChannelTrigger StreamSocket sample

 ControlChannelTrigger XmlHttpRequest sample

 ControlChannelTrigger StreamWebSocket sample

 ControlChannelTrigger HTTP client sample

The SystemTriggerType.controlChannelReset is used to manage a background task for

changes in the control channel rather than events on the channel itself. Where channel

events like calls are concerned, such apps will typically make use of toast notifications with

the incomingCall commands in the toast XML as shown below. See the Lock screen call

SDK sample for a demonstration.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundworkcost.currentbackgroundworkcost.aspx
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Raw-notifications-sample-3bc28c5d
http://msdn.microsoft.com/library/windows/apps/Hh771189.aspx
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-TCP-20c56711
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-6aedf1bc
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-91f6bed8
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-HTTP-9d7a6b3d
http://code.msdn.microsoft.com/windowsapps/Lock-Screen-Call-SDK-Sample-fb701f9f
http://code.msdn.microsoft.com/windowsapps/Lock-Screen-Call-SDK-Sample-fb701f9f

947

Note Working with the lock screen is not supported in the Visual Studio simulator. To debug lock

screen apps and background tasks, use the Local Machine or Remote Machine debugging options.

Background tasks for these triggers are created and registered as we’ve already seen. A

TimeTrigger, for example, is created with its freshnessTime interval (in minutes) and a oneShot flag,

as seen in scenario 5 of the Background task sample (js/time-trigger-background-task.js):

BackgroundTaskSample.registerBackgroundTask(

 BackgroundTaskSample.sampleBackgroundTaskEntryPoint,

 BackgroundTaskSample.timeTriggerTaskName,

 new Windows.ApplicationModel.Background.TimeTrigger(15, false), null);

A TimeTrigger is also used in scenario 3 of the Geolocation sample to allow the user to add a

navigation app to the lock screen for more continuous tracking (scenario 5 uses the LocationTrigger

for geofencing). Generally speaking, though, a navigation app isn’t particularly useful on the lock

screen in the first place, since it wouldn’t be able to show a map! Better, then, to again use the

Windows.System.Display.DisplayRequest API to prevent going to the lock screen at all.

Creating a PushNotificationTrigger is even simpler because there are no parameters. This can be

seen in the Raw notifications sample, scenario 1 (js/scenario1.js):

function registerBackgroundTask() {

 // Register the background task for raw notifications

 var taskBuilder = new background.BackgroundTaskBuilder();

 var trigger = new background.PushNotificationTrigger();

 taskBuilder.setTrigger(trigger);

 taskBuilder.taskEntryPoint = sampleTaskEntryPoint;

 taskBuilder.name = sampleTaskName;

 var task = taskBuilder.register();

 task.addEventListener("completed", backgroundTaskComplete);

}

Although the call to BackgroundTaskBuilder.register might succeed, the task itself will not

execute until the user adds the app to the lock screen, as we saw earlier in Figure 16-8. This latter

action is never under the app’s control—all it can do is make sure it’s available for the user to select on

that section of PC Settings, which is what asking for access is all about.

The request is made through the BackgroundExecutionManager.requestAccessAsync method;

this call should be made prior to registering the background task (see scenario 5 of the Background

task sample again):

Windows.ApplicationModel.Background.BackgroundExecutionManager.requestAccessAsync();

When this is called the first time in an app, it will generate a user consent prompt, as shown in

Figure 16-19. If the user chooses Allow, the app will appear in PC Settings as an option for the lock

screen, otherwise it won’t. As with other permissions, users can change their minds later on through the

Permissions settings, as shown in Figure 16-20.

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Raw-notifications-sample-3bc28c5d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundexecutionmanager.requestaccessasync.aspx

948

FIGURE 16-19 The user consent prompt when an app requests lock screen access.

FIGURE 16-20 The lock screen option on the Permissions settings panel for apps that request access.

For a complete demonstration, refer to the Lock screen apps sample. Scenario 1 shows how to again

request access to the lock screen and check the result, which is a value from the BackgroundAccess-

Status enumeration. It also shows querying for and removing that access with the getAccessStatus

and removeAccess methods of BackgroundExecutionManager.

Scenario 2 then demonstrates sending badge updates to the lock screen, along with a text tile

update if the app happens to be the single one selected for that privilege. There is nothing particular in

this process where the lock screen is concerned, however: such updates happen exactly as they do for

the primary app tile. It’s just that those updates are also reflected on the lock screen as determined by

the setting in the Application > Notifications section of the manifest, as shown below. Remember that

the badge graphic must have white or transparent pixels and the three scale sizes are 24x24 (100%),

33x33 (140%), and 43x43 (180%).

http://code.msdn.microsoft.com/windowsapps/Lock-screen-apps-sample-9843dc3a
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundaccessstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundaccessstatus.aspx

949

Scenario 3, finally, demonstrates that secondary tiles can be added to the lock screen as well,

irrespective of the app tile. To make a secondary tile available for the lock screen, assuming that the

app has requested lock screen access already, you need to set those two properties of Windows.UI.-

StartScreen.SecondaryTile that we mentioned long ago: lockScreenBadgeLogo and lockScreen-

DisplayBadgeAndTileText. If the secondary tile is on the Start screen, these properties will also make

it available on the PC Settings page for the lock screen.

Debugging Background Tasks
By this time you might have run the TimeTrigger background task in scenario 5 of the Background

tasks sample, and unless it’s been more than 15 minutes since that time (maybe up to 30 minutes if you

just missed the 15-minute window when timers are coalesced), you might still be waiting for that

period to elapse. Is this, then, your destiny for debugging background tasks: to wait, wait, wait?

Fortunately, the answer is no, no, and maybe! That is, Visual Studio’s debugger is mostly aware of

registered background tasks and provides a list of them on its Suspend drop-down toolbar menu:

Selecting one of these will immediately trigger the background task, so you won’t have to wait or

otherwise attempt to activate the trigger for real. One caveat is that if the trigger had oneShot set to

true and already fired, it won’t fire again. A second caveat is that if you’re running a JavaScript app

with background tasks written in other languages, you’ll need to change the debugger type for the

main app project from Script Only to any of the others that list Managed or Native, as shown below,

otherwise you can’t set breakpoints in those other modules:

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

950

A third caveat is that background tasks using PushNotificationTrigger, ControlChannel-

Trigger, and SystemTriggerType.SmsReceived will not appear on the drop-down menu. You might

need to rely on the tried-and-true methods of outputting diagnostic information to figure out what’s

going on with your task and checking events in the Event Viewer for activation failures. More on these

methods can be found on How to debug a background task.

Finally, note one more time that background tasks are not supported in the Visual Studio simulator,

as is also true of live tiles, notifications, and much else we’ve covered in this chapter. You’ll need to use

the Local Machine or Remote Machine options instead.

What We’ve Just Learned (Whew!)

 Tile updates, on both the app’s primary and secondary tiles, along with badges, toast

notifications, and background tasks are how an app contributes to the overall aliveness of the

system even while the app isn’t running.

 Tile updates and notifications can be sent from a running app but there are other methods to

deliver those updates when the app isn’t running. Updates can be scheduled to appear at a later

time, and the app can configure the system to periodically ask a service for tile/badge updates.

Apps can also configure push notifications that are raised from a service and sent to clients

through the Windows Push Notification Service (WNS).

 Tile updates are issued using an XML payload based on predefined templates. Typical payloads

include medium, wide, and large tile updates so that the user can choose how the tile is

displayed on the Start screen. The XML can reference images from both local and remote

sources, so long as the images are 1024x1024 pixels or smaller and less than 200KB in size.

 A tile can cycle through up to five updates at any given time for each tile size; each update can

be replaced separately.

 Apps that have specific content that is interesting to bookmark as secondary tiles to the Start

screen provide Pin and Unpin commands to the user for that purpose. Secondary tiles, which

launch the app with specific startup arguments, can also receive live tile updates.

 Badges are small glyphs or numbers that can appear on any given tile. Badge updates are sent

through the same mechanism as tile updates, but they operate independently.

 Toasts are popup notifications that appear for a time to alert the user of new information,

reminders, and so on. They can play sounds, recur on a given interval, be scheduled to appear in

the future, and for alarms and incoming calls can display relevant commands. Like secondary

tiles, activating a toast launches the app with specific startup arguments.

 Periodic updates for tiles and badges means providing Windows the URIs of REST endpoints

from which it will request updates at selected intervals between 30 minutes and 24 hours.

http://msdn.microsoft.com/library/windows/apps/jj542415.aspx

951

Periodic updates are the easiest and lower-cost means to update a tile from a service.

 Push notifications for tiles, badges, toast notifications, and raw notifications (whatever data an

app wants to manage) can be used for higher-frequency, user-specific updates. This involves

creating services that communicate with WNS to issue those notifications to specific channel

URIs, a process that is much more involved and expensive than periodic updates.

 Windows Azure Mobile Services can be used for many update activities, including the

implementation of periodic update endpoints and backends for push noti fications.

 Background tasks are small pieces of code that an app configures to run when certain triggers

occur, such as changes in connectivity, timers, geofencing, receipt of push notifications, and app

updates. Apps should never depend on background tasks, however, because they are always

under the user’s control.

 Background task triggers can be refined through specific conditions to avoid running tasks

when it’s not necessary (such as when there is no connectivity).

 Some triggers require that the app is also added to the lock screen. Such apps must first request

access, which is subject to user consent, and the user must specifically add the app through PC

Settings. Given that privilege, apps can issue badge updates and tile text to the lock screen.

 Through maintenance triggers, apps can also set up tasks to run periodically when a device is

on AC power.

952

Chapter 17

Devices and Printing

I sometimes marvel at all the stuff that’s hanging off the humble laptop with which I’ve been writing

this book. Besides the docking station that is currently also serving well as a monitor stand and rather

efficient dust collector, there’s a mouse (wired), a keyboard (wireless), two large monitors, speakers, a

USB thumb drive, a headset, an Xbox game controller, and the occasional external hard drive. Add to

that a couple of printers and media receivers hanging off my home network and, well, I probably don’t

come close to what the majority of my readers probably have around their home and workplace!

For all that might be going on within one computer itself, and for all the information it might be

obtaining from online sources, the world of external devices is another great realm, especially those

that apps can work with directly. Indeed, we’ve spent most of our time in this book talking about

what’s going on within an app and its host system and about using networks and services to gather

data. It’s time that we take a look at the other ways we can draw on external hardware to make a great

app experience.

We’ve already encountered a few of these areas:

 In Chapter 11, “The Story of State, Part 2,” we learned about the Removable Storage capability

(in the manifest) that enables an app to work with files on USB sticks and other pluggable

media. When a device is connected, those folders become available through Windows.-

Storage.KnownFolders.removableDevices, a StorageFolder object whose subfolders are

each connected to a particular storage device. See the Removable storage sample.

 In Chapter 2, “Quickstart,” along with Chapter 13, “Media,” we took full advantage of the

Windows.Media.Capture API to effortlessly obtain audio, images, and video from an attached

camera (see the CameraCaptureUI Sample). This included the ability to select a specific capture

device through scenario 2 of the Media capture using capture device sample, for which we used

the API in Windows.Devices.Enumeration.

 Also in Chapter 13 we looked at the Windows.Media.PlayTo API to connect media to a PlayTo

capable receiver, as demonstrated in the Media Play To sample.

 In Chapter 12, “Input and Sensors,” we explored pointer input devices (touch, mouse, and

stylus), keyboard input, the APIs for reading sensor data, and using a GPS device (for

geolocation and geofencing). Refer to that chapter for applicable samples.

In this chapter we’re ready to expand the story more generally, even though we’ll only be scratching

the surface of the world of hardware! Our topics include:

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.removabledevices.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.removabledevices.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://msdn.microsoft.com/library/windows/apps/windows.media.capture.aspx
http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac
http://code.msdn.microsoft.com/windowsapps/Media-Capture-Sample-adf87622
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.aspx
http://code.msdn.microsoft.com/windowsapps/Media-PlayTo-Sample-fedcb0f9

953

 Declaring device access in the app manifest.

 Device enumeration and watcher APIs that you use in scenarios where you wouldn’t just use

the default device of a given class. Enumerating available devices and watching them as they’re

added to or removed from a system are processes that are generally applicable, so we’ll discuss

these before looking at any device-specific APIs.

 Device scenario APIs work with known types of devices, namely printers (2D and 3D), scanners,

point-of-service devices (barcode readers and magnetic stripe readers), fingerprint readers,

virtual smartcards, and Bluetooth call control devices. Each class of devices responds to a set of

standard commands that are hidden behind the API abstraction (see Figure 17-1) so that the

same app code works for any device of that class that the user might attach.

FIGURE 17-1 Scenario APIs abstract different device classes and the standard commands used to

communicate with them. Through that API, an app can work with any number of connected devices that

conform to that class.

 Protocol APIs allow you to communicate with a wide variety of devices through specific

protocols, namely Bluetooth, HID, USB, and Wi-Fi Direct. In this cased the APIs handle the

details of the underlying transport and the app sends device-specific commands through that

protocol (see Figure 17-2). Such apps, therefore, are written to work with a specific device or a

set of such devices. Note also that protocol APIs specifically block access to devices that are

otherwise supported through device scenario APIs or other more general WinRT APIs like those

for pointer events, keyboards, and sensors.

954

FIGURE 17-2 Protocol APIs abstract the details of transport protocols—namely USB, HID, Bluetooth, or Wi-Fi

Direct—allowing apps to easily send device-specific commands to a wide variety of devices.

 Finally, NFC (near-field communications) connects with devices in the vicinity of the one your

app is running on, including inexpensive NFC tags. The initial NFC handshakes happen over

Bluetooth or Wi-Fi Direct protocols, and once the connection is made, apps communicate using

sockets, as shown in Figure 17-3.

FIGURE 17-3 Near-field communications (NFC) use taps, Bluetooth, or Wi-Fi Direct to establish a

connection, then apps exchange data directly via sockets or messages.

955

Note For wireless devices (like those using Bluetooth and Wi-Fi Direct), Windows has a pairing UI

already built in, meaning that apps don’t need any pairing features themselves.

Another special group of devices are those accessible through Win32/COM APIs, for which you can

then basically create your own scenario API as a Windows Runtime Component. For example, I could

use the HID protocol API to talk to an Xbox 360 game controller (and will in this chapter), or I can use

the XInput API (part of DirectX) through a WinRT component, whose interface is projected into

JavaScript like any other WinRT API. We’ll see how to do this in Chapter 18, “WinRT Components.”

Clearly, you can build an app around many devices, and you can enable many creative scenarios by

building around multiple devices. It’s important to note that with the protocol APIs you’ll typically be

declaring access to specific devices and their features, so you won’t so much be thinking about

general-purpose apps that can work with random devices. With Windows Store apps it’s good to be

focused anyway, and the nature of devices pretty much forces this.

All that said, there are a few things we won’t be covering in this chapter. One topic is 3D printing,

which, due to its intense graphical requirements, is designed to work with DirectX and is therefore

applicable to Windows Store or desktop apps written with C++. For more on this subject, refer to 3D

Printing in the documentation, the 3D printing sample (C++), and the //build 2013 session, 3D Printing

with Windows.

We also won’t be covering what are called Windows Store Device Apps, the ones that can be

automatically acquired from the Windows Store when their associated devices are attached into a

system. This also includes mobile broadband apps that deal with provisioning a mobile account. Such

dedicated device apps are associated with their hardware through device metadata, and also have

more privileges than other apps such as launch on connect, updating firmware, background sync, and

much more generous budgets for background CPU time and I/O traffic.

For more details on this subject, refer to the Windows Store Device App Workshop (Channel 9

videos), along with the Windows 8.1 Device Experience area of the documentation. The latter includes

sections on AutoPlay, automatic installation, device sync/firmware update, apps for printers, apps for

cameras, apps for internal devices, and mobile broadband/mobile operator concerns. Here are also a

number of other device app samples to draw on:

Windows Store device app for camera sample Firmware Update USB device sample

Device apps for printers sample AppContainer mobile broadband pin, connection, and

device management sample

Print settings and print notifications sample Mobile broadband account and device management sample

Print job management and printer maintenance sample Mobile broadband account provisioning sample

USSD message management sample Portable device services sample

A much more specific one is the Custom driver access sample, which works with a device called FX2

in the OSR USB FX2 Learning Kit (from Open System Resources). This is a piece of hardware that those

learning how to develop device drivers use to understand the intricacies. Let me also mention that

many device-oriented sessions can be found in the //build 2013 conference content on Channel 9,

http://msdn.microsoft.com/library/windows/apps/dn263137.aspx
http://msdn.microsoft.com/library/windows/apps/dn263137.aspx
http://code.msdn.microsoft.com/windowsapps/3D-Printing-Sample-b5b75c86
http://channel9.msdn.com/Events/Build/2013/3-9027
http://channel9.msdn.com/Events/Build/2013/3-9027
http://channel9.msdn.com/Events/Windows-Store-Device-Apps-Workshop/Windows-Store-Device-Apps-Workshop-2012?t=charms
http://msdn.microsoft.com/library/windows/hardware/br259108.aspx
http://code.msdn.microsoft.com/windowsapps/Metro-style-device-app-for-4f39b7bf
http://code.msdn.microsoft.com/windowsapps/Firmware-Update-USB-Device-76a6d9ae
http://code.msdn.microsoft.com/windowsapps/Device-app-for-printers-91f363a9
http://code.msdn.microsoft.com/windowsapps/Modern-Win32COM-mobile-8f762ad8
http://code.msdn.microsoft.com/windowsapps/Modern-Win32COM-mobile-8f762ad8
http://code.msdn.microsoft.com/windowsapps/Device-app-for-printers-91f363a9
http://code.msdn.microsoft.com/windowsapps/Mobile-Broadband-API-Sample-7debc1ff
http://code.msdn.microsoft.com/windowsapps/Print-job-management-and-8245e020
http://code.msdn.microsoft.com/windowsapps/ProvisioningAgent-Modern-19afe43b
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://code.msdn.microsoft.com/windowsapps/Portable-Device-f97089b5
http://code.msdn.microsoft.com/windowsapps/Custom-device-access-sample-43bde679
https://www.osronline.com/custom.cfm?name=index_fullframeset.cfm&pageURL=https://www.osronline.com/store/index.cfm
http://channel9.msdn.com/Events/Build/2013/?sort=sequential&direction=desc&term=&t=device-apps

956

filtered for Device Apps. I’ll be referring to some of these as we go along, but you might at this point

be interested in the overview session, Building Apps the Connect with Devices.

Declaring Device Access

Many devices require that you have a DeviceCapability declaration in your manifest—for instance:

<Capabilities>

 <m2:DeviceCapability Name="pointOfService" />

</Capabilities>

where Name is an appropriate value for the type of device in question and the m2 namespace signifies

the Windows 8.1 manifest schema, which is necessary for most of the devices we’ll be covering in this

chapter. I also show such a capability in XML because Visual Studio’s manifest editor does not expose

device-related features in its UI. When working with devices, then, you’ll get used to right-clicking

package.appxmanifest in Visual Studio and selecting View Code to edit the XML manually.

Some hardware, such as printers, scanners, and fingerprint readers, do not require a manifest

declaration, but nearly every other device does. We’ll see the detailed entries in the appropriate context

for each, which sometimes include more child elements under DeviceCapability. For example:

<m2:DeviceCapability Name="humaninterfacedevice">

 <m2:Device Id="vidpid:045E 0610">

 <m2:Function Type="usage:FFAA 0001" />

 </m2:Device>

</m2:DeviceCapability>

As with other manifest capabilities, these declarations are necessary to access the hardware at all

(otherwise you’ll always see Access Denied exceptions) and will generate a user consent prompt like

this one when you first attempt access:

It’s important to note whatever API call might trigger the prompt should always happen on the UI

thread. This is a given for apps written in JavaScript, but if you’re working in other languages you’ll

need to take this into account. Also, because the user can deny access at this point, you must always be

prepared to respond accordingly.

As with all other capabilities, the user can change their consent at any time through the app’s

Settings > Permissions (below left) or PC Settings > Privacy > Other Devices (below right), so also be

prepared for device access to change at any time:

http://channel9.msdn.com/Events/Build/2013/?sort=sequential&direction=desc&term=&t=device-apps
http://channel9.msdn.com/Events/Build/2013/2-023

957

Enumerating and Watching Devices

To talk to any device through its associated WinRT API, it’s necessary to acquire a device-specific API

object, such as a BarcodeScanner, ImageScanner, HidDevice, and so on. In a few cases, namely

BarcodeScanner and MagneticStripeReader, the object provides a static getDefaultAsync method

that shortcuts the whole process:

Windows.Devices.PointOfService.BarcodeScanner.getDefaultAsync().then(function (scanner) {

// scanner is a BarcodeScanner instance.

}

Windows.Devices.PointOfService.MagneticStripeReader.getDefaultAsync().then(function (reader) {

// reader is a MagneticStripeReader instance.

}

Most other device APIs, however, don’t have this shortcut, and so it’s necessa ry to enumerate

devices of that type. Enumeration means to obtain a list of all devices that match a particular selector,

as we’ll see in a moment. Each device in the list is represented by a DeviceInformation object (in

Windows.Devices.Enumeration), whose id property is needed by another ubiquitous static method,

fromIdAsync (e.g., HidDevice.fromIdAsync), to connect with that specific piece of hardware.

To connect with the default device in the enumerations, use the id from the first Device-

Information object in the list, call fromIdAsync, and go from there. The DeviceInformation objects

you get through the process of enumeration makes displaying a list of available devices in your UI

straightforward so that the user can choose which camera, microphone, scanner, printer, or game

controller they want to play with. For all the details, refer to Enumerating Devices in the

documentation, but let me give an overview here before we look at device-specific APIs.

http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.aspx
http://msdn.microsoft.com/library/windows/apps/hh464977.aspx

958

Again, enumeration works with something called a selector, specifically an Advanced Query Syntax

(AQS) string, as we encountered in Chapter 11 in “Custom Queries.” A device selector typically looks

something like this:

System.Devices.InterfaceClassGuid:="{E5323777-F976-4F5B-9B55-B94699C46E44}" AND

System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True

where the interface class GUID shown here is the particular one for webcams.

In the simplest cases, common selectors have numerical shortcuts obtained from the DeviceClass

enumeration: audioCapture, audioRender, portableStorageDevice, videoCapture, imageScanner,

and location (as well as all). You can pass one of these values to one variant of the static

DeviceInformation.findAllAsync method, for example:

var wde = Windows.Devices.Enumeration;

wde.DeviceInformation.findAllAsync(wde.DeviceClass.videoCapture)

 .done(function (devices) {

 //devices is a DeviceInformationCollection, essentially

 //an array of DeviceInformation objects

 });

In this example, the videoCapture shortcut maps to the same AQS string for webcams shown

earlier. The result of findAllAsync is then a DeviceInformationCollection, which in JavaScript can

basically be treated as an array of DeviceInformation objects.

Another way to obtain a selector is to ask for one from a device-specific class in WinRT, typically

through a method called getDeviceSelector.120 You’ll find such a method on quite a number of

classes, including ProximityDevice, StorageDevice, SmsDevice, UsbDevice, HidDevice,

SmartCardReader, BarcodeScanner, ImageScanner, MagneticStripeReader, and so on. We’ll

encounter these throughout this chapter. The one odd duck of the group is the MediaDevice object,

which has getAudioCaptureSelector, getAudioRenderSelector, and getVideoCaptureSelector

methods. With the latter, for example:

var mediaDevice = Windows.Media.Devices.MediaDevice;

selectorString = mediaDevice.getVideoCaptureSelector();

you’ll get back the same AQS string as before.

Thirdly, you can also construct a selector from scratch if you have a known GUID that isn’t otherwise

represented in the WinRT API. Scenario 1 of the Device enumeration sample does this with known

GUIDs for printers, webcams, and portable devices (html/interfaces.html):

120 Note that in the code snippet in the Quickstart: enumerating commonly used devices topic in the docs (at the time of

writing) uses GetDeviceSelector in a couple of cases, which will throw exceptions. The camel-cased getDeviceSelector
is correct, and in the case of the ServiceDevice object it also requires an additional argument that the code in the docs

does not provide.

http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceclass.aspx
http://msdn.microsoft.com/library/windows/apps/br225435.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformationcollection.aspx
http://code.msdn.microsoft.com/windowsapps/Device-Enumeration-Sample-a6e45169
http://msdn.microsoft.com/library/windows/apps/hh464974.aspx

959

<select size="3" id="selectInterfaceClass" aria-labelledby="listLabel">

 <option selected value="{0ECEF634-6EF0-472A-8085-5AD023ECBCCD}">Printers</option>

 <option value="{E5323777-F976-4F5B-9B55-B94699C46E44}">Webcams</option>

 <option value="{6AC27878-A6FA-4155-BA85-F98F491D4F33}">Portable Devices</option>

</select>

When you select one of these from the sample’s drop down and click the button to enumerate, it

builds a selector string like so (js/interfaces.js):

var deviceInterfaceClass = deviceInterfaceClassText.value;

var selector = "System.Devices.InterfaceClassGuid:=\"" + deviceInterfaceClass + "\"";

// + " AND System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True";

where the InterfaceEnabled part of the string is optional but generally a good idea.

However you obtain the selector string, the next step is to use the other variant of Device-

Information.findAllAsync that accepts a string selector along with an array of additional property

strings (such as sub-containers in a device; pass null if you don’t have anything else to specify):

Windows.Devices.Enumeration.DeviceInformation.findAllAsync(selector, null).done(

 function(devinfoCollection) {

 var numDevices = devinfoCollection.length;

 for (var i = 0; i < numDevices; i++) {

 displayDeviceInterface(devinfoCollection[i], id("scenario1Output"), i);

 }

 });

Really important for JavaScript! I can’t stress the following point enough because it’s caused me

some hours of grief. The DeviceInformation class has two findAllAsync methods that accept one

argument, but the only one that’s projected into JavaScript accepts a DeviceClass object and not a

selector string. Unfortunately, that method accepts a string without complaint and proceeds to

enumerate every device on your system! Therefore, if you’re using a selector string, always pass null

as the second argument (as shown above) so that you get the right variant of findAllAsync.

In any case, the result of an enumeration is just an array of DeviceInformation objects. As noted

before, to use the first enumerated device as the default, just grab the first item in the array and pass its

id property to the appropriate object’s fromIdAsync. Otherwise you can use the other properties and

methods in DeviceInformation to create an attractive list of devices in your UI such as those shown in

Figure 17-4 and Figure 17-5 (using the sample). Here the device image is obtained from

DeviceInformation.getThumbnailAsync and the glyph from getGlyphThumbnailAsync.

http://msdn.microsoft.com/windows/apps/br225434.aspx
http://msdn.microsoft.com/windows/apps/br225434.aspx

960

FIGURE 17-4 Sample device enumeration output for a webcam—which perfectly represents the one sitting on top

of my monitor.

FIGURE 17-5 Sample device enumeration output for printers—showing two that look exactly like those sitting next

to my desk.

Scenario 2 of the sample executes the same process (with plain text output) for Plug and Play (PnP)

object types using Windows.Devices.Enumeration.Pnp.PnpObject.findAllAsync. This API lets you

enumerate devices by interface, interface class, and container (the visible and localized aspects of a

piece of hardware, like manufacturer and model name):

Windows.Devices.Enumeration.Pnp.PnpObject.findAllAsync(deviceContainerType,

 propertiesToRetrieve).done(function (containerCollection) {

 var numContainers = containerCollection.length;

 for (var i = 0; i < numContainers; i++) {

 displayDeviceContainer(containerCollection[i], id("scenario2Output"));

 }

 });

http://msdn.microsoft.com/library/windows/apps/br225511.aspx

961

In the call above, the propertiesToRetrieve variable contains an array of strings that identify the

Windows properties you’re interested in. The sample uses these:

var propertiesToRetrieve = ["System.ItemNameDisplay", "System.Devices.ModelName",

 "System.Devices.Connected"];

The result of the enumeration—the containerCollection variable in the code above—is a

PnpObjectCollection that contains PnpObject instances. The sample just takes the information from

these (which might take a while to produce) and displays a text output for each.

Note that there is a variant of findAllAsync that accepts an AQS string as a filter. This is a string

that you obtain from APIs like Windows.Devices.Portable.StorageDevice.getDeviceSelector

that makes enumeration of those particular devices easier.

The findAllAsync methods that we’ve seen so far enumerate devices on demand. At other times

you want to actively watch for devices as they are added or removed from the system. This is done with

the DeviceInformation.createWatcher and PnpObject.createWatcher static methods, the former

of which has variants that accept DeviceClass and selector strings as with findAllAsync.

The watcher objects that you get back, DeviceWatcher and PnpObjectWatcher, respectively, have

various events to tell you about when the available devices change: added, removed, and updated,

each of which supplies the appropriate DeviceInformation objects. These are clearly what you’d use

to maintain a display of active devices in your app (as a number of the samples do), rather than using a

timer to periodically enumerate the devices with findAllAsync. Just be sure to call the watcher’s

start method to enable periodic scanning, otherwise you’ll be severely disappointed in the results!

As a final note, the API for near-field communication provides similar enumeration and watching

capabilities, but the structure is slightly different. We’ll see these in “Finding Your Peers (No Pressure!).”

Sidebar: Enumerating “Portable Devices”

Another group of devices are known as portable devices. Enumerating these is a third option in

scenario 1 of the Device enumeration sample and is also demonstrated in the Portable device

service sample. In both contexts, what we’re talking about here opens the doors to the subject of

Windows Portable Devices (or WPD), a driver technology that supports things like phones, digital

cameras, portable media players, Bluetooth devices, and so on, where the need is primarily to

transfer data between the device and the system. WPD supplies an infrastructure for this, and the

Windows.Devices.Portable API lets you interact directly with WPD. Here you’ll find the

ServiceDevice and StorageDevice classes, both of which simply provide methods that return

selector strings and id properties. In the former case, such information is meaningful only to the

device app associated with the hardware. In the latter case, however, the StorageDevice.-

fromId method provides a StorageFolder through which you can enumerate its contents. This

is demonstrated in scenario 3 of the Removable storage sample that we noted in Chapter 11,

where it will create a list of removable storage devices to choose from and then display the first

image found on the one you select.

http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobjectcollection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobject.aspx
http://msdn.microsoft.com/library/windows/apps/br225512.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.portable.storagedevice.getdeviceselector.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.createwatcher.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobject.createwatcher.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.devicewatcher.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobjectwatcher.aspx
http://code.msdn.microsoft.com/windowsapps/Portable-Device-f97089b5
http://code.msdn.microsoft.com/windowsapps/Portable-Device-f97089b5
http://msdn.microsoft.com/library/windows/hardware/gg463541.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.portable.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0

962

Scenario API Devices

As described in the introduction, the scenario APIs work with different classes of devices for which both

the underlying protocol and command structures are standardized. As a result, WinRT provides an

abstract interface for different device types and apps don’t need to have any knowledge of specific

makes and models. Printing is the primary example of this, so much so that we’ll come back to that

concern (2D printing) in “Printing Made Easy.” Input devices, sensors, and geolocation devices also fall

into this category, and we’ve already given those a chapter unto themselves (Chapter 12).

What we’ll explore here are a handful of other device types: image scanners, point of service devices

(barcode scanners and magnetic stripe readers), smart cards, fingerprint readers, and Bluetooth call

control devices. Most of these are represented by APIs within the Windows.Devices namespace,

although fingerprint readers come from Windows.Security and Bluetooth call control from

Windows.Media. In those cases too you don’t need to worry about manifest declarations or device

discovery. But let’s not quibble over such concerns but move right into fun parts! And to make it all the

more fun, I hope you have at least some of these devices on hand so that you can try them out

through the SDK samples.

Image Scanners

If printing is a way to take digital information and render it in physical form, scanners serve the

opposite purpose: to take physical manifestations of information and render them digitally. From there,

such digital information can be shared, archived, edited, and otherwise manipulated in ways that are

much less difficult or expensive than with the physical forms.

Image scanners in particular serve to digitize the many pictures and documents (f rom receipts and

check stubs to legal documents and medical records) that we so often still have piling up around our

homes and workplaces (especially if you work in a legal firm!). I know I once spent many hours

converting several thousand 35mm color slides that filled a shelf worth of three ring binders into digital

form, now taking up only a small amount of space on the 2TB drives in my home server. And I’m always

happy to empty a file drawer through the document scanner on my Epson Artisan 830 shown earlier in

Figure 17-5, offering the remains to my trust recycling bin.

Image scanners are also distinct from cameras in that they eliminate shadows, eliminate distortions,

provide consistent lighting and color quality, often have document feeders, and often provide much

higher pixel resolutions and therefore image quality than cameras do.

Recognizing the unique role of image scanners, you can start to identify the many different ways

that your apps can help customers digitize the information that flows through their lives. When you do,

the image scanning API in Windows.Devices.Scanners (which doesn’t require any special capabilities

in your manifest) allows you to work with the hardware, specifically any scanner that bears the

Windows logo. (And telemetry shows that something like two-thirds of all printers connected to

Windows devices are also scanners, so there are many of them out there!)

http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.aspx

963

Background scanning Because scanning typically takes a lot more time than users are willing to wait,

the API automatically prevents an app from being suspended during scanning operations. Once the

operations are complete, an app that’s still in the background will then be suspended. However, in

your completed handler for the operation you can issue a toast notification to alert the user that the

job is done. That way he knows to switch back to your app to see those results.

As with many device interactions, you’ll typically start by enumerating available scanners or just

using the default. Through this you obtain the appropriate ImageScanner object, after which you can

set configuration options and enable a preview, if desired. Then you call its scanFilesToFolderAsync

method, which creates files in the designated folder for which you can obtain the StorageFile objects.

In other words, the scanner API is set up to generate user data files, because typically the user will want

to do something else with all their scans and not have them hidden away in your app data.

To enumerate scanners, use DeviceInformation.findAllAsync or createWatcher with

DeviceClass.imageScanner. The Scan runtime API sample, where all this is demonstrated, uses a

watcher (js/scannercontext.js):

scannerWatcher = Windows.Devices.Enumeration.DeviceInformation.createWatcher(

 Windows.Devices.Enumeration.DeviceClass.imageScanner);

// Register to know when devices are added or removed, and when the enumeration ends

scannerWatcher.addEventListener("added", onScannerAdded);

scannerWatcher.addEventListener("removed", onScannerRemoved);

scannerWatcher.addEventListener("enumerationcompleted", onScannerEnumerationComplete);

scannerWatcher.start();

This code is run from scenario 1, where the event handlers simply maintain a list of available devices

(in the variable ScannerContext.scannerList) that are used in the sample’s other scenarios, where

you always need to select a scanner from a drop-down list. Each scanner has a device id assigned to it,

which you pass to the static ImageScanner.fromIdAsync method to obtain the ImageScanner

instance for that particular device:

Windows.Devices.Scanners.ImageScanner.fromIdAsync(deviceId).then(function (myScanner) {

 // myScanner is an ImageScanner

});

From here we have a number of different paths to take with the ImageScanner, which are

demonstrated in the other scenarios of the sample. Scenario 2, for instance, just does a default scan

with the selected scanner (ScannerContext.currentScannerId), saving the result in the Pictures

library (for which we need the capability selected in the manifest). This code is condensed from

js/scenario2JustScan.js—I’ve removed some code so that we can see the core interaction path:

scanToFolder(ScannerContext.currentScannerId, Windows.Storage.KnownFolders.picturesLibrary);

function scanToFolder(deviceId, folder) {

 // Get the scanner object for this device id

 Windows.Devices.Scanners.ImageScanner.fromIdAsync(deviceId).then(function (myScanner) {

 // Scan API call to start scanning

http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.aspx
http://code.msdn.microsoft.com/windowsapps/Scan-Runtime-API-Sample-5703b7a2

964

 return myScanner.scanFilesToFolderAsync(

 Windows.Devices.Scanners.ImageScannerScanSource.default, folder);

 }

 }).done(function (result) {

 if (result) {

 if (result.scannedFiles.size > 0) {

 displayResults(result.scannedFiles);

 }

 }

 }, function (error) {

 if (error.name === "Canceled") {

 // Operation was canceled

 } else {

 // Other errors

 }

 }, function(progress) {

 // Display progress

 });

}

Once we have the ImageScanner object, we can ask it to make a scan with its default source into the

given folder by using scanFilesToFolderAsync. The result of this (result in the code) is an

ImageScannerScanResult object that contains a single property, scannedFiles, which is a vector

view (therefore read-only) of StorageFile objects. With this you can generate whatever kind of

display you want, just like you would had you enumerated files from some other folder.

Note If nothing is scanned, scanFilesToFolderAsync will succeed but the scannedFiles vector will

be empty and its size property set to zero.

Other errors can occur that prevent the scan from completing, in which case the promise’s error

handler is invoked. If the promise from scanFileToFolderAsync is canceled (through the promise’s

cancel method), the error handler is invoked with error.name set to “Canceled”, as you can see

above. Other errors can be paper jams, cover open, user intervention needed, and so on. Refer to the

reference page on scanFilesToFolderAsync for a list of possible errors.

You’ll notice too that scanFileToFolderAsync supports progress, so you can attach a progress

handler to the promise to receive the number of files that have been scanned. This is most helpful

when you are running multiple scans from some kind of feeder (see scenario 7 of the sample for a

demonstration), because you can display a thumbnail of each scan file as its scan completes. On the

other hand, if you want to provide a scan preview without generating a file, you use the

scanPreviewToStreamAsync method, which we’ll see in a little bit.

First, let’s talk about the other options for the ImageScanner. In the scanFileToFolderAsync call

we pass a scan source value from ImageScannerScanSource. The options here are default (auto-

select), autoConfigured, flatbed, and feeder, all of which are used in various scenarios in the sample.

The scanner’s default can be retrieved through the ImageScanner.defaultScanSource property, and

http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.scanfilestofolderasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescannerscanresult.aspx

965

to determine whether a certain source is available, as when you want to present the user with the

choice, call ImageScanner.isScanSourceSupported for the applicable options.

If you’re using a scan source other than the default, you’ll typically configure that source prior to

starting the scan. Each of the specific scan sources has an associated configuration property on the

ImageScanner object:

Property Object Type Description
autoConfiguration ImageScannerAutoConfiguration Specifies the file format to use with the scan but leaves all

other properties as auto-configured by the device or

through its dedicated control panel app, if one exists. For

more, see Auto-Configured Scanning.

flatbedConfiguration ImageScannerFlatbedConfiguration Specifies resolution, cropping mode, brightness, color

mode, contrast, format, and scan region, with properties

for default, minimum, and maximum values for these.

feederConfiguration ImageScannerFeederConfiguration Specifies the same properties as for the flatbed source and

then includes settings for page size, scan ahead, duplexing,

page dimensions, and orientation.

The flatbed and feeder configuration objects are rather involved, so I won’t list all the options here.

For the most part, you use the min/max/default settings and their various is*Supported methods to

build a configuration UI that specifically reflects the scanner’s actual capabilities, as shown in Figure 17-

6 for the Windows Scan app. For example, the ImageScannerAutoConfiguration object has just

format and defaultFormat properties, which come from the ImageScannerFormat enumeration (with

values like jpeg, gif, png, tiff, pdf, etc.). Its isFormatSupported method tells you which formats it

can scan to, so when building a selection list, you iterate the formats and call isFormatSupported to

determine whether that setting should be included.

FIGURE 17-6 How the Windows Scan app displays various scanner properties and capabilities.

http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.autoconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescannerautoconfiguration.aspx
http://msdn.microsoft.com/library/windows/hardware/ff539393(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.feederconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescannerflatbedconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.feederconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescannerfeederconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescannerformat.aspx

966

Let’s see a few concrete examples in code. Scenario 4 of the Scan runtime API sample works with

auto configuration (see js/scenario4DeviceAutoConfiguredScan.js). It checks first that auto

configuration is supported and then sets the file format to PNG, if that’s supported. Then it starts the

scan with the autoConfigured source (I’ve added the namespace variable wds for brevity):

var wds = Windows.Devices.Scanners;

if (myScanner.isScanSourceSupported(wds.ImageScannerScanSource.autoConfigured)) {

 // Set the scan file format to PNG, if available

 if (myScanner.autoConfiguration.isFormatSupported(wds.ImageScannerFormat.png)) {

 myScanner.autoConfiguration.format = wds.ImageScannerFormat.png;

 }

 return myScanner.scanFilesToFolderAsync(wds.ImageScannerScanSource.autoConfigured, folder);

}

Scenario 5 does more or less the same thing for the flatbed configuration, setting the format to a

device-independent bitmap (js/scenario5ScanFromFlatbed.js):

if (myScanner.isScanSourceSupported(wds.ImageScannerScanSource.flatbed)) {

 myScanner.flatbedConfiguration.format = wds.ImageScannerFormat.deviceIndependentBitmap;

 return myScanner.scanFilesToFolderAsync(wds.ImageScannerScanSource.flatbed, folder);

}

Scenario 6 uses the feeder source and shows the additional steps of setting a grayscale color mode

and duplex scanning. I’ve taken the liberty here of modifying the code to set PDF as a primary format,

using JPEG as a backup and shortening a few lines (js/scenario6ScanFromFeeder.js):

var wds = Windows.Devices.Scanners;

if (myScanner.isScanSourceSupported(wds.ImageScannerScanSource.feeder)) {

 var fc = myScanner.feederConfiguration;

 fc.format = fc.isFormatSupported(wds.ImageScannerFormat.pdf) ?

 wds.ImageScannerFormat.pdf | wds.ImageScannerFormat.jpeg;

 if (fc.isColorModeSupported(wds.ImageScannerColorMode.grayscale)) {

 fc.colorMode = wds.ImageScannerColorMode.grayscale;

 }

 fc.duplex = fc.canScanDuplex;

 fc.maxNumberOfPages = 0; // Zero means scan all the pages that are present in the feeder

 return myScanner.scanFilesToFolderAsync(wds.ImageScannerScanSource.feeder, folder);

}

And that’s pretty much it for the scanning source. As you can see, there’s a definite pattern that you

follow for all the options.

The last part of the API is the ability to get a preview of a scan prior to scanning to a file. First, check

ImageScanner.isPreviewSupported to discover whether the device is capable of previews, and if so,

call ImageScanner.scanPreviewToStreamAsync to do the job. This method takes a scan source, as

http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.ispreviewsupported.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.scanners.imagescanner.scanpreviewtostreamasync.aspx

967

we’ve seen, and also a RandomAccessStream rather than a folder. To use the example from scenario 3

of the sample (code shortened from js/scenario3PreviewFromFlatbed.js):

var stream = new Windows.Storage.Streams.InMemoryRandomAccessStream();

scanPreviewToStreamAsync(wds.ImageScannerScanSource.flatbed, stream).done(function (result) {

 if (result && result.succeeded) {

 displayResult(stream);

 }

}

As with any other stream, you can call MSApp.createBlobFromRandomAccessStream, pass the blob

to URL.createObjectURL, and assign that URL to an img element:

function displayResult(stream) {

 var image = document.getElementById("displayImage");

 var blob = window.MSApp.createBlobFromRandomAccessStream("image/bmp", stream);

 var url = window.URL.createObjectURL(blob);

 image.src = url;

}

Note that scanPreviewToStreamAsync does not support a progress handler nor interim results for

a scan in progress, so you need to wait until the operation is complete before displaying the preview. In

the meantime, you’ll generally want to include some kind of progress ring or such to show that the

scanner is working, and again remember that scanning will continue when the app is moved to the

background.

Barcode and Magnetic Stripe Readers (Point-of-Service Devices)

Without having thought about it much, I’m sure you’ve encountered many point-of-service (PoS)

devices in recent months. When you go to an airport and scan a receipt, a credit card, or some other

identification, you’re interacting with PoS devices, as does the boarding agent when scanning your

boarding pass. When you swipe a card at a retailer to make payment, you’re using a PoS device. When

you go through self-checkout at a grocery store or a clerk scans the UPC codes of your items for you,

PoS devices are involved. (PoS is sometimes called “point-of-sale,” but many interactions have nothing

to do with sales, which is why we use the more generic “service.”)

These devices are quite diverse in their forms and include everything from scanners and card

readers to cash drawers, change machines, receipt printers, NFC card scanners, and do on. In many

cases you’ll work with those devices through one of the protocol APIs discussed later in this chapter.

For the two most common ones, however—barcode readers and magnetic stripe readers (MSRs)—

Windows provides dedicated APIs that are found in Windows.Devices.PointOfService:

BarcodeScanner and MagneticStripeReader. The job of these APIs is to convert data that’s

represented as barcodes or data that’s written onto a magnetic card into a form that apps can

consume. They work over USB HID connectivity with devices that adhere to the Unified POS standard,

which has been adopted internationally for such common peripheral devices. If you want a little more

background, watch the beginning of //build 2013 session 3-029, How to Use Point-of-Sale Devices in

http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.barcodescanner.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.magneticstripereader.aspx
http://channel9.msdn.com/Events/Build/2013/3-029

968

Your App. In this chapter I’ll just focus on the basic device interactions.

To use either device, you must first declare a DeviceCapability in your app manifest as follows

(editing the XML directly):

<Capabilities>

 <DeviceCapability Name="pointOfService" />

</Capabilities>

The next step is to acquire a device. You can, of course, enumerate available devices and give the

user a choice, or watch for devices being added and removed from the system, but for specifically

engineered PoS systems it’s much more likely that there is only one device. This means you can ask for

the default device and be done with it. The BarcodeScanner and MagneticStripeReader classes

make this easy by providing static getDefaultAsync methods:

Windows.Devices.PointOfService.BarcodeScanner.getDefaultAsync().then(function (scanner) {

// scanner is a BarcodeScanner instance.

}

Windows.Devices.PointOfService.MagneticStripeReader.getDefaultAsync().then(function (reader) {

// reader is a MagneticStripeReader instance.

}

Notice that I’m showing both classes in parallel, drawing code from the Barcode scanner sample and

the Magnetic stripe reader sample (or MSR sample for show). Because they share a common paradigm,

we can talk about their basic operations together. A little later we’ll discuss each one’s specifics.

At this point the device objects can report only on their capabilities (which are rich and varied),

health (checkHealthAsync), statistics (retrieveStatisticsAsync), and status (statusupdated

events). With the BarcodeScanner you can also retrieve and check for profiles along with supported

symbologies (via getSupportedSymbologiesAsync and isSymbologySupportedAsync, with the

BarcodeSymbologies class identifying dozens of these). With the MagneticStripeReader you also

check the deviceAuthenticationProtocol and supportedCardTypes.

Now, acquiring an instance of the device object is not enough to obtain readings. For that you need

to claim exclusive use of the device (see js/scenario1.js in both samples):

scanner.claimScannerAsync().done(function (claimedScanner) {

 // claimedScanner is an instance of ClaimedBarcodeScanner

}

reader.claimReaderAsync().done(function (claimedReader) {

 // claimedReader is an instance of ClaimedMagneticStripeReader

}

This step of claiming the device is what allows you to attach event handlers to it and to start

receiving data (you’ll find events in the ClaimedBarcodeScanner and ClaimedMagneticStripeReader

classes, which I’ll refer together to as Claimed<Device>). Why this extra step? It’s because there can be

multiple apps on the same system wanting to access the device. The APIs here thus work on a

cooperative claim-and-release model. Let’s say app A has a claim and thus has the Claimed<Device>

http://channel9.msdn.com/Events/Build/2013/3-029
http://code.msdn.microsoft.com/windowsapps/Barcode-scanner-sample-f39aa411
http://code.msdn.microsoft.com/windowsapps/Magnetic-stripe-reader-30aa2ca5
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.barcodesymbologies.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.claimedbarcodescanner.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.claimedmagneticstripereader.aspx

969

object. When app B makes a request, app A will receive the Claimed<Device>.releaseDevice-

Requested event. By default, this will release the claim from app A and give it to app B. However,

because app A might be in the middle of a transaction, it can deny the request by calling

Claimed<Device>.retainDevice. Code for this can be found in scenarios 1 and 2 of the Barcode

scanner sample, but to show it simply:

claimedScanner.addEventListener("releasedevicerequested", function () {

 claimedScanner.retainDevice();

});

The MSR sample doesn’t show handling of the event, but it works identically. In the end, you almost

always want to have such a handler because otherwise another app can come along and take the claim

away at any time.

Note If app A has a claim that is suspended and then app B makes a request, app B will be granted

the claim automatically because the system will not resume app A nor fire the event. When app A

resumes, it must request its claim again.

Assuming that you have a claim, you can then tell the device to decode encrypted data

automatically by setting Claimed<Device>.isDecodeDataEnabled to true. If you want to do the

decryption in the app, set this to false.

Next you register for the events of interest, which, apart from releasedevicerequested and

erroroccurred, are unique for each class. Be mindful that all these are WinRT events and must be

properly released to avoid memory leaks.

ClaimedBarcodeScanner event Description
datareceived Receives a BarcodeScannerDataReceivedEventArgs with a single report property

(a BarcodeScannerReport), which contains scanData, scanDataLabel, and

scanDataType (the symbology).

imagepreviewreceived Receives a BarcodeScanningImagePreviewReceivedEventArgs whose single

preview property is a RandomAccessStream that you can then pass through the

MSApp.createBlobFromRandomAccessStream to URL.createObjectUrl to an

img.src for display.

triggerpressed The barcode scanner’s button was pressed (no other data).

triggerreleased The barcode scanner’s button was released (no other data).

ClaimedMagneticStripeReader event Description
aamvacarddatareceived Receives a MagneticStripeReaderAamvaCardDataReceivedEventArgs object.

AAMVA is the America Association Motor Vehicles Administrators and is used for

cards like driver’s licenses. The properties of this object are licenseNumber,

expirationDate, firstName, surname, suffix, gender, height, weight, eyeColor,

hairColor, address, city, state, postalCode, birthDate, endorsements,

restrictions, and report (the raw data).

bankcarddatareceived Receives a MagneticStripeReaderBankCardDataReceivedEventArgs from a bank

card, e.g. credit and debit cards, which contains these properties: accountNumber,

expirationDate, title, firstName, middleInitial, surname, suffix,

serviceCode, and report (the raw data).

http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.barcodescannerdatareceivedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.barcodescannerreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.barcodescannerimagepreviewreceivedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.pointofservice.magneticstripereaderbankcarddatareceivedeventargs.aspx

970

vendorspecificdatareceived Receives a MagneticStripeReaderVendorSpecificCardDataReceivedEventArgs

for cards that aren’t otherwise identified as an AAMVA or a bank card. The only

property in this object is report, which contains vendor-specific data.

Once you’re ready to receive events, the last step in the process is to enable the device to receive

data. “My, my,” you say, “I already had to claim a device. Why must I now also enable it?” The reason

for this is that doing something meaningful with the scanned data can take a considerable amount of

time, during which you don’t necessarily want to get another reading. For example, scanning an item at

a self-checkout station just gets you the UPC number, which isn’t enough to show any meaningful data

to the customer who just waved that product through the laser field. The app will typically need to do

an async database lookup with the UPC and display the results before allowing the customer to scan

their next item.121 Similarly, an MSR doesn’t need to send more data while the app is busy

authenticating the last credit card swipe.

Therefore, the app needs a way to tell the device, “Please wait a bit until I’m ready to receive data

again,” and this is what disable-enable does. By calling the Claimed<Device>.enableAsync call, you

say that you’re ready to receive data via events. When you need to hold off for a bit, call

Claimed<Device>.disableAsync before starting your other async lookups. When you’re ready to

receive more data, call enabledAsync. And to simplify matters, you can instruct the Claimed<Device>

to automatically call disableAsync after each data event by setting its isDisabledOnDataReceived

property to true. (And the isEnabled property will return the status at any time.)

In short, claiming a device establishes a pipeline and disable-enable provides a quick way to open

and close the valve on that pipe so you can control the flow of information in your app.

Beyond this, you can explore many other details with these devices, such as statistics, authentication,

encryption, track IDs on MSRs, and more. I won’t go into those details; if you’re creating a PoS system,

you’ll necessarily know what more you need to explore within the Windows.Devices.PointOfService

namespace.

Smartcards
If you’re working with or have worked with a company that has grown large enough to take security

seriously, you have encountered a smart card. As a Microsoft employee, I’ve had one for many years,

which serves a dual purpose of giving me access to buildings on various corporate campuses as well as

authenticating me when I connect to the corporate network over VPN. For the latter purpose I have

both my physical smartcard and a virtual smartcard. The virtual smartcard is wholly convenient because

I don’t have to plug my physical card into a reader to connect over VPN.

121 This is true even considering just how slowly some people seem to work through their baskets in the self-checkout lines!

971

This book is not the place to go into details about security, so let me briefly outline the API in

Windows.Devices.SmartCards. First, the SmartCardReader object lets you find connected cards

through its static findAllCardsAsync, fromIdAsync, and getDeviceSelector methods, and you can

watch for cards through its cardadded and cardremoved events. Each reader (which represents a

reader device, not a card) also has a kind (SmartReaderKind), a name, a deviceId, and status

(getStatusAsync, SmartCardReaderStatus).

Each individual card is then represented by a SmartCard object, which provides basic info through

getStatusAsync, reader, and getAnswerToResetAsync.

The richest piece of the API is the SmartCardProvisioning class, which is what you can use to

create virtual smart cards (requestVirtualSmartCardCreationAsync), reset or change the card’s PIN

(requestPinChangeAsync, requestPinResetAsync), and delete cards (requestVirtualSmartCard-

DeletionAsync). All this is the focus of the Smart card sample in the SDK. The only other bit I’ll

mention is that the sample declares the Shared User Certificates capability in its manifest, which is

necessary for using the smart card APIs.

Fingerprint (Biometric) Readers

This particular scenario API isn’t actually found in Windows.Devices but rather in Windows.-

Security.Credentials.UI.UserConsentVerifier. This is what works with fingerprint readers on

suitably equipped devices and does not involve any capabilities nor enumeration.

The name of the object here, UserConsentVerifier, underscores the fact that a fingerprint reader

specifically validates the physical presence of the logged in user. This is much more certain than a PIN

or a password, because you just can’t share a fingerprint with anyone else! (Biometric devices have

many ways to defeat fake fingers too.) It also allows for an additional level of security when a user

shares their tablet or laptop with another person without logging out. So, if your app does any kind of

high-value transaction for which you should double-check user consent (such as stock trades or

financial exchanges), using a fingerprint adds a deeper layer of authentication. What’s more, it’s much

easier for the user as well, especially on touch-only devices. For more background, refer to //build 2013

session 2-9110, Biometrics – Fingerprints for Apps.

The API is also super-simple: the UserConsentVerifier object has just two methods. First,

checkAvailabilityAsync returns a UserConsentVerifierAvailability value: available,

deviceNotPresent, disabledByPolicy, notConfiguredForUser, and deviceBusy:

var uci = Windows.Security.Credentials.UI;

uci.UserConsentVerifier.checkAvailabilityAsync().done(function (consentAvailability) {

 // Take action on availability

});

http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.smartcardreader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.smartcardreaderkind.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.smartcardreaderstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.smartcard.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.smartcards.smartcardprovisioning.aspx
http://code.msdn.microsoft.com/windowsapps/Smart-card-sample-c7d342e0
http://channel9.msdn.com/Events/Build/2013/2-9110
http://channel9.msdn.com/Events/Build/2013/2-9110
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifier.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifier.checkavailabilityasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifieravailability.aspx

972

This is demonstrated in scenario 1 (js/s1-check-availability.js) of the UserConsentVerifier sample.122

Assuming there is availability, scenario 2 (js/s2-request-consent.js) requests verification via request-

VerificationAsync. The message argument for this method will be displayed in a MessageDialog,

and assuming the user does a scan, the result of the operation is a UserConsentVerificationResult

value (code simplified from the sample):

var uci = Windows.Security.Credentials.UI;

var ucvr = uci.UserConsentVerificationResult;

uci.UserConsentVerifier.requestVerificationAsync(message).done(function (consentResult) {

 switch (consentResult) {

 case ucvr.verified:

 // User's presence verified.

 break;

 case ucvr.deviceNotPresent:

 // No biometric device found.

 break;

 case ucvr.disabledByPolicy:

 // Biometrics is disabled by policy.

 break;

 case ucvr.retriesExhausted:

 // Too many failed attempts.

 break;

 case ucvr.notConfiguredForUser:

 // User has no fingeprints registered.

 break;

 case ucvr.deviceBusy:

 // Biometric device is busy.

 break;

 case ucvr.canceled:

 // Consent request prompt was canceled.

 break;

 default:

 // Consent verification with fingerprints is currently unavailable.

 break;

 }

});

For both methods, the only cases that invoke an error handler for the promise is when there’s a

problem unrelated to device availability or its status.

Bluetooth Call Control
Although we’ll deal with generic Bluetooth devices in “Protocol APIs,” another scenario API exists for a

special case: Bluetooth communications devices that can handle calls, such as headsets and other

telephony devices. These devices typically handle audio transfer and provide one or more buttons to

122 Scenario 1 of the sample also has a (misspelled) retriesExhaused case for availability, but this is not a member of the

availability enumeration. It is included in the UserConsentVerificationResult enumeration.

http://code.msdn.microsoft.com/windowsapps/UserConsentVerifier-Sample-ecc40a81
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifier.requestverificationasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverifier.requestverificationasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.userconsentverificationresult.aspx

973

perform actions like redial, hang up, and so on. For these there exists an API in Windows.Media.-

Devices.CallControl and no manifest declarations are needed.

To obtain a device instance, call the static methods CallControl.getDefault or fromId. With that

object you either instruct it to reflect call status or respond to events raised by the device. In all cases

the app is the one that’s doing the actual calling, such as doing real-time communications over sockets:

the device is just a piece of peripheral hardware that can participate in the process, in much the same

way a keyboard participates in text entry.

The CallControl object has four methods to set indicators on the device to reflect call status:

indicateNewIncomingCall, indicateNewOutgoingCall, indicateActiveCall, and endCall

methods. How the device responds depends on its design.

The events that the device can raise also depends on its design, but the CallControl object can

receive the following: answerrequested, audiotransferrequested, hanguprequested,

redialrequested, and keypadpressed. Your event handlers for these will typically invoke the

CallControl methods. For example, if you respond to answerrequested by starting a call, you’d

invoke indicateActiveCall.

The CallControl.hasRinger property also tells you if the device has its own ringer.

If you have a suitable device to play with, you can see the API in action through the Bluetooth Call

Control sample. A walkthrough of the sample can be found on How to manage calls on the default

Bluetooth communications device.

Printing Made Easy

An embarrassingly long time ago, when I was first working in the computer industry, I remember

hearing excited talk about the “paperless office” and how very soon now we wouldn’t need things like

printers because everything would be shuttled around digitally. Decades later, we do find ourselves

shuttling around plenty of digital content, and yet printing is still alive and well (except for this present

book, of course, where early on we decided on an ebook format so that we could use extensive

hyperlinks and color!). Maybe we still like paper for how it feels, how it uses our eyes differently, how

it’s cheap and disposable (unlike your Windows tablet), how it can be used to start fires in a pinch or

make airplanes, and how it makes good use of all the small trees that get thinned out of commercial

tree farms (at least here in the western United States). Maybe too it’s just part of the human

experience—after all, as much as we play with our computers, we do still live in a physical world with

physical objects, so it makes sense that we continue to appreciate placing information onto physical

media. And when we make printouts, we also give ourselves a good excuse to exercise our scanners!

Sometimes I wonder whether the idea of the paperless office wasn’t fueled in part by the fact that

many apps didn’t implement printing very well, an artifact of it being a difficult task to begin with. (And

then there were printer drivers of dubious quality, connection difficulties, and many other challenges.)

http://msdn.microsoft.com/library/windows/apps/windows.media.devices.callcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.devices.callcontrol.aspx
http://code.msdn.microsoft.com/windowsapps/Call-Control-b52ad696
http://code.msdn.microsoft.com/windowsapps/Call-Control-b52ad696
http://msdn.microsoft.com/library/windows/apps/hh452727.aspx
http://msdn.microsoft.com/library/windows/apps/hh452727.aspx

974

But gradually the whole world of printing has improved, both for consumers and for developers. More

recently this has also seen the rise of 3D printing, a topic that is beyond the scope of this book because

it requires that an app is written in C++.

Of course, printing isn’t always about going to paper either. I frequently use a PDF “printer” to

create read-only copies of documents that are more suitable for sharing in many cases than my

originals. Occasionally I print to a fax machine (to send a fax), and more occasionally I’ll print an email

or web page directly to Microsoft OneNote for filing. In fact, while you’re working on printing features

in an app, I highly recommend setting your default printer to a digital target. That way you’ll avoid

producing copious amounts of scratch paper in the process, unless you happen to own a tree farm that

you’ll be thinning in a couple of years!

Get the backstory If you want to know more about how printing as a whole has been reimagined,

check out Simplifying printing in Windows 8 on the Building Windows 8 Blog, a post that provides

deep soul satisfaction knowing that your printing future includes fewer drivers.

To understand how to implement printing in an app, let’s first see what it looks like to the user. Then

we’ll see how to prepare content for printing and how to handle the printing-related events that you

receive from Windows.

Note A Windows Store app written in JavaScript can use the window.print method to print with

default settings. It’s not recommended, however, because it doesn’t work with the print UI and doesn’t

always produce the best output. Windows Store apps should give the user the full Windows experience

as described here.

The Printing User Experience
Printing typically starts in an app where the user is looking at something she wants to print and invokes

an appropriate command. In scenario 2 of the refreshingly short-named Print sample, for instance,

whose code we’ll be looking at later in the chapter, we see a big block of content along with a Print

button, as shown in Figure 17-7. Note that such a Print button would normally be on the app bar and

not on the app canvas, but this is a sample.

To start printing, the user can either tap this Print button or open the Charms bar and select

Devices. Either way, if the app is registered for printing—that is, it’s listening for the event that’s raised

from the Devices charm and provides suitable content—the user will see a list of print targets, as shown

on the left side of Figure 17-8. If the app doesn’t have printable content—that is, it doesn’t listen for

the event or provides no content in response—the user will see a panel like that on the right side of

Figure 17-8. This is very much the same experience that a user sees with the Share charm depending on

whether the app provides data for that feature. You’ve likely seen the epic fail message of “This app

can’t share.” Printing supplies a similar disappointment for apps that lack the capability. Don’t let your

app be one of them.

http://blogs.msdn.com/b/b8/archive/2012/07/25/simplifying-printing-in-windows-8.aspx
http://code.msdn.microsoft.com/windowsapps/Print-Sample-c544cce6

975

FIGURE 17-7 Scenario 2 of the Print sample shows a typical app with something ready to print.

FIGURE 17-8 The Devices charm when an app has available print content (left) and when it doesn’t (right).

From this point on, the system is just taking whatever content the app provides and displaying UI

based on the capabilities of the printer driver, as shown in Figure 17-9 for my trusty Brother (actually,

my real brother’s name is Kevin). From the app’s point of view, it thankfully gets all of this for free! The

976

app can also indicate additional options to customize the UI, such as paper size and duplex printing, as

shown in Figure 17-10, which comes from scenario 3 of the sample.

FIGURE 17-9 Print preview and printer options are shown once the user selects a printer. The More Settings link on

the left is what opens the options pane on the right.

FIGURE 17-10 The Print pane reflecting customization options indicated by the app.

977

Sidebar: Device Apps for Printers

Apps that are specifically associated with printers have the ability to extend the print settings in

the UI and also participate in issuing print notifications to the user. For more details, refer to

Windows Store device apps for printers along with the Print settings and print notifications

sample in the SDK.

Print Document Sources
No matter where the user might want to print content, the important thing is to make that content

ready for printing. The key API you need to know about here is not found in WinRT but in the MSApp

object: MSApp.getHtmlPrintDocumentSource. I like the way the documentation once put it (since

changed): “This method is used as the bridge between HTML and [Windows app] style printing. In

other words, this is how an app dev says ‘give me some stuff to print’.” What you give it is an HTML

document that contains your content.

I emphasize the word document here because what you pass to getHtmlPrintDocumentSource

cannot be any arbitrary element in the DOM. It must be the same kind of thing that the document

variable always points to, or else you’ll see a run-time exception with “no such interface supported.”

So where do you get such an object?

If what your app is showing on the screen is exactly what you want to print, you can just use the

document object directly. This is what scenarios 1–3 of the Print sample do:

MSApp.getHtmlPrintDocumentSource(document);

Of course, you don’t necessarily want to print everything on the screen; you can see that what’s on

the screen in Figure 17-7 and what appears in the print preview of Figure 17-9 and Figure 17-10 is

different. This is where the print media query in CSS comes into play:

@media print {

 /* Print-only styles */

}

Simply said, if there’s anything you don’t want to show up in the printed output, set the display:

none style within this media query. An alternate strategy, one that the sample employs, is to create a

separate CSS file, such as css/print.css, and link it in your HTML file with the media attribute set to print

(see html/scenario1.html):

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" />

Print styles need not be limited to visibility of content: you can also use them however you like to

arrange your content for more printer-friendly output. In a way, printing is like another view state

where you’re not adding to or changing the content, you’re simply changing the visibility and layout.

There are also some events you can use to do more specific formatting before and after printing has

happened, as we’ll see later.

http://msdn.microsoft.com/library/windows/hardware/dn265150(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Device-app-for-printers-91f363a9
http://code.msdn.microsoft.com/windowsapps/Device-app-for-printers-91f363a9
http://msdn.microsoft.com/library/windows/apps/Hh831251.aspx
http://code.msdn.microsoft.com/windowsapps/Print-Sample-c544cce6

978

But what if the content you want to print isn’t your document object at all? How do you create

another? There are several options here:

 In the document.body.onbeforeprint event handler, append additional child elements to the

document and use the document.body.onafterprint event to remove them (the structure of

such handlers is shown in scenario 2 of the Print sample). If your print CSS leaves only those

newly added elements visible, that’s all that gets printed. This very effectively controls the entire

print output, such as adding additional headers and footers that aren’t visible in the app. You

might have a place in the app, in fact, where the user can configure those headers and footers.

 Call document.createDocumentFragment to obtain a document fragment and then populate it

with whatever elements you want to print. getHtmlPrintDocumentSource accepts such a

fragment. Note that if you want to drop in an HTML string (such as a piece acquired from a

webview), insert it using outerHTML rather than innerHTML.

 If you have an iframe whose src is set to an SVG document (one of the tips we discussed for

SVG’s in Chapter 13), obtain that SVG document directly through the iframe element’s

contentDocument property. This too can be passed directly to getHtmlPrintDocumentSource

and will print just that SVG, for example:

<!-- in HTML -->

<iframe id="diagram" src="/images/diagram.svg"></iframe>

//In JavaScript

var frame = document.getElementById("diagram");

args.setSource(MSApp.getHtmlPrintDocumentSource(frame.contentDocument));

 If you want to print the contents of an altogether different HTML page, create a link element

in the document head that points to that other page for print media (see below). This will

redirect getHtmlPrintDocumentSource to process that page’s content instead.

The latter is demonstrated in scenario 4 of the Print sample, where a link element is added to the

document with the following code (js/scenario4.js):

var alternateLink = document.createElement("link");

alternateLink.setAttribute("id", "alternateContent");

alternateLink.setAttribute("rel", "alternate");

alternateLink.setAttribute("href", "http://go.microsoft.com/fwlink/?LinkId=240076");

alternateLink.setAttribute("media", "print");

document.getElementsByTagName("head")[0].appendChild(alternateLink);

Here the rel attribute indicates that this is alternate content, the media attribute indicates that it’s

only for print, and href points to the alternate content (id is optional). Note that if the target page has

any print-specific media queries, those are certainly applied when creating the print source.

979

Providing Print Content and Configuring Options
Now that we know how to get a source for print content, it’s straightforward to provide that content to

Windows for printing. First, obtain the Windows.Graphics.Printing.PrintManager object:

var printManager = Windows.Graphics.Printing.PrintManager.getForCurrentView();

and then listen for its printtaskrequested event (a WinRT event), either through addEvent-

Listener or by assigning a handler as done in the sample:

printManager.onprinttaskrequested = onPrintTaskRequested;

If you don’t add a handler for this event, the user will see the message on the right side of Figure

17-7 when invoking the Devices charm, unless you’ve also registered for other device-related events

such as Windows.Media.PlayTo.PlayToManager.sourceRequested (see Chapter 13).

If you want to directly invoke printing from an app command, such as the Print button in scenario 2

of the sample, call the PrintManager.showPrintUIAsync method. This is equivalent to the user

invoking the Devices charm when the app has registered for the printtaskrequested event.

The printtaskrequested event is fired when the Devices charm is invoked. In response, your

handler creates a PrintTask object with a callback function that will provide the content document

when needed. Here’s how that works. First, your handler receives a PrintTaskRequest object that has

just three members:

 deadline The date and time that indicates how long you have to fulfill the request.

 getDeferral Returns a PrintTaskRequestedDeferral object in case you need to perform

any async operations to fulfill the request. As with all deferrals, you call its complete method

when the async operation has finished.

 createPrintTask Creates a PrintTask with a given title and a function that provides the

source document when requested.

The structure of createPrintTask is slightly tricky. Although it returns a PrintTask object through

which you can set options and listen to task-related events, as we’ll see shortly, its source property is

read-only. So, instead of creating a task and storing your content document in this property, you

provide a callback function that does the job when requested. The function itself is simple: it just

receives a PrintTaskSourceRequestedArgs object whose setSource method you call with what you

get back from MSApp.getHtmlDocumentPrintSource.

This is typically where you can also do other work to configure the task, so let’s take an example

from scenario 3 of the Print sample (where I’ve added a namespace variable for brevity):

function onPrintTaskRequested(printEvent) {

 var printTask = printEvent.request.createPrintTask("Print Sample", function (args) {

 args.setSource(MSApp.getHtmlPrintDocumentSource(document));

 // Choose the printer options to be shown. The order in which the options are

http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.printtaskrequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtomanager.sourcerequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.showprintuiasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtask.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskrequesteddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtasksourcerequestedargs.aspx

980

 // appended determines the order in which they appear in the UI

 var options = Windows.Graphics.Printing.StandardPrintTaskOptions;

 printTask.options.displayedOptions.clear();

 printTask.options.displayedOptions.append(options.copies);

 printTask.options.displayedOptions.append(options.mediaSize);

 printTask.options.displayedOptions.append(options.orientation);

 printTask.options.displayedOptions.append(options.duplex);

 // Preset the default value of the printer option

 printTask.options.mediaSize =

 Windows.Graphics.Printing.PrintMediaSize.northAmericaLegal;

 // Register the handler for print task completion event

 printTask.oncompleted = onPrintTaskCompleted;

 });

}

Note that PrintTaskSourceRequestedArgs also contains a getDeferral method, should you need

it, along with a deadline.

Tip If you step through the code in your printtaskrequested handler but you pass the deadline, the

print UI will time out and say there’s nothing available to print. This might not be an error in the app at

all—remove or disable the breakpoints and run the app again to check.

You can exercise some control over the appearance of the print UI through PrintTask.options, in

which context you should review Guidelines for print-capable apps. The options object here, of type

PrintTaskOptions, has a number of properties. A few obvious numerical ones are maxCopies,

minCopies, and numberOfCopies. You can also call getPageDescription with a page number to

obtain a PrintPageDescription with resolution information for that page.

Then there is a host of properties whose values come from various printing enumerations:

PrintTaskOptions Property Windows.Graphics.Printing Enumeration
binding PrintBinding

collation PrintCollation

colorMode PrintColorMode

duplex PrintDuplex

holePunch PrintHolePunch

mediaSize PrintMediaSize

mediaType PrintMediaType

orientation PrintOrientation

printQuality PrintQuality

staple PrintStaple

PrintTaskOptions.displayedOptions, for its part, is a vector of strings that must come from the

StandardPrintTaskOptions class, as shown in the earlier code. Each of these controls the visibility of

the option in the print UI if, of course, the printer supports it (otherwise the option will not be shown).

The full list of options is binding, collation, colorMode, copies, duplex, holePunch, inputBin,

http://msdn.microsoft.com/library/windows/apps/hh868178.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printbinding.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printcollation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printcolormode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printduplex.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printholepunch.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmediasize.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmediatype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printorientation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printquality.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printstaple.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskoptions.displayedoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.standardprinttaskoptions.aspx

981

mediaSize, mediaType, nUp, orientation, printQuality, and staple.

Take special note of the mediaSize property, for which there are literally 172 different values in the

PrintMediaSize enumeration that reflect all the sizes of paper, envelopes, and so forth that we find

around the world. When you intend to market a print-capable Windows Store app in different regions,

you might want to include mediaSize in displayedOptions and set its value to something that’s

applicable to the region (as the code above is doing for legal size paper). Even so, the media size is

typically available in the More Settings panel in the print UI, depending on what the printer in question

supports, so users will have access to it.

The final bit to mention in the code above is that a PrintTask has a completed event, along with

previewing, progressing, and submitting. You can use these to reflect the status of print tasks in

your app should you choose to do so. More information about the task itself is also available through

its properties, which will typically contain the title you gave to the print job along with a unique ID. In

all of this, however, you might have noticed a conspicuous absence of any method in PrintTask that

would cancel a print job—in fact, there is none. This is because the HTML print model, as presently

used by Windows Store apps written in JavaScript, is an all-or-nothing affair: once the job gets into the

print engine, there’s no programmatic means to stop it. The user can still go to the printer control

panel on the desktop and cancel the job there, or revert to the old-school method of yanking out the

paper tray, but at present an app isn’t able to provide such management functions itself.

Protocol APIs: HID, USB, Bluetooth, and Wi-Fi Direct

Whereas the scenario APIs in WinRT that we saw earlier in this chapter provide a focused interface to a

set of specific devices, the protocol APIs give you access to the much broader ecosystem of gadgets and

gizmos. So long as a device adheres to one of the supported standards—Bluetooth (RFCOMM/SPP),

Bluetooth Smart (LE/GATT), USB HID, USB (custom devices), and Wi-Fi Direct—you can use one of these

APIs to communicate with it. The only exceptions are for those devices that already have a dedicated

scenario API: where such support exists, as with barcode scanners, magnetic stripe readers, printers,

sensors, mice, keyboards, and so on, Windows automatically blocks access through the protocol APIs.

To be honest, one could (and I hope someone does!) write a whole book on the subject of these

protocol APIs, so in this chapter my intent is to give you enough of an introduction to familiarize you

with the possibilities and point you to additional resources. Toward that end I start each of the

following sections with a summary list of the device capability name, the primary namespace and

object class in WinRT for that protocol, applicable samples in the SDK, background documentation, and

the applicable talk from //build 2013 where all of these APIs were introduced. Where I happen to have

some suitable hardware available to me I’ll go into more detail about the protocol API in question; in

other cases I’ll just give a shorter overview.

For the sake of efficiency, let me also point out the common characteristics of the protocol APIs so

that I don’t have to bore you later by repeating myself five times!

982

The first commonality is, of course, declaring device access in the manifest. For all protocol APIs

other than Wi-Fi Direct, this takes the following form:

<m2:DeviceCapability Name="[capability]">

 <m2:Device Id="[id]">

 <m2:Function Type="[usage]" />

 </m2:Device>

</m2:DeviceCapability>

where m2 is the Windows 8.1 manifest namespace, [capability] identifies the protocol, such as

humaninterfacedevice, [id] is a string such as any (for “broad” devices) or vidpid:045E 0610 to identify a

specific (“narrow device) vendor/product id, and [usage] identifies the specific operational interface to

that device.

If you are declaring access to multiple devices, you can have multiple m2:Device entries under the

same capability. If you are declaring access to multiple devices with different capabilities, you’ll have

multiple m2:DeviceCapability entries.

Device discovery is also the same as we’re seen earlier, where each protocol API class has a static

getDeviceSelector method that you pass to the DeviceInformation.findAllAsync or

createWatcher to obtain a specific DeviceInformation object. You then pass its id property to the

static fromIdAsync method of the protocol API class to instantiate the object. Here’s an example using

the Wi-Fi Direct API, but the pattern is the same for all protocol APIs:

var namespace = Windows.Devices.WiFiDirect;

var deviceClass = Windows.Devices.WiFiDirect.WiFiDirectDevice;

var deviceSelector = deviceClass.getDeviceSelector();

Windows.Devices.Enumeration.DeviceInformation.findAllAsync(deviceSelector, null).done(

 function (devices) {

 // Set up selection UI

}

// When a device is selected from your UI list, create an object instance using its id.

// This will prompt the user for consent. If consent is denied, fromIdAsync will succeed

// but the deviceInstance variable will be null. (Other errors can also occur that will

// invoke your error handler.

deviceClass.fromIdAsync(selectedId).done(

 function (deviceInstance) {

 // Do your stuff!

 }

);

Beyond this there is one more common characteristic: in your suspending handler you must call a

device object’s close method and null out your variable, and then reacquire the object in your

resuming handler. For example:

983

Windows.UI.WebUI.WebUIApplication.addEventListener("suspending", function () {

 // Stop all existing I/O

 // Close the device instance

 deviceInstance && deviceInstance.close();

 deviceInstance = null;

});

Windows.UI.WebUI.WebUIApplication.addEventListener("resuming", function () {

 // Reacquire the device object

 deviceInstance = acquireDeviceInstance();

})

The acquireDeviceInstance function would call deviceClass.fromIdAsync again, as shown in the

previous bit of code, and reset the deviceInstance variable. The reason for this suspending behavior that

Windows will automatically invalidate and turn off a device when it’s not being used by a foreground

app. By closing it and nulling out your variable, you remind yourself that you must reacquire the device

when you resume and thus avoid exception.

It’s also worth mentioning that if you’re building devices of your own that apps could work with

through these protocol APIs, consider building a WinRT component that supplies a focused scenario

API of your own. The component, in other words, would provide a higher-level interface to your

device’s specific capabilities and make it much easier for developers to write apps for your device. We’ll

be looking at WinRT components in Chapter 18 and implementing an example for this purpose.

Human Interface Devices (HID)

Manifest capability name: humaninterfacedevice

Protocol API namespace: Windows.Devices.HumanInterfaceDevice

Primary class: HidDevice

SDK Sample(s): Custom HID device access sample, XBoxController and CircusCannon examples in the

companion content

Background docs: Human Interface Devices (MSDN) and Human interface device (Wikipedia)

Applicable //build 2013 session: Apps for HID Devices (2-924b)

It’s highly likely you’ve been using many HID devices already for a long time—this category includes

most mice and other pointing devices, keyboards, front-panel controls, game controllers, and sensors.

It’s just that those devices already have dedicated APIs of their own, such as those in Chapter 12, so you

don’t need to (and cannot, in fact) talk to them on a lower level. Barcode readers and magnetic stripe

readers are also HID devices, but they too already have a scenario API. In short, this protocol API is

intended for custom external peripheral devices, and it blocks a number of HID usages, as listed on

Supporting human interface devices.

http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.aspx
http://code.msdn.microsoft.com/windowsapps/Custom-HID-Device-Access-40c3aa8f
http://msdn.microsoft.com/library/windows/hardware/ff543301(v=vs.85).aspx
http://en.wikipedia.org/wiki/Human_interface_devices
http://channel9.msdn.com/Events/Build/2013/2-924b
http://msdn.microsoft.com/library/windows/apps/dn263140.aspx

984

Technically speaking, HID is a device class over the more generic USB protocol (and others like I2C),

but it has become specialized enough to be treated as its own thing. One reason for this is that HID

devices generally work with small bits of data, as opposed to general USB devices like external hard

drives that can deal with much larger amounts.

Through HID, you communicate with a device using reports, which are simply the HID term for blobs

of binary data that go back and forth. The three types of reports are input (data coming from the

device), output (data going to the device), and feature (for configuration and settings). Generally

speaking, a report provides values for Boolean and Numeric controls, which essentially translate to

pieces of the hardware that have on/off states (like buttons) and variable states (like joysticks or

trackballs), respectively. A report descriptor is then what describes the format and the meaning of those

blobs of data should you want to interpret reports dynamically. Most frequently, however, you’ll write

your code to work directly with specific report structures.

Beyond that, this book is not the place to give you all the background, which you can find in the

section of the documentation. Here, we just want to look at the HumanInterfaceDevice API and its

usage, namely that of the HidDevice class.

With manifest declarations you use the humaninterfacedevice capability, beneath which you must

declare the specific device ID and its usage (function). For example, in the Custom HID device access

sample in the SDK, it declares access to a test device known as SuperMutt (see MUTT (Microsoft USB

Test Tool) devices on MSDN):

<m2:DeviceCapability Name="humaninterfacedevice">

 <!--SuperMutt Device-->

 <m2:Device Id="vidpid:045E 0610">

 <m2:Function Type="usage:FFAA 0001" />

 </m2:Device>

</m2:DeviceCapability>

The device ID is always in the format vidpid:<vid> <pid> (meaning vendor ID and product ID); the

function type is always in the format usage:<usagepage> <usageid>. See How to specify device

capabilities for HID.

Although you can find some of these hexadecimal values through Device Manager, the best way is

to use the HCLIENT tool that’s a sample in the Windows Driver Development Kit (WDK). (Note that the

WDK requires Visual Studio 2013 Ultimate and does not work with the express editions; see How to get

the WDK for installation instructions.) Once you build and run this tool, plug in your device and see

what gets added to the topmost drop-down. In the image below, I plugged in an Xbox 360 game

controller and saw that Device #15 appeared:

http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.aspx
http://code.msdn.microsoft.com/windowsapps/Custom-HID-Device-Access-40c3aa8f
http://code.msdn.microsoft.com/windowsapps/Custom-HID-Device-Access-40c3aa8f
http://msdn.microsoft.com/library/windows/hardware/dn376873(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn376873(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/dn263091.aspx
http://msdn.microsoft.com/library/windows/apps/dn263091.aspx
http://msdn.microsoft.com/windows/hardware/gg487463
http://msdn.microsoft.com/windows/hardware/gg487463

985

Therefore, to access this device, I need the following in my manifest:

<m2:DeviceCapability Name=”humaninterfacedevice”>

 <m2:Device Id=”vidpid:045E 028E”>

 <m2:Function Type=”usage:0001 0005” />

 </m2:Device>

</m2:DeviceCapability>

Similarly, I have a Dream Cheeky Circus Cannon on my desk, whose IDs and usage are as follows

(see the CircusCannon example):123

<m2:DeviceCapability Name=”humaninterfacedevice”>

 <m2:Device Id=”vidpid:1941 8021”>

 <m2:Function Type=”usage:FFA0 0001” />

 </m2:Device>

</m2:DeviceCapability>

In a number of cases, you can write an app to work with a group of devices that all use the same

commands. Then you use any instead for the device ID and a “top level” usage of *:

<m2:DeviceCapability Name=”humaninterfacedevice”>

 <m2:Device Id=”any”>

 <m2:Function Type=”usage:0005 *” />

 </m2:Device>

123 This is a fun device, though I had to disassemble it and unjam two of the three motors to get it to work. Nevertheless,
understanding the internal mechanisms and how they related to the input reports was also very helpful when creating a

WinRT component as a device library, which we’ll see in Chapter 18.

http://www.amazon.com/USB-Circus-Cannon-Rocket-Babes/dp/B00DQCATZA/ref=pd_sbs_t_5

986

</m2:DeviceCapability>

With your manifest declaration in place, use HidDevice.getDeviceSelector as the basis for

enumeration. This method has two variants, one that takes the usage page and usage value only (as

when your device ID in the manifest is any) and one that takes usage value plus a vid and pid (for when

you declare a specific device). Either way, send the selector to DeviceInformation.findAllAsync or

createWatcher to get a specific DeviceInformation object, whose id property you can then pass to

HidDevice.fromIdAsync to instantiate the object. You can see this in scenario 1 of the Custom HID

device access sample, although you have to step through quite a bit of the code to see the sequence

because it uses a somewhat involved object model. So let me instead offer something simpler from the

XboxController example in this chapter’s companion content, where we just use the first device of this

type that we find (if any; js/default.js):

function acquireController() {

 var xbcSelector = hid.getDeviceSelector(0x0001, 0x0005, 0x045E, 0x028E);

 var id = null;

 var name = null;

 //Notice the second null argument (required in JavaScript when using a selector)

 Windows.Devices.Enumeration.DeviceInformation.findAllAsync(xbcSelector, null)

 .then(function (devInfo) {

 //If no devices are found, throw an error out to our chain's handler

 if (devInfo.size == 0) {

 throw "no devices found";

 }

 //If we find any, assume we just have one such device on the system and use it.

 id = devInfo[0].id;

 name = devInfo[0].name;

 return hid.fromIdAsync(id, Windows.Storage.FileAccessMode.read);

 }).done(function (device) {

 if (device == null) {

 //Device could be enumerated but not accessed; user likely denied consent.

 var status = Windows.Devices.Enumeration.DeviceAccessInformation.createFromId(id);

 txtOutput.innerText = "Device exists but not acquired. Status: " +

 statusString(status.currentStatus); //statusString is a helper (not shown)

 } else {

 controllerDevice = device;

 txtOutput.innerText = "Device aquired: " + name;

 }

 }, function (e) {

 //Some other error happened

 txtOutput.innerText = "Error acquiring device: " + e;

 });

}

I use nearly identical code in the CircusCannon example, just changing the arguments to

gerDeviceSelector to match that device. Note also that the FileAccessMode value you pass to

fromIdAsync determines whether the device can be shared (read) or is open for exclusive access

(readwrite). Exclusive access is necessary if you want to send output reports (that is, write) to the

device, as with the Circus Cannon.

http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.getdeviceselector.aspx

987

Now that we have a HidDevice instance for this device in hand, its usageId, usagePage, vendorId,

productId, and version are all available as properties. We also must remember to close and release

the instance on suspend/resume. Most importantly, though, we can start talking to it through its

methods and events:

Method Description
getInputReportAsync Retrieves an input report from the device, with the result of HidInputReport.

getFeatureReportAsync Retrieves a feature report from the device with the result of HidFeatureReport.

createOutputReportAsync,

sendOutputReportAsync

Creates and sends a HidOutputReport object to the device, respectively.

createFeatureReportAsync,

sendFeatureReportAsync

Creates and sends a HidFeatureReport object to the device, respectively.

getBooleanControlDescriptions

getNumericControlDescriptions
Retrieves descriptions for Boolean and numeric controls for the device. With both calls you

specify a HidReportType (input, output, feature), the usagePage, and usageId. Return

values are vectors of HidBooleanControlDescription and HidNumericControl-

Description objects, respectively.

Event Description

inputreportreceived Fires when the device generates an input, if supported, providing a HidInputReport-

ReceivedEventArgs whose single property, report, is a HidInputReport object.

In short, if you want to read information from the device, use getInputReportAsync and/or the

inputreportreceived event; the XboxController example with this chapter uses the event, for

instance, to watch for any changes in the hardware. If you want to send specific reports to the device,

use createOutputReportAsync or createFeatureReportAsync, followed by sendOutputReport-

Async or sendFeatureReportAsync.

What exactly you can do with input, output, and feature reports depends on the device you’re

working with, of course, but there are some general characteristics. The HidInputReport, HidOutput-

Report, and HidFeatureReport objects all share most of their properties and methods in common,

with the input report having two extra properties:

Report Property Description
id The report identifier.

data A WinRT Buffer object containing the raw data associated with the report. You read

information from the Buffer using the DataReader object, and write information using

the DataWriter object.

activatedBooleanControls HidInputReport only: a vector view of HidBooleanControl objects, identifying those

Boolean controls on the device that are turned on.

transitionedBooleanControls HidInputReport only: a vector view of HidBooleanControl objects, identifying those

Boolean controls on the device that have changed since the last report.

Report Method Description
getBooleanControl

getBooleanControlByDescription

Returns a HidBooleanControl object for a given usage page and usage id, or a

http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.getinputreportasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidinputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.getfeaturereportasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidfeaturereport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.createoutputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.sendoutputreportasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidoutputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.createfeaturereport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.sendfeaturereportasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.getbooleancontroldescriptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.getnumericcontroldescriptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidreporttype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidbooleancontroldescription.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidnumericcontroldescription.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidnumericcontroldescription.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.inputreportreceived.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidinputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidoutputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidoutputreport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidfeaturereport.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidbooleancontrol.aspx

988

HidBooleanControlDescription.

getNumericControl

getNumericControlByDescription

Returns a HidNumericControl object for a given usage page and usage id, or a

HidNumericControlDescription.

If a device raises interrupts that cause the HidDevice object to fire its inputreportreceived event,

your event handler will receive a HidInputReport object in eventArgs.report. For the Xbox 360

controller, as demonstrated in the XboxController example for this chapter, the input report contains all

the button states, stick positions, and so forth. Some of these states come through in a single bit in the

report, so it’s important to know the exact report structure. To help illustrate this, the example’s code in

the inputReportReceived event handler (js/default.js), shows both the raw hex dump of the report

along with a more human-readable deconstruction. I’ll leave you to look at that code for the details.

The CircusCannon also issues ongoing inputreportreceived events to report the status of its

internal switches. Four bits in the second and third bytes of the report represent switches that indicate

that left, right, up, or down motion has reached its mechanical limit (thereby closing a switch). Similarly,

there’s a switch that’s closed and then opened each time a missile fires, which shows up as a bit in the

third byte of the report. We can use these bits, then, to automatically stop the movement or firing

mechanisms as shown below, where the CircusCannon namespace contains the various constants and

bit masks for the device (js/default.js):

function inputReportReceived(e) {

 var reader = Windows.Storage.Streams.DataReader.fromBuffer(e.report.data);

 var report = new Uint8Array(e.report.data.length);

 reader.readBytes(report);

 var upDown = report[CircusCannon.offset.upDown];

 var leftRight = report[CircusCannon.offset.leftRight];

 var atLimit = (upDown & (CircusCannon.status.topLimit | CircusCannon.status.bottomLimit))

 || (leftRight & (CircusCannon.status.leftLimit | CircusCannon.status.rightLimit));

 var missileFired = report[CircusCannon.offset.missile] & CircusCannon.status.missileFired;

 //Stop movement if we're at a limit, or stop the firing after one shot.

 if (atLimit || missileFired) {

 sendCommand(CircusCannon.commands.stop);

 }

}

In working with the device, I found that the limit switches can stay closed even after movement in

an opposite direction has started, so turning this kind of input into a good user experience means

ignoring some of the reports until the switch is reset. The example for this chapter does not do such

debouncing, so you generally have issue multiple movement commands through the UI until the switch

is opened. We’ll correct this shortcoming in the control component we create in Chapter 18.

http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidbooleancontroldescription.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidnumericcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hidnumericcontroldescription.aspx

989

Controlling the motion and firing mechanisms of the cannon is done with a simple 9 byte output

report, with report id of 0 and the relevant command in the second byte:

WinJS.Namespace.define("CircusCannon", {

 commands: {

 stop: 0x00,

 up: 0x01,

 upSlow: 0x0D,

 down: 0x02,

 downSlow: 0x0E,

 left: 0x04,

 leftSlow: 0x07,

 right: 0x08,

 rightSlow: 0x0B,

 fire: 0x10,

 upLeft: 0x01 + 0x04,

 upRight: 0x01 + 0x08,

 downLeft: 0x02 + 0x04,

 downRight: 0x02 + 0x08,

 nop: 0xFF

 },

 //Other members omitted

}

function sendCommand(command) {

 if (launcher == null) {

 return;

 }

 var reportId = 0x00;

 var report = launcher.createOutputReport(reportId);

 var dataWriter = new Windows.Storage.Streams.DataWriter();

 var packet = new Uint8Array([reportId, command, 0, 0, 0, 0, 0, 0, 0]);

 dataWriter = writeBytes(packet);

 report.data = dataWriter.detachBuffer();

 try {

 launcher.sendOutputReportAsync(report);

 } catch (e) {

 console.log(e);

 }

}

With this code, controlling the device is as easy as calling sendCommand with a value like

CircusCannon.commands.fire. To create a good user experience out of it, however, it’s helpful to

build a higher-level API on top of the input and output reports so that we don’t have to dea l with such

low-level minutiae. Again, we’ll come back to this in Chapter 18.

990

Finally, as an example of a feature report, the SuperMutt device supports an LED blink pattern

report, as demonstrated in scenario 2 of the Custom HID device access sample. Here you can also see

the use of the DataReader and DataWriter objects to work with the data buffers in the report

(js/scenario2_featureReports.js). :

getLedBlinkPatternAsync: function () {

 return SdkSample.CustomHidDeviceAccess.eventHandlerForDevice.current

 .device.getFeatureReportAsync(SdkSample.Constants.superMutt.ledPattern.reportId)

 .then(function (featureReport) {

 if (featureReport.data.length === 2) {

 var reader = Windows.Storage.Streams.DataReader.fromBuffer(featureReport.data);

 // First byte is always report id

 var reportId = reader.readByte();

 var pattern = reader.readByte();

 WinJS.log && WinJS.log("The Led blink pattern is " + pattern, "sample", "status");

 }

 });

},

// Set the blink pattern (see full sample comments for details). Note that creating

// a feature report nulls out all data in the report.

setLedBlinkPatternAsync: function (pattern) {

 var featureReport = SdkSample.CustomHidDeviceAccess.eventHandlerForDevice.current

 .device.createFeatureReport(SdkSample.Constants.superMutt.ledPattern.reportId);

 var writer = new Windows.Storage.Streams.DataWriter();

 writer.writeByte(featureReport.id);

 writer.writeByte(pattern);

 featureReport.data = writer.detachBuffer();

 return SdkSample.CustomHidDeviceAccess.eventHandlerForDevice.current

 .device.sendFeatureReportAsync(featureReport).then(function (bytesSend) {

 });

}

The other scenarios in the sample, as you would expect, exercise additional capabilities.

Custom USB Devices
Manifest capability name: usb

Protocol API namespace: Windows.Devices.Usb

Primary class: UsbDevice

SDK Sample(s): Custom USB device access sample, USB CDC Control sample (also Firmware Update

USB device sample for dedicated device apps)

Background docs: Windows Store app for a USB device, Writing Apps for USB devices

Applicable //build 2013 session: Apps for USB Devices (3-924a)

Whereas HID covers a wide range of devices that transfer small amounts of data, the USB protocol API

covers a much wider swath of device classes, namely those that don’t belong to a device class or those

http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbdevice.aspx
http://code.msdn.microsoft.com/windowsapps/Custom-USB-device-access-ba5137cc
http://code.msdn.microsoft.com/windowsapps/USB-CDC-Control-sample-5ba19caa
http://code.msdn.microsoft.com/windowsapps/Firmware-Update-USB-Device-76a6d9ae
http://code.msdn.microsoft.com/windowsapps/Firmware-Update-USB-Device-76a6d9ae
http://msdn.microsoft.com/library/windows/hardware/dn303355(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/dn263144.aspx
http://channel9.msdn.com/Events/Build/2013/3-924a

991

that rely on the generic WinUSB driver (which is a requirement for this API). The specific list of

supported class codes (along with subclass and protocol codes) is found on How to add USB device

capabilities to the app manifest. Those classes include CDC control, Physical, PersonalHeathCare,

ActiveSync, PalmSync, DeviceFirmwareUpdate (for dedicated device apps) , IrDA (infrared),

Measurement, and vendor-specific classes. Audio/video, imaging, printing, storage, smart card, and

wireless controller classes are not supported through this API because they already have scenario APIs

of their own. The API is also intended solely for peripherals and thus blocks access to internal devices.

Overall, the subject of general USB devices is quite deep, so I very much recommend the

documentation linked to earlier for a complete treatment of the subject. Here I’ll just summarize .

In the manifest, you can declare either a name, class id, or a WinUsbId GUID for the m2:Function

element. The Custom USB device access sample shows the first two:

<m2:DeviceCapability Name="usb">

 <!--OSRFX2 Device-->

 <m2:Device Id="vidpid:0547 1002">

 <m2:Function Type="classId:ff * *"/>

 </m2:Device>

 <!--SuperMutt Device (USB interface, not HID) -->

 <m2:Device Id="vidpid:045E 0611">

 <m2:Function Type="name:vendorSpecific"/>

 </m2:Device>

</m2:DeviceCapability>

The classId function string maps to the class, subclass, and protocol for the device. It can be in one

of these formats: classId:nn * *, classId:nn 00 *, or classId:nn 00 00, where nn is a two-digit hexadecimal

value. A name is whatever the device uses, and a GUID is specified with the form winUsbId:<GUID>.

The device ID can be a vidpid, as we see above, or any. The latter, any, can be used only when the

classId also identifies a specific (or narrow) device class, namely those whose class id’s start with 02

(CDC), 0A (CDC-data), EF (miscellaneous), FE (application-specific), and FF (vendor specific). It cannot be

used for winUsbId, serial-over-USB, miscellaneous, app-specific, or vendor-specific device classes.

To find all of this information, you can simply open the desktop Device Manager and view the

properties for the device. The Hardware Ids (below left) give you what you need for the m2:Device

element, and the Compatible Ids (below right) show the values you can use for classId:

Connecting to a device through the process of enumeration and UsbDevice.fromIdAsync gets you

an instance of the UsbDevice class. With that in hand, you can retrieve the device’s configuration

http://msdn.microsoft.com/library/windows/hardware/dn303351(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303351(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbdevice.aspx

992

descriptor set through its deviceDescriptor property, which conveniently parses the descriptor

information into a UsbDeviceDescriptor object. Custom descriptors will be included here, if they

exist. Standard descriptors can be decoded using the static tryParse methods of three other specific

classes: UsbConfigurationDescriptor, UsbInterfaceDescriptor, and UsbEndpointDescriptor.

See How to get USB descriptors.

You then have three supported ways to communicate with the device, as described in the following

table (isochronous transfers are not supported). I especially encourage you to read the linked

documentation—those topics include detailed diagrams and step-by-step guides to the

communication model.

Transfer Type Core UsbDevice members Description

Control

(scenario 2 in

the SDK sample)

sendControlInTransferAsync (read)

sendControlOutTransferAsync (write)
selectSettingAsync

Read or write configuration information or perform

control-specific functions. See How to send a USB control

transfer. Information is send within UsbSetupPacket

objects with optional Buffer objects (for which you use

the DataReader and DataWriter classes).

Interrupt

(scenario 3)

defaultInterface.interruptInPipes (read)

configuration.interruptInPipes (read)

defaultInterface.interruptOutPipes (write)

configuration.interruptOutPipes (write)

datareceived event on pipes

Notifications that arise from periodic polling in the

device. See How to send a USB interrupt transfer request.

Transfers happens through UsbInterruptInPipe and

UsbInterruptOutPipe objects. Data is transferred using

their respective inputStream and outputStream

properties using the DataReader and DataWriter classes.

Bulk

(scenario 4)

defaultInterface.bulkInPipes (read)

configuration.bulkInPipes (read)

defaultInterface.bulkOutPipes (write)

configuration.bulkOutPipes (write)

Perform high volume data transfer with error detection

and limited retries. Data is transferred when there is

unused bandwidth on the bus, so should not be used for

time-critical transfers. See How to send a USB bulk

transfer request. Bulk endpoints (which are unidirectional)

are represented by UsbBulkInPipe and UsbBulkOutPipe

objects; data is transferred using their respective

inputStream and outputStream properties using the

DataReader and DataWriter classes.

For further information on USB devices, again refer to the documentation I’ve linked here along with

Concepts for app USB developers and Talking to USB devices, start to finish.

Bluetooth (RFCOMM)

Manifest capability name: bluetooth.rfcomm or vidpid: <vid> <pid> bluetooth

Protocol API namespace: Windows.Devices.Bluetooth.Rfcomm

Primary class: RfcommDeviceService

SDK Sample(s): Bluetooth Rfcomm chat sample; also see the SpheroColorController example in the

companion content

Background docs: Supporting Bluetooth devices, Bluetooth Devices

Applicable //build 2013 session: Apps for Bluetooth, HID, and USB Devices (3-026)

http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbdevicedescriptor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbconfigurationdescriptor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbinterfacedescriptor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.usb.usbendpointdescriptor.aspx
http://msdn.microsoft.com/library/windows/hardware/dn303344(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303347(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303347(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303348(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303346(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303346(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn303352(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/dn312121(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.rfcomm.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.rfcomm.rfcommdeviceservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.rfcomm.rfcommdeviceservice.aspx
http://code.msdn.microsoft.com/windowsapps/Bluetooth-Rfcomm-Chat-afcee559
http://msdn.microsoft.com/en-us/library/windows/apps/dn264587.aspx
http://msdn.microsoft.com/library/windows/hardware/ff536768
http://channel9.msdn.com/Events/Build/2013/3-026
http://channel9.msdn.com/Events/Build/2013/3-026

993

When we talk about Bluetooth devices we have to be clear about what specification they support.

Bluetooth RFCOMM or SPP (Serial Port Protocol), means the 1.x, 2.x, and 3.x specifications (sometimes

also referred to as Bluetooth “classic” or “legacy”). This is for high-speed streaming devices with higher

power consumption, such as a pair of wireless speakers, a Bluetooth printer, or connecting your phone

to your car’s audio system. Bluetooth Smart, LE (low energy), and GATT (Generic Attribute Profile using

LE as a transport), on the other hand, use the 4.0 specification for small or slow data transfers with

lower power devices, such as heart rate monitors that you charge up only once a week. In short, the

two are really separate things, something like the Java and JavaScript programming languages! (And to

make it even more confusing, the Bluetooth Smart Ready logo means that the device supports all

Bluetooth specs, whereas Bluetooth Smart is just 4.0. There will be a quiz next week!)

Here, we’ll talk about working with Bluetooth RFCOMM devices, such as the Sphero, and we’ll look

at Bluetooth Smart (LE) after that. In both cases, the APIs work with devices that have already been

paired with Windows, and fortunately such pairing capabilities are already built into the system. That is,

if the user has gone to PC Settings > PC and Devices > Bluetooth and paired the device, your app will

find it in the process of enumeration.

As indicated above, the capability name for Bluetooth RFCOMM is, not surprisingly,

bluetooth.rfcomm, or you can use the vidpid: <vid> <pid> bluetooth form. In the manifest, the

device id is generally any and the function is either serviceId:<GUID> where <GUID> is specific to the

device or a descriptive form like name:serialPort.

To talk to the Sphero device, for instance, you’d use the following declaration, as shown in the

SpheroColorController example in this chapter’s companion content:

<m2:DeviceCapability Name="bluetooth.rfcomm">

 <m2:Device Id="any">

 <m2:Function Type="serviceId:00001101-0000-1000-8000-00805F9B34FB" />

 </m2:Device>

</m2:DeviceCapability>

You can also use the serial port profile by name (which maps to the GUID above):

 <m2:Function Type="name:serialPort" />

The Bluetooth Rfcomm chat sample in the SDK provides another example:

<m2:DeviceCapability Name="bluetooth.rfcomm">

 <m2:Device Id="any">

 <m2:Function Type="serviceId:34B1CF4D-1069-4AD6-89B6-E161D79BE4D8" />

 </m2:Device>

</m2:DeviceCapability>

In this case the serviceId GUID is just an arbitrary GUID that’s been assigned to this particular app,

because the sample doesn’t work with an external device. It instead sets up a chat session between two

PCs running the same sample.

http://www.gosphero.com/

994

For the full list of supported devices for Bluetooth RFCOMM, see How to specify device capabilities

for Bluetooth. This also includes a list of devices that aren’t supported through this protocol API,

because other APIs already exist for them.

Enumeration and discovery, as usual, starts with a selector from RfcommDeviceService.get-

DeviceSelector and ends with RfcommDeviceService.fromIdAsync to get a specific instance of

RfcommDeviceService. That instance has the following methods and properties:

Property Description
serviceId Retrieves the RfcommServiceId for the device.

connectionHostName

connectionServiceName

The HostName endpoints with which to create a socket connection to the device.

protectionLevel

maxProtectionLevel

Retrieves the current and maximum SocketProtectionLevel that describes the level of

security in the Bluetooth link layer.

Method Description
getSdpRamAttributesAsync

Retrieves Service Discovery Protocol (SDP) attributes for the device.

As suggested by its connection properties, the RfcommDeviceService instance has no dedicated

communication methods of its own: you instead use the WinRT sockets APIs that are described in

Appendix D, “Provider-Side Contracts.” Here’s a generic piece of code where deviceObj is the device

instance, derived from the Bluetooth Rfcomm sample (js/s1-chat-client.js):

var sockets = Windows.Networking.Sockets;

var streams = Windows.Storage.Streams;

socket = new sockets.StreamSocket();

socket.connectAsync(deviceObj.connectionHostName, deviceObj.connectionServiceName,

 sockets.SocketProtectionLevel.plainSocket)

 .done(function () {

 // Device is connected and ready to use.

 // Send data to the device through writer.writeBytes, etc. and storeAsync.

 writer = new streams.DataWriter(socket.outputStream);

 // Send data to the device through reader.readerBytes, etc. and loadAsync.

 var reader = new streams.DataReader(socket.inputStream);

 });

As a more specific example, here’s how the SpheroColorController example generates a random

color packet and sends it to the device, using a socket and DataWriter as done in the code above

(js/default.js):

// writer is a DataWriter instance for the socket

function changeColor() {

 if (writer == null) {

 return;

 }

http://msdn.microsoft.com/library/windows/apps/dn263090.aspx
http://msdn.microsoft.com/library/windows/apps/dn263090.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.rfcomm.rfcommdeviceservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.rfcommserviceid.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx

995

 var packet = generateRandomColorPacket();

 writer.writeBytes(packet);

 writer.storeAsync().done(function () {

 }

}

function generateRandomColorPacket() {

 var r = Math.floor(Math.random() * 256);

 var g = Math.floor(Math.random() * 256);

 var b = Math.floor(Math.random() * 256);

 //Checksum is the lower 8 bits of the packet contents minus the 0xFFFE prefix

 var checksum = (0x02 + 0x20 + 0x01 + 0x05 + r + g + b + 0x01) % 256;

 return new Uint8Array([0xFF, 0xFE, 0x02, 0x20, 0x01, 0x05, r, g, b, 0x01, ~checksum]);

}

Tip When I first converted Ellick Sung’s C# Sphero sample (from his //build 2013 talk linked at the

beginning of this section) to JavaScript, I was hitting an exception in DataWriter.storeAsync that

told me only “The operation identifier is not valid.” Say what? The problem, which was really hard to

see, was a simple casing error: I’d used socket.OutputStream (which resolved to undefined) when

constructing the DataWriter instead of the valid socket.outputStream. However, the DataWriter

does not validate this backing stream during construction, and the stream isn’t otherwise touched until

storeAsync, which is when I saw the exception. So, if you’re seeing odd behavior like this, check your

constructor arguments! (Thanks to Matthew Beaver and Nigel D’Souza for helping track this down!)

Finally, as a reminder of properly cleaning up our objects when the app is suspended, here’s the

code that disconnects from the device, the socket, and the DataWriter (js/default.js):

var wui = Windows.UI.WebUI.WebUIApplication;

wui.addEventListener("suspending", function (e) {

 disconnect();

});

function disconnect() {

 output.innerText = "";

 writer && writer.close();

 writer = null;

 socket && socket.close();

 socket = null;

 device = null;

}

For good measure the example saves the last device id that it connected to so that we can

automatically reconnect when the app is resumed:

var rfc = Windows.Devices.Bluetooth.Rfcomm;

996

wui.addEventListener("resuming", function (e) {

 //Attempt to reconnect to previously enumerated device

 if (lastDeviceId != 0) {

 connectToDevice(lastDeviceId);

 }

})

function connectToDevice(id) {

 rfc.RfcommDeviceService.fromIdAsync(id).done(function (foundDevice) {

 device = foundDevice;

 openSocket();

 });

}

Bluetooth Smart (LE/GATT)

Manifest capability name: bluetooth.genericAttributeProfile

Protocol API namespace: Windows.Devices.Bluetooth.GenericAttributeProfile

Primary class: GattDeviceService

SDK Sample(s): Bluetooth Generic Attribute Profile – Heart Rate Service sample

Background docs: Bluetooth Low Energy Overview, Bluetooth low energy (Wikipedia)

Applicable //build 2013 session: Apps for Bluetooth Smart Devices (3-9028)

Having previously introduced the various flavors of Bluetooth—which you can go back and read if you

want!—we’ll waste no more time here and just dive stra ight into the considerations for Bluetooth

Smart, LE (Low Energy), and GATT (Generic Attribute Profile) devices. These are again those that work

with small amounts of data transfer in exchange for long battery life, and as with other Bluetooth

devices, Windows provides a built-in pairing UI so that apps needn’t worry about that part of the story.

Of course, user consent is involved whenever an app attempts to connect to a device the first time.

The communication model for GATT devices centers around characteristics, which is a data value

transferred between the device and a client, such as a heart rate reading, battery voltage, temperature,

and so forth. Optional descriptors provide information about a characteristic, such as units, min/max

values, etc. A GATT service is then a hierarchal collection of related characteristics and descriptors; most

devices will provide more than one characteristic, for instance, a battery level along with a specific

reading like heart rate or thermometer. Collectively, services, characteristics, and descriptors are all

referred to as attributes that each have some kind of GUID assigned to it.

In the app manifest, the general device capability name is bluetooth.genericAttributeProfile,

where the device id is typically any, model, or a vidpid. The service id can be a string with

serviceId:<GUID> or name:<service_name>, same as with Bluetooth RFCOMM. The SDK sample, for

instance, asks to work with Bluetooth LE heart rate monitors:

<Capabilities>

 <m2:DeviceCapability Name="bluetooth.genericAttributeProfile">

 <m2:Device Id="any">

 <m2:Function Type="name:heartRate" />

 </m2:Device>

http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.gattdeviceservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.gattdeviceservice.aspx
http://code.msdn.microsoft.com/windowsapps/Bluetooth-Generic-5a99ef95
http://msdn.microsoft.com/library/windows/hardware/jj159880(v=vs.85).aspx
http://en.wikipedia.org/wiki/Bluetooth_low_energy
http://channel9.msdn.com/Events/Build/2013/3-9028

997

 </m2:DeviceCapability>

</Capabilities>

For the full list of supported devices for Bluetooth RFCOMM, see How to specify device capabilities

for Bluetooth. Note that the GATT service for HID is not supported, as you’d use the HID API for that.

Enumeration and discovery starts with a selector from GattDeviceService.getDeviceSelector

and ends with GattDeviceService.fromIdAsync to get a specific instance of GattDeviceService.

This is the object representing the device’s service, and through it you can get the deviceId as well as

the service’s uuid. Two methods, getIncludedServices and getCharacteristics, let you then

explore the device’s capabilities, along with the attributeHandle property.

Characteristics, which is what you’re typically most interested in, are represented by

GattCharacteristic objects, through which you exchange data (readValueAsync and

writeValueAsync methods and a valuechanged event), control encryption (protectionLevel), work

with descriptors (getDescriptors and [read | write]CharacteristicConfiguration-

DescriptorAsync), characteristicProperties, and presentationFormats.

You can see usage examples in the SDK sample linked above, which as its name suggests deals with

heart rate monitors. Some code is shared between its scenarios in js/heart-rate-service.js, such as

connecting to a device, setting up a valuechanged event handler, and doing some configuration.

Scenario 1 monitors the event for ongoing heart rate readings, where the event args object (a

GattValueChangedEventArgs) contains a timestamp and characteristicValue.

The characteristic value here is a WinRT Buffer object, as is any reading you get from

GattCharacteristic.readValueAsync. You also use a buffer to send information to the device

through GattCharacteristic.writeValueAsync. As such, you use the DataReader and DataWriter

objects to put data into the buffers. Thus the event handler in js/heart-rate-service.js processes the

reading as follows:124

function onHeartRateMeasurementValueChanged(args) {

 var heartRateData = new Uint8Array(args.characteristicValue.length);

 Windows.Storage.Streams.DataReader.fromBuffer(args.characteristicValue)

 .readBytes(heartRateData);

 // Interpret the Heart Rate measurement value according to the Heart Rate Bluetooth Profile

 var heartRateMeasurement = processHeartRateMeasurementData(heartRateData);

 // Save the processed data in our namespace

 data[data.length] = {

 timestamp: args.timestamp,

 value: heartRateMeasurement.heartRateValue,

 expendedEnergy: heartRateMeasurement.energyExpended,

124 There’s also an event handler in js/s1-eventing.js, but this does not handle the WinRT event directly: the handler in
js/heart-rate-service.js dispatches its own event once it has processed the raw data so that the scenario 1 code can

consume a higher level structure.

http://msdn.microsoft.com/library/windows/apps/dn263090.aspx
http://msdn.microsoft.com/library/windows/apps/dn263090.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.gattdeviceservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.gattcharacteristic.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.gattvaluechangedeventargs.aspx

998

 toString: function () {

 return this.value + ' bpm @ ' + this.timestamp;

 }

 };

 // Code to dispatch a custom event to the scenario code omitted.

}

One of the other typical characteristics of a heart rate monitor describes the location of the monitor,

such as the chest, wrist, finger, and so on. Scenario 2 of the sample shows how to retrieve this bit of

information (js/s2-read-characteristic-value.js):

var gatt = Windows.Devices.Bluetooth.GenericAttributeProfile;

var bodySensorLocationCharacteristics = HeartRateService.getHeartRateService()

 .getCharacteristics(gatt.GattCharacteristicUuids.bodySensorLocation);

if (bodySensorLocationCharacteristics.length > 0) {

 bodySensorLocationCharacteristics[0].readValueAsync().done(function (readResult) {

 if (readResult.status === gatt.GattCommunicationStatus.success) {

 var bodySensorLocationData = new Uint8Array(readResult.value.length);

 Windows.Storage.Streams.DataReader.fromBuffer(readResult.value)

 .readBytes(bodySensorLocationData);

 // Process the location data (see hs/heart-rate-service.js)

 var bodySensorLocation = HeartRateService.processBodySensorLocation(

 bodySensorLocationData);

 });

}

Similarly, scenario 3 writes a characteristic value to the device to reset the expended energy status

value, and also watches this characteristic through the valuechanged event. Here’s the code to reset

the status (condensed from js/s3-write-characteristic-value.js):

var heartRateControlPointCharacteristics = HeartRateService.getHeartRateService()

 .getCharacteristics(gatt.GattCharacteristicUuids.heartRateControlPoint);

if (heartRateControlPointCharacteristics.length > 0) {

 characteristic = heartRateControlPointCharacteristics[0];

 var writer = new Windows.Storage.Streams.DataWriter();

 writer.writeByte(1);

 characteristic.writeValueAsync(writer.detachBuffer()).done(function (status) {

 if (status === gatt.GattCommunicationStatus.success) {

 // Value written

 }

 });

}

It’s worth noting that most apps that connect to a Bluetooth LE device will acquire values for various

status characteristics like location and battery life and then display those in a way to keep the user

informed. This is especially useful if the device itself doesn’t make such information readily available

otherwise. For a demonstration and a few other advanced topics, refer to //build 2013 session 3-9028

999

linked at the beginning of this section.

Wi-Fi Direct

Manifest capability name: use the top level Proximity capability

Protocol API namespace: Windows.Devices.WiFiDirect

Primary class: WiFiDirectDevice

SDK Sample(s): WiFiDirectDevice sample

Background docs: WiFi Direct (Wikipedia)

Applicable //build 2013 session: Building Windows Apps that Use Wi-Fi Direct (3-9030)

Generally speaking, Wi-Fi Direct means connecting two endpoints, like a phone and a laptop, or your

phone and your automobile’s audio system, without the need for an access point. Working with Wi -Fi

Direct devices is very similar to what we’ve seen already with other protocols. As mentioned in the

introduction to this chapter, pairing of wireless devices is something that Windows handles at the OS

level, so all you really need to do from an app is declare the necessary capability in your manifest,

enumerate the devices you care about, pick the one you want to use, and then use the API in

Windows.Devices.WiFiDirect to communicate with it. In this case, communication happens through

sockets, for which you use the WinRT APIs discussed in Appendix D.

The WiFiDirectDevice sample that we’ll draw from here demonstrates the API, as usual, and also

provides a good app for testing connections with Wi-Fi Direct devices. If you find that your own app is

having troubles with a device, try it also with this sample and compare the results.

As noted above, the sample shows that the only capability you need for Wi-Fi Direct is Proximity,

which you can set through Visual Studio’s manifest editor directly:

When you enumerate Wi-Fi Direct devices, you’ll enumerate only those that have been paired. Once

you have the ID you want, WiFiDirectDevice.fromIdAsync gets you the WiFiDirectDevice instance

for that specific hardware (assuming the user consents). At that point, register a handler for the

WiFiDirectDevice.onconnectionstatuschanged event:

http://msdn.microsoft.com/library/windows/apps/windows.devices.wifidirect.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.wifidirect.wifidirectdevice.aspx
http://code.msdn.microsoft.com/windowsapps/WiFiDirectDevice-sample-59a6e5e0
http://en.wikipedia.org/wiki/Wi-Fi_Direct
http://channel9.msdn.com/Events/Build/2013/3-9030
http://channel9.msdn.com/Events/Build/2013/3-9030
http://code.msdn.microsoft.com/windowsapps/WiFiDirectDevice-sample-59a6e5e0
http://msdn.microsoft.com/library/windows/apps/windows.devices.wifidirect.wifidirectdevice.fromidasync.aspx

1000

var wfd = Windows.Devices.WiFiDirect;

wfd.WiFiDirectDevice.fromIdAsync(selectedId).done(

 function (wfdDevice) {

 // Listen for status changes (assuming wfdDevice is non-null)

 wfdDevice.onconnectionstatuschanged = statusHandler;

 // Start communications

 }

);

This event tells you when the device object’s connectionStatus property changes. Its values are

simply connected or disconnected. Apps typically use the connection status to show some kind of

visual indicator, stop data transfers, and/or prompt the user to select a different device if the one

they’ve been using is unavailable.

The other key thing to do when you lose a connection is to close any sockets you’ve opened for it.

As mentioned earlier, communication with a Wi-Fi Direct device happens through sockets. This starts

by calling WiFiDirectDevice.getConnectionEndpointPairs to retrieve the endpoints and then

open and close as many sockets as you desire using DatagramSocket and StreamSocket objects and

their connectAsync methods (setting the EndpointPair.remoteServiceName to the desired TCP

port). See Appendix D for details on working with sockets, and watch the //build 2013 session linked to

earlier for a live demonstration (it starts at about 12m 15s in).

Near Field Communication and the Proximity API

Connecting with devices that are near to the one on which your app is running is one area that I

suspect will see much creative innovation in the coming years as PCs are increasing equipped with the

requisite hardware. In this case we’re speaking of “devices” more generally than we have been. In some

cases there will be a separate discrete device, most notably Bluetooth devices or NFC tags. But then

we’re also speaking of an app running on one machine connecting with itself or another that’s running

on a different machine. In this sense, apps can communicate with each other as if they were themselves

separate “devices.”

Caveat Although it is possible for different apps to know about each other and communicate, the

Windows Store certification requirements do not allow them to be interdependent. Approach such

communication scenarios as a way to extend the functionality of the app, but be sure to provide value

when the app is run in isolation.

Near Field Communication (NFC) is one of the key ways for apps to connect to devices and across

devices. NFC works with electromagnetic sensors (including unpowered NFC tags) that resonate with

each other when they get close, usually within 3–4 centimeters. Practically speaking, this means that the

devices actually make physical contact, a tap that effectively initiates a digital handshake to open a

conversation. When this pairing happens between the apps running on both devices that share a

http://msdn.microsoft.com/library/windows/apps/windows.devices.wifidirect.wifidirectdevice.connectionstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.wifidirect.wifidirectdevice.getconnectionendpointpairs.aspx

1001

communication protocol (which is easy if they’re the same app), those apps can have an ongoing

conversation.

When you think about “devices” in this context, though, they can vary tremendously. The devices

that are making the connection don’t need to be at all similar. One device might be your tablet PC, and

the other might by anything from a large all-in-one PC display to a simple NFC tag mounted in a

poster or name badge.

Apps can also learn about each other on different devices through Wi-Fi Direct (if the wireless

adapter supports it) and Bluetooth. In these cases it’s possible for one app to browse for available

(advertised) connections on other devices, which might or might not be coming from the same app.

The devices don’t need to be as physically close as with a tap, just within range of their wireless signals.

Whatever the case, working with proximity—as all of this is collectively referred to—is useful for

many scenarios, such as sharing content, setting up multiplayer experience, broadcasting activity, and

really anything else where some kind of exchange might happen, including both one-time data

transfers and setting up more persistent connections.

Three main conditions exist for using proximity (see Guidelines for proximity):

 The app must declare the Proximity capability in its manifest.

 Communications are supported only for foreground apps (there are no background tasks to

maintain a conversation).

 The app must ask for user consent to enter into a multiuser relationship. An app should show

waiting connections, connections being established, and connections that are active, and it

should allow the user to disconnect at any time. Note that using the APIs to make a connection

will automatically prompt the user.

The API for working with proximity is in the appropriately named Windows.Networking.-

Proximity namespace, as is the Proximity sample that we’ll be working with here. It almost goes

without saying that doing any deep exploration of proximity will require two machines that are suitably

http://msdn.microsoft.com/library/windows/apps/hh465215.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.aspx
http://code.msdn.microsoft.com/windowsapps/Proximity-Sample-88129731

1002

equipped or one device plus an NFC tag. For NFC between two machines there is also a driver sample

in the Windows Driver Kit that simulates NFC over a network connection. To use it, you’ll also need

Visual Studio 2013 Ultimate Edition; the Express version does not support driver development. In that

case it might make more sense to just acquire an NFC-capable device!

To install the Windows Driver Kit, follow the instructions on How to get the WDK after installing

Visual Studio 2013 Ultimate. To start the download, you run the small the installer and then select the

option to acquire the kit for use on another computer. Then, according to the Proximity sample’s

description page:

After you have installed the WDK and samples, you can find the proximity driver sample in

the src\nfp directory in the location where you installed the WDK samples. See the

NetNfpProvider.html file in the src\nfp\net directory for instructions on building and running the

simulator. [Note: be sure to specify a Windows 8.1 target when you build.] After you start the

simulator, it runs in the background while your proximity app is running in the foreground. Your

app must be in the foreground for the tap simulation to work.

For more complete instructions, refer to How to use Near-Field Proximity API without NFC hardware

on Stephanié Hertrich’s MSDN blog. There you can also find a C# library for Transferring a file between

2 peers using Wifi-Direct and Proximity API, which you might find helpful or instructive.

Assuming that you have an environment in which proximity can at least be simulated, let’s look at

the two mainline scenarios now. The first uses the PeerFinder class to create a socket connection

between two peer apps for ongoing communication; the second uses the ProximityDevice class to

send data packets between two devices.

Finding Your Peers (No Pressure!)
To find peers, an app on one device can advertise its availability such that apps on other devices can

browse advertised peers and initiate a connection over Wi-Fi Direct (Windows devices) or Bluetooth

(Windows Phone). The second way to find a peer is through a direct NFC tap (which works on Windows

and Windows Phone). Both methods are shown in scenario 1 of the Proximity sample, but these three

distinct functions—advertise, browse, and tap to connect—are somewhat intermixed, because they

each use some distinct parts of the PeerFinder class and some parts in common.

One commonality is the static property PeerFinder.supportedDiscoveryTypes, which indicates

how connections can be made. This contains a combination of values from the PeerDiscoveryTypes

enumeration and depends on the available hardware in the device. Those values are browse (Wi-Fi

Direct is available), triggered (NFC tapping is available), and none (PeerFinder can’t be used). You

can use these values to selectively enable or disable certain capabilities in your app as needed. Scenario

1 of the Proximity sample, for instance, checks the discovery types to set some flags and enable buttons

for NFC activities. Otherwise, it just shows disappointing messages (this code is condensed somewhat

from the page’s ready method js/PeerFinder.js, and note the namespace variable at the top):

http://msdn.microsoft.com/windows/hardware/gg487463
http://blogs.msdn.com/b/stephe/archive/2013/11/22/using-windows-8-1-near-proximity-api-without-nfc-hardware.aspx
http://blogs.msdn.com/b/stephe/archive/2013/12/11/win8-1-transfering-a-file-between-2-peers-using-wifi-direct-and-proximity-api.aspx
http://blogs.msdn.com/b/stephe/archive/2013/12/11/win8-1-transfering-a-file-between-2-peers-using-wifi-direct-and-proximity-api.aspx
http://code.msdn.microsoft.com/windowsapps/Proximity-Sample-88129731
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.aspx

1003

var ProxNS = Windows.Networking.Proximity;

var supportedDiscoveryTypes = ProxNS.PeerFinder.supportedDiscoveryTypes;

// Enable triggered (tap) related UI only if the hardware support is present

if (supportedDiscoveryTypes & ProxNS.PeerDiscoveryTypes.triggered) {

 triggeredConnectSupported = true;

} else {

 peerFinderErrorMsg = "Tap based discovery of peers not supported \n";

}

// Enable browse related buttons only if the hardware support is present

if (supportedDiscoveryTypes & ProxNS.PeerDiscoveryTypes.browse) {

 browseConnectSupported = true;

 // [Add listeners to buttons, code omitted]

 } else {

 // [Show messages, code omitted]

 }

if (triggeredConnectSupported || browseConnectSupported) {

 // [Set up additional UI]

}

// ...

}

Now let’s tease apart the distinct areas.

Advertising a Connection

Making yourself available to others through advertising has two parts: putting out the word and

listening for connections that are made. Assuming that some form of communication is possible, the

first step in all of this is to configure the PeerFinder with the displayName that will appear to other

devices when you advertise and to set allowBluetooth, allowInfrastructure, and

allowWiFi-Direct as desired to allow discovery over additional networks (infrastructure refers to

TCP/IP). Setting none of these flags will still enable connections through NFC tapping, which is always

enabled.

Next, set up a handler for the PeerFinder.onconnectionrequested event, followed by a call to

the static method PeerFinder.start (again, ProxNS is a namespace variable):

ProxNS.PeerFinder.onconnectionrequested = connectionRequestedEventHandler;

ProxNS.PeerFinder.start();

Note connectionrequested is an event that originates within WinRT. Because this is perhaps an

event you might listen to only temporarily, be sure to call removeEventListener or assign null to the

event property to prevent memory leaks. See “WinRT Events and removeEventListener” in Chapter 3,

“App Anatomy and Performance Fundamentals.”

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.connectionrequested.aspx

1004

The connectionrequested event is triggered when other devices pick up your advertisement and

call your toll-free hotline, so to speak, specifically over Wi-Fi Direct or Bluetooth. The event receives a

ConnectionRequestedEventArgs object that contains a single property, peerInformation, which is

an instance of—not surprisingly—the PeerInformation class. This object too is simple, containing

nothing but a displayName, but that is enough to make a connection.

function connectionRequestedEventHandler(e) {

 requestingPeer = e.peerInformation;

 ProximityHelpers.displayStatus("Connection Requested from peer: "

 + requestingPeer.displayName);

 // Enable Accept button (and hide Send and Message) [some code omitted]

 ProximityHelpers.id("peerFinder_AcceptRequest").style.display = "inline";

}

A connection is established by passing that PeerInformation object to PeerFinder.-

connectAsync. This will prompt the user for consent, and, given that consent, your completed handler

will receive a Windows.Networking.Sockets.StreamSocket, which is explained in Appendix C,

“Additional Networking Topics.”

function peerFinder_AcceptRequest() {

 ProxNS.PeerFinder.connectAsync(requestingPeer).done(function (proximitySocket) {

 startSendReceive(proximitySocket);

 });

}

From this point on, you’re free to send whatever data with whatever protocols you’d like, on the

assumption, of course, that the app on the other end will understand what you’re sending. This is

clearly not a problem when it’s the same app on both ends of the connection; different apps, of course,

will need to share a common protocol. In the sample, the “protocol” exchanges only some basic values,

but the process is all there.

If at any time you want to stop advertising, call PeerFinder.stop. To close a specific connection,

call the socket’s close method.

Making a Connection

On the other side of a proximity relationship, an app can look for peers that are advertising themselves

over Wi-Fi Direct or Bluetooth. In the Proximity sample, a Browse Peers button is enabled if the browse

discovery type is available. This button triggers a call to the following function (js/PeerFinder.js) that

uses PeerFinder.findAllPeersAsync to populate a list of possible connections, including those from

different apps:

function peerFinder_BrowsePeers() {

 // Empty the current option list [code omitted]

 ProxNS.PeerFinder.findAllPeersAsync().done(function (peerInfoCollection) {

 // Add newly found peers into the drop down list.

 for (i = 0; i < peerInfoCollection.size; i++) {

 var peerInformation = peerInfoCollection[i];

 // Create and append option element using peerInformation.displayName

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.connectionrequestedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.connectasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.connectasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.findallpeersasync.aspx

1005

 // to the peerFinder_FoundPeersList control [code omitted]

 }

 });

}

When you select a peer to connect to, the sample takes its PeerInformation object and calls

PeerFinder.connectAsync as before (during which the user is prompted for consent):

function peerFinder_Connect() {

 var foundPeersList = ProximityHelpers.id("peerFinder_FoundPeersList");

 var peerToConnect = discoveredPeers[foundPeersList.selectedIndex];

 ProxNS.PeerFinder.connectAsync(peerToConnect).done(

 function (proximitySocket) {

 startSendReceive(proximitySocket);

 });

}

Once again, this provides a StreamSocket as a result, which you can use as you will. To terminate

the connection, call the socket’s close method.

Tap to Connect and Tap to Activate

To detect a direct NFC tap—which again works to connect apps running on two devices—listen to the

PeerFinder.onTriggeredConnectionStateChanged (a WinRT event that I spell out in camel casing

so that it’s readable!). In response, start the PeerFinder:

ProxNS.PeerFinder.ontriggeredconnectionstatechanged =

 triggeredConnectionStateChangedEventHandler;

ProxNS.PeerFinder.start();

The process of connecting through tapping will go through a series of state changes (including user

consent), where those states are described in the TriggeredConnectState enumeration: listening,

connecting, peerFound, completed, canceled, and failed. Each state is included in the event args

sent to the event (a TriggeredConnectionStateChangedEventArgs…some of these names sure get

long!), and when that state reaches completed, the socket property in the event args will contain the

StreamSocket for the connection:

function triggeredConnectionStateChangedEventHandler€ {

 // [Other cases omitted]

 if (e.state === ProxNS.TriggeredConnectState.completed) {

 startSendReceive(e.socket);

 }

}

Again, from this point on, it’s a matter of what data is being exchanged through the socket—the

NFC tap is just a means to create the connection. And once again, call the socket’s close when you’re

done with it.

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.triggeredconnectionstatechanged.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.triggeredconnectstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.triggeredconnectionstatechangedeventargs.aspx

1006

When tapping connects the same app across devices, it’s possible for the tap to launch an app on

one of those devices. That is, when the app is running on one of the devices and has started the

PeerFinder, Windows will know the app’s identity and can look for it on the other device. If it finds

that app, it will launch it (or activate it if it’s already running). The app’s activated handler is then

called with an activation kind of launch, where eventArgs.detail.arguments will contain the string

“Windows.Networking.Proximity.PeerFinder:StreamSocket” (see js/default.js in the Proximity sample; the

code here is modified for clarity):

var tapLaunch = ((eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.launch) &&

 (eventObject.detail.arguments ===

 "Windows.Networking.Proximity.PeerFinder:StreamSocket"));

if (tapLaunch) {

 url = scenarios[0].url; // Force scenario 0 if launched by tap to start the PeerFinder.

}

return WinJS.Navigation.navigate(url, tapLaunch);

The code in scenario 1 picks up this condition (the tapLaunch parameter to WinJS.Navigation.-

Navigate is true) and calls PeerFinder.start automatically instead of waiting for a button press. In

the process of startup, the app also registers its own triggeredConnectionStateChanged handler so

that it will also receive a socket when the connection is complete.

Watching for Peers

In addition to deliberately browsing for peers in response to user interaction, for which you use

PeerFinder.findAllPeersAsync, an app can dynamically watch for peers as they become visible. This

is helpful for implementing multipeer scenarios.

After calling PeerFinder.start, a watcher—an instance of the PeerWatcher class—is created

through PeerFinder.createWatcher, as demonstrated in scenario 2 of the Proximity sample

(js/PeerWatcher.js):

peerWatcher = ProxNS.PeerFinder.createWatcher();

When you’re ready to watch, call PeerWatcher.start:

peerWatcher.start();

If you want to stop watching, call the stop method. But while watching is active, the PeerWatcher

fires relevant events for peer activity:

 added A peer has entered into the proximity space.

 removed A peer has exited the proximity space.

 updated A peer in the proximity space has changed either its displayName or discoveryData

property.

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.createwatcher.aspx

1007

 enumerationcompleted The PeerWatcher has completed a scan of the proximity space. Note

that the watcher will continue to scan periodically, so this event will be fired repeatedly.

 stopped PeerWatcher.stop was called, or the watcher was stopped for some other reason.

To determine the cause, check the PeerWatcher.status property.

With the added, removed, and updated events, your handler receives the PeerInformation object

for the appropriate peer. If, for example, you wanted to watch for and automatically connect to a peer

that you’ve connected with before, have your added handler check the PeerInformation properties of

new peers as they show up, and call PeerFinder.connectAsync on those are in your auto-connect list.

The PeerWatcher.status property, as mentioned for the stopped event, contains a value from

PeerWatcherStatus. This will be one of created (ready to watch), started (actively watching),

stopping (in the process of shutting down), stopped (no longer watching), aborted (stopped due to

failure), and enumerationCompleted (set after the first scan).

Sending One-Shot Payloads: Tap to Share
Although the PeerFinder sets up a StreamSocket and is good for scenarios involving ongoing

communication, other scenarios—like sharing a photo, a link, or really any kind of information

including data from an NFC tag—need only send some data from one device to another and be done

with it. For such purposes we have the ProximityDevice class, which you obtain as follows:

var proximityDevice = Windows.Networking.Proximity.ProximityDevice.getDefault();

An app that has something to share “publishes” that something as a message in the form of a string,

a URI, or a binary buffer. NFC tags publish their messages passively; an app, on the other hand, uses the

ProximityDevice class and its publishMessage, publishUriMessage, and publishBinaryMessage

methods (and a matching stopPublishing method). For example, drawing from scenario 3 of the

Proximity sample (js/ProximityDevice.js, there publishText contains the contents of an edit control):

var publishedMessageId = proximityDevice.publishMessage("Windows.SampleMessageType",

 publishText);

On the other side, an app that would like to receive such a message calls ProximityDevice.-

subscribeForMessage, passing the name of the message it expects along with a handler for when

messages arrive:

var subscribedMessageId = proximityDevice.subscribeForMessage("Windows.SampleMessageType",

 messageReceived);

function messageReceived(receivingDevice, message) {

 // Process the message

}

If the app is no longer interested in messages, it calls stopSubscribingForMessage.

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerwatcher.status.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerwatcherstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishmessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishurimessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishbinarymessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.subscribeformessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.subscribeformessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.stopsubscribingformessage.aspx

1008

With this simple protocol, you can see that an app that supports “tap to share” (as it’s called) would

publish messages whenever it has appropriate content in hand. It can also use the ProximityDevice

object’s devicearrived and devicedeparted events to know when other tap-to-share peers are in

proximity such that it’s appropriate to publish (these are WinRT events, demonstrated in scenario 4 of

the Proximity sample). The devicearrived event is also what you use to discover that an NFC tag has

come into proximity (see below).

What’s interesting to think about, though, is what kind of data you might share. Consider a travel

app in which you can book flights, hotels, rental cars, and perhaps much more. It can, of course, publish

messages with basic details but could also publish richer binary messages that would allow it to transfer

an entire itinerary to the same app running on another device, typically to another user. This would

enable one person to set up such an itinerary and then share it with a second person, who could then

just tap a Book It button and be done! This would be far more efficient than emailing that itinerary as

text and having the second person re-enter everything by hand.

On a simpler note, publishing a URI makes it super-simple for one person to tap-and-share

whatever they’re looking at with another person, again avoiding the circuitous email route or other

forms of sharing. A quick tap, and you’re seeing what I’m seeing. Again, though, there’s so much more

than can be shared that it’s a great thing to consider in your design, especially if you’re targeting

mobile devices. “What do people near each other typically do together?” That’s the question to ask and

to answer in the form of a great proximity app.

Do note that the URIs you share don’t have to be http:// references to websites but can contain

any URI scheme. If there’s an app associated with that URI scheme, tap-to-share also becomes tap-to-

activate because Windows will launch the default app for that association. And if there’s no association,

Windows will ask if you want to acquire a suitable app from the Store. You can also consider using a

Windows Store URI that will lead a user to directly install an app. Those URIs are described on Creating

links with the Windows Store protocol.

Such URIs make it possible for NFC tags, whose messages are basically hardcoded into the device, to

support tap-to-share and tap-to-activate scenarios. When you tap an NFC tag to an NFC-capable

device, the ProximityDevice object will fire a devicearrived event. An app can then receive the tag’s

message through ProximityDevice.subscribeForMessage. This means that the app will need to

know what type of message might be sent from that tag—it might be a standard type, or the app

might be written specifically for tags with specific programming. For example, an art gallery could place

tags near every piece it displays and then make an app available in the Windows Store for that gallery

(or any other galleries that work in cooperation) that knows what messages those tags will send. If the

message has an appropriate URI scheme in it, tapping on an NFC tag can help the user acquire an app

and enjoy a rich experience.

For more, check out Develop a cutting edge app with NFC on the Windows Developer Blog.

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.devicearrived.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.devicedeparted.aspx
http://msdn.microsoft.com/library/windows/apps/hh974767.aspx
http://msdn.microsoft.com/library/windows/apps/hh974767.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2013/04/18/develop-a-cutting-edge-app-with-nfc.aspx

1009

What We’ve Just Learned

 The WinRT device APIs allow apps to access a wide range of peripheral devices. One app can

also be registered as the dedicated app for a device, which gives it special permissions like

performing firmware updates.

 Accessing devices begins with declaring appropriate capabilities in the app manifest. In a few

cases the capabilities are supported through Visual Studio’s manifest editor, but most of the

time you need to edit the XML directly.

 The Windows.Devices.Enumeration API allows an app to discover what hardware is connected

to a machine. Enumeration results in one or more DeviceInformation objects, and an app can

either use the first (or default) device found or present the list to the user and let him or her

choose the specific device to use.

 The enumeration API also provides for watchers that raise events when a suitable device is

connected or disconnected from a system.

 Scenario APIs in WinRT provide for access to specific types of hardware that are backed by

standards commands and communication protocols. Supported devices in Windows 8.1 include

image scanners, barcode scanners, magnetic stripe readers, smartcards, and fingerprint readers.

 Printing (a scenario API), having been reimagined for Windows as a whole, is relatively easy to

implement in a Windows Store app. It involves listening for the printing event when the Devices

charm is invoked and providing HTML content to Windows.

 Printable content can come from the app’s document, a document fragment, an SVG

document, or a remote source. Such content can be customized using a CSS media query for

print, and Windows takes care of the layout and flow of the information on the target printer.

 Protocol APIs in WinRT provide the means to communicate with devices through supported

communication mechanisms, namely HID, USB, Bluetooth RFCOMM, Bluetooth Smart

(LE/GATT), and Wi-Fi Direct. In these cases the app must tailor its commands to the devices in

question, but the APIs take care of low-level transport concerns.

 The Windows.Networking.Proximity API supports peer browsing (over Wi-Fi Direct and

Bluetooth) as well as tap-to-connect and tap-to-share scenarios with near field communication

(NFC)–capable machines.

 Proximity connections can employ sockets for ongoing communication (like a multiplayer

game) or can simply send messages from one device to another through a publish-and-

subscribe mechanism, as is typical with tap-to-share scenarios, including NFC tags.

1010

Chapter 18

WinRT Components: An

Introduction

At the very beginning of this book, in the first two pages of Chapter 1, “The Life Story of a Windows

Store App,” we learned that apps can be written in a variety of languages and presentation

technologies. For the better part of this book we’ve spoken of this as a somewhat singular choice: you

choose the model that best suits your experience and the needs of your app and go from there.

At the same time, we’ve occasionally encountered situations where some sort of mixed language

approach is possible, even necessary. In Chapter 1, in “Sidebar: Mixed Language Apps,” I introduced the

idea that an app can actually be written in multiple languages. In Chapter 10, “The Story of State, Part

1,” I mentioned that gaining access to database APIs beyond IndexedDB could be accomplished with a

WinRT component. In Chapter 13, “Media,” we saw that JavaScript might not necessarily be the best

language in which to implement a pixel-crunching routine. In Chapter 16, “Alive with Activity” we

encountered the Notifications Extensions Library, a very useful piece of code written in C# that made

the job of constructing an XML payload much easier from JavaScript. We also saw that background

tasks can be written in languages that differ from that of the main app. And finally, in Chapter 17,

“Devices and Printing,” I mentioned that some devices can be accessed through Win32 APIs when other

WinRT APIs don’t exist and that you could use a WinRT component to create your own device-specific

scenario API instead on top of the general purpose protocol APIs. Doing so can make it much easier for

others to write apps for your device.

With the primary restriction that an app that uses HTML and CSS for its presentation layer cannot

share a drawing surface with WinRT components written in other languages, the design of WinRT

makes the mixed language approach possible. As discussed in Chapter 1, WinRT components written in

any language are made available to other languages through a projection layer that translates the

component’s interface into what’s natural in the target language. All of WinRT is written this way, and

custom WinRT components simply take advantage of the same mechanism. (We’ll see the core

characteristics of the JavaScript projection later in this chapter.)

What this means for you—writing an app with HTML, CSS, and JavaScript—is that you can

implement various parts of your app in a language that’s best suited to the task or technically

necessary. As a dynamic language, JavaScript shows its strength in easily gluing together functionality

provided by other components that do the heavy lifting for certain kinds of tasks (like camera capture,

background transfers, multi-threaded async work, etc.). Those heavy-lifting components are often best

written in other language such as C++, where the compiled code runs straight on the CPU (instead of

going through runtime layers like JavaScript) and has access to thread pools.

1011

Indeed, when we speak of mixed language apps, you truly can use a diverse mix.125 You can write a

C# component that’s called from JavaScript, and that C# component might invoke a component

written in C++. You can use the best language for any particular job, including when you need to

create your own async operations (that is, to run code on concurrent threads that don’t block the UI

thread). In this context it’s helpful to also think through what this means in relationship to web worke rs,

something that Windows Store apps can also employ.

Don’t forget You don’t always need to offload work to other threads: you can use the WinJS.-

Utilities.Scheduler API that we discussed in Chapter 3, “App Anatomy and Performance

Fundamentals.”

And don’t forget Events that are generated from within a custom WinRT component work just like

those from built-in WinRT APIs. This means that apps written in JavaScript must prevent memory leaks

by calling removeEventListener for temporary listeners. Refer to “WinRT Events and

removeEventListener” in Chapter 3.

In this chapter, we’ll first look at the different reasons why you might want to take a mixed language

approach in your app. We’ll go through a couple of quickstarts for C# and C++ so that we understand

the structure of these components, how they appear in JavaScript, and the core concepts and

terminology. The rest of the chapter will then primarily give examples of those different scenarios,

which means we won’t necessarily be going deep into the many mechanical details. I’ve chosen to do

this because there is very good documentation on those mechanics, which you can find in Creating

Windows Runtime Components in the documentation.

As you peruse the subsections of that topic, don’t let the words “basic” and “simple” in the

walkthrough titles deter you: all these topics are comprehensive cookbooks that cover the fine details

of working with data types like vectors, maps, and property sets; declaring events; creating async

operations; and how all this shows up in JavaScript. We’ll see some of these things in the course of this

introduction, but with great topics covering the what, we’ll be spending our time here on why we’d

want to use such components in the first place and the problems they can help so lve. Plus, I want you

to save some energy for the book’s finale in the next two chapters, where we’ll talk about getting your

app out to the world once you solve those problems!

Note By necessity I have to assume in this chapter that you have a little understanding of the C# and

C++ languages. If these languages are entirely new to you, spending a few hours familiarizing yourself

with them will improve your mileage with this chapter.

125 Mixed language apps have occasionally been referred to as “hybrid apps,” a term I’ve chosen to avoid because it’s

typically used to describe apps that combine native functionality with hosted content in a webview control.

http://msdn.microsoft.com/library/windows/apps/hh441572.aspx
http://msdn.microsoft.com/library/windows/apps/hh441572.aspx

1012

Choosing a Mixed Language Approach (and Web Workers)

Here are some of the reasons to take a mixed language approach in your app, which can again include

any number of WinRT components written in C#, Visual Basic (hereinafter just VB), and/or C++:

 You can accomplish certain tasks faster with higher performance code. This can reduce memory

overhead and also consume less CPU cycles and power, an important consideration for

background tasks for which a CPU quota is enforced—you might get much more done in 2 CPU

seconds in C++ than with JavaScript, because there’s no language engine involved. However,

the JavaScript language engine is highly optimized and could perform far better than you think.

In other words, don’t think that JavaScript is inherently slow, especially when you factor in the

costs of crossing language boundaries. We’ll see more later in “Comparing the Results.”

 C#, Visual Basic, and C++ have access to a sizable collection of additional APIs that are not

available to JavaScript. These include .NET, Win32, and COM (Component Object Model) APIs,

including the non-UI features of DirectX such as XAudio and XInput. We’ll see a number of

examples later in “Access to Additional APIs.”

 Access to other APIs might be necessary for utilizing third-party .NET/Win32/COM libraries and

gives you the ability to reuse existing code that you might have in C#, VB, or C++. The

Developing Bing Maps Trip Optimizer, a Windows Store app in JavaScript and C++ topic shows

a complete scenario along these lines, specifically that of migrating an ActiveX control to a

WinRT component so that it can be used from an app, because ActiveX isn’t directly supported.

(We won’t cover this scenario further in this chapter.)

 It can be easier to work with routines involving many async operations by using the await

keyword in C# and Visual Basic, because the structure is much cleaner than with promises. An

example of this can be found in the Here My Am! app of Chapter 19, “Apps for Everyone, Part

1,” where the transcodeImage function written in JavaScript for Chapter 16 is rewritten in C#.

(See Utilities.ImageConverter.TranscodeImageAsync in the Utilities project.)

 A WinRT component written in C++ is more effective at obfuscating sensitive code than

JavaScript and .NET languages. Although it won’t obfuscate the interface to that component, its

internal workings are more painstaking to reverse-engineer.

 A WinRT component is the best way to write a non-UI library that other developers can use in

their chosen language or that you can use in a variety of your own projects, like the

Notifications Extensions library we saw in earlier chapters, a custom scenario API for a device, or

a library to hide the details of interacting with a REST API on the web. In this context, see

Creating a software development kit, which includes details how the component should be

structured to integrate with Visual Studio. Also refer to //build 2013 session 4-142, Building a

Great Windows Store Library/SDK.

http://msdn.microsoft.com/library/windows/apps/hh699893.aspx
http://msdn.microsoft.com/library/vstudio/hh768146.aspx
http://channel9.msdn.com/Events/Build/2013/4-142
http://channel9.msdn.com/Events/Build/2013/4-142

1013

 Although you can use web workers in JavaScript to execute code on different threads, a WinRT

component can be much more efficient for custom asynchronous APIs. Other languages can

also make certain tasks more productive, such as using language-integrated queries (LINQ)

from C#/VB, creating parallel loops in C#/C++, using C++ Accelerated Massive Parallelism

(AMP) to take advantage of the GPU, and so on.

Again, components can also make use of one another—the component system has no problem with

that. I reiterate this point because it becomes relevant in the context of the last bullet above—web

workers—and running code off the UI thread.

You are wholly free to use web workers (or just workers, as I’ll call them) in a Windows Store app.

Visual Studio provides an item template for this purpose: right-click your project in Visual Studio’s

solution explorer, select Add > New Item, and choose Dedicated Worker. I’ll also show an example later

in “JavaScript Workers.” The real drawback here, compared with WinRT components, is that

communication between the worker and the main app thread is handled entirely through the singular

async postMessage mechanism; data transferred between the app and the worker must be expressed

as properties of a message. In other words, workers are set up for a client-server architecture more so

than one of objects with properties, methods, and events, though you can certainly create structures

for such things through messages.

What this means is that using workers with multiple asynchronous operations can get messy. By

comparison, the methods we’ve seen for working with async WinRT operations—namely WinJS

promises—is much richer, especially when you need to chain or nest async operations, raise exceptions,

and report progress. Fortunately, you can easily wrap a worker within a promise, as we’ll see in

“JavaScript Workers.”

What also interesting to think about is how you might use a worker written in JavaScript to act as an

agent that delegates work to WinRT components. The JavaScript worker then serves as the glue to

bring all the results from those components together, reporting a combined result to the main app

through postMessage.

Along these same lines, if you have some experience in .NET languages like C# and Visual Basic

along with C++, you’ll know that their respective programming models have their own strengths and

weaknesses. Just as you can take advantage of JavaScript’s dynamic nature where it serves best, you

can use the strongly typed nature of .NET where it helps your programming model and then use C++

where you want the most performant code.

You can have your main app’s UI thread in JavaScript delegate a task to a worker in JavaScript,

which then delegates some tasks to a WinRT component written in C#, which might then delegate its

most intensive tasks to still other components written in C++. Truly, the combination of workers with

WinRT components gives you a great deal of flexibility in your implementation.

http://msdn.microsoft.com/library/windows/apps/hh767434.aspx
http://msdn.microsoft.com/library/hh265136.aspx
http://msdn.microsoft.com/library/hh265136.aspx

1014

Pros and cons One complication with WinRT components written in C# or Visual Basic is that they

require loading the Common Language Runtime (CLR), which incurs additional memory overhead

when used with an app written in JavaScript or C++. With a JavaScript app, it also introduces a second

garbage collector, which can result in a consistently higher memory footprint for the app. On the flip

side, a potential disadvantage of WinRT components written in C++ is that while JavaScript and .NET

languages (C#/VB) are architecture-neutral and can target any CPU, C++ components must be

separately compiled for x86, x64, and ARM. This means that your app will have at least two separate

packages in the Windows Store (maybe three if you want to build an x64 target specifically). In the

end, you need to decide what’s best for your project and your customers.

Quickstarts: Creating and Debugging Components

When you set out to add a WinRT component to your project, the easiest place to start is with a Visual

Studio item template. Right-click your solution (not your project) in Visual Studio’s solution explorer,

select Add > New Project, and choose Windows Runtime Component as listed under the Visual Basic >,

Visual C# >, or Visual C++ > Windows Store nodes, as shown in Figure 18-1 (for a C# project).

FIGURE 18-1 Visual Studio’s option for creating a C# WinRT Component project; similar options appear under Visual

Basic > Windows Store and Visual C++ > Windows Store.

We’ll look at both the C# and C++ options as we fulfill a promise made in Chapter 13 to see

whether we can improve the performance of the Image Manipulation example in this book’s

companion content. That earlier sample performed a grayscale conversion on the contents of an image

file and displayed the results on a canvas. We did the conversion in a piece of JavaScript code that

performs quite well, actually, but it’s good to ask if we can improve that performance and perhaps

make the conversion more memory-efficient. Our first two WinRT components, then, are equivalent

1015

implementations written in C# and C++. Together, all three give us the opportunity to compare

relative performance, as we’ll do in “Comparing the Results.”

Warning Experience has shown that it’s generally better to write components in C++ rather than C#

or Visual Basic because you avoid the overhead of garbage collection, especially with an app written in

JavaScript where there’s another garbage collector at work already. In my tests with the Image

Manipulation code, I’ve found that the C# variants have a much higher memory footprint both initially

and over time than the C++ version, especially with the large amounts of data that’s being marshaled

across the component boundary. However, for less data-intensive components, writing them in C# will

incur some added overhead when first loading the component, which can be a small price to pay for

the added productivity of developing in C#.

One problem with all these implementations is that they still run on the UI thread, so we’ll want to

look at making the operations asynchronous. We’ll come back to that later in “Key Concepts and

Details” so as to avoid making these quickstarts less than quick!

Note also that I introduce terminology and tooling considerations in the C# quickstart, so read it

even if you plan on working in C++.

Sidebar: WinRT Components vs. Class Libraries (C#/VB) vs. Dynamic-Link

Libraries

In the Add New Project dialog of Visual Studio, you’ll notice that an option for a Class Library is

shown for Visual C# and Visual Basic and an option for a DLL (dynamic-link library) is shown for

C++. These effectively compile into assemblies and DLLs, respectively, which bear resemblances

to WinRT components. The difference is that these types of components can be used from only

those same languages. A Class Library (.NET assembly) can be used by apps written in .NET

languages but not from JavaScript. A DLL can be called from C++ and .NET languages (the latter

only through a mechanism called P/Invoke) but is not available to JavaScript. A WinRT

component is the only choice that works across language boundaries, thanks to the WinRT

projection layers.

Sometimes a simple DLL is required, as with media extensions that provide custom

audio/video effects or a codecs. These are not WinRT components because they lack metadata

that would project them into other languages, nor is such metadata needed. Details on DLLs for

the media platform can be found in Using media extensions and Media extensions sample.

Quickstart #1: Creating a Component in C#

As shown above in Figure 18-1, I’ve added a WinRT Component in C# to the Image Manipulation

example, calling it PixelCruncherCS. Once this project has been added to the solution, we’ll have a file

called class1.cs in that project that contains a namespace PixelCruncherCS with one class:

using System;

using System.Collections.Generic;

http://msdn.microsoft.com/library/windows/apps/hh700365.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096

1016

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace PixelCruncherCS

{

 public sealed class Class1

 {

 }

}

Not particularly exciting code at this point but enough to get us going. You can see that the class is

marked public, meaning it will be visible to apps using the component. It is also marked sealed to

indicate that other classes cannot be derived from it (because of current technical constraints). Both

keywords are required for WinRT components. (These two keywords are Public and NotInheritable

in Visual Basic.)

To test the interaction with JavaScript, I’ll give the class and its file a more suitable name (Tests and

grayscale.cs, because we’ll be adding more to it) and create a test method and a test property:

public sealed class Tests

{

 public static string TestMethod(Boolean throwAnException)

 {

 if (throwAnException)

 {

 throw new System.Exception("Tests.TestMethod was asked to throw an exception.");

 }

 return "Tests.TestMethod succeeded";

 }

 public int TestProperty { get; set; }

}

If you build the solution at this point (Build > Build Solution), you’ll see that the result of the

PixelCruncherCS project is a file called PixelCruncher.winmd. The .winmd extension stands for Windows

Metadata: a WinRT Component written in C# is a .NET assembly that includes extra metadata referred

to as the component’s Application Binary Interface or ABI. This is what tells Windows about everything

the component makes available to other languages (those public classes), and it’s also what provides

IntelliSense for that component in Visual Studio and Blend.

In the app you must add a reference to the component so that it becomes available in the JavaScript

namespace, just like the WinRT APIs. To do this, right-click References within the JavaScript app project

and select Add Reference. In the dialog that appears, select Solution on the side and then check the

box for the WinRT component project as shown in Figure 18-2.

1017

FIGURE 18-2 Adding a reference to a WinRT component within the same solution as the app.

When writing code that refers to the component, you always start with the namespace,

PixelCruncherCS in our case. As soon as you enter that name and a dot, IntelliSense will appear for

available classes in that namespace:

Once you add the name of a class and type another dot, IntelliSense appears for its methods and

properties:

Note If you’ve made changes to namespace, class, and other names in your WinRT component

project, you’ll need to run Build > Build Solution to see the updated names within IntelliSense.

Here you can see that the method in the C# code is TestMethod; it’s projected into JavaScript as

testMethod, matching typical JavaScript conventions. This casing conversion is done automatically

through the JavaScript projection layer for all WinRT components, including those in your own app.

1018

Notice also that IntelliSense is showing only testMethod here but not testProperty (whose casing

is also converted). Why is that? It’s because in C# TestMethod is declared as static, meaning that it

can be executed without first instantiating an object of that class:

var result = PixelCruncherCS.Tests.testMethod(false);

On the other hand, testProperty, but not testMethod, is available on a specific instance:

I’ve set up TestMethod, by the way, to throw an exception when asked so that we can see how it’s

handled in JavaScript with a try/catch block:

try {

 result = PixelCruncherCS.Tests.testMethod(true);

} catch (e) {

 console.log("PixelCruncherCS.Tests.testMethod threw: '" + e.description + "'.");

}

Let’s try this code. Attaching it to some button (see the testComponentCS function in the example’s

js/default.js file), set a breakpoint at the top and run the app in the debugger. When you hit that

breakpoint, step through the code using Visual Studio’s Step Into feature (F11 or Debug > Step Into).

Notice that you do not step into the C# code: Visual Studio isn’t presently able to debug across the

script/managed (C#) boundary, although it can do so across script/native (C++). What this means is

that within a single instance of Visual Studio you can debug either the JavaScript or the C# side of your

code, but not both at the same time. Console output can help here, but it’s also possible to use two

instances of the debugger, as we’ll see later.

Having the basic mechanics worked out, we’re now ready to add our real functionality. The first step

is to understand how to get the canvas pixel data arrays in and out of the WinRT component. In the

JavaScript code (within the copyGrayscaleToCanvas method) we have an array named pixels with

the original pixel data and another empty one in imgData.data, where imgData is obtained as follows:

var imgData = ctx.createImageData(canvas.width, canvas.height);

We can pass both these arrays into a component directly. A limitation here is that arrays passed to a

WinRT component can be used for input or output, but not both—a component cannot just

manipulate an array in place. The topic Passing arrays to a Windows Runtime component has the fine

details. To make the story short, we fortunately already have an input array, pixels, and an output

array, imgData.data, that we can pass to a method in the component:

http://msdn.microsoft.com/library/windows/apps/hh975353.aspx

1019

var pc = new PixelCruncherCS.Grayscale();

pc.convert(pixels, imageData.data); //Note casing on method name

Note The techniques shown here and in the article linked to above apply only to synchronous

methods in the WinRT component; arrays cannot be used with asynchronous operations. See “Key

Concepts for WinRT Components” later in this chapter for more on this topic.

To receive this array in C#, both parameters must to be appropriately marked with their directions.

Such marks in C# are called attributes, not to be confused with those in HTML, and they appear in

square brackets ([]) before the parameter name. In this particular case, the attributes appear as

[ReadOnlyArray()] and [WriteOnlyArray()] preceding the parameters. (The ReadOnlyArray and

WriteOnlyArray methods are found in the System.Runtime.InteropServices.WindowsRuntime

namespace.) So the declaration of the method in the component, which again must be public, looks

like this, just using a Boolean as a return type for the time being:

public Boolean Convert([ReadOnlyArray()] Byte[] imageDataIn,

 [WriteOnlyArray()] Byte[] imageDataOut)

With this in place, it’s a simple matter to convert the JavaScript grayscale code to C#:

public Boolean Convert([ReadOnlyArray()] Byte[] imageDataIn,

 [WriteOnlyArray()] Byte[] imageDataOut)

{

 int i;

 int length = imageDataIn.Length;

 const int colorOffsetRed = 0;

 const int colorOffsetGreen = 1;

 const int colorOffsetBlue = 2;

 const int colorOffsetAlpha = 3;

 Byte r, g, b, gray;

 for (i = 0; i < length; i += 4)

 {

 r = imageDataIn[i + colorOffsetRed];

 g = imageDataIn[i + colorOffsetGreen];

 b = imageDataIn[i + colorOffsetBlue];

 //Assign each rgb value to brightness for grayscale

 gray = (Byte)(.3 * r + .55 * g + .11 * b);

 imageDataOut[i + colorOffsetRed] = gray;

 imageDataOut[i + colorOffsetGreen] = gray;

 imageDataOut[i + colorOffsetBlue] = gray;

 imageDataOut[i + colorOffsetAlpha] = imageDataIn[i + colorOffsetAlpha];

 }

 return true;

}

1020

Simultaneously Debugging Script and Managed/Native Code
One of the challenges in writing a mixed language app with WinRT components is debugging code

that’s written in different languages, especially as you step across the component boundary.

Fortunately it’s not too difficult to make this work.

The key is changing the debugger type in Visual Studio. Right-click your app project in solution

explorer, select Debugging on the left, and choose a Debugger Type on the right, as shown in Figure

18-3. In this drop-down list, Script refers to JavaScript, Managed refers to C# or Visual Basic, and Native

refers to C++, and you can see that you can choose from different combinations.

FIGURE 18-3 Debugger types in Visual Studio.

If you choose any of the “Only” options, it means that you can set breakpoints and step through

code only in that language. These have their place, as we’ll see in a moment.

If you choose the Native With Script option (which was introduced with Visual Studio 2013 editions)

and have a component written in C++, you can easily step from JavaScript into the C++ component

and back—and set breakpoints in both—for a seamless debugging experience. This is one great reason

to write C++ components!

If you have components written in both C#/VB and C++ in your project, choosing Mixed will allow

you to debug all your component code but not your JavaScript. So what can you do here? That is, if

you have only a component written in C#/VB like the one we worked with previously, is there a way to

debug both the app and the component at the same time?

Fortunately, the answer is yes—you just need to use two instances of Visual Studio. Here’s how (a tip

of the hat to Rob Paveza for this):

4. Launch the app (F5) with a Script debugging option. This is the instance of Visual Studio in

which you’ll be stepping through JavaScript (and possibly C++ component code if you use

Native With Script).

1021

5. Load your project in a second instance of Visual Studio. Ignore warnings about IntelliSense files

being already open, and prepare to wait a little while as Visual Studio builds a new copy of that

database for this second instance.

6. In this second instance, set the debugging mode to an option that includes Managed so that

you can debug C# or VB component code.

7. Select the Debug > Attach to Process menu command in the second instance. This displays a list

of other running processes.

8. Find and select the line for WWAHost.exe (the app host for JavaScript) in the process list that

has your app name in the title column.

9. Above the list, check the Attach To value. If it says “Automatic: Script code”, press the Select

button and indicate Managed and Native instead. Close that dialog.

10. Click the Attach button.

11. Now you can set breakpoints and step through your component code in this second instance of

Visual Studio. By setting breakpoints at the beginning of the component’s pub lic methods,

you’ll stop there whenever the component is called from JavaScript.

Note that this method also works for debugging a C++ component in 2012 editions of Visual Studio

if you have a project that’s still targeting Windows 8.

Quickstart #2: Creating a Component in C++
To demonstrate a WinRT component written in C++, I’ve also added a project to the Image

Manipulation example, calling it PixelCruncherCPP. The core code is the same as the C# example—

manipulating pixels is a rather universal experience! The necessary code structure for the component,

on the other hand, is unique to the language—C++ has ceremony all its own.

As we did with C#, let’s start by adding a new project using the Visual C++ > Windows Runtime

Component item template, using the PixelCruncherCPP name. After renaming Class1 to Tests in the

code and renaming the files, we’ll have the following code in the header (which I call grayscale.h, and

omitting a compiler directive):

namespace PixelCruncherCPP

{

 public ref class Tests sealed

 {

 public:

 Tests();

 };

}

where we see that the class must be public ref and sealed, with a public constructor. These together

make the object instantiable as a WinRT component. In Tests.cpp we have the following:

1022

#include "pch.h"

#include "Grayscale.h"

using namespace PixelCruncherCPP;

using namespace Platform;

Tests::Tests()

{

}

Again, not too much to go on, but enough. (Documentation for the Platform namespace, by the

way, is part of the Visual C++ Language Reference.) To follow the same process we did for C#, let’s add

a static test method and a test property. The class definition is now:

public ref class Tests sealed

{

public:

 Tests();

 static Platform::String^ TestMethod(bool throwAnException);

 property int TestProperty;

};

and the code for TestMethod is this:

String^ Tests::TestMethod(bool throwAnException)

{

 if (throwAnException)

 {

 throw ref new InvalidArgumentException;

 }

 return ref new String(L"Tests.TestMethod succeeded");

}

When you build this project (Build > Build Solution), you’ll see that we now get PixelCruncherCPP.dll

and PixelCruncherCPP.winmd files. Whereas a C# assembly can contain both the code and the

metadata, a C++ component compiles into separate code and metadata files. The metadata is again

used to project the component’s ABI into other languages and provides IntelliSense data for Visual

Studio and Blend. If you now add a reference to this component in your app project—right-click the

project > Add Reference > Solution, and choose PixelCruncherCPP, as in Figure 18-2—you’ll find that

IntelliSense works on the class when writing JavaScript code.

You’ll also find that the casing of the component’s property and method names have also been

changed. In fact, with the exception of the namespace, PixelCruncherCPP, everything we did to use the

C# component in JavaScript looks exactly the same, as it should be: the app consuming a WinRT

component does not need to concern itself with the language used to implement that component. And

remember that by choosing Native With Script debugging in Visual Studio, as described previously, you

get a seamless experience across the component boundary.

http://msdn.microsoft.com/library/windows/apps/hh710417.aspx

1023

Now we need to do the same work to accept arrays into the component, using Array and

WriteOnlyArray as a reference. In C++, an input array is declared with Platform::Array<T>^ and an

output array as Platform::WriteOnlyArray<T>^, where we use uint8 as the type here instead of

Byte in C#:

bool Grayscale::Convert(Platform::Array<uint8>^ imageDataIn,

 Platform::WriteOnlyArray<uint8>^ imageDataOut)

The rest of the code is identical except for this one type change and for how we obtain the length of

the input array, so we don’t need to spell it out here. The code to invoke this class from JavaScript is

also the same as for C#:

var pc2 = new PixelCruncherCPP.Grayscale();

pc2.convert(pixels, imgData.data);

Sidebar: The Windows Runtime C++ Template Library

Visual Studio includes what is called the Windows Runtime C++ Template Library (or WRL),

which helps you write low-level WinRT components in C++. It’s really a bridge between the raw

COM level and what are called the C++/CX component extensions that we’ve been using here. If

you have any experience with the Active Template Library (ATL) for COM, you’ll find yourself

right at home with WRL. For more information, see the documentation linked to above along

with the Windows Runtime Component using WRL sample.

Comparing the Results

The Image Manipulation example in this chapter’s companion content contains equivalent code in

JavaScript, C#, and C++ to perform a grayscale conversion on image pixels. Taking a timestamp with

new Date() around the code of each routine, I’ve compiled a table of performance numbers:126

 Average milliseconds (five samples;

dual-core 2.5GHz processor)

Temporary/residual increase in

working set (MB)*

Image Size JavaScript C# C++ JavaScript C# C++

14.8K 8.4 7.2 6.4

231K 45.2 40.0 33.8 10.7/6.0 15.5/10.1 6.1/2.7

656K 76.6 65.8 54.4

1.98MB 798 728 598

4.57MB 796 750 637 176.2/71.5 252.0/147.6 176.7/72.3

* Part of the residual increase comes from displaying the newly converted image, which is more or less the residual
number for C++. The larger residual increases for JavaScript and C# come from allocations that are not yet

garbage collected.

126 You might be interested in a series of blog posts by David Rousset about building a camera app using HTML and
JavaScript. In Part 4 of that series he offers much more in-depth performance analysis for a variety of devices, using pixel

manipulation components much like we’ve been working with here.

http://msdn.microsoft.com/library/windows/apps/hh700131.aspx
http://msdn.microsoft.com/library/windows/apps/hh700131.aspx
http://msdn.microsoft.com/library/hh438466(v=vs.110).aspx
http://code.msdn.microsoft.com/windowsapps/Windows-Runtime-Component-e3e1e38d
http://blogs.msdn.com/b/davrous/archive/2012/09/05/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application.aspx
http://blogs.msdn.com/b/davrous/archive/2012/10/02/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application-for-windows-8-4-4.aspx

1024

A couple of notes and observations about these numbers and measuring them:

 When doing performance tests like this, be sure to set the build target to Release instead of

Debug. This makes a tremendous difference in the performance of C++ code, because the

compiler inserts all kinds of extra run-time checks in a debug build.

 When taking measurements, also be sure to run the Release app outside of the debugger (in

Visual Studio select Debug > Start Without Debugging). If you’ve enabled script debugging,

JavaScript will run considerably slower even with a Release build and could lead you to think

that the language is far less efficient than it really is in production scenarios. Again, the

JavaScript engine is highly optimized and performs better than you might think!

 If you run similar tests in the app itself, you’ll notice that the time reported for the conversion is

considerably shorter than the time it takes for the app to become responsive again. This is

because the canvas element’s putImageData method takes a long time to copy the converted

pixels. Indeed, the majority of the time for the whole process is spent in putImageData and not

the grayscale conversion.

 Assuming the CPU load for the grayscale conversion is roughly identical between the

implementations, you can see that a higher performance component reduces the amount of

time that the CPU is carrying that load. Over many invocations of such routines, this can add up

to considerable power savings.

 The first time you use a WinRT component for any reason, it will take a little extra time to load

the component and its metadata. The numbers above do not include first-run timings. Thus, if

you’re trying to optimize a startup process in particular, the extra overhead to load a

component could mean that it’s best to just do the job in JavaScript.

Now let’s think about what these numbers mean for “performance.” I put that word in quotes

because performance is ultimately something that is judged by your users, not by a diagnostic tool that’s

giving you a measurement. What this means is that we have to look not just at a single measurement

but at the larger picture of impact on the entire system. This is why I’ve also included a few

measurements for working set, because for large images you can see that the impact is very significant

and could affect the system in such a way as to hurt overall performance even though some particular

routine in your app is running faster!

In short, always keep in mind that there is much more to measuring and improving app

performance than just offloading computationally intensive routines to a WinRT component. Analyzing

the performance of Windows Store apps and Analyzing the code quality of Windows Store apps with

Visual Studio code analysis in the documentation will help you make a more thorough assessment of

your app, as will High-Performance Windows Store Apps by Brian Rasmussen (Microsoft Press, 2014).

http://msdn.microsoft.com/library/windows/apps/hh696636
http://msdn.microsoft.com/library/windows/apps/hh696636
http://msdn.microsoft.com/library/windows/apps/hh441471
http://msdn.microsoft.com/library/windows/apps/hh441471
http://www.microsoftpressstore.com/title/9780735682834

1025

I also want to add that when I first ran these tests with the example program, I was seeing

something like 100% improvements in C#/C++ over JavaScript. The reason for that came from the

nature of the canvas element’s ImageData object (as returned by the canvas’s createImageData

method) and had little to do with JavaScript. In my original JavaScript code (since corrected), I was

dereferencing the ImageData.data array to set every r, g, b, and a value for each pixel. When I learned

how dreadfully slow that particular dereference operation actually is, I changed the code to cache the

array reference in another variable and suddenly the JavaScript version became amazingly faster.

Indeed, minimizing identifier references is generally a good practice for better performance in

JavaScript. For more on this and other performance aspects, check out High Performance JavaScript, by

Nicholas C. Zakas (O’Reilly, 2010).

Anyway, looking at just the raw CPU story with my measurements, we can see that C# runs between

6–21% faster than the equivalent JavaScript and C++ 25–46% faster. C++ also runs 13–22% faster than

C#. This shows that for noncritical code, writing a component won’t necessarily give you a good return

on the time you invest. It will be more productive to just stay in JavaScript most of the time and perhaps

use a component in a few places where raw CPU performance really matters.

Comparing C# to C++, we can also see that the gain is incremental in terms of CPU, which means

it’s not always worth incurring the extra complexity of writing in C++. But when we add in the memory

footprint numbers, the equation looks somewhat different.

For one thing, just loading a component written in C# or Visual Basic means loading the CLR into

your process, which I’ve found incurs a 6-to-8-megabyte hit initially. More importantly, though, is the

fact that the CLR has its own garbage collection process that’s now running alongside that of

JavaScript. With our grayscale conversion routines, the fact that we’re marshaling large arrays of data

across the component boundary means that we’re allocating a bunch of memory in JavaScrip t, sharing

it with the .NET Common Language Runtime (CLR), and then having to wait for both garbage collectors

to figure out what, exactly, they can clean up (which might not happen until there is more demand for

memory elsewhere). For this reason you can see that the C# component has a much higher residual

memory footprint than the same routine written in C++.127

To further evaluate the effects of garbage collection and take the array allocations out of the

picture, I added some simple counting routines in JavaScript, C#, and C++ to the Image Manipulation

example and its components (they all look about the same as this JavaScript code):

function countFromZero(max, increment) {

 var sum = 0;

 for (var x = 0; x < max; x += increment) {

 sum += x;

 }

 return sum;

127 It’s also possible to avoid marshaling arrays (and the associated memory spike) altogether by just sending a

StorageFile to the component, which I’ll discuss later.

1026

}

Running a count with a max of 1000 and an increment of 0.000001 (only use this increment outside

the debugger—otherwise you might be waiting a while!), the timings I got averaged 2112ms for

JavaScript, 1568ms for C#, and 1534ms for C++. Again, the difference between JavaScript and the

other languages is significant (35–38% gain), but it’s hardly significant between C# and C++. However,

I occasionally found that, after loading a number of images and running the grayscale tests, count ing in

JavaScript and/or C# can take considerably longer than before, due to garbage collection falling

behind my active use of the app.

Whatever the case, all of this becomes very important when your app is running on a device with all

of 1GB of memory—the extra overhead could easily drag down overall system performance. If you’re

writing a component for just your app alone, you can decide how important this is for your particular

customers. On the other hand, if you’re writing a library for use by many other apps, some of which will

be written in JavaScript, or if you simply want consistent and reliable performance for your component,

we highly recommend implementing the component in C++ and thus minimizing the overhead.

Key Concepts for WinRT Components

The WinRT components we’ve just seen in “Quickstarts : Creating and Debugging Components”

demonstrate the basic structure and operation of such components, but clearly there is much more to

the subject. Because exploring all the nuances is beyond the scope of this chapter, I’ll refer you again to

the references given in this chapter’s introduction. Here I’ll offer a summary of the most relevant points,

followed by separate sections on asynchronous methods and the projection of WinRT into JavaScript.

Component Structure

 The output of a C#/VB component project is a .NET assembly with Windows metadata in a

single .winmd file; the output of a C++ component is a DLL with the code and a separate

.winmd file with the metadata.

 Apps that use components must include the .winmd/DLL files in their projects and add a

reference to them; it’s not necessary to include the component source.

 Component classes that can be used by other languages are known as activatable classes. In C#

these must be marked as public sealed, in Visual Basic as Public NotInheritable, and in

C++ as public ref sealed. A component must have one activatable class to be usable from

other languages.

 Classes can have static members (methods and properties) that are usable without

instantiating an object of that class.

 A component can contain multiple public activatable classes as well as additional classes that

1027

are internal only. All public classes must reside in the same root namespace, which has the same

name as the component metadata file.

 It is possible to create a data source in a WinRT component and bind it to controls in JavaScript.

The simplest way is to use the WinJS.Binding.oneTime initializer, the reasons for which are

described in Chapter 6, “Data Binding, Collections, and Templates,” under “Sidebar: Binding to

WinRT Objects.” More work is needed in JavaScript if you want to do one-way or two-way

binding, but it is possible. See the WinMD and Databinding post on the MSDN forum.

Furthermore, if you need to also use converter in the binding relationship, then it’s necessary to

write your own binding initializer and duplicate some of the functionality of oneTime.

 By default, all public classes in a component are visible to all other languages. A class can be

hidden from JavaScript by applying the WebHostHiddenAttribute (that is, prefix the class

declaration with [Windows.Foundation.Metadata.WebHostHidden] in C# or

[Windows::Foundation::Metadata::WebHostHidden] in C++). This is appropriate for classes

that work with UI (that cannot be shared with JavaScript, such as the whole of the

Windows.Xaml namespace in WinRT) or others that are redundant with intrinsic JavaScript APIs

(such as Windows.Data.Json which is redundant with JSON.*).

 For some additional structural options, see the following samples in the Windows SDK (all of

which use the WRL; see “Sidebar: The Windows Runtime C++ Template Library (WRL)” under

“Quickstart #2”):

 Creating a Windows Runtime in-process component sample (C++/CX)

 Creating a Windows Runtime EXE component with C++ sample

 Creating a Windows Runtime DLL component with C++ sample

 Windows Runtime in-process component authoring with proxy/stub generation sample

Types

 Within a component, you can use native language types (that is, .NET types and C++ runtime

types). At the level of the component interface (the Application Binary Interface, or ABI), you

must use WinRT types or native types that are implemented with WinRT types. Otherwise those

values cannot be projected into other languages. In C++, WinRT types exist in the Platform

namespace, and see Type System (C++/CX); in C#/VB, they exist in the System namespace, and

see .NET Framework mappings of Windows Runtime types.

 A component can use structures created with WinRT types, which are projected into JavaScript

as objects with properties that match the struct members.

 Collections must use specific WinRT types found in Windows.Foundation.Collections, such

as IVector, IMap (and IMapView), and IPropertySet. This is why we’ve often encountered

vectors, maps, and property sets throughout this book.

http://social.msdn.microsoft.com/Forums/windowsapps/en-US/38387326-8d81-48d1-8f85-023b9ebf2382/winmd-and-databinding?forum=winappswithhtml5
http://msdn.microsoft.com/library/windows/apps/br206720.aspx
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-460a535f
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-ed84af9d
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-6c399797
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-367fada2
http://msdn.microsoft.com/library/windows/apps/hh710417.aspx
http://msdn.microsoft.com/library/windows/apps/hh755822.aspx
http://msdn.microsoft.com/library/windows/apps/hh995050.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.aspx

1028

 Arrays are a special consideration because they can be passed in only one direction, as we saw

in the quickstarts; each must therefore be marked as read-only or write-only. See Passing arrays

to a Windows Runtime component. Furthermore, arrays cannot be effectively used with async

methods, because an output array will not be transferred back to the caller when the async

operation is complete. We’ll talk more of this in “Implementing Asynchronous Methods” below.

Component Implementation

 When creating method overloads, make the arity (the number of arguments) different for each

one because JavaScript cannot resolve overloads by type only. If you do create multiple

overloads with the same arity, one must be marked with the DefaultOverloadAttribute so

that the JavaScript projection knows which one to use. A side-effect of this, however, is that the

other overloads with the same arity are then inaccessible to JavaScript altogether. In this case,

be sure to provide distinct overloads for each critical method.

 A delegate (an anonymous function in JavaScript parlance) is a function object. Delegates are

used for events, callbacks, and asynchronous methods. Declaring a delegate defines a function

signature.

 The event keyword marks a public member of a specific delegate type as an event. Event

delegates—the signature for a handler—can are typically a Windows.Foundation.-

EventHandler<TResult> or a TypedEventHandler<TSender, TResult>. In all cases, support

for JavaScript requires a little extra work to ensure that the event is raised on the UI thread. The

details for this can be found on Raising events in Windows runtime components and in the four

samples linked to above in “Component Structure.” We’ll see a concrete example later in

“Library Components.”

 Throwing exception: use the throw keyword in C#, VB, and C++. In C#/VB, you throw a new

instance of an exception type in the System namespace. In C++, you use throw ref new with

one of the exception types within the Platform namespace, such as Platform::Invalid-

ArgumentException. These appear in JavaScript with a stack trace in the message field of the

exception; the actual message from the component will appear in Visual Studio’s exception

dialog.

Implementing Asynchronous Methods

For as fast as the C# and C++ routines that we saw in the quickstarts might be, the fact of the matter is

that they still take more than 50ms to complete while running on the UI thread. This is the

recommended threshold at which you should consider making an operation asynchronous. This means

running that code on other threads so that the UI thread isn’t blocked at all. To cover the basics, I’ll

now show how to implement asynchronous versions of the simple countFromZero function we saw

earlier in “Sidebar: Managed vs. Native.” We’ll do it first with a worker and then in C# and C++.

http://msdn.microsoft.com/library/windows/apps/hh975353.aspx
http://msdn.microsoft.com/library/windows/apps/hh975353.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.metadata.defaultoverloadattribute.aspx
http://msdn.microsoft.com/library/windows/apps/dn169426.aspx
http://msdn.microsoft.com/library/windows/apps/hh454070.aspx
http://msdn.microsoft.com/library/windows/apps/hh755794.aspx
http://msdn.microsoft.com/library/windows/apps/hh755794.aspx

1029

For C#/VB and C++ there is quite extensive documentation on creating async methods. The

cookbook topics we’ve referred to already cover this in the subsections called Asynchronous operations

and Exposing asynchronous operations for C#, and the “To add the public members” section in the

C++ walkthrough. There is also Creating Asynchronous Operations in C++ for Windows Store apps,

along with a series of comprehensive posts on the Windows Developer Blog covering both app and

component sides of the story: Keeping apps fast and fluid with asynchrony in the Windows Runtime,

Diving Deep with WinRT and await, and Exposing .NET tasks as WinRT asynchronous operations.

Matching the depth of these topics here would be a pointless exercise in repetition, so the sections that

follow focus on creating async versions of the pixel-crunching methods from the quickstarts and the

lessons we can glean from that experience.

This turns out to be a fortuitous choice. The particular scenario that we’ve worked with—performing

a grayscale conversion on pixel data and sending the result to a canvas—just so happens to reveal a

number of complications that are instructive to work through and are not addressed directly in the

other documentation. These include troubles with passing arrays between the app and a component,

which introduces an interesting design pattern that is employed by some WinRT APIs. Even so, the

solution brings us to something of a stalemate because of the limitations of the HTML canvas element

itself. This forces us to think through some alternatives, which is a good exercise because you’ll

probably encounter other difficulties in your own component work.

JavaScript Workers

For pure JavaScript, workers are the way you offload code execution to other threads, where those

tasks do not need access to the document, window, or parent objects, or anything else in the DOM.128

A key point to understand here is that communication between the main app (the UI thread) and

workers happens through the singular postMessage method and the associated message events.

Workers are not like components in which you can just call methods and get results back. If you want

to invoke methods inside that worker with specific arguments, you must make those calls through

postMessage with a message that contains the desired values. On the return side, a function that’s

invoked inside the worker sends its results to the main app through its own call to postMessage.

Various examples can be found in the JavaScript Web Workers app multitasking sample in the SDK.

Here let me offer a simple one from the Image Manipulation example in this chapter—which is

growing beyond its original intent for sure! I placed the countFromZero function into

js/worker_count.js along with a message handler that serves as a simple method dispatcher:

onmessage = function (e) {

 switch (e.data.method) {

 case "countFromZero":

 countFromZero(e.data.max, e.data.increment);

 break;

128 There are also a few libraries that build on workers to provide parallel processing. Just do a web search for “parallel

JavaScript” and you’ll find them.

http://msdn.microsoft.com/library/windows/apps/br230301.aspx#AsyncOps
http://msdn.microsoft.com/library/windows/apps/hh779077.aspx#AsyncOps
http://msdn.microsoft.com/library/windows/apps/hh755833.aspx
http://msdn.microsoft.com/library/hh750082.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/24/diving-deep-with-winrt-and-await.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/14/exposing-net-tasks-as-winrt-asynchronous-operations.aspx
http://code.msdn.microsoft.com/windowsapps/JavaScript-Web-Workers-app-7eafbdb6

1030

 default:

 break;

 }

};

function countFromZero(max, increment) {

 var sum = 0;

 max = 10;

 for (var x = 0; x < max; x += increment) {

 sum += x;

 }

 postMessage({ method: "countFromZero", sum: sum });

}

When this worker is started, the only code that executes is the onmessage assignment. When that

handler receives the appropriate message, it then invokes countFromZero, which in turn posts its

results. In other words, setting up a worker just means converting method calls and results into

messages.

Invoking this method from the app now looks like this:

var worker = new Worker('worker_count.js');

worker.onmessage = function (e) { //e.data.sum is the result }

//Call the method

worker.postMessage({ method: "countFromZero", max: 1000, increment: .00005 });

Keep in mind that postMessage is itself an asynchronous operation—there’s no particular guarantee

about how quickly those messages will be dispatched to the worker or the app. Furthermore, when a

worker is created, it won’t start executing until script execution yields (as when you call setImmediate).

This means that workers are not particularly well suited for async operations that you want to start as

soon as possible or for those where you want to get the results as soon as they are available. For this

reason, workers are better for relatively large operations and ongoing processing; small, responsive,

and high-performance routines are better placed within WinRT components.

The postMessage mechanism is also not the best for chaining multiple async operations together,

as we’re easily able to do with promises that come back from WinRT APIs. To be honest, I don’t even

want to start thinking about that kind of code! I prefer instead to ask whether there’s a way that we can

effectively wrap a worker’s messaging mechanism within a promise, such that we can treat async

operations the same regardless of their implementation.

We need to get the result from within the worker.onmessage handler and send it to a promise’s

completed handler. To do that, we use a bit of code in the main app that’s essentially what the

JavaScript projection layer uses to turn an async WinRT API into a promise itself:

// This is the function variable we're wiring up.

var workerCompleteDispatcher = null;

1031

var promiseJS = new WinJS.Promise(function (completeDispatcher, errorDispatcher,

 progressDispatcher) {

 workerCompleteDispatcher = completeDispatcher;

});

// Worker would be created here and stored in the 'worker' variable

// Listen for worker events

worker.onmessage = function (e) {

 if (workerCompleteDispatcher != null) {

 workerCompleteDispatcher(e.data.sum);

 }

}

promiseJS.done(function (sum) {

 // Output for JS worker

});

To repeat a few points from Appendix A, “Demystifying Promises,” a promise is a separate thing

from the async operation itself. (It has to be, because WinRT APIs and components know nothing of

promises.) In many ways a promise is just a tool to manage a bunch of listener functions on behalf of

an async operation, like our worker here. When an async operation detects certain events—namely,

completed, error, and progress—it wants to notify whoever has expressed an interest in those events.

Those whoevers have done so by calling a promise’s then or done methods and providing one or more

handlers.

Within then or done, a promise just saves those functions in a list (unless it knows the async

operation is already complete, in which case it can call the completed or error functions immediately).

This is why you can call then or done multiple times on the same promise—it just adds your

completed, error, and progress handlers to the appropriate list within the promise. Of course, those lists

are useless without some way to invoke the handlers they contain. For this purpose, a promise has

three functions of its own to iterate each list and invoke the registered listeners. That’s again the core

purpose of a promise: maintain lists of listeners and call those listeners when asked.

The code that starts up an async operation, then, will want to use a promise to manage those

listeners, hence the call to new WinJS.Promise. When that promise is initialized, this function you pass

to the constructor is called with references to the dispatcher functions that notify the listeners. The

async operation code saves the dispatchers it needs later. In our worker’s case, we’re interested only in

notifying the completed handlers, so we save that dispatcher in workerCompleteDispatcher.

When we then detect that the operation is complete—that is, when we receive the appropriate

message from the worker—we check to make sure workerCompleteDispatcher is a good reference

and then call it with the result value. That dispatcher will again loop through all the registered listeners

and call them with that same result. In the code above, the only such listener is the anonymous

function we gave to promiseJS.done.

Truth be told, it’s really just mechanics. To handle errors and progress, we’d simply save those

dispatchers as well, add more specific code inside the onmessage event handler that would check

1032

e.data for other status values from the worker, and invoke the appropriate dispatcher in turn. Such

relationships are illustrated in Figure 18-4.

FIGURE 18-4 A promise manages and invokes listeners on behalf of an async operation.

Again, everything you see here with the exception of the call to done (which is client code and not

part of the async operation) is what the JavaScript projection layer does for an async operation coming

from WinRT. In those cases the async operation is represented by an object with an IAsync* interface

instead of a worker. Instead of listening for a worker’s message event, the projection layer just wires

itself up through the IAsync* interface and creates a promise to manage connections from the app.

The code above is included in the Image Manipulation example accompanying this chapter. It’s

instructive to set breakpoints within all the anonymous functions and step through the code to see

exactly when they’re called, even to step into WinJS and see how it works. In the end, what’s

meaningful is that this code gives us a promise (in the promiseJS variable) that looks, feels, and acts

like any other promise. This will come in very handy when we have promises from other async

operations, as explained later in “Sidebar: Joining Promises.” It means that we can mix and match async

operations from WinRT APIs, WinRT components, and workers alike.

Async Basics in WinRT Components

Within a WinRT component, there are three primary requirements to make any given method

asynchronous. First, append Async to the method name, a simple act that doesn’t accomplish anything

technically (and isn’t technically required) but clearly communicates to callers that their need to treat

the method differently from synchronous ones.

Second, the return value of the method must be one of the following Windows.Foundation

interfaces, shown in the table below, each one representing a particular combination of async

behaviors, namely whether the method produces a result and whether the method is capable of

reporting progress:

http://msdn.microsoft.com/library/windows/apps/br211924.aspx
http://msdn.microsoft.com/library/windows/apps/br211924.aspx

1033

Interface (in Windows.Foundation) Use Case

IAsyncAction Use for an async method that produces no results (no arguments are

sent to the completed handler) and reports no progress.

IAsyncActionWithProgress<TProgress> Use for an async method that produces no results but does report

progress, where <TProgress> is the data type of the argument sent to

the progress handler.

IAsyncOperation<TResult> Use for an async method that produces results of type <TResult> but

reports no progress.

IAsyncOperationWithProgress<TResult,

TProgress>

Use for an async method that produces results of type <TResult> and

reports progress with type <TProgress> to a progress handler.

Having chosen the type of async method we’re creating, we now have to run the method’s code on

another thread. It is possible here to utilize threads directly, using the thread pool exposed in the

Windows.System.Threading API, but there are higher level constructs in both C#/VB and C++ that

make the job much easier.

Async Methods in C#/Visual Basic In C# and Visual Basic we have the System.Threading.-

Tasks.Task class for this purpose. A Task is created through one of the static Task.Run methods. To

this we give an anonymous function (called a delegate in .NET, defined with a lambda operator =>) that

contains the code to execute. To then convert that Task into an appropriate WinRT async interface, we

call the task’s AsAsyncAction or AsAsyncOperation extension method. Here’s what this looks like in a

generic way:

public IAsyncOperation<string> SomeMethodAsync(int id)

{

 var task = Task.Run<string>(() => // () => in C# is like function () in JS

 {

 return "Here is a string.";

 });

 return task.AsAsyncOperation();

}

If the code inside the task itself performs any asynchronous operations (for which we use the C#

await keyword as described in the blog posts linked earlier), the delegate must be marked with async:

public IAsyncOperation<string> SomeMethodAsync(int id)

{

 var task = Task.Run<string>(async () =>

 {

 var idString = await GetMyStringAsync(id); // await makes an async call looks sync

 return idString;

 });

 return task.AsAsyncOperation();

}

Note that Task.Run does not support progress reporting and the AsAsyncAction and

http://msdn.microsoft.com/library/windows/apps/windows.system.threading.aspx
http://msdn.microsoft.com/library/system.threading.tasks.task.aspx
http://msdn.microsoft.com/library/system.threading.tasks.task.aspx

1034

AsAsyncOperation extension methods don’t support cancellation. In these cases you need to use the

System.Runtime.InteropServices.WindowsRuntime.AsyncInfo class and one of its Run methods as

appropriate to the chosen async behavior. The Task.AsAsyncOperation call at the end is unnecessary

here because AsyncInfo.Run already provides the right interface:

public IAsyncOperation<string> SomeMethodAsync(int id)

{

 return AsyncInfo.Run<string>(async (token) =>

 {

 var idString = await GetMyStringAsync(id);

 token.ThrowIfCancellationRequested();

 return idString;

 });

}

In this code, AsyncInfo.Run provides the delegate with an argument of type System.Threading.-

CancellationToken. To support cancellation, you must periodically call the token’s ThrowIfCancel-

lationRequested method. This will pick up whether the original caller of the async method has

cancelled it (for example, calling a promise’s cancel method). Because cancellation is typically a user-

initiated action, there’s no need to call ThrowIfCancellationRequested inside a very tight loop;

calling it every 50 milliseconds or so will keep the app fully responsive.

Alternately, if a method like GetMyStringAsync accepted the CancellationToken, you could just

pass the token to it. One strength of the CancellationToken model is that it’s highly composable: if

you receive a token in your own async call, you can hand it off to any number of other functions you

call that also accept a token. If cancellation happens, the request will automatically be propagated to

all those operations.

Note that WinRT methods can accept a token because of an AsTask overload. Instead of this:

await SomeWinRTMethodAsync();

you can use this:

await SomeWinRTMethodAsync().AsTask(token);

Anyway, given these examples, here’s a noncancellable async version of CountFromZero:

public static IAsyncOperation<double> CountFromZeroAsync(double max, double increment)

{

 var task = Task.Run<double>(() =>

 {

 double sum = 0;

 for (double x = 0; x < max; x += increment)

 {

 sum += x;

 }

 return sum;

 });

http://msdn.microsoft.com/library/windows/apps/system.runtime.interopservices.windowsruntime.asyncinfo.aspx
http://msdn.microsoft.com/library/windows/apps/system.threading.cancellationtoken.aspx
http://msdn.microsoft.com/library/windows/apps/system.threading.cancellationtoken.aspx

1035

 return task.AsAsyncOperation();

}

The IAsyncOperation interface returned by this method, like all the async interfaces in

Windows.Foundation, gets projected into JavaScript as a promise, so we can use the usual code to call

the method and receive its results (asyncVars is just an object to hold the variables):

asyncVars.startCS = new Date();

var promiseCS = PixelCruncherCS.Tests.countFromZeroAsync(max, increment);

promiseCS.done(function (sum) {

 asyncVars.timeCS = new Date() - asyncVars.startCS;

 asyncVars.sumCS = sum;

});

With code like this, which is in the Image Manipulation example with this chapter, you can start the

async counting operations (using the “Counting Perf (Async)” button) and then immediately go open

an image and do grayscale conversions at the same time.

Async Methods in C++ To implement an async method in C++, we need to produce the same end

result as in C#: a method that returns one of the IAsync* interfaces and runs its internal code on

another thread.

The first part is straightforward—we just need to declare the method with the C++ types (shown

here in the C++ code; the class declaration in Grayscale.h is similar):

using namespace Windows::Foundation;

IAsyncOperation<double>^ Tests::CountFromZeroAsync(double max, double increment)

The C++ analogue of the AsyncInfo class is a task found in what’s called the Parallel Patterns

Library for C++, also known as PPL or the Concurrency Runtime, whose namespace is concurrency.

(Use a #include <ppltasks.h> and using namespace concurrency; in your C++ code, and you’re

good to go.) The function that creates a task is called create_async. All we need to do is wrap our

code in that function:

IAsyncOperation<double>^ Tests::CountFromZeroAsync(double max, double increment)

{

 return create_async([max, increment]()

 {

 double sum = 0;

 for (double x = 0; x < max; x += increment)

 {

 sum += x;

 }

 return sum;

 });

}

http://msdn.microsoft.com/library/windows/apps/hh750113.aspx
http://msdn.microsoft.com/library/windows/apps/dd492819.aspx

1036

As with C#, there are additional structures for when you’re nesting async operations, supporting

cancellation, and reporting progress. I will leave the details to the documentation. See Asynchronous

Programming in C++ and Task Parallelism, but one short excerpt from the CircusCannon2 example for

this chapter will illustrate that async chaining in C++ looks a lot like promise chains in JavaScript:

IAsyncOperation<bool>^ Controller::ConnectAsync()

{

 return create_async([=]()

 {

 Platform::String ^ ccSelector = HidDevice::GetDeviceSelector(

 DeviceProperties::usage_page, DeviceProperties::usage_id,

 DeviceProperties::vid, DeviceProperties::pid);

 IAsyncOperation<DeviceInformationCollection^>^ deviceOp =

 DeviceInformation::FindAllAsync(ccSelector);

 return create_task(deviceOp).then([this](DeviceInformationCollection^ devices) {

 if (devices->Size == 0) {

 //This error message doesn't get through...not sure what the solution is.

 throw "No Circus Cannon devices found";

 }

 //Take the first one

 m_lastDevice = devices->GetAt(0);

 //Do the connect and return its result

 return _connectAsync();

 });

 });

}

task<bool> Controller::_connectAsync()

{

 if (nullptr == m_lastDevice) {

 throw "No device was enumerated so last device id is undefined.";

 }

 IAsyncOperation<HidDevice^>^ deviceOp = HidDevice::FromIdAsync(m_lastDevice->Id,

 FileAccessMode::ReadWrite);

 auto task = create_task(deviceOp);

 return task.then([this](HidDevice^ device) {

 if (nullptr == device) {

 m_isConnected = false;

 m_status = _statusString(m_lastDevice->Id);

 } else {

 m_status = "OK";

 m_isConnected = true;

 m_device = device;

 _sendCommand(Commands::Stop);

 _registerEvents();

 }

 return m_isConnected;

http://msdn.microsoft.com/library/windows/apps/hh780559.aspx
http://msdn.microsoft.com/library/windows/apps/hh780559.aspx
http://msdn.microsoft.com/library/windows/apps/dd492427.aspx

1037

 });

}

Here the first create_async call wraps a block of code to run it on a separate thread. Within that

code we make another async call (FindAllAsync) and create a task from it. To chain, we use that task’s

then method, provide a function (lambda) to receive the results, and return another task from another

function whose ultimate return value is a Boolean.

Sidebar: Joining Promises

There’s one detail from the Image Manipulation examp le that takes advantage of having all the

async operations managed through promises. In the app, we show a horizontal progress

indicator before starting all the async operations with the Counting Perf (Async) button:

function testPerfAsync() {

 showProgress("progressAsync", true);

 //...

}

We want this control to stay visible while any of the async operations are still running,

something that’s easily done with WinJS.Promise.join. What I wanted to point out is that

because you can call a promise’s then or done as many times as you want, it’s just fine to attach

handlers on each of the individual promises and to attach separate handlers to join:

promiseJS.done(function (sum) {

 // Output for JS worker

}

promiseCS.done(function (sum) {

 // Output for C# component

})

promiseCPP.done(function (sum) {

 // Output for C++ component

});

WinJS.Promise.join([promiseJS, promiseCS, promiseCPP]).done(function () {

 // Hide progress indicator when all operations are done

 showProgress("progressAsync", false);

});

Now we see how much we simplify everything by wrapping a worker’s message mechanism

within a promise! Without doing so, we’d need to maintain one flag to indicate whether the

promises were fulfilled (set to true inside the join) and another flag to indicate if the worker’s

results had been received (setting it to true inside the worker’s message handler). Inside the

join, we’d need to check if the worker was complete before hiding the progress indicator; the

worker’s message handler would do the same, making sure the join was complete. This kind of

thing might be manageable on a small scale but would certainly get messy with more than a few

parallel async operations—which is the reason promises were created in the first place!

1038

Arrays, Vectors, and Other Alternatives

Now that we’ve seen the basic structure of asynchronous methods in WinRT components, let’s see how

we might create an asynchronous variant of the synchronous Convert methods we implemented

earlier. For the purpose of this exercise we’ll just stick with the C# component though, again, such

things are generally best written in C++.

It would be natural with Convert to consider IAsyncAction as the method’s type, because we

already return results in an output array. This would, in fact, be a great choice if we were using types

other than an array. However, arrays present a variety of problems with asynchronous methods. First,

although we can pass the method both the input and output arrays and the method can do its job and

populate that output array, its contents won’t actually be transferred back across the async task

boundary at present. So the completed handler in the app will be called as it would expect, but the

output array passed to the async method will still be empty.

The next thing we can try is to turn the async action into an operation that produces a result. We

might consider a return type of IAsyncOperation<Byte[]> (or an equivalent one using progress),

where the method would create and populate the array it returns. The problem, however, is that the

app receiving this array wouldn’t know how to release it—clearly some memory was allocated for it,

but that allocation happened inside a component and not inside JavaScript, so there’s no clear rule on

what to do. Because this is a sure-fire recipe for memory leaks, returning arrays like this isn’t supported.

An alternative is for the async method to return a specific WinRT collection type (where there are

clear rules for deallocation), such as an IList<Byte>, which will be converted to a vector in JavaScript

that can also be accessed as an array. (Note that IList is specific to .NET languages; the C++

walkthrough topic shows how to use a vector directly with the concurrent_vector type.) Here’s a

simple example of such a method:

public static IAsyncOperation<IList<Byte>> CreateByteListAsync(int size)

{

 var task = Task.Run<IList<Byte>>(() =>

 {

 Byte [] list = new Byte[size];

 for (int i = 0; i < size; i++)

 {

 list[i] = (Byte)(i % 256);

 }

 return list.ToList();

 });

 return task.AsAsyncOperation();

}

Applying this approach to the grayscale routine, we get the following ConvertPixelArrayAsync

(see PixelCruncherCS > ConvertGrayscale.cs), where the DoGrayscale is the core code of the routine

broken out into a separate function, the third parameter of which is a periodic callback that we can use

1039

to handle cancellation). This is the function that’s called if you select Async w/ Vector from the drop -

down list in the Image Manipulation app’s UI:

public IAsyncOperation<IList<Byte>> ConvertPixelArrayAsync([ReadOnlyArray()]

 Byte[] imageDataIn)

{

 //Use AsyncInfo to create an IAsyncOperation that supports cancellation

 return AsyncInfo.Run<IList<Byte>>((token) => Task.Run<IList<Byte>>(() =>

 {

 Byte[] imageDataOut = new Byte[imageDataIn.Length];

 DoGrayscale(imageDataIn, imageDataOut, () =>

 {

 token.ThrowIfCancellationRequested();

 });

 return imageDataOut.ToList();

 }, token));

}

A fourth approach is to follow the pattern used by the Windows.Graphics.Imaging.PixelData-

Provider class, which we’re already using in the Image Manipulation example. In the function

setGrayscale (js/default.js), we open a file obtained from the file picker and then decode it with

BitmapDecoder.getPixelDataAsync. The result of this operation is the PixelDataProvider that has

a method called detachPixelData to provide us with the pixel array (some code omitted for brevity):

function setGrayscale(componentType) {

 imageFile.openReadAsync().then(function (stream) {

 return Imaging.BitmapDecoder.createAsync(stream);

 }).then(function (decoderArg) {

 //Configure the decoder ... [code omitted]

 return decoder.getPixelDataAsync();

 }).done(function (pixelProvider) {

 copyGrayscaleToCanvas(pixelProvider.detachPixelData(),

 decoder.pixelWidth, decoder.pixelHeight, componentType);

 });

}

A similar implementation of our grayscale conversion routine is in PixelCruncherCS >

ConvertGrayscale.cs in the function ConvertArraysAsync. Its type is IAsyncAction because it

operates against the Grayscale.inputData array (which must be set first). The output is accessed from

Grayscale.detatchOutputData(). Here’s how the JavaScript code looks, which is used if you choose

the Async w/ Properties option in the Image Maniupulation app’s UI:

pc1.inputData = pixels;

pc1.convertArraysAsync().done(function () {

 var data = pc1.detachOutputData()

 copyArrayToImgData(data, imgData);

 updateOutput(ctx, imgData, start);

});

1040

You might be wondering about that copyArrayToImgData function in the code above. I’m glad you

are, because it points out a problem that forces us to take a different approach altogether, one that

leads us to an overall better solution!

All along in this example we’ve been loading image data from a file, using the BitmapDecoder, and

then converting those pixels to grayscale into an array provided by the canvas element’s

createImageData method. Once the data is inside that image data object, we can call the canvas’s

putImageData method to render it. All of this was originally implemented to show interaction with the

canvas, including how to save canvas contents to a file. That was fine for Chapter 13, where graphics

were our subject. But if we’re really looking to just convert an image file to grayscale, using a canvas

isn’t necessarily the best road to follow!

The key issue that we’re encountering here is that the canvas’s putImageData method accepts only

an ImageData object created by the canvas’s createImageData method. The canvas does not allow

you to create and render a separate pixel array, nor insert a different array in the ImageData.data

property. The only way it works is to write data directly into the ImageData.data array.

In the synchronous versions of our component methods, it was possible to pass ImageData.data as

the output array so that the component could perform a direct write. Unfortunately, this isn’t possible

with the async versions. Those methods can provide us with the converted data all right, but because

we can’t point ImageData.data to such an array, we’re forced to use a routine like copyArrayTo-

ImageData function to copy those results into ImageData.data, byte by byte. Urk. That pretty much

negates any speed improvement we might have realized by creating components in the first place!

Let me be clear that this is a limitation of the canvas element, not of WinRT or components in

general. Moving arrays around between apps and components, as we’ve seen, works perfectly well for

other scenarios (remembering, of course, that having multiple garbage collectors running between

JavaScript and C# arrays can incur memory overhead). Still, the limitation forces us to ask whether we

even have the right approach at all.

Taking a step back, the whole purpose of the demonstration is to convert an image file to grayscale

and show that conversion on the screen. Using a canvas is just an implementation detail—we can

achieve the same output in other ways. For example, instead of converting the pixels into a memory

array, we could create a temporary file by using the Windows.Graphics.Image.BitmapEncoder class

instead, just like we use in the SaveGrayscale function that’s already in the app. We’d just give it the

converted pixel array instead of grabbing those pixels from the canvas again. Then we can use a

thumbnail, URL.createObjectURL or an ms-appdata:/// URI to display it in an img element. This

would likely perform much faster because the canvas’s putImageData method actually takes a long

time to run, much longer than the conversion routines in our components.

Along these same lines, there’s no reason that we couldn’t place more of the whole process inside a

component. Only those parts that deal with UI need to be in JavaScript: the rest can be written in

another language. For example, why bother shuttling pixel arrays between JavaScript and a WinRT

component? Once we get a source StorageFile from the file picker we can pass that to a component

method directly. The component can then use the BitmapDecoder to obtain the pixel stream, convert

1041

it, and then create the temporary file and write the converted pixels back out using the Bitmap-

Encoder, handing back a StorageFile for the temp file from which we can set an img.src or grab a

thumbnail. The pixels, then, never leave the component and never have to be copied between memory

buffers. This should result in both faster throughput as well as a smaller memory footprint.

To this end the PixelCruncherCS project in the Image Manipulation example has another async

method called ConvertGrayscalFileAsync that does exactly what I’m talking of here:

public static IAsyncOperation<StorageFile> ConvertGrayscaleFileAsync(StorageFile file)

{

 return AsyncInfo.Run<StorageFile>((token) => Task.Run<StorageFile>(async () =>

 {

 StorageFile fileOut = null;

 try

 {

 //Open the file and read in the pixels

 using (IRandomAccessStream stream = await file.OpenReadAsync())

 {

 BitmapDecoder decoder = await BitmapDecoder.CreateAsync(stream);

 PixelDataProvider pp = await decoder.GetPixelDataAsync();

 Byte[] pixels = pp.DetachPixelData();

 //We know that our own method can convert in-place,

 //so we don't need to make a copy

 DoGrayscale(pixels, pixels);

 //Save to a temp file.

 ApplicationData appdata = ApplicationData.Current;

 fileOut = await appdata.TemporaryFolder.CreateFileAsync(

 "ImageManipulation_GrayscaleConversion.png",

 CreationCollisionOption.ReplaceExisting);

 using (IRandomAccessStream streamOut =

 await fileOut.OpenAsync(FileAccessMode.ReadWrite))

 {

 BitmapEncoder encoder = await BitmapEncoder.CreateAsync(

 BitmapEncoder.PngEncoderId, streamOut);

 encoder.SetPixelData(decoder.BitmapPixelFormat, decoder.BitmapAlphaMode,

 decoder.PixelWidth, decoder.PixelHeight,

 decoder.DpiX, decoder.DpiY, pixels);

 await encoder.FlushAsync();

 }

 }

 }

 catch

 {

 //Error along the way; clear fileOut

 fileOut = null;

 }

1042

 //Finally, return the StorageFile we created, which makes it convenient for the

 //caller to copy it elsewhere, use in a capacity like URL.createObjectURL, or refer

 //to it with "ms-appdata:///temp" + fileOut.Name

 return fileOut;

 }));

}

One thing we can see when comparing the equivalent JavaScript code with this is that the C# await

keyword very much simplifies dealing with asynchronous methods—making them appear like they’re

synchronous. This is one potential advantage to writing code in a component! The other important

detail is to note the using statements around the streams. Streams, among other types, are disposable

(they have an IDisposable interface) and must be cleaned up after use or else files will remain open

and you’ll see access denied exceptions or other strange behaviors. The using statement encapsulates

that cleanup logic for you.

In any case, with this method now we need only a few lines of JavaScript to do the job:

PixelCruncherCS.Grayscale.convertGrayscaleFileAsync(imageFile).done(function (tempFile) {

 if (tempFile != null) {

 document.getElementById("image2").src = "ms-appdata:///temp/" + tempFile.name;

 }

});

The line with the URI could be replaced with these as well (which I’m using only because I’m

displaying the full image at its original size—if you don’t need that full display, remember to use a

thumbnail from the StorageFile):

var uri = URL.createObjectURL(tempFile, { oneTimeOnly: true });

document.getElementById("image2").src = uri;

Running tests with this form of image conversion, the app shows a much better response, so much

so that the progress ring that’s normally shown while the operation is running doesn’t even appear!

Furthermore, we reduce the overall memory spike for the operation by half, because we’re loading the

pixels into memory just once, inside the component, rather than populating arrays in both the app and

the component.

All this illustrates the final point of this whole exercise: if you’re looking for optimizations, think

beyond just the most computationally intensive operations, especially if it involves moving lots o f data

around. As we’ve seen here, challenging our first assumptions can lead to a much better solution.

Projections into JavaScript

Already in this chapter we’ve seen some of the specific ways that a WinRT component is projected into

JavaScript. In this section I’ll offer a fuller summary of how this world of WinRT looks from JavaScript’s

point of view.

Let’s start with naming. We’ve seen that a JavaScript app project must add a component as a

reference, at which point the component’s namespace becomes inherently available in JavaScript; no

1043

other declarations are required. The namespace and the classes in the component just come straight

through into JavaScript. What does change, however, are the names of methods, properties, and

events. Although namespaces and class names are projected as they exist in the component, method

and property names (including members of struct and enum) are converted to camel casing:

TestMethod and TestProperty in the component become testMethod and testProperty in JavaScript. This

casing change can have some occasional odd side effects, as when the component’s name starts with

two capital letters such as UIProperty, which will come through as uIProperty.

Event names, on the other hand, are converted to all lowercase as befits the JavaScript convention.

An event named SignificantValueChanged in the component becomes significantvaluechanged in

JavaScript. You’d use that lowercase name with addEventListener, and the class that provides it will

also be given a property of that name prefixed with on, as in onsignificantvaluechanged. An important

point with events is that it’s sometimes necessary to explicitly call removeEventListener to prevent

memory leaks. For a discussion, refer back to “WinRT Events and removeEventListener” in Chapter 3. In

the context of this chapter, WinRT events include those that come from your own WinRT components.

Static members of a class, as we’ve seen, can just be referred to directly using the fully qualified

name of that method or property using the component’s namespace. Nonstatic members, on the other

hand, are accessible only through an instance created with new or returned from a static member.

Next are two limitations that we’ve mentioned before but are worth repeating in this context. First is

that a WinRT component cannot work with the UI of an app written in JavaScript. This is because the

app cannot obtain a drawing surface of any kind that the component could use. Second is that

JavaScript can resolve overloaded methods by arity (number of parameters) only and not by type. If a

component provides overloads distinguished only by type, JavaScript can access only the one that’s

marked as the default.

Next we come to the question of data types, which is always an interesting subject where

interoperability between languages is concerned. Generally speaking, what you see in JavaScript is

naturally aligned with what’s in the component. A WinRT DateTime becomes a JavaScript Date, a

TimeSpan (based on 100ns units) becomes a number expressed in milliseconds, numerical values

become a Number, bool becomes Boolean, strings are strings, and so on. Some WinRT types, like

IMapView and IPropertySet, just come straight through to JavaScript as an object type (with the

interface’s methods) because there are no intrinsic equivalents. Then there are other conversions that

are, well, more interesting:

 Asynchronous operations in a component that return interfaces like IAsyncOperation are

projected into JavaScript as promises.

 Because JavaScript doesn’t have a concept of struct as does C#, VB, and C++, structs from a

WinRT component appear in JavaScript as objects with the struct’s fields as members. Similarly,

to call a WinRT component that takes a struct argument, a Javascript app creates an object

with the fields as members and passes that instead. Note that the casing of struct members is

converted to camel casing in JavaScript.

1044

 Some collection types, like IVector, appear in JavaScript as an array but with different methods

(refer to Chapter 6 in “Collection Data Types”). That is, the collection can be accessed using the

array operator [], but its methods are different. Be careful, then, passing these to JavaScript

manipulation functions that assume those methods exist.

 Enums are translated into objects with camel-cased properties corresponding to each enum

value, where those values are JavaScript Number types.

 WinRT APIs sometimes return Int64 types (alone or in structs) for which there is no

equivalent in JavaScript. The 64-bit type is preserved in JavaScript, however, so you can pass it

back to WinRT in other calls. However, if you modify the variable holding that value, even with

something as simple as a ++ operator, it will be converted into a JavaScript Number. Such a value

will not be accepted by methods expecting an Int64.

 If a component method provides multiple output parameters, these show up in JavaScript as a

single object with those different values as properties. No clear standard for this exists in

JavaScript; it’s best to avoid in component design altogether.

The bottom line is that the projection layer tries to make WinRT components written in any other

language look and feel like they belong in JavaScript, without introducing too much overhead.

Scenarios for WinRT Components

Earlier in “Choosing a Mixed Language Approach” I briefly outlined a number of scenarios where

WinRT components might be very helpful in the implementation of your app. In this section we’ll think

about these scenarios a little more deeply, and I’ll point you to demonstrations of these scenarios in the

samples, where such are available.

Higher Performance (Perhaps)
Increasing the performance of a Windows Store app written in HTML, CSS, and JavaScript is one of the

primary scenarios for offloading some work to a WinRT component, but do so carefully.

When evaluating the performance of your app, keep an eye open for specific areas that are

computationally intensive or involve moving a lot of data around. For example, if you found it

necessary to implement an extended splash screen for those exact reasons, perhaps you can reduce the

time the user has to wait (especially on first launch) before the app is active. Any other situation where

the user might have to wait—and have better things to do than watch a progress indicator!—is a great

place to use a high-performance component if possible. Clearly, in some scenarios the performance of

the app isn’t so much the issue as is network latency, but once you get data back from a service you

might be able to pre-process it faster in a component than in JavaScript.

As another example, an app package might include large amounts of compressed data to minimize

the size of its download from the Store, and it needs to decompress that data on first run. A WinRT

1045

component might significantly shorten initialization time. If the component uses WinRT APIs to write to

your app data folders, all that data will also be accessible from JavaScript through those same APIs.

One challenge is that writing a component to chew on a bunch of data might mean passing

JavaScript arrays into that component and getting arrays back out. As we saw in the quickstarts, this

works just fine with synchronous operations but is not presently supported for async, which is how

you’d often want to implement potentially long-running methods. Fortunately, there are ways around

this limitation, either by transferring results for an async operation through synchronous properties or

by using other collection types such as vectors.

That said, marshaling data across language boundaries has its costs, and in various cases the

performance gain of code written in C++ will be lost in the overhead. For this reason, investigate

whether you can keep the work centered around app data, which can be shared between the app and

components without the transfer cost.

One place where performance is very significant is with background tasks. As explained in Chapter

16, background tasks are limited to a few seconds of CPU time every 15 minutes. Because of this, you

can get much more work accomplished in a background task written in a higher-performance

language than one written in JavaScript.

The structure of a component with such tasks is no different than any other, as demonstrated in the

C# Tasks component included with the Background task sample. Each of the classes in the Tasks

namespace is marked as public and sealed, and because the component is brought into the

JavaScript project as a reference, those class names (and their public methods and properties) are in the

JavaScript namespace. As a result, their names can be given to the BackgroundTaskBuild.taskEntry-

Point property without any problems.

Another example of the same technique can be found in the Network status background sample.

Something that we didn’t discuss in Chapter 16, but which is appropriate now, is that when you

create a WinRT component for this purpose, the class that implements the background task must

derive from Windows.ApplicationModel.Background.IBackgroundTask and implement its singular

Run method. That method is what gets called when the background task is triggered. We can see this in

the Network status background sample where the whole C# implementation of the component

comprises just a few dozen lines of code (see BackgroundTask.cs in the sample’s NetworkStatusTask

project; some comments and debug output omitted):

namespace NetworkStatusTask

{

 public sealed class NetworkStatusBackgroundTask : IBackgroundTask

 {

 ApplicationDataContainer localSettings = ApplicationData.Current.LocalSettings;

 // The Run method is the entry point of a background task.

 public void Run(IBackgroundTaskInstance taskInstance)

 {

 // Associate a cancellation handler with the background task.

 taskInstance.Canceled += new BackgroundTaskCanceledEventHandler(OnCanceled);

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.ibackgroundtask.aspx

1046

 try

 {

 ConnectionProfile profile =

 NetworkInformation.GetInternetConnectionProfile();

 if (profile == null)

 {

 localSettings.Values["InternetProfile"] = "Not connected to Internet";

 localSettings.Values["NetworkAdapterId"] = "Not connected to Internet";

 }

 else

 {

 localSettings.Values["InternetProfile"] = profile.ProfileName;

 var networkAdapterInfo = profile.NetworkAdapter;

 if (networkAdapterInfo == null)

 {

 localSettings.Values["NetworkAdapterId"] =

 "Not connected to Internet";

 }

 else

 {

 localSettings.Values["NetworkAdapterId"] =

 networkAdapterInfo.NetworkAdapterId.ToString();

 }

 }

 }

 catch (Exception e)

 {

 // Debug output omitted

 }

 }

 // Handles background task cancellation.

 private void OnCanceled(IBackgroundTaskInstance sender,

 BackgroundTaskCancellationReason reason)

 {

 // Debug output omitted

 }

 }

}

You can see that the Run method receives an argument through which it can register a handler for

cancelling the task. The code above doesn’t do anything meaningful with this because the task itself

executes only a small amount of code. The C# tasks in the Background tasks sample, on the other hand,

simulate longer-running operations, in which case it uses the handler to set a flag that will stop those

operations.

1047

Access to Additional APIs
Between the DOM API, WinJS, third-party libraries, and JavaScript intrinsics, JavaScript developers have

no shortage of APIs to utilize in their apps. At the same time, there is a whole host of .NET and

Win32/COM APIs that are available to C#, VB, and C++ apps that are not directly available to

JavaScript, including the DirectX, ESE “Jet” database, and Media Foundation APIs.

With the exception of APIs that affect UI or drawing surfaces (namely Direct2D and Direct3D),

WinRT components can make such functions—or, more likely, higher-level operations built with

them—available to apps written in JavaScript.

The Building your own Windows Runtime components to deliver great apps post on the Windows

Developer Blog gives some examples of this. It shows how to use the System.IO.Compression API in

.NET to work with ZIP files and the XAudio APIs (part of DirectX) to bypass the HTML audio element

and perform native audio playback. In the latter case, you might remember from Chapter 13, in

“Playing Sequential Audio,” that no matter how hard we tried to smooth the transition between tracks

with the audio element, there is always some discernible gap. This is because of the time it takes for

the element to translate all of its operations into the native XAudio APIs. By going directly to those

same APIs, you can circumvent the problem entirely. (That said, Microsoft knows about the behavior of

the audio element and will likely improve its performance in the future.)

The DirectWrite font enumeration sample similarly uses the DirectWrite Win32 APIs through a C++

component to enumerate fonts, a capability not otherwise provided in WinRT.

This approach can also be used to communicate with external hardware that’s not represented in

the WinRT APIs (except perhaps through a protocol API) but is represented in Win32/COM. We’ll take a

closer look at the XInput and JavaScript controller sketch sample soon.

Another very simple example would be creating a component to answer an oft-heard question:

“How do I create a GUID in JavaScript?” Although you can implement a routine to construct a GUID

string from random numbers, it’s not a proper GUID in that there is no guarantee of uniqueness (GUID

stands for Globally Unique Identifier, after all). To do the job right, you’d want to use the Win32 API

CoGreatGuid, for which you can create a very simple C++ wrapper.

Overkill? Some developers have commented that going to all the trouble to create a WinRT

component just to call one method like CoCreateGuid sounds like a heavyweight solution. However,

considering the simplicity of a basic WinRT component as we’ve seen in this chapter, all you’re really

doing with a component is setting up a multilanguage structure through which you can use the full

capabilities of each language. The overhead is really quite small: a Release build of the C++

component in “Quickstart #2” produces a 39K DLL and a 3K .winmd file, for example.

Using a WinRT component in this way applies equally to COM DLLs that contain third-party APIs like

code libraries. You can use these in a Windows Store app provided they meet three requirements:

http://msdn.microsoft.com/library/windows/apps/br230232.aspx
http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://code.msdn.microsoft.com/windowsapps/DirectWrite-font-60e53e0b
http://code.msdn.microsoft.com/windowsapps/XInput-and-JavaScript-c72fe535
http://msdn.microsoft.com/library/windows/apps/ms688568.aspx

1048

 The DLL is packaged with the app.

 The DLL uses only those Win32/COM APIs that are allowed for Windows Store apps. Otherwise

the app will not pass certification.

 The DLL must implement what is called Regfree COM, meaning that it doesn’t require any

registry entries for its operation. (Windows Store apps do not have access to the registry and

thus cannot register a COM library.) The best reference I’ve found for this is the article Simplify

App Deployment with ClickOnce and Registration-Free COM in MSDN Magazine.

If all of these requirements are met, the app can then use the CoCreateInstanceFromApp function

from a component to instantiate objects from that DLL.

The XInput API and Game Controllers

In Chapter 17 and its XboxController example, I demonstrated how to work with this particular device

through the Windows.Devices.HumanInterfaceDevice.HidDevice protocol API. That’s certainly one

way to go about it, but has a few drawbacks. For one, it might not work with similar controllers because

we were interpreting the input reports according to a very specific byte (and bit!) pattern. Furthermore,

some of the controls like the triggers are somewhat odd in how they report their state and could use a

little better interpolation.

The XInput API, part of DirectX, is a Win32 API that works with a range of game controllers and is on

the list of allowable Win32/COM APIs. The most commonly used function here is XInputGetState,

which returns an XINPUT_STATE structure that describes the position of the various thumb controllers,

how far throttle or other triggers are depressed (with interpolation to remove the oddities), and the

on/off states of all the buttons. It’s basically meant to be polled with every animation frame in

something like a game; the API doesn’t itself raise events when the controller state changes.

The XInput and JavaScript controller sketch sample in the Windows SDK demonstrates exactly this.

Because the XInput API is not accessible directly through JavaScript, it’s necessary to create a WinRT

component for this purpose. First, here’s the header file from the GameController project (Contoller.h):

namespace GameController

{

 public value struct State

 {

 // [Omitted--just contains the same values as the Win32 XINPUT_STATE structure

 };

 public ref class Controller sealed

 {

 ~Controller();

 uint32 m_index;

 bool m_isControllerConnected; // Do we have a controller connected

 XINPUT_CAPABILITIES m_xinputCaps; // Capabilites of the controller

 XINPUT_STATE m_xinputState; // The current state of the controller

 uint64 m_lastEnumTime; // Last time a new controller connection

http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://msdn.microsoft.com/magazine/cc188708.aspx
http://msdn.microsoft.com/magazine/cc188708.aspx
http://msdn.microsoft.com/library/windows/desktop/hh404137(v=VS.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.humaninterfacedevice.hiddevice.aspx
http://msdn.microsoft.com/library/windows/apps/ee417007.aspx
http://msdn.microsoft.com/library/windows/apps/microsoft.directx_sdk.reference.xinputgetstate.aspx
http://msdn.microsoft.com/library/windows/apps/microsoft.directx_sdk.reference.xinput_state.aspx
http://code.msdn.microsoft.com/windowsapps/XInput-and-JavaScript-c72fe535

1049

 // was checked

 public:

 Controller(uint32 index);

 void SetState(uint16 leftSpeed, uint16 rightSpeed);

 State GetState();

 };

}

The implementation of GetState in Controller.cpp then just calls XInputGetState and copies its

properties to an instance of the component’s public State structure:

State Controller::GetState()

{

 // defaults to return controllerState that indicates controller is not connected

 State controllerState;

 controllerState.connected = false;

 // An app should avoid calling XInput functions every frame if there are

 // no known devices connected as initial device enumeration can slow down

 // app performance.

 uint64 currentTime = ::GetTickCount64();

 if (!m_isControllerConnected && currentTime - m_lastEnumTime < EnumerateTimeout)

 {

 return controllerState;

 }

 m_lastEnumTime = currentTime;

 auto stateResult = XInputGetState(m_index, &m_xinputState);

 if (stateResult == ERROR_SUCCESS)

 {

 m_isControllerConnected = true;

 controllerState.connected = true;

 controllerState.controllerId = m_index;

 controllerState.packetNumber = m_xinputState.dwPacketNumber;

 controllerState.LeftTrigger = m_xinputState.Gamepad.bLeftTrigger;

 controllerState.RightTrigger = m_xinputState.Gamepad.bRightTrigger;

 // And so on [copying all the other properties omitted.]

 }

 else

 {

 m_isControllerConnected = false;

 }

 return controllerState;

}

The constructor for a Controller object is also very simple:

Controller::Controller(uint32 index)

{

1050

 m_index = index;

 m_lastEnumTime = ::GetTickCount64() - EnumerateTimeout;

}

In a JavaScript app—once the reference to the component has been added—the GameController

namespace contains the component’s public API, and we can utilize it like we would other scenario

APIs. In the case of the sample, it first instantiates a Controller object (with index of zero) and then

kicks off animation frames (program.js):

app.onactivated = function (eventObj) {

 if (eventObj.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.launch) {

 // [Other setup omitted]

 // Instantiate the Controller object from the WinRT component

 controller = new GameController.Controller(0);

 // Start rendering loop

 requestAnimationFrame(renderLoop);

 };

};

The renderLoop function then just calls the component’s getState method and applies the results

to a canvas drawing before repeating the loop (also in program.js, though much code omitted):

function renderLoop() {

 var state = controller.getState();

 if (state.connected) {

 controllerPresent.style.visibility = "hidden";

 // Code added to the sample to extend its functionality

 if (state.leftTrigger) {

 context.clearRect(0, 0, sketchSurface.width, sketchSurface.height);

 requestAnimationFrame(renderLoop);

 return;

 }

 if (state.a) {

 context.strokeStyle = "green";

 } else if (state.b) {

 context.strokeStyle = "red";

 } else if (state.x) {

 context.strokeStyle = "blue";

 } else if (state.y) {

 context.strokeStyle = "orange";

 }

 // Process state and draw the canvas [code omitted]

 };

 // Repeat with the next frame

 requestAnimationFrame(renderLoop);

};

1051

The output of this sample is shown in Figure 18-5, reflecting the features I added to the modified

sample in the companion content (which is what I’m showing above) to make it more interest ing to my

young son: changing colors with the A/B/X/Y buttons and clearing the canvas with the left trigger. As

you can see, my own artwork with this app isn’t a whole lot different from his!

FIGURE 18-5 The XInput and JavaScript controller sketch sample with some modifications to change colors. The

varying line width is controlled by the position of the right trigger.

Obfuscating Code and Protecting Intellectual Property
Back in Chapter 1 in “Playing in Your Own Room: The App Container,” we saw how apps written in

HTML, CSS, and JavaScript exist on a consumer’s device as source files, which the app host loads and

executes. By now you’ve probably realized that for as much as Windows tries to hide app packages

from casual access, all that code is there on their device where a determined user can gain access to it.

In other words, assume your code is just as visible in an app package as it is on the web through a

browser’s View Source command.

It’s certainly possible—and common, in fact—to embed web content in a webview element to keep

some of your code on a server. Still, there will be parts of an app that must exist and run on the client,

so you are always running the risk of someone taking advantage of your generosity!

Ever since developers started playing with Windows Store apps written in HTML, CSS, and JavaScript,

they’ve been asking about how to protect their code. In fact, developers using C# and Visual Basic ask

similar questions because although those languages are compiled to IL (intermediate langua ge), plenty

of decompilers exist to produce source code from that IL just as other tools circumvent JavaScript

minification. Neither JavaScript nor .NET languages are particularly good at hiding their details.

1052

Code written in C++, being compiled down to machine code, is somewhat harder to reverse-

engineer, although it’s still not impossible for someone to undertake such a task (in which case you

have to ask why they aren’t just writing their own code to begin with!). Nevertheless, it’s the best

protection you can provide for code that lives on the client machine.

If the rest of the app is written in a language other than C++, especially JavaScript, know that it’s a

straightforward manner to also reverse-engineer the interface to a component. The issue here, then, is

whether a malicious party could use the knowledge of a component’s interface to employ that

component in their own apps. The short answer is yes, because your code might show them exactly

how. In such cases, a more flexible and nearly watertight solution would be for the component vendor

to individually manage licenses to app developers. The component would have some kind of

initialization call to enable the rest of its functionality. Within that call, it would compare details of the

app package obtained through the Windows.ApplicationModel.PackageId class against a known

and secure registry of its own, knowing that the uniqueness of app identity is enforced by the Windows

Store. Here are some options for validation:

 Check with an online service This would require network connectivity, which might not be a

problem in various scenarios. Just remember to encrypt the data you send over the network to

avoid snooping with a tool like Fiddler!

 Check against information encrypted and compiled into the component itself That is,

the component is compiled for each licensee uniquely. This is the most difficult to hack.

 Check against an encrypted license file distributed with the component that is unique to

the licensee (contains the app name and publisher, for instance) Probably the easiest solution,

because even if the license file is copied out of the licensed app’s package, the info contained

would not match another app’s package info at run time. The encryption algorithm would be

contained within the compiled component, so it would be difficult to reverse-engineer in order

to hack the license file—not impossible, but difficult. Another app could use that component

only if it used the same package information, which couldn’t be uploaded to the Store but

could still possibly be side-loaded by developers or an unscrupulous enterprise.

In the end, though, realize that Windows itself cannot guarantee the security of app code on a client

device. Further protections must be implemented by the app itself, or you have to keep the code on a

server and use it from there, either via HTTP requests or within a webview.

Concurrency
We’ve already seen that web workers and WinRT components with asynchronous methods can work

hand in hand to delegate tasks to different threads. If you really want to exercise such an option, you

can architect your entire app around concurrent execution by using these mechanisms, spinning up

multiple async operations at once, possibly across multiple web workers. A WinRT component can also

use multiple Task.Run or create_async/task calls, not just the single ones we’ve seen.

1053

Deeper still, a WinRT component can utilize the APIs in Windows.System.Threading to get at the

thread pool, along with those APIs in Windows.System.Threading.Core that work with semaphores

and other threading events. The details of these are well beyond the scope of this book, but I wanted

to mention them because many of the built-in WinRT APIs make use of these and your components

can do the same. And although it doesn’t demonstrate components, necessarily, the Thread pool

sample provides a good place to start on this topic.

Tip To check if your C#, VB, or C++component code is running on the UI thread, use

Window.UI.Core.CoreWindow.GetForCurrentThread, which returns null on non-UI threads.

Library Components
A library component is a piece of code that’s designed to be used by any number of other apps written

in the language of their choice. You might be looking to share such a library with other developers

(perhaps as a commercial product), or you might just be looking to modularize your own apps.

You could, of course, create a .js library for JavaScript apps, a .NET assembly for C# and VB, and a

DLL for C++, and then ship and maintain each one separately. A single WinRT component, on the other

hand, works with all languages, including any new language projections that might be added to

Windows in the future. This greatly reduces development and maintenance costs over time.

We’ve seen some examples of library components already in some of the Windows SDK samples. For

example, the HttpClient sample provides two sample filters for HTTP requests. Because the authors of

this sample needed to provide JavaScript, C#, VB, and C++ variants, it made sense to implement the

filters that were common to all of them as WinRT components in C++.

Another example is the Notifications Extensions Library that we saw in various samples of Chapter

16: App tiles and badges sample, Lock screen apps sample, Scheduled notifications sample, Secondary

tiles sample, and Toast notifications sample. This library was designed to be incorporated you’re your

own apps as-is, as we’ve done with the Here My Am! app for that chapter. (Note that because all the

methods in the library’s classes are small and fast, they’re all designed to be synchronous.)

If you plan to create a commercial library, you can ship source code for every app to recompile, but

it’s better to follow the How to: Create a software development kit documentation so that you can

provide only the compiled DLL and/or WinMD file to your customers. Customers will add these libraries

to their projects, so they’re packaged directly with the app.

Note When shipping a DLL or WinMD written in C++, be sure to provide separate builds x86, x64, and

ARM targets. Providing standard compilations for each target is important to enable multiple apps to

share the same library, a feature that the Store automatically manages on your behalf, as we’ll see in

Chapter 20, “Apps for Everyone, Part 2.”

http://msdn.microsoft.com/library/windows/apps/windows.system.threading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.threading.core.aspx
http://code.msdn.microsoft.com/windowsapps/Pool-Sample-5aa60454
http://code.msdn.microsoft.com/windowsapps/Pool-Sample-5aa60454
http://msdn.microsoft.com/library/windows/apps/windows.ui.core.corewindow.getforcurrentthread
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/Lock-screen-apps-sample-9843dc3a
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://code.msdn.microsoft.com/windowsapps/Toast-notifications-sample-52eeba29
http://msdn.microsoft.com/library/windows/apps/hh768146.aspx

1054

A primary use case for library components is to simplify interaction with a backend service, where

the library can abstract complex HTTP interactions. Another is to create a simplified interface for a

custom device. Although the protocol APIs that we explored in Chapter 17 make these devices

accessible, you’re still typically working on a very low level where details are concerned: creating

packets, setting bits in output reports, and so forth. Such details are very sensitive to errors, as even a

single bit out of place can cause a malfunction.

With a WinRT component you can effectively create your own scenario API for a device or a set of

devices (abstracting their differences underneath the API). The code in the component presents a

simplified or higher level interface to its clients, which it then translates into lower-level interactions

with the protocol APIs. Such a component can also smooth out the eccentricities of a device so that

app logic doesn’t have to concern itself with such details.

Consider the Dream Cheeky Circus Cannon that we worked with in Chapter 17, a device that I can

now say from experience has its eccentricities. These come from the nature of its internal mechanics: it

has internal switches that are closed when movement in some direction reaches its limit. When these

switches are closed, specific bits in one byte of the input report change from 0 to 1, and when the

switches are opened again due to movement in the opposite direction, they change from 1 to 0. The

device, however, only reports the state of the switches—it does not automatically stop itself when the

limit is reached. Unless you issue a command to stop or move in the opposite direction, the cannon will

sit there and grind its gears rather unpleasantly.

In the code we saw in Chapter 17, I used changes in the limit switches to automatically stop

movement, thereby preventing the gear grinding (from js/default.js in that example):

function inputReportReceived(e) {

 //Read input report from e.report.data (omitted)

 //Stop if a limit is hit to prevent grinding.

 var upDown = report[CircusCannon.offset.upDown];

 var leftRight = report[CircusCannon.offset.leftRight];

 var atLimit = (upDown & (CircusCannon.status.topLimit | CircusCannon.status.bottomLimit))

 || (leftRight & (CircusCannon.status.leftLimit | CircusCannon.status.rightLimit));

 if (atLimit) {

 sendCommand(CircusCannon.commands.stop);

 }

}

So far so good. However, the device constantly sends input reports with current status, not when

status changes, and it takes some movement in the opposite direction before a closed limit switch

opens again. As a result, issuing a command to move the cannon in the direction opposite a closed

limit switch doesn’t open that switch automatically. With the code above, movement stops right away

because the limit switch remains closed until we send enough commands to make the device move far

enough. It’s therefore necessary to debounce the limit switches, which means ignoring a closed limit

1055

switch until it first opens again. This way we can convert the constant input reports into discrete events

for hitting a limit.

Along similar lines, issuing a command to fire missiles just turns on a motor for the firing

mechanism, and that motor continues to spin until you issue a stop command. In the mechanism

there’s another switch that closed about the time that a missile is fired, and opened again once the

firing mechanism has rotated past the trigger point. I say “about” because it’s not really that precise:

the switch can close before a missile has actually been released—in my tests it’s more like the switch

has to first close and then open again to be sure that firing took place. Furthermore, I found that it’s

good to let the mechanism keep moving about another 100ms past the point where the switch gets re-

opened to be sure that it won’t suddenly report being closed again. All of these characteristics make it

difficult to tell the cannon to “fire one shot” because what that means, exactly, is a bit tricky to

determine.

For UI purposes, I also wanted to be able to tell the cannon to move a little in any given direction.

However, the device has no concept of step-wise movement: you tell it to start and stop, nothing more.

(It does have slow movement commands, but they continue until a stop is issued.) To create such

behavior, it’s necessary to use timers with something like 500ms intervals.

All together, then, you can see that mapping simple user-level commands like “move in a direction,”

“move a little in a direction,” “fire a missile,” and “fire all three missiles” requires some intricate

communication with the device and some additional device-level logic. Putting all this behind a custom

scenario API in a WinRT component makes a lot of sense.

You can see such an implementation in the CircusCannon2 example in this chapter’s companion

content, where the CircusCannonControl project contains a C++ WinRT component that does

everything I’ve described: it debounces the limit switches and raises singular events for any given limit,

it works with the missile-fired bit in the input report to provide reliable “fire one” and “fire all”

commands, and it implements step movements using internal timers. This all makes it very

straightforward to write a decent app UI around the device (though the UI of the front-end test app in

the example falls well short of “decent”!).

One part of this component that bears a little more discussion is properly raising events such that

single-threaded JavaScript apps can consume them. Again, the Raising events in Windows Runtime

Components topic in the documentation has all the details, so let me just show you what I used in the

example. First of all, I used a simple EventHandler type for each event along with the C++ event

keyword (see CircusCannonControl project > CannonControl.h):

event Windows::Foundation::EventHandler<bool>^ LeftLimitChanged;

event Windows::Foundation::EventHandler<bool>^ RightLimitChanged;

event Windows::Foundation::EventHandler<bool>^ TopLimitChanged;

event Windows::Foundation::EventHandler<bool>^ BottomLimitChanged;

event Windows::Foundation::EventHandler<bool>^ MissileFired;

http://msdn.microsoft.com/library/windows/apps/dn169426.aspx
http://msdn.microsoft.com/library/windows/apps/dn169426.aspx

1056

Here, each event provides a Boolean argument to indicate the status of the limit switch (debounced,

of course). In theory, raising an event as I do within the inputreportreceived handler

(CannonControl.cpp) just means calling the event name with the sender object and handler args:

LeftLimitChanged(this, true);

The caveat is that unless the event is raised on the UI thread, you’ll see exceptions in a JavaScript

app and other complications in C#, VB, and C++ apps. The topic on raising events linked above

discusses the options to handle this: (a) be sure to raise the event on the UI thread, (b) raise the event

such that Windows can provide an automatic proxy and stub for the event, which loses type

information in the arguments, and (c) provide your own proxy and stub.129 For the purposes of my

component, I chose to issue the events on the UI thread directly using the following code:

using namespace Windows::ApplicationModel::Core;

using namespace Windows::UI:Core;

CoreApplication::MainView->CoreWindow->Dispatcher->RunAsync(CoreDispatcherPriority::Normal,

 ref new DispatchedHandler([this]() {

 LeftLimitChanged(this, true);

 }))

Because I use the same structure for all five events, I implemented it as a C++ macro in

CannonControl.h, and with this little bit of wrapper the events work great with JavaScript.

What We’ve Just Learned

 Windows Store apps need not be written in just a single language; with WinRT components,

apps can effectively use the best language for any given problem. Although components can

share app data with the host app, they cannot work with UI on behalf of an app written in

HTML, CSS, and JavaScript.

 Reasons for using a mixed language approach include improving performance, gaining access

to additional APIs (including third-party libraries) that aren’t normally available to JavaScript,

obfuscating code to protect intellectual property, creating modular library components that can

be used by apps written in any other language, and effectively managing concurrency.

 For computationally intensive routines, a component written in C#/VB can realize on the order

of a 15% improvement over JavaScript and a component written in C++ an improvement on

the order of 25%. When testing performance, be sure to build a Release version of the app and

run outside of the debugger, otherwise you’ll see very different results for the different

languages. Be mindful, though, that the overhead of marshaling data across language

129 The custom proxy/stub approach is demonstrated in the Windows Runtime in-process component authoring with

proxy\stub generation sample.

http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-367fada2
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-367fada2

1057

boundaries could be more costly than the savings in execution time, so you’ll need to evaluate

each case individually.

 Windows Store apps can employ web workers for creating asynchronous routines that run

separately from the UI thread, and you can wrap that worker within a WinJS promise to treat it

like other async method in WinRT.

 Async methods can also be implemented in WinRT components by using task, concurrency, and

thread pool APIs. Compared to web workers, such async methods are more responsive because

they are directly structured as methods.

 No matter what language a component is written in, the JavaScript projection layer translates

some of its structures into forms that are natural to JavaScript, including the casing of names

and conversion of data types.

1058

Chapter 19

Apps for Everyone, Part 1:

Accessibility and World-Readiness

The shared title of this chapter and the next, “Apps for Everyone”—especially the ”Everyone” part—has

several shades of meaning. First is the vitally central role that the Windows Store plays in the whole

Windows experience. As first mentioned in Chapter 1, “The Life Story of a Windows Store App,” the

Store is the place where you distribute apps to customers (outside of the enterprise and sharing with

other developers). Everyone, in other words, gets their apps from the Store.

In this same way, everyone who does business with apps does business with the Store. To define

your app’s relationship to the Store is in many ways to define your business itself, and that relationship

affects all stages of the app lifecycle, from planning and development to distribution and servicing. As I

recommended in Chapter 1, you might want to read the first part of Chapter 20, “Apps for Everyone,

Part 2,” even before starting your first coding experiments! Truly, the Windows Store is like a pair of

bookends to the whole app development process: you think about the Store when planning the

business of your app, and when all is said and done, you go to the Store’s developer portal itself to

make your app available to others.

Those “others” are the context for the additional meanings of “everyone,” which is the focus of this

present chapter. In general, when you set out to offer a product to customers, you want to broaden

your reach to include as many potential customers as you can. There are, of course, cases where you

might want to specifically limit your audience, but for most apps, being able to reach more customers

is certainly an attractive opportunity. And if you don’t, your competitors will!

One way to broaden your reach is to cover your bases where accessibility is concerned. Though

accessibility has its origins in serving people with serious disabilities, research has shown that a majority

of people—nearly 60%—use accessibility features in some capacity, even though there’s no disability

involved. For one, being able to accommodate limited input models—like keyboard-only or

mouse/pointer-only—is inherent in dealing with touch-only devices. Resolution-scaling, similarly,

serves the needs of the visually impaired alongside the desires of the financially unimpaired (that is,

those customers who splurge for a high-DPI device just to get sharper graphics). An app that works

well with a screen reader for the visually impaired can also work rather well for the mobile customer

whose otherwise sound eyes need to be focused elsewhere—like the road they’re ostensibly driving on!

And providing for high-contrast color schemes helps not only those whose eyes don’t do well with

subtle colorations but also those who might be working with a mobile device in bright sunlight.

1059

It therefore behooves app developers to take accessibility concerns seriously, especially as the Store

will specifically mark fully accessible apps. As we will see, this primarily involves adding the appropriate

aria-* attributes to your HTML markup, adapting your layout to different screen sizes, and making

sure to provide image variations for different contrast settings.

The second way to extend your reach is to make your app world-ready—that is, to utilize localized

resources within the app so that it adapts itself to each user’s language, regional conventions, date and

time formats, currency formats, and so on. Fortunately, Windows enables you to structure your

resources—images and strings, primarily—so that the right variations show up automatically, just like

they do for resolution scales and contrasts. The Windows Runtime also contains a number of APIs to

help an app be world-ready, and the app itself can take additional steps to localize the web services

from which it’s drawing data, how it works with live tiles and notifications, and so on. And additional

tools like the Multilingual App Toolkit make it all the easier to translate your resources.

The reward for all this effort, of course, is that users who search in the Windows Store for apps in

their regional language will see your app and not those that are available only in a single language.

Those users are more likely to express their appreciation in your app’s reviews and ratings.

One of the great things about the Windows Store is the access it gives you to global markets from

wherever you happen to be working. In the past, learning to do business around the world has been a

tedious and expensive process, sometimes requiring that you understand local tax laws, manage

currency conversions, and so forth. No longer—this is really what the Windows Store is doing on your

behalf. Once the Store becomes available in a market, it means that Microsoft has done the work to

embed local policies into the Store itself. Put another way, whatever small fee you pay to upload apps

to the Store has made it possible for you to do business in those markets with little or no effort! This is

good. The Store also automatically adjusts your pricing tier—if you charge for the app or in-app

purchases—because standards of living do vary widely around the world. This is also good.

In this penultimate chapter then, we’ll take a tour of accessibility followed by another through the

world of world-readiness. That will set us up well for Chapter 20, in which we’ll come full circle to where

we started in Chapter 1: uploading your app to the Store and what you can expect there. Now that

you’ve brought your app this far, let’s get it ready for everyone to enjoy!

Accessibility

As I mentioned, nearly 60% of users employ accessibility features in some capacity—sometimes

because of a disability, sometimes due to personal preference, and sometimes just to make the device

easier to use within certain environments. In many countries, accessibility is a legal requirement, so it

will be necessary if you plan to make an app available in those regions. In the United States, for

example, the 21st Century Communications and Accessibility Act contains regulations for communi-

cations apps.

http://www.fcc.gov/encyclopedia/twenty-first-century-communications-and-video-accessibility-act-0

1060

In short, supporting accessibility is something that every app should do and do well, and fortunately

this isn’t the onerous task you might think it to be. (For reference, see Accessibility for Windows Store

Apps. Also see Guidelines and checklist for Accessibility, Practices to avoid for accessible apps, and

Implementing accessibility for particular content types.)

Accessibility might feel like a lot of work because developers are relatively unfamiliar with what it

means. To remedy this, take a few minutes to give yourself some direct experience. But before you do

anything else:

Go to PC Settings OneDrive > Sync Settings and turn off the options for Desktop Personalization.

Otherwise the effects of your tinkering will roam to other devices you might have. I learned this the

hard way when I was playing around with contrast settings on my main laptop after which a game my

son wanted to play on a tablet came up mostly black! Clearly, that app didn’t handle high contrast well,

but it also took me a while to figure out what was going on!

Now that we’ve taken care of that detail, try the following:

 Press Left Shift+Alt+Print Screen or go to PC Settings > Ease of Access > High Contrast >

Choose a Theme (see below), and then select different options and tap Apply. How does the

app respond? Are all of the critical elements visible? A mode like this is important for users who

have difficulty distinguishing subtle colors and those using a device in bright sunlight.

http://msdn.microsoft.com/library/windows/apps/hh452681.aspx
http://msdn.microsoft.com/library/windows/apps/hh452681.aspx
http://msdn.microsoft.com/library/windows/apps/hh700325.aspx
http://msdn.microsoft.com/library/windows/apps/hh452715.aspx
http://msdn.microsoft.com/library/windows/apps/hh700326.aspx

1061

 You can also select a high-contrast theme through Control Panel > Appearance And

Personalization > Personalization, where you have the same choices as in PC Settings: three

black background themes and one white-background theme; the latter is the same one that’s

activated through Left Shift + Alt + Print Screen:

 In PC Settings > PC & Devices > Display, the More Options drop-down (below) can change the

effective scaling on the display. How does the app respond to the new screen dimensions? As

discussed in Chapter 8, “Layout and Views,” turning this on will activate the 140% resolution

scaling, even if you’re not using a high pixel density device.

 Press Win+Ctrl+U to start (and stop) the built-in screen reader called Narrator. Win+Enter also

starts it, and you can go to PC Settings > Ease of Access > Narrator. (Note that Narrator is a

desktop application that starts minimized; you can close that application to stop Narrator or use

PC Settings again.) Now turn off the monitor. Can you still use the app? What happens when

you navigate around with the keyboard? Do you hear an audible indication of where the focus

is? This is clearly important for users who are blind or visually impaired. (Tip: If you run Narrator

for your app inside the Visual Studio simulator, it will apply to only that session and not

everything else on your desktop, such as Visual Studio itself.)

 If you have a mouse, disconnect it and try keyboard-only navigation (you can open your eyes

now). This is important for users with mobility issues and those who rely on speech recognition.

 With your mouse connected, go to PC Settings > Ease of Access > Keyboard and activate the

On-Screen Keyboard to try mouse/touch-only navigation. This special on-screen keyboard is

different from the one activated for touch with input fields (as we saw in Chapter 12, “Input and

Sensors”) because it always remains visible. In this same page of PC Settings you can also turn

sticky keys on and off.

1062

Through this experience I hope you’ve gained some understanding of what accessibility means.

Simply said, four key scenarios exist for accessibility support: screen readers, keyboard-only or mouse-

only input, high contrast, and resolution scaling.

Be very clear that supporting accessibility is something that starts at design time—it’s a common

mistake to implement an app and then think about accessibility only at the end of the process. But

then you’ll be going back and fixing many things in your code and UI layer that would have been

easier to handle up front. Think about all the scenarios I just listed as part of your app design!

We’ve already covered two scenarios in this book. In Chapter 8 we saw how to work with different

resolution scales, how to handle varying screen sizes (which can occur as a result of scaling), and how to

provide raster graphics for different scales so that they always look their best. For a quick review, you

might want to revisit the Scaling according to DPI sample.

Input considerations were also covered in Chapter 12, and I’ll remind you again that the Store

certification policy (section 6.13.4) requires that apps disclose when they lack keyboard and mouse

support. Typically, the real work to be done is making sure that your app can be used with nothing but

a keyboard; see Implementing keyboard accessibility for full details. Testing your app with Narrator

turned on will also reveal whether you’ve paid attention to keyboard navigation, because no matter

how well your elements are labeled for that purpose, those labels don’t do any good if the user can

never set the focus to them!

It’s also worth mentioning that including closed captions in video will assist users who are hearing -

impaired. Doing so, however, is a detail for the video data itself or can be implemented via text

overlays on a video element. See the HTML5 and Accessibility (MSDN Magazine) for more on video

accessibility.

One other important component to accessibility is respecting when users have disabled animations.

We discussed this in Chapter 14, “Purposeful Animations,” in “Systemwide Enabling and Disabling of

Animations.” If you’re using the animations library, all this is taken care of automatically, but if you do

any custom animations, be sure to check the Windows.UI.ViewManagement.UISettings.-

animationsEnabled property and respond accordingly:

var settings = new Windows.UI.ViewManagement.UISettings();

var enabled = settings.animationsEnabled;

Let’s now look at how we support screen readers and contrast variations.

Sidebar: Accessibility Test Tools

The Windows SDK includes two tools to help you verify your implementation of accessibility. The

first is Inspect, a UI automation tool that checks through the accessibility information you’ve

made available to screen readers and lets you know what you’ve missed. The second is

AccChecker, which runs a series of verifications on the rest of the app and validates that you’ll

work with a variety of third-party screen readers in addition to Narrator. (AccChecker is

somewhat aggressive in its reporting: it flags warnings about a host of possible issues, a number

http://code.msdn.microsoft.com/windowsapps/Scaling-sample-cf072f4f
http://msdn.microsoft.com/library/windows/apps/hh700327.aspx
http://msdn.microsoft.com/magazine/hh204741.aspx

1063

of which you don’t need to address especially if they occur within hosted web content. It also

doesn’t check app bars, nav bars, flyouts, and settings panes.)

You’ll find these tools in the Windows SDK install folder, typically c:\Program Files

(x86)\Windows Kits\8.1\bin\x86. You might also be interested in the Accessible Event Watcher

and the UI Automation Verify tools. For usage details on all of these, see Automation Testing

Tools in the documentation as well as Testing your app for accessibility. Of course, for the most

complete kind of testing, find yourself a few users who regularly work with assistive technologies,

set them up with a developer license (so that you can share your app package), and let them put

your app through its paces!

Sidebar: Narrator and tabindex Attributes

When making your app navigable by keyboard, be careful to not overuse tabindex attributes on

elements that don’t need them, thinking that this will help Narrator for noninteractive elements.

It doesn’t. Narrator has its own keyboard commands (like CapsLock+arrows) and its own

navigation modes that skilled users employ to read anything on a page, irrespective of tabindex.

For this reason, setting tabindex properties on static elements decreases Narrator’s usability; you

should set the property only on interactive elements. In other words, understand that using an

app through the keyboard and using it through Narrator are different processes, and think of

tabindex only in the context of keyboard navigation.

Screen Readers and Aria Attributes

Screen readers like the built-in Narrator work best if the app provides some kind of information that

properly describes elements in the UI. For Windows Store apps written in HTML, CSS, and JavaScript,

this is achieved through aria-* attributes on your UI elements.

Tip If you need separate text to speech capabilities, remember that you have the Windows.Media.-

SpeechSynthesis API available to you, as discussed in Chapter 13, “Media” and demonstrated in the

Speech synthesis sample.

ARIA stands for Accessible Rich Internet Applications, a standard that’s spelled out in the WAI-ARIA

specifications. WIA itself stands for the W3C Web Accessibility Initiative. Two other W3C documents of

interest are the WAI-ARIA Primer and WAI-ARIA Authoring Practices.

What it really boils down to is that assistive technologies like Narrator are first able to automatically

derive what they need from certain elements, like headers, paragraphs, the title attribute, label

elements associated with focusable elements (using the label’s for attribute), button text, input

elements, the caption attribute of a table, and the alt attribute of img elements. The role attribute

also comes into play here.

http://msdn.microsoft.com/library/windows/desktop/dd373661.aspx
http://msdn.microsoft.com/library/windows/desktop/dd373661.aspx
http://msdn.microsoft.com/library/windows/apps/hh452726.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.speechsynthesis.aspx
http://code.msdn.microsoft.com/windowsapps/Speech-synthesis-sample-6e07b218
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/WAI/intro/aria.php
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-practices/

1064

For everything else, like div elements (including custom controls) whose role cannot be inferred, the

specs define a number of attributes, starting with aria-, to indicate the role that a particular element

plays in the app. Full details can of course be found in the specifications linked above, along with the

ARIA reference on the Windows Developer Center. Another good reference topic is also Exposing basic

information about UI elements in the documentation, which shows examples of a number of the core

aria-* attributes. That page makes a special note about the canvas element. Because a canvas is just

a pixel bucket, it doesn’t have content that is accessible to screen readers, even though it might appear

as text. Make a special effort, then, to give a canvas appropriate attributes as you would with other

custom elements (again see the HTML5 and Accessibility article for more on canvas).

All of the controls in WinJS are fully stocked with ARIA attributes and other bits that work with

assistive technologies, so by using them you get lots of accessibility for free. (An exception is the

SemanticZoom control that specifically does not use aria-label because it’s a container for other

controls that should have such labels.) That said, it’s still necessary for you to properly adorn other

elements, including HTML controls like progress. Here’s a summary of the core aria-* attributes:

 aria-label Directly provides text for screen readers.

 aria-labelledby (Note the spelling with two L’s.) Specifies the identifier of another element

that contains the appropriate label for an element. The specifications state that aria-

labelledby should be used instead of aria-label if that text is already on the screen.

 aria-describedby Similar to aria-labelledby, identifies an element (which doesn’t have to

be visible) that contains fuller description instead of just label text. Narrator reads that text

when the user presses the Win+Alt+F key on the element with this attribute. This is a good

option to use with a canvas that contains drawn text if it doesn’t work to use aria-label

directly. (The Here My Am! app as updated for this chapter uses aria-label.)

 aria-valuemin, aria-valuemax, and aria-valuenow For div elements whose role is set to

slider, progressbar, or spinbutton, these indicate the values within the control. aria-valuetext

can also provide text that corresponds to the value of aria-valuenow.

 aria-selected, aria-checked, aria-disabled and aria-hidden Indicate the state of an

element.

 aria-live Needed for “live region” content that changes dynamically, such as master-detail

views, chat, RSS feeds, fragment loading, and so forth. This is also appropriate for transitions

and on progress controls.

Back in Chapter 6, “Data Binding, Templates, and Collections,” we saw that a special syntax was

necessary to do data-binding on attributes of target elements where there are no associated JavaScript

properties. The aria-* attributes are the primary example of this, because of their hyphenated names.

For these we use this[] along with special WinJS initializers in data-win-bind:

http://msdn.microsoft.com/library/windows/apps/hh767301.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700323.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700323.aspx
http://msdn.microsoft.com/magazine/hh204741.aspx

1065

<div data-win-bind="this['aria-label']: title WinJS.Binding.setAttribute"></div>

<div data-win-bind="this['aria-label']: title WinJS.Binding.setAttributeOneTime"></div>

It’s probably more typical, though, that you’ll provide localized ARIA labels in your app’s resources,

and for this there is a different declarative syntax that we’ll see later on “World Readiness and

Localization.”

The ARIA Sample

To see the various aria-* attributes and Narrator in action, the best place to turn is a unique sample in

the Windows SDK, the ARIA sample. One of its unique characteristics (besides having the shortest name

of all the samples!) is that is doesn’t at all look like an SDK sample, as you can see in Figure 19-1. This

was done to intentionally represent the content of a typical app, without the normal SDK décor. In this

case the sample emulates a simple chat app with a kind of master-detail view.

FIGURE 19-1 The ARIA sample’s main page.

When you run this sample, be sure to turn on Narrator to hear what it has to say. (Again, I highly

recommend doing this in the Visual Studio simulator because then Narrator is running in that session

only and not for your entire machine!) You’ll find that it’s accurately reflecting what’s happening on the

screen, especially as you Tab or Shift+Tab between controls, press Enter or the spacebar to select items,

and enter chat text. Again, turn off your monitor, close your eyes, get a blindfold, or have your five-

year-old come up behind you and cover your eyes to get the full experience.

Pressing Enter on an item in the left-hand list will update the contacts shown in the middle.

Selecting a contact and pressing enter will then open another page containing a table—a contrived

table, certainly, but one that shows the aria-* attributes that apply there. The page, shown in Figure

19-2, also provides an opportunity to experience page navigation through the keyboard and Narrator.

http://code.msdn.microsoft.com/windowsapps/Aria-sample-f3cf5323

1066

FIGURE 19-2 The ARIA sample’s secondary page (cropped a bit).

Apart from the small bits of code in pages/chat/chat.js to work the chat window, the really

interesting parts of this sample are all contained in the markup, specifically pages/chat/chat.html (the

main page) and pages/table/ table.html (the secondary page). In the first we can see aria-label on

most of the controls (with the text you hear as you tab around) and much more extensive roster of

attributes for the chat output div near the bottom:

<div class="chatpage fragment">

 <header aria-label="Header content" role="banner">

 <button class="win-backbutton" aria-label="Back" disabled></button>

 <h1 class="titlearea win-type-ellipsis">

 Aria Sample

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 <div class="chat">

 <div class="groupslist" aria-label="List of groups"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ selectionMode: 'none'}"></div>

 <div class="contactslist" aria-label="List of contacts"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ selectionMode: 'none' }"></div>

 <div class="chatTextContainer">

 <div class="chatTextEchoContainer" aria-label="Chat text area"

 aria-live="assertive" aria-multiline="true" aria-readonly="true"

 aria-relevant="additions" role="log"

 tabindex="0"></div>

 <input class="chatTextInput" accesskey="i"

 aria-label="Chat input area" type="text"

 value="Type here..."/>

 </div>

 </div>

 </section>

</div>

1067

That div, with the chatTextEchoContainer class, is updated at run time to contain child div elements

for each text entry. This makes it a “live region” and thus has the aria-live attribute, whose values are

described as a “politeness level” in the W3C spec. The value of assertive says “communicate the

change right away,” which is appropriate for chat but should be used carefully. The other value, polite

(the default for role="log" elements), indicates a lower priority such that Narrator won’t interrupt the

current task. The aria-relevant="additions" attribute is related to this, indicating what kind of

changes are relevant to the live area. Its values are additions, removals, text, and all. With

additions, if we happened to add an image to the chat window with an alt attribute, that would be

communicated; if we set this to text, only text elements would be read.

The aria-multiline attribute indicates that the chat window is a multiline textbox such that the

Enter key is taken as text input rather than as a button press that would submit a form (as with the

single-line textbox). The aria-readonly attribute then indicates that this control cannot be edited, to

distinguish it from those marked with aria-disabled.

If you play with the sample, you’ll notice that when you tab to the chat window, Narrator reads the

entire contents. When you enter a line of text in the single line control, on the other hand, Narrator

reads only the new element that’s been added. This is due to a default value of false for the aria-

atomic attribute (not present in the markup). When used on an aria-live element, this tells the

screen reader to read only the changed node in that element. If you set aria-atomic to true, a

change to any child element is considered a change to the whole element such that all the contents

will be read. This can apply on multiple levels, mind you, so that if you add a child element that is

atomic and add grandchild elements within it, only that atomic child element would be read if the

parent element is not atomic.

As for the markup in pages/table/table.html, this gives us an example of aria-describedby. Here’s

the relevant section, omitting the table contents:

<div class="detail">

 <h2 id="title" role="heading" aria-level="2">Sample table</h2>

 <p id="subtitle" role="note">This table shows sample data.</p>

 <p class="generaltext">...</p>

 <table class="tabledetail" aria-describedby="subtitle"

 aria-labelledby="title" border="1">

 <!-- Contents omitted -->

 </table>

</div>

When you set the focus to the table in the running sample (you have to use the mouse for this

unless you add a tabindex to the table), you’ll initially hear “Sample table” according to the aria-

labelledby attribute. Then press Win+Alt+F, and you’ll hear “Item described by…” followed by the

aria-describedby text. (And yes, go ahead and change it so that Narrator says some silly things. You

know you want to!)

Note, finally, that it’s essential that the title and subtitle elements also have some aria-related

attributes, such as role. Otherwise aria-labelledby and aria-describedby won’t work.

1068

Handling Contrast Variations
Working with high-contrast modes is primarily one of accommodating changes to the Windows color

theme and making sure that you apply graphics that meet high-contrast requirements. Technically

speaking, high contrast is defined by the W3C as a minimum luminosity ratio of 4.5 to 1. A full

explanation including how to measure this ratio can be found on http://www.w3.org/TR/WCAG20-

TECHS/G18.html. A Contrast Analyzer (from the Paciello Group) is also available to check your images

(some of mine in Here My Am! originally failed the test). Do note, however, that creating high-contrast

graphics isn’t required for noninformational content such as logos and decorative graphics. At the

same time, full-color graphics might look out of place in a high-contrast mode, so be sure to evaluate

your entire end-to-end user experience under such conditions.

An app handles high contrast through four means. The first is to use built-in controls (both HTML

and WinJS) and let the system do the work! To see what happens, run a few of the controls samples,

such as the HTML essential controls sample and the HTML Rating control sample, and switch between

the different high-contrast themes in PC Settings > Ease of Access > High Contrast.

Of course, an app will almost always have some layout of its own, such as div elements with custom

color schemes defined in CSS. You’ll want to make sure you have appropriate style rules for high-

contrast settings, for which we have the -ms-high-contrast media feature for media queries. This

feature can have the values of active (all high-contrast themes), black-on-white (the white

background theme), white-on-black (a black background theme), and none. Clearly, none is implied

when you don’t use -ms-high-contrast to group any rules; active is also implied if you use -ms-

high-contrast without a value. We’ll take a closer look at all this coming up.

As with other queries, you can use media query listeners and matchMedia to pick up contrast

themes in code. This is useful for updating canvas elements, as we’ll see shortly. There is also the -ms-

high-contrast-adjust CSS style, which indicates whether to allow the element’s normal CSS

properties to be overridden for high contrast. The default value, auto, allows this; the value of none

prevents this behavior. Again, we’ll see more shortly.

Next, WinRT surfaces the current contrast settings through the Windows.UI.ViewManagement.-

AccessibilitySettings class. This has two properties: highContrast, a Boolean indicating if any

high-contrast theme is active, and highContrastScheme, a string with the name of the specific theme

exactly as it appears in PC Settings, which is also localized for the user’s current language. In English,

the black on white theme will be “High Contrast White”; for the other three themes the strings will be

“High Contrast #1”, “High Contrast #2”, and “High Contrast Black” (going from left to right). You can

see these results through scenario 2 of the UI contrast and settings sample, where the code is very

simple:

var accessibilitySettings = new Windows.UI.ViewManagement.AccessibilitySettings();

id("highContrast").innerHTML = accessibilitySettings.highContrast;

id("highContrastScheme").innerHTML = accessibilitySettings.highContrast ?

 accessibilitySettings.highContrastScheme : "undefined";

http://www.w3.org/TR/WCAG20-TECHS/G18.html
http://www.w3.org/TR/WCAG20-TECHS/G18.html
http://www.paciellogroup.com/node/18?q=node/20
http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/library/windows/apps/hh465764.aspx
http://msdn.microsoft.com/library/windows/apps/hh441137.aspx
http://msdn.microsoft.com/library/windows/apps/hh441137.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.accessibilitysettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.accessibilitysettings.aspx
http://code.msdn.microsoft.com/windowsapps/High-Contrast-UI-Settings-9a310961

1069

WinRT also provides detailed color information through the Windows.UI.ViewManagement.-

UISettings.uIElementColor method. (Note the odd casing on uIElementColor, an artifact of WinRT

names projecting into JavaScript.) This returns a Windows.UI.Color object for an element identified

with a UIElementType. Scenario 1 of the UI contrast and settings sample shows all these possibilities

with a piece of instructive but otherwise uninspiring code that I won’t duplicate here!

The AccessibilitySettings object also supports one event, highcontrastchanged, which lets

you know when high contrast is turned on or off; its eventArgs.target is the updated

AccessbilitySettings object. You can use this event to trigger any programmatic updates you need

to make in your UI, such as redrawing a canvas with high-contrast colors if you’re not using a media

query listener for that purpose. I use this in Here My Am! to redraw placeholder images appropriately.

Finally, with both raster and vector images, there are file-naming conventions that you use in

conjunction with the .scale-100, .scale-140, and .scale-180 suffixes for pixel density. For contrast, the

appropriate suffixes are .contrast-standard, .contrast-high, .contrast-black (black-on-white), and

.contrast-white (white on black), where the black and white names are mutually exclusive with high.

We’ll see all this in action later in “High-Contrast Resources,” and we’ll see how to combine both the

scaling and contrast suffixes in “Scale + Contrast = Resource Qualifiers.”

CSS Styling for High Contrast

The CSS styling for high contrast mode sample provides a valuable look at dealing with high-contrast

modes where media queries and image files are concerned. As you might expect, most of these

features are demonstrated declaratively in CSS and through the app’s resources; only one scenario

actually has any JavaScript code at all!

Scenario 1 shows the difference between elements that are and are not aware of contrast. Wi th a

normal color scheme in effect, its three buttons appear as follows, where the first two are div elements

and the third a true button:

When high contrast is turned on (Left Shift + Alt + Print Screen is handy to toggle the setting for

this sample), they appear as shown here for a black on white theme:

The first control, lacking contrast awareness, is still using white for its border, which of course

disappears against a white background. The second button, on the other hand, has styles that use

system-defined colors associated with a high-contrast media query, so the button works well with any

theme (css/scenario1.css):

http://msdn.microsoft.com/library/windows/apps/br229470.aspx
http://msdn.microsoft.com/library/windows/apps/br229470.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.color.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uielementtype.aspx
http://code.msdn.microsoft.com/windowsapps/High-Contrast-b36079d8

1070

@media (-ms-high-contrast) {

 .s1-hc {

 background-color: ButtonFace;

 color: ButtonText;

 border: 1px solid ButtonText;

 }

 /* ... */

}

Tip If you just stick with system colors entirely, both in CSS and in SVGs, you won’t need to use media

queries or different SVG files at all, because those colors will be adjusted for high-contrast modes

automatically. See User-defined system colors for a reference. You can also use the currentColor

value in SVGs for fill, stroke, stop-color, flood-color, and lighting-color properties to reflect

contrast settings.

Scenario 2 shows similar effects with button elements that use SVGs for their background images.

With normal settings, those buttons appear as follows:

With high contrast turned on, they appear like this:

All that’s happening here is that a media query sets a high-contrast background image for the

button when necessary:

.s2-button-hc-bg-svg {

 background-image: url(../button-not-aware.svg);

 background-size: 100% 100%;

 width: 200px;

 height: 200px;

}

http://msdn.microsoft.com/library/ie/aa358804.aspx

1071

@media (-ms-high-contrast) {

 .s2-button-hc-bg-svg {

 background-image: url(../button.contrast-high.svg);

 background-repeat: no-repeat;

 background-size: cover;

 }

}

If you look in button-not-aware.svg, you’ll see that its gradient colors have many different values; in

button.contrast-high.svg, on the other hand, those colors are generally set to black or ButtonFace, the

latter reflecting the system color setting as is appropriate. (It would probably be better, in fact, to

replace black with ButtonText, a system color that will automatically adjust to contrast settings.)

What’s going on with the first and second buttons? If you look in the CSS (css/scenario2.css), the

only difference is that the style class for the first button, .s2-button, lacks a rule within the high-contrast

media query, whereas the second, .s2-button-hc, has a rule there that just specifies the exact same

background image. What’s the deal? What’s happening is that because the first button lacks any

applicable style rule within the media query, its styles are automatically overridden with high-contrast

values. Turning on high contrast overrides most color styles as well as background-image, in the latter

case simply removing those images. This is why the first button shows up blank. The second button has

a rule to define a background-image within the media query, so that image appears.

This brings us to the purpose of the -ms-high-contrast-adjust style. By default this is set to auto,

allowing CSS properties to be overridden. Setting this to none prevents those styles from being

overridden or adjusted. Thus, if you add -ms-high-contrast-adjust: none; to the .s2-button rule in

css/scenario2.css, you’ll see that the first and second buttons behave exactly the same. You can see this

change in the copy of the sample included with this chapter’s companion content.

Moving now to scenario 3, it normally draws the Internet Explorer ‘e’ on a canvas in color (below

left), whereas in high-contrast mode it draws the logo in black and white (below right):

In this case, high contrast is picked up in JavaScript (js/scenario3.js) using a media query listener; no

CSS is involved (this code is simplified for clarity; the sample also detects high contrast on startup):

var fillStyleOuterColor = "rgb(9, 126, 196)";

var fillStyleInnerColor = "rgb(255, 255, 255)";

var mql = matchMedia("(-ms-high-contrast)");

mql.addListener(updateColorValues);

function updateColorValues(listener) {

 if (listener.matches) {

 fillStyleOuterColor = "ButtonText";

 fillStyleInnerColor = "ButtonFace";

http://msdn.microsoft.com/library/ie/aa358804.aspx

1072

 draw();

 }

 else {

 fillStyleOuterColor = "rgb(9, 126, 196)";

 fillStyleInnerColor = "rgb(255, 255, 255)";

 draw();

 }

Note that the AccessibilitySettings.onhighcontrastchanged event could be used here

instead of the media query listener.

Canvas a better choice? In my original versions of the Here My Am! app, I used images to provide

messages in img elements when a photograph or the map isn’t available. When considering the needs

for contrast and localized variations of those images, it was ultimately easier to generate the images on

the fly by drawing text onto a canvas, as we’ve been doing since Chapter 2, “Quickstart.” This

eliminates the need for many different image files and makes the app package smaller, while still fully

addressing both accessibility and localization needs.

High-Contrast Resources

In the previous section with the CSS styling for high contrast mode sample we saw a bit of the filename

conventions that the Windows resource loader uses for high contrast: button.contrast-high.svg, for

example. Scenario 4 of that sample shows how this lookup can happen automatically. In the project

there is a file named button.svg alongside one named button.contrast-high.svg, with an img element

declared in html/scenario4.html as follows:

If the system is running with normal contrast, the resource loader resolves the URI here to

button.svg. (The ../ is because the scenario page is one level down in the HTML folder—generally it’s

better to give the full in-package path like /images/....) When high contrast is in effect, the resource

loader instead looks for that same filename but with one of three qualifiers in the filename. If you have

distinct resources for black-on-white and white-on-black themes, name those files with .contrast-white

and .contrast-black, respectively. If, on the other hand, you have just a single high-contrast variant, use

.contrast-high. This is because Windows will ignore any high variants if you provide black and white files

with the same root name.

Note If you’re using custom app bar icons, as discussed in “Custom Icons” in Chapter 9, “Commanding

UI,” remember to include high-contrast variants of your source images by using this naming scheme.

If you like having more parallel filenames, you can also name the normal contrast file with .contrast-

standard, as in button.contrast-standard.svg. If you do this in the sample project, leaving the HTML as

is, you’ll see no difference in the output. At the same time, because of behavior nuances with contrast

handling, it’s recommended to use .contrast-standard only if you also supply .contrast-white and

.contrast-black variants.

http://code.msdn.microsoft.com/windowsapps/High-Contrast-b36079d8

1073

As noted before, contrast variants are applied automatically for black-on-white (white background)

and white-on-black (black background) themes, respectively. To see this, rename button.contrast-

high.svg in the SDK sample to button.contrast-white.svg, and then make a copy named

button.contrast-black.svg. In that copy, modify the gradient colors in the CDATA block by exchanging

black with ButtonFace. When you then switch on a black background theme, you’ll see a button that’s

white on black, as it should be. (All these changes can be found in the copy of the sample included with

this chapter’s companion content.)

The one caveat with the img element in scenario 4 is that it won’t be updated when contrast is

changed while the app is running, as happens with media queries in scenarios 1–3. That is, the app host

will not re-render the img element in response to a contrast switch. To change this behavior, we have

to trick the app host into thinking that the source URI has changed by appending some dummy URI

parameters. We can do this inside AccessibilitySettings.onhighcontrastchanged with

eventArgs.target.highContrastScheme providing a decent variable for the URI (see js/scenario4.js

in the modified sample; you can also set src to "" and then reassign):

var page = WinJS.UI.Pages.define("/html/scenario4.html", {

 ready: function (element, options) {

 var accSet = new Windows.UI.ViewManagement.AccessibilitySettings();

 accSet.addEventListener("highcontrastchanged", function (e) {

 var image = document.getElementById("buttonImage");

 //Use the scheme name (sans whitespace) as the dummy URI parameter

 var params = e.target.highContrast ?

 "?" + e.target.highContrastScheme.replace(/\s*/g, "") : "";

 image.src = "../button.svg" + params;

 });

 }

});

One significant advantage to highcontrastchanged over media query listeners is that the latter will

be fired very soon after the change happens, at which point the resource loader might not have picked

up the change by the time you set the img.src attribute. This results in the wrong image being

displayed. highcontrastchanged is fired much later, so the code above generally works. That said, my

experiments along these lines (with the sample running and making changes in the desktop contro l

panel) show that it’s still not 100% reliable: changing contrasts is an expensive operation that triggers

many events throughout the system, and there’s no guarantee when the resource loader will get reset.

For this reason you can consider just bypassing the whole matter and explicitly setting the src attribute

to a known file with a specific name. The modified sample contains code like this in comments, or you

can just use media queries!

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.accessibilitysettings.highcontrastchanged.aspx

1074

Scale + Contrast = Resource Qualifiers

Because the graphics we just worked with are SVGs, there is no need to supply separate files for

different pixel densities. But what if we have raster graphics? How do we combine scaling and contrast?

This will also come up when we look at localization later, because that will introduce language variants

as well. This brings us to the matter of resource qualifiers, a topic that’s discussed in its fullest extent on

How to name resources using qualifiers. Qualifiers include scale and contrast as we’ve seen, along with

language, layout direction, home region, and a few other obscure variants.

To combine qualifiers within a single filename, append them together with underscores. The general

form is filename.qualifiername-value_qualifiername-value.ext. So, a graphic named logo.png can have

variants like logo.contrast-standard_scale-180.png and logo.scale-100_contrast-white.png (the order of

qualifiers doesn’t matter). Clearly, with the full set of three or four scales (accounting for the few scale-

80 cases) and two or three possible contrasts, you might have as many as 12 distinct graphics files for

that one resource. Indeed, for all the core images in your manifest alone—the ones we talked about in

Chapter 3, “App Anatomy and Performance Fundamentals,” you can have up to 52 total images (for

standard/high contrast) or 78 (for standard/black/white). For a few examples of this, load the

Application resources and localization sample into Visual Studio and look in the images folder.

(Although the sample shows only contrast+100% scale examples, be sure to provide at 140% and 180%

scales as well in your own app; Here My Am! for this chapter does so with its splash screen, tile, and

other logo graphics.)

As we get into the topic of world readiness, we’ll find that localized image resources will require a

set of scale and contrast variants for each language. As you can guess, the file-naming conventions here

could get really messy as the file count increases! Fortunately, the resource loader also allows qualifiers

in folder names, so localized resources are typically placed within language-specific folders. We’ll see

more of this later in “Part 2: Structuring Resources for the Default Language.” We’ll also avoid this

complexity entirely in Here My Am! by using a canvas instead of discrete images for those graphics

that contain text messages (the logos aren’t localized).

High-Contrast Tile and Toast Images

Like any other images in your app, tile images in your manifest, images sent to the tile through

updates, and images used in toast notifications all respect contrast settings. (Badges are not an issue

because they are already monochromatic and adapt automatically.) In the manifest, naming images

with resource qualifiers works for scale, contrast, and language.

Tip For your manifest images, Visual Studio’s manifest editor shows all the contrast variants alongside

scale variants, which gives you a way to quickly see if you have all the filename qualifiers spelled

correctly, because misspelled files will not appear in the editor:

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1075

XML payloads for tiles and toasts can refer to local images using ms-appx:/// URIs, and the

resource loader will look for the appropriately qualified file. This does not apply to ms-appdata:///

URIs, however, so if you’re working with downloaded or dynamically generated images, you’ll need to

identify a specific file yourself.

For XML payloads that refer to remote images, setting the addImageQuery option in the payload to

true (as discussed in “Using Local and Web Images” in Chapter 16, “Alive with Activity”) will append

query strings to the remote URIs that indicate scale, contrast, and language:

?ms-scale=<scale>&ms-contrast=<contrast>&ms-lang=<language>

These details are described on Globalization and accessibility for tile and toast notifications, along

with how to localize strings in the XML payload. We’ll see these details for ourselves later on.

World Readiness and Localization

Over the years I’ve heard a number of words used to describe the process of making an app ready for

different regional markets, and I imagine you have too: localization, localizability, internationalization,

globalization, and world readiness. To be honest, the differences between these terms have confused

me for some time, but I finally found a good explanation in an older book for desktop applications

called Developing International Software, by Dr. International (Microsoft Press, 2003). The same ideas

are also expressed on Understanding Internationalization. Let me begin this section then by offering a

simple summary of that view.

http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx
http://msdn.microsoft.com/goglobal/bb688112

1076

The goal with Windows Store apps is to make them available in many markets around the world, as

provided for so conveniently by the Store itself. To do this, an app must be written to adapt itself to just

about any language and culture that it might encounter. In some situations you may need to produce

specific builds of the app, but hopefully you can have one app with localized resources that works for

most markets. Truly, the days of monolingual apps are over. Indeed, there are even aspects of

localization, like branding, that apply to markets that otherwise share a common language, such as

when you use a different company logo in England, Australia, New Zealand, Canada, and the USA.

To reach this goal you must first make your app world-ready. World readiness means that even

though the app initially supports only one language and culture (most likely your own), it doesn’t

actually make any assumptions about those specifics anywhere within its HTML, CSS, and JavaScript

(including tile and toast payloads and any WinRT components). That is, the core app is language-,

culture-, and market-neutral, taking all these factors into account:

 Each and every text string that might be shown in the app’s user interface, including element

attributes like aria-label and img.alt, has been separated out into a resource file such that

different resources can be loaded for different languages. Strings should include their

punctuation because it is also subject to localization. (Using UTF-8 Unicode text is pretty much a

given nowadays, so displaying text in many languages isn’t an issue, but be sure to keep this in

mind if you’re migrating older software or using web services that might work otherwise.)

 Leave adequate space in your layout to allow strings to expand when localized.

 Each and every localized image (those that contain text or culture-specific content) has been

organized into language-specific folders, appropriately named so that the resource loader can

find them automatically.

 Localization isn’t just for languages and doesn’t have any inherent relationship with the user’s

region. A user living in one country might want to use a different language, and some resources

for otherwise common languages might still need to be localized for different regions (such as

specific word spellings, business logos and branding, etc.).

 Any formatting and manipulation of dates, times, time zones, and currencies use APIs that

automatically apply regional settings.

 Use format strings to place dynamic content into strings rather than string concatenation.

Similarly, do not make assumptions about where first names and surnames are placed, the

structure of street addresses and phone numbers, and so on.

 Any sorting or collation of data takes the user’s language into account, using APIs for this

purpose.

 Make no assumptions about how strings are concatenated. Use format strings with appropriate

placeholders instead, and include those in language-specific resource strings so that they can be

localized.

1077

 The web services an app uses might vary from location to location because of the need for local

information or regional legal requirements.

 The app communicates language and region information to any services it uses to generate tile

updates and toast notifications, and the XML payloads provided by those services set the

appropriate lang attributes so that Windows can use the right fonts when rendering text.

 Text might be laid out left to right or right to left (including text within images). Vertical is also

possible but might be implemented in a separate version of an app because of its unique layout

needs.

 Text input just works for all languages, whether from a keyboard or an Input Method Editor

(IME), which implies that you should avoid hard-coding font names that don’t have full Unicode

support. It’s good to stick with the typography in the WinJS stylesheets—they have built-in

support for at least 109 languages.

 The user might switch languages at run time, and the app responds accordingly.

 Test early and test often!

A world-ready app, in short, is both globalized—using APIs that isolate regional specifics—and is

readily localizable such that adding support for another language requires no code changes, just the

addition of new string and image resources. This is mostly a matter of how you structure those

resources and how you reference them within the app’s markup and source code.

The process of localization, then, is one of generating or acquiring those language-specific and

culture-specific resources, for which some very helpful tools are available to streamline translation

work. Adding a new set of resources does not require any changes to the app code, and even though

you upload an app package with those new resources to the Windows Store, it will not trigger an app

update to customers that don’t need them.

Next we’ll look at matters of globalization, we’ll explore how to structure resources to be localizable,

and we’ll see how to go about obtaining localized resources. After that, we’ll be ready to look at the

last step in the long journey of an app’s creation—uploading to the Store—which is the story of

Chapter 20.

Alert! One of the last steps in uploading your app will be providing localized information for your

app’s page in the Windows Store. Because you won’t be asked for this until you thought you were all

done and ready to release your app, the need for these resources will catch you off guard! To avoid

that pain and avoid delays in releasing your app, we’ll talk about what’s needed here as part of the

overall localization process. See “Part 3: Creating a Project for Nonpackaged Resources” later on.

Globalization
Besides language, the things that vary around the world are the representation of dates and times

(including calendars and time zones); the representation of numbers, measures (units), phone numbers,

1078

and addresses; currencies; paper sizes (already discussed in Chapter 17, “Devices and Printing”); how

text is sorted (collation); the direction of text; word breaking within text; and the fonts used for text

along with the input method. To globalize an app means to make no assumptions about how any of

this is accomplished, instead using the WinRT APIs that will do the right thing according to the current

user’s settings. Working with those APIs is what globalization is mostly about.

Globalization is also about analyzing an app’s content, checking for words, phrases, or expressions

that might be very difficult to translate (or potentially politically offensive), especially colloquialisms,

vernacular, slang, metaphors, jargon, and the like. Use images that travel well and aren’t likely to be

misinterpreted elsewhere in the world (imagine wearing a T-shirt with such imagery in a country where

you intend to market the app!). And exercise caution with maps because there is disagreement among

different nations about where, exactly, their borders should be drawn. Be sure also to refer to

“country/region” rather than just “country,” because disputed territories might not be recognized

specifically as a country.

Also be aware of your regional export laws regarding encryption algorithms, because you might not

be allowed to make the app available in certain markets. See Staying within export restrictions on

cryptography. In addition, if you’re writing a game, be mindful of regional game rating requirements

that might create more work for you than it’s worth. See Preparing your Windows game for publishing.

If you use web services, make sure they’re appropriate to the user’s locale. This might be required by

law in some parts of the world (especially for financial transactions and maps) and often ensures that

the user gets regionally relevant information from that service, unless they’ve specifically configured

the app otherwise. Also communicate the user’s locale and language to those services so that they can

return content that’s already localized. It’s also helpful for the app’s overall performance to use servers

that are relatively close to the user rather than on the other side of the world!

The first step in any of this, however, is to know where your app is actually running and the user’s

language and cultural preferences, so let’s see how that is accomplished.

User Language and Other Settings

When a user first acquires a Windows device or installs Windows on a machine, it will likely be

configured for their country of residence. However, many users speak multiple languages irrespective

of where they live and might want to work with Windows in a particular language that has nothing to

do with their location. For this reason, always think about the user’s preferences separately from the

actual location of the device, applying the user’s preferences to how your app displays information but

using the physical location to control the services you use and other more functional aspects.

Languages, region, and other preferences are configured through PC Settings > Time and Language

(or Control Panel > Clock, Language, and Region). Here you can add languages and select your primary

one (see Figure 19-3), change input methods, specifically set your location (a country or territory), and

set date and time formats (see Figure 19-4). The desktop control panel lets you also set number and

currency formats (see Figure 19-5).

http://msdn.microsoft.com/library/windows/apps/hh694069.aspx
http://msdn.microsoft.com/library/windows/apps/hh694069.aspx
http://msdn.microsoft.com/library/windows/apps/hh452788.aspx

1079

FIGURE 19-3 Managing and selecting a language in PC Settings.

FIGURE 19-4 PC Settings panes for formatting and region.

1080

FIGURE 19-5 Control panel dialogs for formatting and region.

It’s a good thing there are globalization APIs, because dealing with all the variations here would be

quite a chore otherwise! (Note that changes to the formats in Figure 19-4 will affect only those

Windows Store apps that are running in the language you’re configuring; each set of custom formats is

particular to a language.)

The basic details of the user’s settings are available through the Windows.System.UserProfile.-

GlobalizationPreferences object and the classes in the Windows.Globalization namespace.

GlobalizationPreferences just provides a handful of properties. Four of these—calendars, clocks,

currencies, and languages—are each an array of strings (an IVectorView to be precise) with the

user’s preferred settings in order of preference. In the case of languages, it contains a list of BCP-47

language tags.

It also contains a string property called homeGeographicRegion, which is the abbreviation for the

selected value in the Country or Region setting of Figure 19-3, and a property called weekStartsOn,

which is a DayOfWeek value. Scenario 1 of the Globalization preferences sample will retrieve and display

these values, except that you’ll want to add a line for currencies, which is missing from the sample.

Having made that change and added a number of languages to my system, I see this output:

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.aspx
http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/bcp47
http://msdn.microsoft.com/library/windows/apps/windows.globalization.dayofweek.aspx
http://code.msdn.microsoft.com/windowsapps/Globalization-preferences-6654eb36

1081

Generally speaking, these values are exactly what you’ll typically need to communicate to a web

service if it will be providing localized data to the app. However, the user’s language preference is best

obtained in a slightly different manner, as we’ll see shortly.

Oftentimes you’ll need more detail for all of these settings, for which we can turn to the classes in

Windows.Globalization. Some of these are static classes that are just there in the API to provide you

with all the string identifiers that you would use to make comparisons in code without writing out the

strings explicitly. ClockIdentifiers, for instance, just contains two string properties, twelveHour and

twentyFourHour, whose values match those returned from GlobalizationPreferences.clocks.

Similarly, CalendarIdentifiers contains string properties for gregorian, hebrew, hijri, japanese,

julian, korean, taiwan, thai, and umAlQura. So, if you wanted to compare the user’s preferred

calendar to a specific one, you’d write code like this:

var userCalendar = Windows.System.UserProfile.GlobalizationPreferences.calendars[0];

if (userCalendar == Windows.Globalization.CalendarIdentifiers.julian) {

 // ...

}

This way you’re fully honoring the key principle of globalization by not making any assumptions

about what those calendar strings are.

The other globalization classes are somewhat richer in scope and function. The Language class,

which you typically instantiate with a specific BCP-47 tag, provides details like the displayName,

nativeName, languageTag (and subtags via the getExtensionSubtags method), and script.

Scenario 2 of the aforementioned sample demonstrates this. The Language class also has two static

members. One is the isWellFormed method, which will tell you if a string contains a valid BCP-47 tag.

The other is the currentInputMethodLanguageTag property, which contains the BCP-47 tag for the

user’s preferred input. This can be customized in PC Settings to be something other than the

language’s default (this happens through the Options button shown for a language in Figure 19-3; this

is also demonstrated in scenario 4 of the sample.)

Then we have the GeographicRegion class, which, if instantiated with no arguments, provides

details on the user’s home region. You can also instantiate it with a specific location string. Either way, it

then provides you with and isSupported flag, a displayName, a nativeName, a variety of code formats

for the region (code, codeThreeDigit, codeThreeLetter, and codeTwoLetter), and an array of ISO

4217 three-letter codes in currenciesInUse. Scenario 3 of the sample shows these values for your

configuration, such as:

http://msdn.microsoft.com/library/windows/apps/windows.globalization.clockidentifiers.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendaridentifiers.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.language.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.geographicregion.aspx

1082

The ApplicationLanguages class, for its part, contains just a few things. manifestLanguages is an

array of languages as defined by the app’s manifest; you’ll set these when you localize an app.

languages contains a combination of the GlobalizationPreferences.languages array and those

from manifestLanguages. The first item in this list is the best value to use for the user’s preferred

language in your app, so this will be the one to send to web services for localization purposes.

Lastly, there’s primaryLanguageOverride, a property (BCP-47 tag) that allows you to set an app-

specific language preference (and add it to the mix of languages). Setting this (which is persistent

across sessions) tells the system what language to use in its own UI that appears in the context of the

app (such as system-provided flyouts). It’s a relatively expensive operation, so avoid using

primaryLanguageOverride for transient purposes, such as rendering a few elements in a different

language. For that, create a new language context and use that explicitly; see ResourceContext.-

getForCurrentView and scenario 13 of the Application resources and localization sample.

The last class, Calendar, is quite extensive and contains too many members to list here, many of

which work with formatting as well performing calendar math. Before stepping into that arena,

however, let’s look more broadly at the question of formatting data.

Formatting Culture-Specific Data and Calendar Math

If you clicked around within the formatting and region panes of PC Settings and Control Panel (refer

back to Figure 19-4 and Figure 19-5), you’ll find that the possible permutations for formatting

something as simple as a number is quite mind boggling, let alone dates, times, and currencies!

Fortunately, “formatter” classes in WinRT take care of all the details such that you can take a value from

new Date(), for example, and get back a string that completely reflects the user’s preferences. The APIs

also provide parsing services that work in the opposite direction.

In Windows.Globalization.NumberFormatting we have CurrencyFormatter, Decimal-

Formatter, PercentFormatter, and PermilleFormatter, which you should always use when

converting data values into UI display strings. All of these classes are demonstrated in the Number

formatting and parsing sample, where the basic process is to instantiate the formatter with or without

specific codes or languages, set any necessary properties for the formatter (such as the number of

digits, separator usage, and the CurrencyFormatterMode), and then call its format method to obtain a

string or, alternately, one of its parse* methods to turn a string into a number.

For example, to format a currency value (perhaps to present the cost of an in-app purchase in your

UI), instantiate a CurrencyFormatter with a currency identifier (and an optional language list and

geographic region), set up any options, and then call format (js/CurrencyFormatting.js; I’ve created a

namespace variable for simplicity):

var nf = Windows.Globalization.NumberFormatting;

var currs = Windows.Globalization.CurrencyIdentifiers;

var userCurrency = Windows.System.UserProfile.GlobalizationPreferences.currencies;

var wholeNumber = 12345;

var fractionalNumber = 12345.67;

http://msdn.microsoft.com/library/windows/apps/windows.globalization.applicationlanguages.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcecontext.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcecontext.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.currencyformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.decimalformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.decimalformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.percentformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.permilleformatter.aspx
http://code.msdn.microsoft.com/windowsapps/Number-formatting-and-bb10ba3d
http://code.msdn.microsoft.com/windowsapps/Number-formatting-and-bb10ba3d
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.currencyformattermode.aspx

1083

// Apply user defaults

var userCurrencyFormat = new nf.CurrencyFormatter(userCurrency);

var currencyDefault = userCurrencyFormat.format(fractionalNumber);

// Apply a specific currency

var currencyFormatUSD = new nf.CurrencyFormatter(currs.usd);

var currencyUSD = currencyFormatUSD.format(fractionalNumber);

// Apply a specific currency, language, and region (France, then Ireland)

var currencyFormatEuroFR = new nf.CurrencyFormatter(currs.eur, ["fr-FR"], "ZZ");

var currencyEuroFR = currencyFormatEuroFR.format(fractionalNumber);

var currencyFormatEuroIE = new nf.CurrencyFormatter(currs.eur, ["gd-IE"], "IE");

var currencyEuroIE = currencyFormatEuroIE.format(fractionalNumber);

// Include fractions with a whole number

var currencyFormatUSD1 = new nf.CurrencyFormatter(currs.usd);

currencyFormatUSD1.fractionDigits = 2;

var currencyUSD1 = currencyFormatUSD1.format(wholeNumber);

// Group integers

var currencyFormatUSD2 = new nf.CurrencyFormatter(currs.usd);

currencyFormatUSD2.isGrouped = 1;

var currencyUSD2 = currencyFormatUSD2.format(fractionalNumber);

// Formatted using currency code instead of currency symbol

var currencyFormatEuroModeSwitch = new nf.CurrencyFormatter(currs.eur);

currencyFormatEuroModeSwitch.mode = nf.CurrencyFormatterMode.useCurrencyCode;

var currencyEuroCode = currencyFormatEuroModeSwitch.format(fractionalNumber);

// Return back to currency symbol

currencyFormatEuroModeSwitch.mode = nf.CurrencyFormatterMode.useSymbol;

var currencyEuroSymbol = currencyFormatEuroModeSwitch.format(fractionalNumber);

The output of this code is as follows:

The other number formatters all work like this, so I’ll leave it to you to check out the details in the

documentation and the scenarios 1–4 of the sample. In addition, scenario 5 (js/RoundingAnd-

Padding.js) demonstrates the use of rounding and padding capabilities of the NumberFormatting API,

which involves the IncrementNumberRounder and SignificantDigitNumberRounder classes, along

with the RoundingAlgorithm enumeration providing the options: none, roundDown, roundUp,

roundTowardZero, roundAwayFromZero, roundHalfDown, roundHalfUp, roundHalfTowardZero,

roundHalfAwayFromZero, roundHalfToEven, and roundHalfToOdd.

http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.incrementnumberrounder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.significantdigitsnumberrounder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.roundingalgorithm.aspx

1084

Scenario 6 (js/NumericalSystemTranslation.js) shows use of the NumeralSystemTranslator class

that converts between the common Latin system and a wide variety of others used around the world.

Refer to NumeralSystem values for the options. And scenario 7 shows how to do number formatting

with Unicode extensions to language tags, such as a tag of ja-jp-u-nu-arab.

To format dates and times, we turn now to the Windows.Globalization.DateTimeFormatting

namespace, where we find the DateTimeFormatter class along with many enumerations for the

different ways to formats seconds, minutes, hours, days, months, and years. To use the API, you

instantiate a formatter object specifying the desired formats and applicable languages. (There are no

less than seven separate constructors here!) You then set options like the clock, geographicRegion,

and so forth and call its format method with the desired Date value. You can even apply custom

formats, if desired. Many such variations are demonstrated in the Date and time formatting sample,

including tags with Unicode extensions in scenario 5 and time-zone handling in scenario 6. I trust a

small code snippet will suffice here (from scenario 2, js/stringtemplate.js):

var mydatefmt1 = new Windows.Globalization.DateTimeFormatting.DateTimeFormatter(

 "month day");

var mytimefmt1 = new Windows.Globalization.DateTimeFormatting.DateTimeFormatter(

 "hour minute ");

var dateToFormat = new Date();

var mydate1 = mydatefmt1.format(dateToFormat);

var mytime1 = mytimefmt1.format(dateToFormat);

The other bit of relevant code from the SDK is the Calendar details and math sample. A world-ready

app must not make assumptions about how time periods are computed or compared because this can

vary with regional calendars. This is why the extensive Windows.Globalization.Calendar class

contains ten distinct add* methods that range from addNanoseconds to addEras, along with its

compare and compareDateTime methods (and a bunch to get all the little bits of calendar-related text).

In other words, drill it into your mind now to never, ever use arithmetic operators on date and time

values because they won’t work properly in every locale. Even where you think you know what you’re

doing, you can get wrong answers when situations like daylight savings time get involved, where the

number of hours in two days of every year will not actually be 24!

The bottom line is although we make many assumptions about calendar math in day to day life,

where exact precision isn’t needed, we must avoid writing code using those same assumptions. For

example, if I say “I’ll get back to you in a month” and today is February 12th, do I really mean March

12th or something else? What I don’t want to do in code is just add 1 to the month (even if I do

remember to check for December!). Instead, I should always use Calendar.addMonths method.

Sorting and Grouping

Just as a world-ready app cannot make assumptions about comparing date and time values, it cannot

make assumptions about how strings are sorted. Every language has its own way of sorting that doesn’t

necessarily have anything to do with the values of the character codes involved. I was reminded of this

just recently: my work on this second-edition chapter coincided with the opening of the 2014 Winter

Olympics in Sochi, Russia (or, I should write, Сочи, Россия). During the opening ceremonies, some were

http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.numeralsystemtranslator.aspx
http://msdn.microsoft.com/library/windows/apps/jj236471.aspx
http://msdn.microsoft.com/library/windows/apps/br206859.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.datetimeformatting.datetimeformatter.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-formatting-2361f348
http://code.msdn.microsoft.com/windowsapps/Calendar-details-and-math-b1683bb7
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.aspx

1085

surprised that the Zimbabwe team (Зимбабве in Russian) entered ahead of Chile (Чили), which

happened because З comes before Ч in the Russian alphabet.

The bottom line here is that you should never sort strings by character code or based on any

assumptions you might think would apply: always use a language-aware API instead.

For Windows Store apps written in HTML and JavaScript, you can use the localeCompare method

that’s already built into strings (even for individual characters). This performs the comparison based on

the user’s current language. You can also use a string’s tolocaleLowerCase and toLocaleUpperCase

methods. In Chapter 7, “Collection Controls,” specifically in “Quickstart #4: The ListView Grouping

Sample,“ we also saw how to use the Windows.Globalization.Collation.CharacterGroupings API

to create proper groupings by the first character of item titles.

Fonts and Text Handling

Thanks to Unicode and the ability of HTML to directly handle text in different languages, there’s little

you need to do to make text appear properly within your layout. For example, if you look at the

Language font mapping sample, pages like html/scenario2.html that contain this markup:

<div id="scenario2Document">

 <h2 lang="hi" id="scenario2Heading" contenteditable="true">

 है।अभी पत्रिका लाभान्वित</h2>
 <p lang="hi" contenteditable="true">

 है।अभी पत्रिका लाभान्वित सुना समजते संभि ध्िनन विभाजन िैन्विक बनानत संभि विकससत
 विचरविमर्श प्रोत्साहहत न्जम्मे िर्णशत पे्ररना सुचना जाता भाषाओ सलये हिनांक भेिनक्षमता
 सुचनाचलचचि डाले। सलए। मुन्वकल विभाजनक्षमता मुक्त िस्तािेज विचारसर्लता विचरविमर्श
 उसके निंबर रचना उद्योग िातािरण पहोचाना समजते तकननकल अंगे्रजी बनाए ससभसमज जानकारी
 संिेर् अचिक िनुनया अनुिाि सकती मुख्य रचना समजते उपलब्ि सभीकुछ िेखने</p>
</div>

just show up like you expect they would (and if you read Hindi, you’ll see that this is just jibberish):

What this particular sample is meant to demonstrate is the Windows.Globalization.Font.-

LanguageFontGroup object, which provides specific font recommendations for different parts of the UI.

Once created using a specific BCP-47 tag, the object contains a number of properties, each of type

LanguageFont, such as uITextFont and uIHeadingFont (notice the odd casing again). Each

LanguageFont object then contains properties of fontFamily, fontStretch, fontStyle, fontWeight,

and scaleFactor. Through a couple of helper functions in js/langfont.js, which are deceivingly added

to the WinJS.UI namespace without being part of WinJS itself, these recommendations are applied to

elements in the DOM simply by setting the appropriate styles for those elements.

http://msdn.microsoft.com/library/62b7ahzy.aspx
http://msdn.microsoft.com/library/94h6w1kx.aspx
http://msdn.microsoft.com/library/6t6xaca8.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.aspx
http://code.msdn.microsoft.com/windowsapps/Language-font-mapping-919f08d4
http://msdn.microsoft.com/library/windows/apps/br206865.aspx
http://msdn.microsoft.com/library/windows/apps/br206865.aspx

1086

Be clear that these font recommendations are really refinements and not necessary for basic

functionality. As scenario 4 of the sample demonstrates, a basic English font (with Unicode characters,

of course) applied to mixed English/Japanese text will still render the Japanese but perhaps not

optimally. Applying the recommended font will make that refinement.

With text, let me remind you of a few APIs in the Windows.Data.Text namespace that we saw

briefly in Chapter 15, “Contracts,” and are worth mentioning again. These are the ones for semantic text

querying (the SemanticTextQuery class), segmenting words (WordsSegmenter), segmenting selection

ranges (SelectableWordsSegmenter), and tokenizing identifiers within strings (UnicodeCharacters).

For demonstrations of these, refer to the Semantic text query sample, the Text segmentation API

sample, and the Unicode string processing API sample.

The other aspect to working with different fonts and languages is how these affect your overall

layout, something we didn’t go into in Chapter 8. This is discussed in the documentation on How to

adjust layout for various languages and support RTL layout, but let me summarize that material and

add a bit more.

First of all, a world-ready app leaves extra space for various bits of content like headings and labels

because the words and phrases will be longer in some languages and shorter in others. The general

guidelines are to leave at least 30% more room over what’s needed in English for typical strings and as

much as 300% for really short strings or single words. As a simple example, the English word “wrench”

translates into German as “Schraubenschlüssel”; the word “click” (if I’m to trust Bing Translator),

translates into Greek as “Κάντε κλικ στο κουμπί” (literally “do click on the button”—the click word is

just κλικ). You might need word wrapping in some cases too!

For all such purposes you can and should use the :lang()/:-ms-lang() pseudo-class selector in

CSS to adjust styles like width for specific languages. Be sure to test your app with those languages or

test thoroughly with the pseudo-language (see “Testing with the Pseudo Language” later).

Secondly, different languages flow text in directions other than the left to right (and top to bottom),

like English and many Indo-European languages. Arabic and Hebrew, for instance, read right to left

(RTL) instead of left to right; a few will flow top to bottom first, then right to left.

When making your app world-ready for RTL languages (considering that such markets are

significant), you’ll want to support what is called mirroring in your layout. It really means reversing your

layout, including images, the direction of the back button, the direction of animations, panning

directions, and so forth.

Fortunately, HTML and CSS layout automatically accommodate this, and the WinJS stylesheets, ui -

light.css and ui-dark.css, set the CSS direction style appropriately as follows (something you should

use on the element level for RTL languages rather than align):

html:-ms-lang(ar, dv, fa, he, ku-Arab, pa-Arab, prs, ps, sd-Arab, syr, ug, ur, qps-plocm) {

 direction: rtl;

}

In fact, look around in the WinJS stylesheets and you’ll find many adjustments made for RTL

http://msdn.microsoft.com/library/windows/apps/windows.data.text.semantictextquery.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.text.wordssegmenter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.text.selectablewordssegmenter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.data.text.unicodecharacters.aspx
http://code.msdn.microsoft.com/windowsapps/Semantic-Text-Query-sample-29334be1
http://code.msdn.microsoft.com/windowsapps/Text-Segmentation-API-be73de71
http://code.msdn.microsoft.com/windowsapps/Text-Segmentation-API-be73de71
http://code.msdn.microsoft.com/windowsapps/Unicode-string-processing-b9c65246
http://msdn.microsoft.com/library/windows/apps/hh967757.aspx
http://msdn.microsoft.com/library/windows/apps/hh967757.aspx
http://msdn.microsoft.com/library/windows/apps/Hh996886.aspx
http://msdn.microsoft.com/library/windows/apps/hh996832.aspx

1087

languages with :-ms-lang, specifically with margins and padding. By using HTML, CSS, and WinJS—

including built-in controls—much of the mirroring is taken care of automatically. Here My Am!, for

instance, just works in Hebrew.

With images, you can reverse them when needed by applying a transform: scaleX(-1) style to

the necessary elements. If, however, you have images that really need to be replaced (as when some

parts would be mirrored but other parts would not), you can use layoutdir-RTL in the image filename in

the same way we’ve seen for pixel densities and contrast. In fact, there are many qualifiers for use with

resources that are described on How to name resources using qualifiers, something we’ll be looking at

more closely in a moment.

Sometimes you’ll need to reverse a certain portion of text, as when mixing languages in the same

paragraph. For this you can apply the unicode-bidi style in conjunction with direction. (Do note

that numbers are generally direction-neutral so that they take on the directionality of their containing

element, so you might need to set direction separately.) Along similar lines, you can also use the -ms-

writing-mode style to flow text in just about any other direction, something you might use for an app

that presents classical Chinese, Japanese, or Korean poetry.

Preparing for Localization
Once your app has been made world-ready and can handle just about any language and regional

settings you want to throw at it, the next step is to make sure that language-specific resources in the

app are cleanly separated from your HTML, CSS, and JavaScript and placed in your resources where the

Windows resource loader (also referred to as the Resource Management System) can find them.

Before going further, there’s an excellent topic in the documentation on this subject, How to

prepare for localization, which provides suggestions for translation and other details. It’s not productive

to repeat all of that here, of course, so I’ll instead to break that guidance down into a couple of steps

that you can apply to an app and its default language before adding support for additional languages.

As you’ll see, one of these steps has nothing to do with the app package itself but has to do with

localized resources you’ll need when submitting the app to the Windows Store.

Tip Early in your development work, reserve localized names for your app in the App Name section of

the Windows Store dashboard.

Note The resource loader supports sparse localization for dealing with slight variations between

similar languages or regions. It means that with languages like American English (en-US) and British

English (en-GB), most of the app’s resources can be assigned to en-US with en-GB resources for only

those bits that vary, like “color” vs. “colour” and changing “Contoso, Inc.” to “Contoso, Ltd.,” or vice-

versa. You might also need to provide region-specific graphics, such as the logos under which you do

business in those regions. In any case, because each resource is resolved individually according to the

user’s preferences, an app running in an en-GB context will find those specific bits first, if they exist,

otherwise the loader will look in the en-US resources. There is also support for dealing with specific

language exceptions through the use of resources marked with the undetermined tag und. See How to

manage language and region, step 4 (toward the end), for details, along with Language Matching.

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/hh996988.aspx
http://msdn.microsoft.com/library/windows/apps/Hh997001.aspx
http://msdn.microsoft.com/library/windows/apps/Hh997001.aspx
http://msdn.microsoft.com/library/windows/apps/hh967759.aspx
http://msdn.microsoft.com/library/windows/apps/hh967759.aspx
http://msdn.microsoft.com/library/windows/apps/Hh967758.aspx
http://msdn.microsoft.com/library/windows/apps/Hh967758.aspx
http://msdn.microsoft.com/library/windows/apps/jj673578.aspx

1088

Part 1: Separating String Resources

The first step in preparing for localization is to move language-specific or region-specific strings from

source files into a string resource file and then to insert resource references where necessary. Coming

up, in “Part 2: Structuring Resources for the Default Language,” we’ll set up the folder structure for this

file and image resources that will then accommodate localized versions.

To create your first string resource file, right-click your project in Visual Studio’s solution explorer,

select Add > New Item, and select Resources File (.resjson). Although you can change the filename, just

leave it set to the default resources.resjson for now. Press Add, and the file will be created in your

project root, where we’ll also leave it until Part 2.

Omitting a comment at the top, the contents of this file appear as follows:

{

 “greeting” : “Hello World!”,

 “_greeting.comment” : “This is a comment to the localizer”

}

As you can see, the file is just plain JSON where each property has a string identifier and a string

value; any resjson file can have as many properties as you want.

Clearly, too, there is a relationship between the two entries above. The first entry of the form

<identifier> : <value>, is a real string resource that maps a valid JSON identifier (no whitespace) to a

string value. This is what the resource loader will use to replace references to the identifier with the

string value.

Any entry that begins with an underscore, as in <_identifier.comment> : <value> (a conventional

form), is ignored by the resource loader. Such entries provide notes for a translator so that they can

fully understand how the string is used and specific parts that shouldn’t be translated. A second

optional entry, <_identifier.source> : <value>, provides the original string in the default language,

which is very helpful for reference.

If you want to see some more extensive resjson files, open the Application resources and localization

sample and look in the strings folder under a particular language. In the ja/resources.resjson file, for

example, you’ll see the string resources along with both comment and source entries:

{

 “displayName” : “アプリケーション リソース JS SDK サンプル”,

 “_displayName.source” : “Application Resources JS SDK Sample”,

 “_displayName.comment” : “Don’t change ‘SDK’”,

 “description” : “アプリケーション リソース JS SDK サンプル”,

 “_description.source” : “Application Resources JS SDK Sample”,

 “_description.comment” : “Don’t change ‘SDK’”,

}

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1089

Turning back to your own app with the new resources.resjson file in hand, we’re now ready to go on

a search-and-replace mission throughout the app project, looking for localizable strings, extracting

them into the resource file, and replacing them in the source files with an appropriate reference. The

three primary places we need to look at are your HTML files, JavaScript files, and the app manifest. To

demonstrate, I’ll show what I did with the Here My Am! example (to which I’ve added a resources.res-

json file).

Note CSS files can contain string literals in the content and quotes styles; however, resource lookup

from CSS is not supported for Windows Store apps. Localization must be done in CSS with the :lang

and :-ms-lang pseudo-selectors.

JavaScript: Let’s start with JavaScript, where you need to scrub your code for string literals,

including any you are drawing to a canvas. In Here My Am! I found only a couple localizable strings,

namely a folder name used in the Pictures library, text for placeholder images (six instances total), and

the title and description used when formatting text for the Share contract and live til es

(pages/home/home.js):

var folderName = “HereMyAm”;

data.properties.title = “Here My Am!”;

setPlaceholderImage(“photo”, “Tap to capture photo”);

setPlaceholderImage(“mapDiv”, “Could not create the map.”, “Tap to try again.”);

return “At latitude “ + lat + “, longitude “ + long;

return “At (“ + lat + “, “ + long + “)”;

and the Settings commands in js/default.js:

e.detail.applicationcommands =

 {

 “about”: { title: “About”, href: “/html/about.html” },

 “help”: { title: “Help”, href: “/html/help.html” },

 “privacy”: { title: “Privacy Statement”, href: “/html/privacy.html” }

 };

Note that in home.js English strings are used for exceptions, but because they’re only for debugging

purposes they don’t need to be localized.

Extracting the appropriate strings into resources.resjson, then, that file appears as below where I’m

using regular comments to identify where the strings are used. Note that I’ve include the folder name

and share title although they won’t typically be translated, and note that the format strings are used in

the formatLocation function in js/home.js:

{

 // pages/home/home.js

 “foldername” : “HereMyAm”,

 “_foldername.comment” : “Not translated”,

 “share_title” : “Here My Am!”,

 “_share_title.comment” : “Not translated”,

 “location_formatShort” : “At (%s, %s)”,

 “_location_formatShort_comment” : “Used to format a short location as in ‘At (120, 45)”,

1090

 “location_formatLong” : “At latitude %s, longitude %s”,

 “_location_formatLong_comment” :

 “Used to format a long location, ‘At latitude 120, longitude 45”,

 // default.js

 // Settings panel commands

 “about_command” : “About”,

 “help_command” : “Help”,

 “privacy_command” : “Privacy Statement”,

}

I highly recommend that you organize your entries by source file like this, and you can also use

multiple resource files if you like, as explained in “Part 2” coming up. Also be careful about how you

reuse the same string that occurs in multiple places. If it’s for the same kind of UI with the same intent,

that’s fine, but if the usage context is different, make a separate copy of the string because it might

translate differently for that context. In the resources above, notice how I al so included a comment for

location_formatShort because the word “At” by itself probably needs more context to translate properly.

With the strings separated as resources, we can now use the resource loader to obtain those strings

at run time. This can be done in two ways. First is with the WinRT APIs directly, namely Windows.-

ApplicationModel.Resources.ResourceLoader.getString:

var loader = new Windows.ApplicationModel.Resources.ResourceLoader();

var text = loader.getString(‘location_formatShort’);

or, more simply, with the WinJS.Resources.getString wrapper:

var text = WinJS.Resources.getString(‘location_formatShort’).value;

that also happens to work in the web context where WinRT isn’t defined (see scenario 12 of the

Application resources and localization sample). Note that getString returns an object that has the

string in its value property along with lang and an empty flag indicating if the resource wasn’t found.

The concise WinJS method is clearly helpful in cases like our settings commands because we can call

it inline. Thus, in our code we just replace the string literals with the WinJS call, such as the following in

pages/home/home.js:

data.properties.title = WinJS.Resources.getString(‘share_title’).value;

and the following inside the object for the Settings commands:

“about”: { title: WinJS.Resources.getString(‘about_command’).value,

 href: “/html/about.html” },

Note that WinJS, being optimized for common scenarios, supports loading strings in the user’s

default language only. The WinRT ResourceLoader class, on the other hand, is much more flexible and

can load a string for any specific language and apply a different language for each app view. You’ll

need to use that API when your requirements exceed what WinJS provides.

And that’s really it for JavaScript. If you’ve made these changes to your app, now is a good time to

use the Build > Build Solution command in Visual Studio. This will compile the resources.resjson file

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.resourceloader.getstring.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.resourceloader.getstring.aspx
http://msdn.microsoft.com/library/windows/apps/hh701590.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1091

into a more efficient binary format called resources.pri, ignoring entries that begin with an underscore.

Doing an occasional build (without starting the app) is a good practice when working with resources so

that you can clean up any problems in your files, such as duplicate entries or syntax errors. Then you

can run the app to see the resource loader in action—mostly by seeing no difference from the app as it

was before! Be sure to test all the code paths that were affected, however, to ensure that all the strings

are being loaded properly.

Manifest: Let’s turn now to the manifest, where the story is even simpler because there’s no code

involved. The textual pieces here that might need localization are

 The Display Name, Description, and URI Template fields on the Application tab.

 The Short Name on the Visual Assets tab.

 Any text descriptions for specific entries on the Declarations tab, such as the Share Description

for a Share Target declaration.

 The Package Display Name on the Packaging tab. (You would change the package name only if

you were going to submit the app to the Store under a different name in certain markets, in

which case it’s a different app package entirely.)

 Possibly some URIs on the Content URIs tab.

While we’re looking at the manifest, note the Default Language setting on the Application tab. This

is what defines the app’s default or fallback language if the user runs the app with a language that isn’t

provided for in your resources. We’ll also come back to images in the manifest in “Part 2.”

Looking at all the strings in the manifest, extract these to your resources.resjson file, giving them

appropriate identifiers. Again, if you have some strings in the manifest that match those elsewhere in

the app, carefully evaluate them to determine if they can all use the same resource. When in doubt,

keep them separate (the overhead is quite small). In the case of Here My Am!, the app’s display name

and the string used for the header on the main page are the same and have the same usage, so they

can refer to the same resource.

To refer to those resources in the manifest, use ms-resource:<identifier>. For example, I moved the

Application > Display Name value into the resource file and called it app_title, so in that field of the

manifest editor I simply write ms-resource:app_title. I did the same for the description and the package

display name.

1092

Once you’ve made these changes, run the app and make sure that the text on your tile, if you’re

using it, shows up properly. You might temporarily check the Visual Assets > Show Name options so

that you can see the name, but be sure to uncheck these boxes before you ship!

Sidebar: Localized Strings in Tile and Toast XML Payloads

As described on Globalization and accessibility for tile and toast notifications, XML payloads for

tile and toast notifications use the ms-resource: syntax to identify string resources in text

elements. This will trigger the resource loader’s lookup mechanism when the tile or toast is

rendered, and this works regardless of whether the notification was issued locally, obtained from

a web service, or received as a push notification. The web services just need to be sure they use

the app’s particular resource identifiers.

A web service can also issue localized tile updates directly. In this case, an app will generally

append query strings to the service URI to communicate the desired language, updating those

parameters as necessary when the language changes (see “Localization Wrap-Up” for details). An

app can also combine this with using regional web services that help localize the update content.

If you configure a periodic tile update in your manifest (on the Application tab), you won’t be

able to modify the URI from code, obviously. Instead, include the tokens {language} and {region}

in your URI parameters, which Windows will replace at run time with the settings. For example, if

you give the URI http://<host>/<service>?lang={languages}®ion={region}, your service will

receive a parameters string like ?lang=en-US®ion=US.

Finally, remember to set the lang attribute in various elements of your tile and toast XML

payloads so that Windows can select the proper font for text content. Also, use the

addImageQuery option in the payload to append query strings for scale, contrast, and language

to any requests made for remote images. Refer to “Using Local and Web Images” in Chapter 16.

HTML: The final place we need to look for strings is our HTML, which I’ve saved for last because it’s

the most involved. In HTML, really scrub, scrub, scrub your markup for any hard-coded text that will

become visible in the UI. Check the body content of elements like p, h1, span, div, button, option,

and so on, as well as the value of attributes like title, alt, aria-label, etc. Also look inside WinJS

controls like AppBar and Flyout, and look for any embedded URIs that you’ll want to localize, including

those of services you employ and content you show in a webview or iframe. Note, though, that title

elements in a page head are not shown and do not need localization.

In Here My Am! I found lots of strings in pages/html/home.html, which I’ve highlighted below:

<header id=”header” aria-label=”Header content” role=”banner”>

<h1 class=”titlearea win-type-ellipsis”>Here My Am! (16)</h1>

<section id=”section” aria-label=”Main content” role=”main”>

<div id=”photoSection” class=”subsection” aria-label=”Photo section”>

<h2 class=”group-title” role=”heading”>Photo</h2>

http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx

1093

<div id=”cannotCapture” class=”errorOverlay win-type-x-large”>

 Widen the view to capture a photo</div>

<div id=”locationSection” class=”subsection” aria-label=”Location section”>

<h2 class=”group-title” role=”heading”>Location</h2>

<div id=”noLocation” class=”errorOverlay win-type-x-large”>

 Unable to obtain geolocation;
 use the app bar to try again.</div>

<div id=”retryFlyout” data-win-control=”WinJS.UI.Flyout” aria-label=”Trying geolocation”

 data-win-options=”{anchor: ‘mapDiv’, placement: ‘bottom’, alignment: ‘center’}”>

 <div class=”win-type-large”>Attempting to obtain geolocation...</div>

</div>

In default.html, I also found labels and tooltips in the data-win-options attributes of the appbar

commands (and I’m omitting some of the other markup for brevity):

<div id=”appbar” data-win-control=”WinJS.UI.AppBar” data-win-options=””>

 <button data-win-options=”{id:’cmdPickFile’, label:’Load picture’, icon:’browsephotos’,

 section:’global’, tooltip:’Load a picture through the file picker’}”>

 </button>

 <button data-win-options=”{id:’cmdRecentPictures’, label:’Recent pictures’,

 icon:’pictures’,

 section:’global’, tooltip:’Browse recent pictures taken in the app’}”>

 </button>

 <button data-win-options=”{id:’cmdRefreshLocation’, label:’Refresh location’,

 icon:’globe’,

 section:’global’, tooltip:’Refresh your location’}”>

 </button>

</div>

Tip When preparing for localization, consider whether your appbar icons have a universal meaning. If

not, they’ll also need to be localized. Fortunately, the icon values are strings and can be localized as

such, in which case you can treat them like the labels and tooltips.

Other affected files in this app include all of those in the HTML folder that are used for Settings

commands. With such commands, be especially careful to note the short header labels that might be in

a div amongst a bunch of other markup. Leave nothing behind!

Once you’ve located your strings, copy them as before to resources.resjson. This will likely be an

extensive workout with copy and paste, so grab some refreshments and go for it. It’s also fine to have

HTML in these strings—they’ll just be inserted into the markup and they’ll render as such if you attach

them to a property like innerHTML, but don’t include the surrounding tag (we’ll need it shortly). For

example, in html/about.html I have a number of p elements with text, such as:

<p>Here My Am!
Version 2.0.0.0
</p>

for which I make the following string in the resources (no p tag):

“about1” : “Here My Am!
Version 2.0.0.0
”,

1094

Using data-win-res attributes: Now comes the fun part. How do we reference the string resources

in markup? If you think about it a little bit, we have to run some piece of code to go through and

replace whatever references we make with the appropriate string from the resource file. Hmmm.

Haven’t we seen something like this before? Indeed we have. With controls, we added data-win-

control attributes to the markup and used WinJS.UI.processAll or WinJS.UI.process to run the

code to instantiate the control. We have a similar setup for resources: a data-win-res attribute and

WinJS.Resources.processAll, the latter of which should be called in each page’s processed or

ready method (processed is a good place because it’s called after WinJS.UI.processAll), or

wherever else HTML content like the appbar is loaded, such as in the app’s activated handler after

WinJS.UI.processAll (so that the controls are instantiated).130 Here’s what you do in markup:

 Replace attributes and their string values with data-win-res=”{<attribute> :

‘<identifier>’}” where <attribute> is the original attribute name and <identifier> matches

the desired string in the resource file, contained in single quotes.

 Where there are multiple attributes in the same element, you can separate each <attribute> :

‘<identifier>’ pair with a comma.

 When the string is directly inside a tag, we use data-win-res with the equivalent attribute

name, such as textContent for a div, p, or span. If the string contains markup, use innerHTML

instead, but use it only when necessary because textContent is much faster.

 For hyphenated attributes like aria-label, use the syntax {attributes: {‘<attribute>’ :

‘<identifier>’}} in the data-win-res value, using single quotes around <attribute>. This is how

you combine localization and accessibility together.

 For properties of WinJS controls that would normally appear within data-win-options, place

those in data-win-res with the syntax {winControl: {<property> : ‘<identifier>’}}. Multiple

properties are again separated with a comma within the inner { }’s.

Here are some examples as modified from the earlier markup:

Original Markup Modified Markup

<img id=”photoImg” src=”#”

alt=”Tap to capture photo” role=”img” />

<img id=”photo” src=”#” data-win-res =

“{alt: ‘photo_alt’}” role=”img” />

Here My Am! (19) <span class=”pagetitle” data-win-res =

“{textContent : ‘app_title’}”>

<div id=”locationSection” class=”subsection”

aria-label=”Location section”>

<div id=”locationSection” class=”subsection”

data-win-res=”{attributes: {‘aria-label’ :

‘aria_location’}}” >

<div id=”noLocation” class=”errorOverlay win-type-x-

large”>Unable to obtain geolocation;
 use the app

bar to try again.

<div id=”noLocation” class=”errorOverlay win-

type-x-large” data-win-res=”{innerHTML :

‘error_obtaingeoloc’}”>

130 If you see a null reference exception within WinJS.Resources.processAll, it’s probably because you’re trying to map

resources for a WinJS control that hasn’t been instantiated.

1095

<button data-win-control=”WinJS.UI.AppBarCommand”

data-win-options=”{id:’cmdPickFile’,

label:’Load picture’, icon:’browsephotos’,

section:’global’,

tooltip:’Load a picture through the file picker’}”>

<button data-win-

control=”WinJS.UI.AppBarCommand”

data-win-options=”{id:’cmdPickFile’,

icon:’browsephotos’, section:’global’}”

data-win-res=”{winControl: {label :

‘appbar_label1’, tooltip :

‘appbar_tooltip1’}}”>

Tip If you add a data-win-res attribute and it’s not working, make sure you are really calling

WinJS.Resources.processAll in the page control’s ready or processed method, otherwise that

page’s resource strings won’t be set.

When WinJS.Resources.processAll goes through the DOM, it doesn’t actually remove any of the

data-win-res attributes; it just processes those values and adds other attributes to the element that

contain the string resource. The advantage of this is that a later call to processAll will go through the

DOM and refresh all those strings. That means that when handling the WinJS.Resources.oncontext-

changed event, which tells you when the language changes, you can call processAll again and your

UI appears in that new language! We’ll add this little piece of code later on once we’ve added a few

more languages to Here My Am!.

It also means that if you want to perform WinJS data binding in conjunction with a string that

originates in your resources, simply include data-win-bind attributes inside those strings, assign that

string to an element’s innerHTML property within data-win-res, and then be sure to call

WinJS.Resources.processAll before calling WinJS.Binding.processAll. This is demonstrated in

scenario 8 of the Application resources and localization sample (html/scenario8.html and

js/scenario8.js):

HTML: <p id=”messageCount” data-win-res=”{innerHTML: ‘scenario8MessageCount’}”>

Resources: “scenario8MessageCount” : “You have <span

 data-win-bind=\”innerText:count\”> message(s)”,

And with that (except for the following sidebar that I’ve cleverly inserted), we’re ready for the next

step that will take care of our image resources and set us up to localize all this content we’ve extracted.

Sidebar: String Resources in Settings Flyouts

When localizing Here My Am!, one of the more challenging pieces of markup to work with were

the HTML pages for settings flyouts, namely about.html, help.html, and privacy.html in the

project’s HTML folder. These pages are not loaded until the settings command is invoked, and

because that’s happening all within WinJS, we have to use the flyout’s beforeshow event to call

WinJS.Resources.processAll for the flyout’s markup. To catch that event, I added

onbeforeshow : beforeShow in each flyout’s data-win-options string and then this piece of

code within a script tag at the end of the body element:

function beforeShow() {

 WinJS.Resources.processAll();

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1096

}

beforeShow.supportedForProcessing = true;

where the last line is necessary because WinJS will be calling WinJS.UI.processAll when the

page is loaded. In any case, this works just great for patching up the string resources, including

setting a webview’s src attribute with a localized URI. Note, however, that this doesn’t work for

iframe attributes because that’s blocked from processAll and will throw an exception that

complains about something not being marked with supportedForProcessing. Bottom line is

that you can’t use data-win-res with an iframe.

Fortunately, the simple solution is to give the iframe an id (say privacyFrame), load the string

manually in the beforeshow handler, and then set the iframe.src attribute:

document.getElementById(“privacyFrame”).src =

 WinJS.Resources.getString(‘privacy_URI’).value;

This code is included in comments of the privacy.html file of Here My Am! for this chapter.

Part 2: Structuring Resources for the Default Language

In “Part 1: Separating String Resources,” we created only a single resources.resjson file in the root folder

of the project and we deferred any work on images. The next step is to introduce a little more structure

into the project that will allow us to add localized resources for additional languages, including our

images.

Starting with strings, do the following steps:

12. Create a strings folder in the root of your app project.

13. Within that folder, create a subfolder that matches the BCP-47 language tag specified as the

default language in the manifest (for example, en-US, fr-FR, ja-JP, or just the base language like

en or ru).

14. Move your resources.resjson file into that folder.

If you run your app again at this point, you should see that everything still works. If you go back to

the How to name resources using qualifiers topic we mentioned earlier, you’ll see that the resource

loader is perfectly happy when you use qualifiers like a BCP-47 name as a folder name. It basically

parses entire folder names looking for qualifiers, so you can create deep hierarchies to sort your

resources however you like. That is, you can sort by contrast or scale first, if desired, and include

language suffixes in the filename (where the format is lang-<BCP-47 tag>). What’s more, you can

create secondary .resjson files in these folders as well and play some other tricks. See “Sidebar:

Secondary String Resource Files” for details.

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx

1097

Anyway, what you’ve just done by moving your resources into a folder for your default language is

set your fallback language resources—this is what the resource loader will turn to if it cannot find a

more specific match for the user’s current language. Finding a match is actually a sophisticated process

wherein the resource loader measures a kind of “distance” between the user’s preferences and the

available resources and chooses whichever is closest. This makes it possible to select en-GB as a closer

match to en-AU than en-US, for example. Generally, though, it means that the resource loaded will

search for a specific match like de-DE (German-Germany) first, then search for the next closest

language using the base qualifier de, and then eventually fall back to your default language (if there

are no resources for the user’s other languages). The short of it is that you should always make sure the

language identified in your manifest is fully populated with your full set of resources! Then even if you

don’t happen to localize some of those resources (say, for exact cultural alignment with images), one

will still be found. For the complete story on this subject, refer to Language Matching in the

documentation.

Sidebar: Secondary String Resource Files

Both WinRT and WinJS are able to work with secondary string resource (.resjson) files, allowing

you to organize your strings in multiple files, if desired. For example, it’s common to separate

error strings into a file called errors.resjson. When referencing a string identifier in one of these

secondary files, all that’s needed is that you use the syntax /<file>/<identifier> instead of just

<identifier>. This syntax works in HTML, JavaScript, and the app manifest. See scenario 5 of the

Application resources and localization sample for an example.

Something else you can do with .resjson files is name them with other qualifiers for contrast,

scale, home region, and so forth and even organize those files under any old folder. This is

demonstrated in scenario 13 of the same sample, where it has many different .resjson files

underneath strings/scenario13, each of which is named as scenario13.<qualifiers>.resjson.

Because the folder name itself doesn’t use a standard qualifier, you have to do a little more work

to get at everything, using the Windows.ApplicationModel.Resources.Core.Resource-

Manager API, but it can be done if you’re a serious resource junkie!

With images, we’ve already seen that if you have something like an images folder and you place files

like logo.contrast-high_scale-140.png there, you can just refer to that file with a nonqualified relative

URI like /images/logo.png and the resource loader will find them.

To prepare for localization, we only need to move those images into a folder for our default

language, as we did with strings. Because you’re already using relative URIs to refer to your images

(with or without ms-appx:///), you can use whatever folder path you want as your image root. There,

create a folder with the appropriate BCP-47 tag and move all your default language images into that

one. In Here My Am!, for example, images live in the images folder, so all I need to do is create an en-

US folder under there, move all the images, and all my references such as /images/tile.png will still

work. And because they now live in a folder that corresponds to the app’s default language, they

http://msdn.microsoft.com/library/windows/apps/jj673578.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcemanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcemanager.aspx

1098

become the fallback images.

You can place images in as many folders as you like, provided that they each have language-specific

folders therein. It’s probably most convenient, however, to use a single root folder, or just a few; with

Here My Am!, at the end of this step I had just two language folders in the project:

In your own app, then, look for app image references throughout your project. In HTML, look

especially for img elements. In CSS, look especially for background-image styles. In the manifest, look

at the Visual Assets tab for logos and badges, along with the Declarations tab for logos that are

associated with file type/URI associations, for instance. In JavaScript, finally, check any URIs you might

be assigning to element properties or CSS styles, as well as any you might be referring to in the XML for

tiles, badges, and toasts.

After that, evaluate each graphic to determine whether it will require localization, including those

that need to be reversed generally for right to left languages (for these you can use single copies for all

RTL languages, named with the layoutdir qualifier; refer back to How to name resources using

qualifiers). For images that don’t require localization (perhaps your tile and other logos, along with

plain graphic elements you use in your layout), keep them in your fallback language folder. These will

be used if no other match to the current set of qualifiers is found (language, scale, contrast, etc.)

Depend on the fallbacks only if you have no other variants.

With that, we’re now ready to localize!

Sidebar: Managing Overall Package Size

The potential multiplicity of images with (scale variants * contrast variants * language variants)

and potentially others (like direction) is an important consideration for your app package: more

images will make the package size larger. Fortunately, this mainly affects your upload package to

the Windows Store: provided that you’ve structured your resources as we’ve been discussing, the

Store and the Windows deployment manager automatically minimizes the size of the download

when a user installs the app. The system will download only those resources that the user needs

based on their language, device characteristics, and other settings. (You can control this from

Visual Studio, and we’ll look at additional aspects of packaging in Chapter 20.)

This works even if you add new language resources at a later time (or update a set of

resources of a language), provided that you don’t update any other code files (.js, .html, and .css)

and don’t update the package’s version number. That is, making a non-esource change will

update the app for all users across languages, rather than just making a new set of resources

available.

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/hh965372.aspx

1099

Irrespective of this automatic download optimization, it’s worth carefully evaluating exactly

which images really need to vary with these different factors, especially the larger ones, and to

optimize the degree of compression for all of your images to minimize the package size. Ask

especially whether your splash screen image—typically one of the largest, especially at the 180%

scale—needs to be localized at all, and even test whether the 180% image will look good when

scaled down to 140%, 100%. If your splash screen, in other words, is just imagery with a sufficient

contrast ratio and you have used a universally acceptable app name, one file might work

everywhere.

Note also that you don’t want to provide an unqualified resource if you provide any other

specific variants, because a scale variant will always be matched before the unqualified one. As a

result, the unqualified resource will just take up space in the app package but will never be used.

Sidebar: The Application Resources and Localization Sample

The Application resources and localization sample shows many different scenarios for managing

and referring to localized resources. It’s worth spending some time with this sample because it

will reinforce much of what we’ve discussed here: image resources (scenario 1); string resources

in HTML, JavaScript, and the manifest (scenarios 2–4); using secondary resource files (scenario 5);

sending language info to web services (scenario 7); combining resources and data binding

(scenario 8); using resources with hyphenated attributes (scenario 9); triggering and detecting

language changes (scenarios 10 and 6); overriding the default language context (scenario 11);

using WinJS for resource lookup in the web context (scenario 12); and multidimensional fallback

(scenario 13).

Part 3: Creating a Project for Nonpackaged Resources

Everything we’ve talked about so far has to do with the resources that are included in the app package

that you’ll eventually upload to the Windows Store. All of this is well and good, but I want to alert you

now to another set of resources that you’ll need as part of the Store onboarding process: localized text

for your app’s Store page, localized promotional graphics and screenshots, localized search keywords,

and localized names for in-app purchases. All of these are essential for presenting your app well in local

markets, especially the keywords.

The reason why I’m telling you about these now is that you won’t be asked for them until very late

in the onboarding process, namely after you’ve uploaded the app package. Early on, when you first set

up an app, you can reserve multiple app names and also indicate the markets where you’d like to make

the app available. These choices generally guide your localization efforts, of course. But unless you

know that the Store is going to ask for a bunch of other resources later on, you’ll find yourself

desperate to create them at the last minute. If you’re unprepared, then, it will mean going through

another round of (rushed) translation and additional expense. It’s much more efficient, then, to include

your Store information with everything else you need translated.

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1100

As a preview to what we’ll encounter in Chapter 20, here’s what the Store dashboard will ask for on

its Description page but only after you’ve uploaded your app package (in the order of appearance):

 The full text for your product page in the Windows Store (up to 10,000 characters).

 Short descriptions of your app’s key features (up to twenty 200-character strings).

 At least one but as many as nine screenshots and representational graphics.

 Captions for each screenshot and graphic (200 characters each).

 Notes that are visible to customers, such as release notes.

 Short descriptions of required hardware configurations (up to eleven 200-character strings).

 Keywords (45-characters each) used to match customer searches in the Store. These are not

visible to customers directly but very much affect app visibility.

 Copyright and trademark information (200 characters).

 Additional license terms (10,000 characters).

 Four promotional images that affect the chances of your app being featured.

 Your website URI.

 Your support contact information (email address or URI).

 URI for your privacy policy, which would ideally be available in multiple languages.

 Descriptions (100 characters each) for every one of your in-app purchases.

Clearly, there is quite a lot of localizable content here, none of which you want to leave until the

very end of your project!

If nothing else, localize your search keywords Although it’s entirely allowable to make a non-

localized app available in any number of markets, the chances that consumers in those countries

actually finding your app via search is next to nil because they’ll be searching the Store using terms in

their own language. If you submit an app with English keywords like “weather,” it simply won’t be

found by users searching for Wetter in German, Погода in Russian, Cuaca in Indonesian. At the very

least, then, make a definitive list of keywords and get them translated for each of your target markets.

Once you’ve collected all your localizable resources for the Store, you’ll want to again structure

them in such a way that makes it easy to involve translators. You could include everything as part of

your app project in Visual Studio, but that would just make your package bigger with no benefit to

your customers. Instead, create a separate project expressly for the sake of managing these Store

resources. This way you can use all the tools that we’ll be talking about next in “Creating Localized

Resources” and have them all ready to go at the same time you build your app package for upload.

Trust me: doing so will save you much anxiety when you’re ready to release you app!

1101

Creating Localized Resources: The Multilingual App Toolkit
Congratulations! With all the work you’ve done earlier in this chapter, you should have an app that’s

completely ready to be localized. The process here is really just one of acquiring translated strings for

your various resjson files and translated copies of any necessary images—including all those in your

separate project for Windows Store resources.

First tip If you have images that contain text, make sure that you have strings in your resources that

match the image content, as you’d use for img alt attributes and aria-label attributes. In doing so,

you’ll obtain the necessary translations for the graphics in the process of localizing the strings.

Second tip When doing business with your app in different regions, be attentive to the region’s

privacy requirements and make sure your privacy statement contains region-specific sections or that

you provide fully localized privacy statements.

If you like, you can just send your resjson files, along with the text inside images, to an appropriate

translator or translation agency and have them do the work. When you get them back, simply create

additional BCP-47 folders in your strings and images, drop in those files, and away you go. You’ll see

such structures in the Application resources and localization sample , as we’ve referred to before.

Such manual translation can take a long time, however, and can become expensive. This is partly

because professional translators don’t necessarily have tools to work with resjson files other than a text

editor. What they do have—namely sophisticated tools that help them track the status of translation

jobs and much more—work with an industry-standard XML format known as XLIFF (XML Language

Files). So it behooves us (and our cash flow!) to make life as easy as we can for translators, even

reducing their job to reviewing suggested translations rather than generating everything from scratch.

Let me point to a couple of highly valuable resources. First is the Microsoft Language Portal,

http://www.microsoft.com/Language, where you have access to very large translations dictionaries of

terms as they’ve appeared in the UI of Microsoft products. These terms are also available as

downloadable dictionaries on MSDN if you have a subscription. Various other resources (like

www.bing.com/translator) also exist for general translation, and the Microsoft Manual of Style also has

a chapter on localization that you might find helpful.

Beyond all these, a very helpful tool that provides automated assistance using these same

dictionaries is the free Multilingual App Toolkit. Once you’ve downloaded and installed the Toolkit,

load your project into Visual Studio and select the Tools > Enable Multilingual App Toolkit menu item.

You have to do this for each project separately, because what happens from here on is that the Toolkit

will be generating multilingual resources for your app—in the resources.pri file and separate .xlf (XLIFF)

files—without you having to actually add any more .resjson files. Ultimately, then, you’ll have only a

single resjson file in your project but a number of other files generated by the Toolkit.

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://www.microsoft.com/Language
https://msdn.microsoft.com/en-us/subscriptions/securedownloads/#ProductFamilyId=267
http://www.bing.com/translator
http://www.microsoft.com/learning/en-us/book.aspx?ID=15053
http://msdn.microsoft.com/windows/apps/hh848309.aspx

1102

Once you’ve enabled the Toolkit, a command appears on the Project menu called Add Translation

Languages. This brings up the Translation Languages dialog, as in Figure 19-6, in which you select

desired target languages. At the top of the list, the Pseudo Language option (qps-ploc) will be

automatically checked; we’ll be using it later to test localization. This is something you typically want to

do before doing specific localizations. Also note that many languages sport a “Microsoft Translator”

logo, which means they can be mostly translated automatically, saving paid translators much time and

saving you much money.

FIGURE 19-6 The Multilingual App Toolkit’s dialog for language selection. At left we see the option for Pseudo

Language, an artificial language with lots of funky characters that represents the needs of most other languages.

Videos! For a video series on the Toolkit from the team who created it, see the following:

Introduction to the Multilingual App Toolkit (3m 50s)

Build Multi-language apps using the Multilingual App Toolkit (9m 01s), covers creating string

resources as we’ve already discussed.

Test Multi-language apps using the Multilingual App Toolkit (5m 36s), covers what we’ll talk about

in “Testing with the Pseudo Language” later on.

Localize Multi-language apps using the Multilingual App Toolkit (6m 40s) demonstrates the

Multilingual App Toolkit Editor as we’ll see shortly.

Submitting your localized app to the Store (9m, 05s) highlights considerations for getting your app

to the right markets.

Once you’ve made your selections (you can add more later), press OK and the Toolkit will create a

folder in your project called MultilingualResources stocked with a bunch of XLF files (the ones the

translators like). At first these will be mostly empty, but now here’s why it was worth the effort to build

up your default resources.resjson file. Right-click your project in Solution Explorer and select Build or

Rebuild, or use the Build > [Re]build Solution menu item. This will go through your string resources

http://channel9.msdn.com/posts/Introduction-to-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Build-Multi-language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Test-Multi-language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Localize-Multi-Language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Submitting-your-localized-app-to-the-Store

1103

(including any localized variants you might have created already) and populate all the XLF files with all

your strings. The process will also draw in references to nonlogo images (that is, tiles and splash screens

are omitted) that might also need translation.

Now for the real fun: double-click an XLF file to launch the Multilingual App Toolkit Editor, shown in

Figure 19-7. Here you can manage which resources can or should be translated along with the state of

the translation. If the language is also supported by Microsoft Translator, the Translate button at the

top will be enabled to translate a single entry as well as to Translate All. Select the latter and sit back to

enjoy the show. In a few moments you’ll see that the tool has translated all your strings, marking each

with the state of Review, as shown in Figure 19-8.

FIGURE 19-7 The Multilingual App Toolkit Editor, an XLF editor with machine translation built in.

1104

FIGURE 19-8 The string resources of Here My Am! after being machine-translated into Hindi.

Once the translation is complete, save the file and close the editor if you want. Go to PC Settings >

Time and Language > Region and Language and make sure the target language is added and set as

primary. Then return to Visual Studio and launch the app—and there is your first-pass localization, as

shown in Figure 19-9 for Here My Am! (Notice that I elected to not translate the title, something that

my translators suggested I keep in English because of its uniquely incorrect grammar.) And just to show

how the app works with an RTL language, Figure 19-10 shows it running in Hebrew.

FIGURE 19-9 Here My Am! running in Hindi using machine translation output, which should still be checked by a

native speaker, of course. As you can see, I’m checking if Yogananda has any advice apropos to the language.

1105

FIGURE 19-10 Here My Am! running in Hebrew (with human translation); notice how the direction of the whole

experience changed, including the app bar, without having to write any code, and the nontranslated title still

renders left to right. (Oh my, did I nod off while the camera timer was running?)

If you like living on the edge and don’t mind shipping an app that people in other markets might

laugh at or otherwise criticize for your carelessness, there’s nothing stopping you from making your

app available to those markets in the Windows Store with such machine translations. If you like positive

ratings and reviews, on the other hand, it’s a good idea to at least find some native speaker who can

validate and correct what the automatic translation process suggested. You can have this helpful

person use the Toolkit editor to review your XLF files, in fact. When those files are reviewed and

returned to you, import them back into your project by right-clicking the existing XLF file in Visual

Studio and selecting Import Translation. The new translations will then be included in your next build.

When working with professional translators, you can also select specific XLIFF Translation file formats

by right-clicking the XLF file in Visual Studio and selecting Send For Translation. The dialog here gives

you an option to create a ZIP file with multiple XLF files together.

Three other notes about this process. First, some strings or parts of strings won’t require translation.

In the Toolkit editor you can set the Translatable option to No for whole strings to prevent the machine

translation from changing that string. For parts of a string, those will be translated but you can edit

them back to their original and make a note in the Comments area for your translators.

Second, the Toolkit will detect if you’ve already made translations in an XLF file such that running a

Build/Rebuild will not overwrite those strings. At the same time it will import any new strings you’ve

added to your resource file in the meantime and remove any that have been deleted. A change in a

resource identifier, however, is treated as a delete+add, meaning that the translation will be lost.

1106

Lastly, if you want to remove a language, just right-click the XLF file and select Exclude From Project.

This will keep the language out of the build while preserving the file (and its translations) in your

project folder.

Testing with the Pseudo Language

As much fun as it is to produce many translations for your app, there is still the matter of testing it well,

a task that is clearly overwhelming if you’re targeting many languages! To reduce this burden, the best

approach is to test your app using the Pseudo Language, a step that’s ideally done before incurring the

cost of specific translations. It helps you validate that your app can handle a variety of languages,

because the fictitious Pseudo Language contains some of the most problematic characteristics of

localized text.

As previously noted, this language is automatically added to your project through the Multilingual

App Toolkit’s language selection dialog. This creates a Pseudo Language (pseudo).xlf file in your

MultilingualResources folder, alongside the real translations. Next, right-click that file and select the

Generate Pseudo Translations command. This will populate the XLF file with translations of your default

resources where basic characters are often converted to extended characters and strings are generally

expanded with extra !!!’s tacked on. So, a string like “Recent pictures” gets translated to

“[62BD8][!!_Ŗęćęйť þîćťµŗêš_!!!!]” where the hexadecimal stuff in the first set of square brackets is a

resource identifier that helps testers identify the exact resource that’s being used. (Note that this

process will “translate” every string whether you will ultimately translate those strings for real, because

it’s helpful for testing.)

To run the app with this translation, you need to make Pseudo Language the system default. In

Control Panel > Clock, Language, and Region > Language, click Add a Language, and enter qps-ploc in

the search box. This is the only way to make the Pseudo Language option appear:

Select that language, click Add, and then move it to the top of the list:

1107

When you run you app now, you should see it appear in Pseudo Language:

With your app running in Pseudo Language, be sure to exercise every feature and option. Check

every page in different views; check all your app bar commands; check all of your settings; check any

error messages, flyouts, and message dialogs that might only appear under specific circumstances like

changes in network connectivity; and test your app with all its activation paths according to the

contracts you support. As you do so, look for any strings that don’t appear in Pseudo Language, a clear

indication that you missed pulling that string from your markup or code. Also check for truncated text,

unintended word wrapping, and so forth, which reveals where your layout isn’t accommodating longer

translated strings.

This is the time to be as thorough as possible, because once you upload to the Store, issuing

another update can take at least a few days, during which time your customers might find those

problems and ding your ratings accordingly. It’s always something to keep in mind, especially if you’ve

1108

been accustomed to instantly fixing bugs on websites: apps simply take longer, so you want to invest in

testing ahead of time.

Localization Wrap-Up
Well, we’re almost done with the app and ready to go to the Store! There are just a few more things to

mention about localization:

 Testing with the Pseudo Language does not cover RTL language considerations; you’ll need to

run with those languages separately. I’m happy to say that when I ran the Hebrew translation of

Here My Am!, the layout automatically mirrored, thanks to the direction style set in the WinJS

stylesheets.

 Be sure to test any and all interactions with online services, including periodic tile/badge

updates and those that arrive through push notifications.

 Test any toast notifications that you configure to appear with background transfers (see Chapter

4, “Web Content and Services,” in “Completion and Error Notifications”), as well as any toasts or

tile updates you issue from background tasks.

 To dynamically update your app when the user changes languages (which is a good idea

instead of requiring a restart of the app), listen for the WinJS.Resources.oncontextchanged

event and call WinJS.Resources.processAll. This code is in Here My Am! (default.js) as well

as scenario 6 of the Application resources and localization sample:

WinJS.Resources.addEventListener("contextchanged", function () {

 WinJS.Resources.processAll();

});

 The above code will refresh string resources but not image resources or content obtained from

online sources. You’ll want to refresh those using additional code, such as giving Windows a

new URI for periodic tile updates or indicating the new language to a service that issues push

notifications. For the app’s overall UI, try using document.location = document.location +

"?reload", picking up that URI parameter in your activated handler to take additional steps.

This essentially mimics relaunching your app.

 If you like, you can allow the user to select the language for the app independent of the system

settings. This is done by setting the Windows.Globalization.ApplicationLanguages.-

primaryLanguageOverride property, as demonstrated in scenario 10 the Application resources

and localization sample. Scenario 11 also shows loading specific language resources rather than

the default.

 In Visual Studio, open your manifest in the XML code editor (right-click and select View Code)

and check if you see this line within the Resources element: <Resource Language="x-

generate" />. If so, replace that line with individual entries like <Resource Language="en-

US" />, where the first is your default language, and you must have localized resources for all

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa

1109

the rest.

 For translation on the fly, you can use various web services such as Bing Translator.

What We’ve Just Learned

 Accessibility features are a concern for the majority of users, even those without disabilities who

find those features useful at different times. Apps support accessibility by including ARIA

attributes (for screen readers) in markup, implementing keyboard interaction, providing scaled

raster graphics, and responding to high-contrast modes.

 Globalization is the process of removing language and cultural assumptions from an app, using

globalization APIs to properly handle user language, calendars, formatting of numbers, dates,

times, and currencies, sort orders, strings combining, string segmentation, varying text input

methods, and configuring which web services are used from which regions.

 To prepare for localization, an app needs to be scrubbed for text and image content that will be

subject to translation, separating strings into resources files and inserting references in their

place, and then structuring those resources in folders and files that employ resource qualifiers.

 When onboarding an app to the Windows Store, you’ll be asked for many localizable resources

at the very end of the process. To have these in hand by that time, treat them like other in-app

resources and include them in your translation efforts.

 For efficient localization, the Multilingual App Toolkit for Visual Studio generates and transla tes

an app’s default resources into any number of other languages, using the file formats employed

by professional translators who can verify the results. It also produces a Pseudo Language

translation for localization testing.

http://www.microsofttranslator.com/dev/

1110

Chapter 20

Apps for Everyone, Part 2: The

Windows Store

Understanding the Windows Store is really quite simple: the Windows Store is the point of distribution

through which your apps—your feature-rich, accessible, and world-ready apps that we’ve been

working on throughout this book—are made available to consumers around the world. Because of this,

as I said at the beginning of Chapter 19, “Apps for Everyone, Part 1,” to do business with apps is to do

business with the Store, and your app’s relationship to the Store very much reflects the nature of your

business, or put more broadly, everyone’s business.

That relationship affects all stages of the app lifecycle, from planning and development to

distribution and servicing. Thinking about the Store is not something you want to do only when you’ve

completed an app: you want to be thinking about it when you start first designing the apps you’d like

to build—considerations like ad placement, and the fact that ad providers offer ads with specific sizes,

will certainly affect your design. You also want to think about promoting the app early on too, because

that can also affect design choices.

The Windows Store is like a pair of bookends to the whole app development process: you think

about the Store when planning the business of your app, and, when all is said and done, you go to the

Store’s developer portal itself to make your app available to the customers with whom you’re doing

business.

You might in fact have come here directly from Chapter 1, “The Life Story of a Windows Store App,”

where I recommended reading “Your App, Your Business” (including its subsidiary topics) below, even

before starting your first coding experiments. I suggest also reading “Releasing Your App to the World.”

This will help you understand what’s needed when you reach the point of uploading your app, such as

promotional graphics and localized text for your Store page, which you’ll want to be working on well

before you start the onboarding process.

It must be said, of course, that if you’re working within an enterprise with line-of-business apps that

will be side-loaded onto user’s devices, you won’t actually be working with the Store or making an

effort to monetize your apps, and thus most of this chapter doesn’t apply to you.

This chapter will explore a wide gamut of Store-related topics. We’ll of course go through the

technical side of the story—the capabilities of the Store for apps, working with the Store APIs,

instrumenting your app to collect detailed telemetry, going through the process of onboarding and

certification, and updating your app. We’ll also talk about the business side of the story. Why? Because

as soon as you publish an app to the Store, it means that you’re running a business whether or not you

1111

want to admit it! You might not necessarily be in business to make money, but you’re in business for

some reason and so you might as well act like it. That’s why we’ll begin this chapter by looking at the

relationship between your app and your business goals, exploring aspects of planning, monetization,

and building a customer base. After a lengthy interlude of technical matters, we’ll wrap up with a little

more about marketing and discoverability and with some thoughts about what it means to run a

business and think like a businessperson—supporting your customers, managing risk, and planning for

future app releases.

For indeed, just as uploading an app to the Store is only the start of the app’s real life in the world,

so too is it just the beginning of your business. And although I cannot claim to be a business expert, my

hope is to provide you with some inspiration and also the awareness of things you can do beyond the

code to increase your success with your apps. It’s a success that I certainly hope all of you, my readers,

will realize more and more.

Before going further! Submitting an app to the Windows Store requires a developer account in the

Store (not a developer license in Visual Studio). It can take a day or two to set up an account (or longer

if you’re creating a company account), so if you haven’t done this already, start the process on the

Store dashboard. You must also fill out tax forms for your country of origin to receive any revenue.

Once you have an account, make sure to reserve a name for your app (including localized names),

which is the first step when you click Submit An App in the dashboard and can be done from Visual

Studio through the Store > Reserve App Name menu.

Your App, Your Business

If you check in with your local psychologist of philosopher, they’d probably agree with the idea that

just about all people, across all professions, cultures, and capabilities, are driven by a small number of

fundamental motivations: fear, lust, power, love, service to others, and just plain ol’ joy. Indeed, the

wisest among them will even say that the last one—the quest for joy or happiness—is actually the root

of all the others.

Leaving all that aside, and assuming that you’re not programming under threat of death or working

on apps that are going to be rejected from the Windows Store as a matter of policy, let’s take a simpler

view and identify the few basic motivations for writing apps:

 Fortune You want to make money.

 Philanthropy You want to contribute to and/or promote a cause.

 Fame You want social recognition, which also helps with Fortune and Philanthropy.Fun You

just want to enjoy yourself through coding—an activity that, alas, nonprogrammers just don’t

understand!

https://appdev.microsoft.com/StorePortals

1112

I like to think of these motivations as another way to interpret the phrase “apps for everyone.” Apps

can serve the needs of many different customers around the word. So too can they serve the needs of

many different developers and their business goals!

Your motivations—in whatever combination—essentially define your “business” as a developer. I use

the term loosely here. In English, at least, there are about a dozen different definitions of this word,

only a third of which relate to commercial activities, organizations, practices, and commerce. The other

definitions have to do with what you consider to be important, as when we say “It’s none of your

business” or “I make it my business to know about such things.” In short, apps can reflect the nature of

your “business,” whatever it is, and that nature is reflected in how you share apps with others.

Again, with the exception of side loading (which we’ll talk about later), sharing your app means

distributing it through the Windows Store. For that reason, your app’s relationship to the Store

effectively defines your business with that app, and that relationship spans the entire app lifecycle:

 Planning and design Determining whether the app can actually be a Store app, meet Store

certification requirements, and be suitably monetized (if desired). Effective monetization is also

a critical aspect of design—it’s not something you can really do well at the end of the process!

 Development Implementing Store-related features and using the APIs for trial versions, in-

app purchases, etc., along with incorporating other SDKs for ads and telemetry.

 Testing Using precertification tools prior to onboarding the app to the Store, and checking

the app against certification requirements.

 Availability Making the app available in various markets through the Store developer portal ,

and indicating Accessibility support.

 Marketing, sales, and support Promoting your app, increasing its visibility, working with

your customers (responding to ratings and reviews), linking it to your website (if applicable),

and using Store analytics through the developer portal (as well as your own analytics).

 Updates and growth Improving your app over time, or removing it from the market.

If you look at this list—which merely reflects how the Store itself intersects with the business of

creating and publishing an app—you’ll notice that “development,” which is where we’ve spent most of

our time in this book, is a rather small part of the overall app lifecycle. It’s essential, of course, because

development is how you create the product around which you build your business. But the rest cannot

be ignored because they affect how you run that business.

Indeed, by publishing an app you are running a business! We’ll talk more about what this means at

the end of this chapter, but let me summarize. To think like a businessperson means that you look for

opportunities in the market where you can fulfill your business goals, whatever they are. You also see

apps as a vehicle through which you explore and take advantage of those opportunities, and if one

doesn’t pan out like you hoped, you try again with something else. You also make sure to service the

customers you do acquire, to support your apps over time, to provide new products. (Gathering

1113

telemetry from your apps is essential to this process, which we’ll discuss in “Instrumenting Your App for

Telemetry and Analytics.”)

Truth be told, the “fortune” business is the one for which we find direct support in the Store and the

WinRT APIs, because that’s where the majority of developers will be focusing their energies. We’ll be

spending quite a bit of time in this chapter on those matters. If you’re in business for “fame” or

“philanthropy,” on the other hand, there are some things you can consider doing to grow your

customer base—all of which are also helpful if you’re also trying to make money! As for “fun,” well, just

getting an app in the Store might be good enough for that, but if you’re seeking to experience joy

from the process, why not also produce apps that can bring joy to others as well?

Planning: Can the App Be a Windows Store App?

In a slight contradiction to this chapter’s title, the idea of “apps for everyone” doesn’t necessarily mean

that every app can, in fact, be a Windows Store app. There are two sides to this: technical feasibility and

meeting Store certification requirements.

Technically, as we covered in Chapter 3, “App Anatomy and Performance Fundamentals,” and a few

other places, Window Store apps run under certain conditions and restrictions. Here's a summary:

 Windows Store apps always run in the app container (at base trust) and have no access to APIs

that can openly access the file system or any other sensitive resource (i.e., medium or full trust).

 Sharing data between Windows Store apps always goes through the Share contract, the

clipboard, or web services. Local interprocess communication is not supported (except in side-

loaded enterprise scenarios where the Store is not involved).

 Windows Store apps can use only the WinRT APIs and a subset of Win32 and .NET APIs; apps

written in HTML and JavaScript can also use the intrinsic HTML and JavaScript APIs provided by

the app host. Third-party libraries you use in the app must also use only these APIs.

 Apps cannot install custom device drivers or anything else that affects the system, nor can apps

customize their install process. (Many devices, of course, do not need custom drivers and you

can work with them through the APIs discussed in Chapter 17, “Devices and Printing.”)

 Only certain apps can run in the background, and for specific purposes, as we’ve seen in

Chapter 13, “Media,” and Chapter 16, “Alive with Activity.”

 Some UI interaction models aren’t appropriate for touch input, such as high precision CAD.

Because Windows Store apps must support all forms of input, high precision apps either need to

be redesigned for touch or should be implemented as a desktop app.

 Windows Store apps run in variable-sized views alongside other apps and can utilize multiple

views, but cannot utilize multiple overlapping windows.

If any of these technical aspects would prevent you from writing the kind of app you want to write,

1114

working with the Windows Store as your business location, if you will, is not really possible. For

example, many development tools, network administration tools, file system utilities, antimalware

utilities (that scan the whole hard drive), and database management systems must be implemented as

desktop applications and distributed through the Internet or other retail channels.131

More generally, because Windows Store apps run full screen or side by side with one to three other

apps, they are intended to be much more specifically focused on certain tasks. Apps that try to do too

much—Swiss Army Knife apps, if you will—may end up feeling cumbersome or confusing. It’s good to

hone the purpose of the app, as discussed in Defining vision; otherwise you should probably implement

a desktop app instead (for which there is still a very large market, mind you!).

When planning any app, be sure to review the App certification requirements for the Windows Store

to understand whether the app you’re thinking about will be summarily rejected during the

onboarding process. For example, the very first requirement is that your app offers real value or utility

for customers. So, if you’re thinking to submit the next great bodily-functions-sound-effects app, you

might think again. Other policies apply to advertising (section 2), predictable behavior (section 3),

respecting privacy and putting the user in control (section 4), providing content that’s appropriate for

the global audience (section 5), and app identity (section 6).

Tip Windows Store policies change over time (they’re on version 5 as of this writing), so be sure to

review them before starting a new project. For the most part, policies are more often relaxed than

hardened.

A final consideration is whether the Windows Store is itself available in a target market when you

plan to release your app and whether there are locale-specific restrictions based on where you operate

as a developer. The most up-to-date information is best found on Choosing your markets.

Planning for Monetization (or Not)
Just as there are a number of reasons why you’re interested in creating apps in the first place, there are

also a number of ways to fulfill your business goals. Will your app be completely free? Will it be free

but supported by ads? Will it be paid, with or without a trial version? Will it involve in-app purchases?

Each of these business models has its place, especially if you plan on releasing multiple apps, and many

apps employ a combination of these models. Furthermore, it’s likely that your business model or

models will change over time as you improve your apps and creatively respond to competition. That’s

part of the fun of running a business!

In this section and the two that follow, we’ll conceptually explore these different models and better

understand how they relate to one another; the technical aspects will come later. Remember in this

131 With developer tools, it’s feasible that a Windows Store app could itself provide an interpreted runtime environment for
developing apps that would always run inside that tool. A Windows Store app cannot, however, directly produce another

Windows Store app because the necessary packaging and deployment APIs are only available to desktop apps.

http://msdn.microsoft.com/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694064.aspx

1115

whole context that licenses for apps and in-app purchases are granted to the user and will apply across

their devices. This isn’t typically a concern for apps because the details are automatically handled by

the Store—in the unlikely case that a user goes over the limit, Windows will inform him or her

appropriately.

Free Apps

You don't need to do anything special to create a free app so far as the Store is concerned. You write it,

upload it to the Store, set the price to 0.00, have it certified, and then get the word out.

Free apps can serve several purposes:

 Earn you praise and glory from customers and possibly other developers.

 Grow a developer base who might be interested in later products.

 Give you experience producing apps (otherwise known as résumé items!).

 Provide a space for marketing your own products and/or services (as opposed to hosting third-

party ads, as discussed below), so long as you do more than just show ads.

The first purpose here is self-explanatory and doesn’t need any elaboration, I hope! If this is your

motivation, I imagine you’re already doing daily or hourly web searches on your own name and will be

watching your app’s ratings and reviews like a day trader watches stock tickers.

As for gaining experience, it’s a great exercise, of course, but every app you make available through

the Store, along with their ratings and reviews, becomes a permanent part of your developer

reputation. Because of this, uploading apps to the Store before they’re ready—or before you’re really

ready as a businessperson—could backfire over the long term. You don’t want your reputation to be

weighed down by early experiments when you finally have the idea that’s really going to take off!

To manage this risk, you could start by sharing apps only with other developers who can side-load

the packages you provide. Also consider creating a developer account just for your experimental work,

keeping it separate from the account through which you’d post your real apps. This way, any negative

reputation from your experiments doesn’t accrue to your serious work; neither does positive

reputation, of course, but that’s a balance you have to find for yourself. Note that creating an extra

account will require an additional annual fee, but that might be well worth it in the end.

As for marketing, what I mean here differs greatly from ad-supported apps. I’m specifically referring

to promoting your own business or causes (such as a charity) through the functioning of the app where

you have complete control over the content.

Be aware, however, that Section 2.1 of the present Store certification policy states, “Your app must

not display only ads.” This means that you can’t just create an ad farm. But assuming that you do show

meaningful content elsewhere, it’s allowable to display ads just about anywhere else, including tiles,

notifications, or on your app bar (which was a restriction until early 2014). It’s also recognized that the

very purpose of some apps is to provide offers, for example, in which case it’s not really displaying ads,

1116

per se, but content for which the user has expressed interest through the act of installing the app.

The other point to these policies reflects Section 1.1 of the requirements: “Your app must offer

customers unique, creative value or utility in all languages and markets that it supports.” What this

means is that if you want to promote a cause or business through the app, do it in a way that delivers

value to consumers. For example, an app for a nonprofit organization should do more than just solicit

donations (which you’d do through a consumable in-app purchase). It could help its users understand

and be inspired by the organization’s activities and keep them up to date on current projects, which

helps inspire donations to that cause.

Tip Collecting donations through an in-app purchase incurs 30% revenue sharing with the Store, so

it’s typically better to direct donations to a website or an alternate payment provider with less

overhead.

More generally, free apps can provide some useful functions in themselves but otherwise be a

demonstration of features of any number of other apps—something like a sampling tour of your paid

offerings (so long as there’s again real value in the app by itself). When related to only a single app,

such a demo or “lite” version is usually quite different from a trial version of a full app. As we’ll see

shortly, a trial version should look and operate as if you had acquired a license to a full version, but it

restricts its use through hobbled features or a time limit. A demo app, on the other hand, is meant

more to showcase features rather than provide a complete experience.

For example, let’s say you have a game with five levels in each of five distinct “worlds” through

which a player would normally progress in the app's full version. A trial version would allow a player to

start working through those worlds but would cease to operate completely after some short period of

time, say 30 or 60 minutes. In that time, a player might not progress past the first few level s in the first

world, so the experience of the overall game is incomplete. A free demo/lite version, on the other hand,

could be played as much as one wished but would contain only one level from, say, three of the five

worlds. This gives the user a broader taste of the app and, because it can be played many times, serves

as a continual advertisement for the full experience without giving anything more away. A demo app is

like a movie’s teaser trailer: enough to create a hunger but not satisfy it. (And, yes , while there may be

some people who only ever watch free trailers and never go see a full movie, those are a rare breed.)

Great free apps can also fit well into an overall business model without asking for anything: they can

help build a positive reputation for your business, thereby supporting other paid offerings. Having

multiple apps also gives you an easy way to cross-promote. Every app in the store also provides links to

your website and support information, so each one is a doorway to the rest of your business. In this

way, free apps are like the giveaways (or loss leaders) that many businesses offer to get you in the door

so that you can explore and experience their full line of products.

1117

Ad-Supported Apps

Ad-supported apps, which are typically free but can also be paid, are those that deliver some clear

value in themselves and use that value to sell advertising space to others. Such advertising, although

hopefully well-directed to the user’s interests, typically isn’t integral to the app’s own function. Many

free games, for instance, place interstitial (time-filling) ads between levels or boards, ostensibly to keep

you entertained while the next level is loading but in truth to take full advantage of your captured

attention in a moment of relaxation! The bottom line is that a user’s attention has real value to

advertisers, who are willing to pay you for a bit of that focus.

As a user of the web, you’re undoubtedly familiar with how ads can appear in an app’s overall

layout: filling gaps in space rather than in time. Typically, an app places an ad control in its layout and

lets the control acquire and display ads from its backend (known as impressions) and track click-

throughs (which typically pay more than impressions).

Either way, many developers have found that selling ad space is a profitable means of monetizing

an app and building a business, but of course you have to understand whether your target audience

and will respond to advertising at all. There is also a common strategy of offering a free, ad-supported

app with an in-app purchase to eliminate the ads, and the trick here is to make the ads just annoying

enough to encourage customers to get rid of them but not so annoying that those customers will just

abandon your app altogether! In other words, it’s very important to consciously integrate ads into the

overall user experience of your app, not as an afterthought. Ads are often beautifully designed in and

of themselves, so they can be a pleasing and even delightful part of an app experience.

Note At present sections 2.1, 2.2, 4.2, and 5 of the Store certification requirements pertain to ads,

namely that your app does more than just display ads, that ads follow content policies (appropriate for

the app’s age rating), and that your app respects customer preferences.

The advertising control will come from the ad provider you choose to work with. Current providers

that support Windows Store apps can be found on the Windows Partner Directory by filtering on

“Advertising” on the left-hand side. For the most part you’ll need to download the provider’s SDK

separately and add the appropriate references to your project. With Microsoft Ads, Visual Studio

provides a little shortcut: right-click your project in the Solution Explorer, select Add > Connected

Service, and select Microsoft Ads. If you haven’t created an account with the Microsoft Ads, you can

sign in here and then create an app configuration:

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://services.windowsstore.com/

1118

Clicking OK will bring the Ads SDK into your project, which automatically supplies a Settings

command through which the user can control preferences. Including the SDK also create a file called

AdSamplePage.html.txt that includes sample markup according to the sizes you selected in the

configuration:

<div id="MyAd_1" style="position: absolute; top: 50px; left: 0px; width: 728px; height: 90px; z-

index: 1"

 data-win-control="MicrosoftNSJS.Advertising.AdControl"

 data-win-options="{applicationId: 'b4d8cf08-d9b5-4148-a012-2b412bf1d70e',

 adUnitId: '163139'}">

</div>

<div id="MyAd_2" style="position: absolute; top: 140px; left: 0px; width: 160px; height: 600px;

z-index: 1"

 data-win-control="MicrosoftNSJS.Advertising.AdControl"

 data-win-options="{applicationId: 'b4d8cf08-d9b5-4148-a012-2b412bf1d70e',

 adUnitId: '163140'}">

</div>

Note that you’ll have your own applicationId value—otherwise you’ll be sending your revenue to my

app instead! Not that I’d mind, but I’d rather you get the earnings you deserve.

Having now incorporated ad SDKs into your project and ad controls into your design, the most

important thing for an ad-supported app is achieving a high fill rate, which is the overall percentage of

time that the space to which you’ve dedicated ads is actually showing an ad. You see, for ads to appear

in an ad control, they have to be served up by the provider’s backend. Those ads get into that backend

service because some advertiser has paid for that privilege. Ad providers, then, are constantly trying to

stock their supply to meet demand. If, however, their salespeople aren’t 100% successful in this, the ad

control can come up blank, giving you a less than 100% fill rate.

1119

Here are some strategies to avoid this:

 Always stay up to date with your provider’s SDK in case there are backend changes.

 Use the recommended sizes proscribed by your provider, because using arbitrary sizes might

not get any fill. For the Microsoft Ads SDK, the sizes are 250x250, 300x350, 160x600, 728x90,

and 300x600. Your choices here clearly dictate how you use ads in your app’s layout!

 Be mindful of your app’s age rating because that information is communicated to the ad

control’s backend to determine what kinds of ads can be shown. In this case, a lower age rating

means greater restriction. Indeed, a 3+ age rating will typically not allow any ads; some ads

work at 7+, and most will work for 12+.

 Sign up with multiple ad providers and use an ad rotator to draw from those providers in a

prioritized cascade. If your primary provider doesn’t fill the ad space, the rotator attempts to

retrieve an ad from the secondary provider. If that one is empty, it keeps going down the line

until it gets an ad.

 In the hopefully rare case when you don’t get ads from any provider, always have some default

images to show in your ad space. This is why it’s helpful to have other apps of your own in the

Store that you can cross-promote!

Much more could be said on effective strategies for ad-supported apps, but we have other topics

yet to explore. For more information, see the Monetization through Ads post on the Windows

developer blog and continue to watch that blog for more monetization strategies in general.

Paid Apps and Trial Versions

Producing an app and charging for a license is certainly the one of the oldest means of monetizing,

and it still works quite well, especially in certain Store categories such as Productivity and Reference.

Value received for value delivered: that’s the simple equation on which many successful products are

built. Generally speaking, paid apps are free of advertising and are not advertisements themselves,

hence customers’ willingness to pay money for the apps in the first place.132

Tip For a broad discussion about price points, see You’re Pricing It Wrong: Software Pricing

Demystified (Smashing Magazine).

132 We may eventually see creative ad insertion into paid apps: after all, you pay for issues of a magazine and yet that

magazine contains ads (unless you pay for premium magazines that contain none). Think how we once balked at the idea

of advertising on cable television or in movie theaters, but all that’s just a matter-of-course now. The simple truth is that
wherever there is a focus of customer attention, there is a value to advertisers and to the businesses that can sell them

access to that attention. You just have to be careful not to abuse your customers!

http://go.microsoft.com/fwlink/?LinkId=392529
http://go.microsoft.com/fwlink/?LinkID=392425
http://go.microsoft.com/fwlink/?LinkID=392425
http://www.smashingmagazine.com/2011/09/28/youre-pricing-it-wrong-software-pricing-demystified/
http://www.smashingmagazine.com/2011/09/28/youre-pricing-it-wrong-software-pricing-demystified/

1120

An important consideration for paid apps especially (but really for all apps) is the need for

marketing. The Windows Store is primarily a distribution mechanism and doesn’t eliminate the need for

finding your customers and making them aware of your product. Sure, customers can find your app

through casual browsing, and there’s a chance that your app (if it’s really good) can be spotlighted, but

you can’t depend on that, nor can you depend on customers just finding the app through search. As a

result, you have to generate interest and awareness through other means. This is again one of the

functions of other free apps or demo versions that you might produce: if one of your free apps gets

featured in some category, every user who downloads that free app at least has an opportunity to learn

about your other products. And of course there are all the other means to market your product: the

social web, your website and SEO, advertising in traditional media, and so forth.

You should also strongly consider offering a trial version of the paid app. Store data shows that

customers are something like 12 times more likely to convert to a paid app if they can try it out first.

Also, 70% of the most popular paid apps and 95% of the top grossing paid apps have trials. Trials give

users a way to get to know the app and understand its value, both of which are important in making a

purchase decision.

A trial is free and subject to a time period that is clearly shown to customers in the Windows Store.

As noted before, a trial app looks, feels, and operates like the real thing but is simply time-limited or

feature-hobbled. A picture editor might allow you to edit but not save your work, meaning that you

get the full experience of using the product without the full benefits of owning a license. A video

converter app might place a logo or watermark (that is, an advertisement) on the output video, so the

functionality is all there, but the result isn’t as useful. A trial version m ight also just disable in-app

purchases, thereby limiting its extensibility until the full app is acquired.

Whether the trial is hobbled is your choice as a developer—if an app creates something and saves it

in a particular format, such that you could not re-open those files without the same app (unlike

pictures), there may be no reason to disable a save feature at all. In such cases, the strategy is to get the

trial user heavily invested in continued use of the app, such that purchasing the full license is a better

choice than letting go of that investment. Personal finance and contact management are good

examples: in a 30-day trial period (or whatever period the app sets), users of such apps could amass

quite a bit of useful data that they would not want to re-enter into another app. (Such a trial might also

quietly disable any exporting features.)

If you implement a trial version, be sure to remind the user of their trial status and make it super-easy

for them to convert to a paid version. That is, keep them well aware of the fact that they’re just

borrowing your app for the time being, make sure they know when, exactly, that loan period will run

out, and make it easy to convert with a single tap or click. (Personally, I’ve been amazed at how many

apps don’t do any of this with their trials, which essentially defeats the purpose of a trial!)

As we’ll see, the APIs for working with the Windows Store make it simple to check for trial status and

its pending expiration. APIs also exist to initiate a streamlined purchase flow through which the user

can acquire a full license with minimal disruption, all within the context of the app itself. In short, trial

versions are an important monetization model that are, fortunately, quite easy to implement.

1121

A technical stipulation of a trial version is that all the bits of the full version are actually already

present on the user’s machine: purchasing a full license from a trial version is simply an act of setting

the license information in the Windows Store, and such a purchase will not initiate any new

downloading. For a user, this means that to download and install a trial is to download and install the

full version, with the Store simply indicating that the user doesn’t have full rights. If such a full

download would be an obstacle, however, such as when the app is large, it may be a better strategy to

create a smaller demo version that invites the user to visit the Store to buy the full app.

All of this is really about creating a smooth and painless experience for users to try new software.

One of the primary motivations behind the Store (and the associated packaging technology) is to

eliminate nearly all of the past risk of software acquisition: unknown or untrusted sources, potential

malware, inconsistent install/uninstall procedures, and so forth. Microsoft wants Windows users to feel

confident that they can experiment and try out new apps—your apps!—without corrupting their

system, compromising their data, or in other ways being exposed to those sorts of problems.

Sidebar: Piracy Protection

The existence of the Windows Store and the fact that users cannot install an app except in the

context of the Store provides a certain inherent level of piracy protection. Users are blocked from

accessing the folders that contain installed appx packages, and even if they managed to extract

and install one elsewhere, the Store would report that the app is unlicensed for that user and

would thus refuse to run it.

Beyond that, any additional levels of protection are up to the app. It’s perfectly allowable for

an app to ask the user to register with the publisher (because customer information isn’t shared

from the Store) and to obtain a secondary license key. Windows does not block such procedures

but doesn’t provide any such services itself. Do consider, however, that customers might be

annoyed by such additional requirements. It’s best to exercise caution in such a decision.

In-App Purchases

In-app purchases, commonly referred to as IAPs, are proving to be the most popular means of

monetizing an application over time by selling incremental add-ons, options, in-app currency,

periodicals, time-limited subscriptions/rentals, and so forth. In-app purchases are the basis for what are

called freemium apps: the basic app is free, but extending its functionality, adding content, acquiring

in-app features or game currency, and so on are all done through in-app purchases. Indeed, a Distmo

report from February 2014 showed that 70% of revenue globally and over 90% in China and Japan

come through freemium apps and that they generally produce more revenue per app than other

monetization models. (It also showed that regions like Japan, South Korea, and Australia have the

highest profit margins per download, suggesting that those are good regions in which to focus

localization efforts. It’s worthwhile to watch these kinds of reports!)

1122

By definition, in-app purchases are options: the core operation of the app must not depend on any

of them. Also, in-app purchases cannot be interdependent—that is, users cannot be required to

purchase other options to use one they’ve already bought. Furthermore, an in-app purchase is made by

a user and is thus licensed across all of their devices by default. If you need for whatever reason to

place a limit on the applicability of a purchase (such as honoring contractual obligations of a backend

service provider), you can use the Store’s receipt feature to implement secondary validation as we’ll

cover later on.

There are two main classes of in-app purchases. Durable purchases are those that the user acquires

once and that remain in effect permanently. This is true even if the user uninstalls the app on all of

their devices and later reinstalls it: just as a user’s purchase of a paid app is kept permanently with their

Microsoft account, so too are in-app purchases. That said, a durable in-app purchase can have an

expiration date (for example 30-day access to premium content), in which case the license gets reset

after that time and the durable can be purchased again. Some apps, for example, use an expiring

durable purchase to disable ads for a certain length of time.

The second type is a consumable purchase, which can be done many times because the Store

doesn’t record it as having been purchased (as it does with durables). Consumables are typically used

for in-game currency, content rentals, or when an app separately maps a generic consumable purchase

to a more specific one at run time. Because there is no Store-managed license involved, the app must

track consumable purchases itself and must report fulfillment to the Store (such as a successful

download from a service) before the item is made available again. This is essential for the user to trust

that the purchase went through before their account is charged for the transaction.

With both types of purchases, the Store has a limit of 200 different listings, which seems like it

would pose a problem for apps that offer access to large libraries or collections of things like books,

movies, images, research reports, and so on. Fortunately, you can define generic purchases in the Store

dashboard and then differentiate them with specific identifiers at run time through the Store API. For

example, you can define a “3-day movie rental” item through the Store dashboard and fill in the

specific title when the user chooses one in your UI. This also means you don’t have to update your

purchase definitions in the Store when you add new content to your catalog; you’d need to do that

only if you introduce a new type of purchase altogether.

Whether in-app purchases are the right choice for your app involves a number of considerations:

 Implementing them well can be difficult because they introduce complexities into an app’s

architecture.

 The app has full responsibility for correct delivery of the purchased item or feature, as opposed

to the Store handling all the details.

 In-app purchases effectively create multiple variations of an app, which can increase user

support and interaction.

1123

 Overuse or inappropriate use of in-app purchases can generate the perception that you’re

trying to get money from users at every possible opportunity. Users who don’t or won’t pay for

in-app purchases can still leave bad reviews about their experience. Effective use of in-app

purchases, in other words, is an act of conscious merchandising that takes user psychology into

account.

 In-app purchases through the Windows Store do not trigger download of additional content;

they only change the user’s license for that product. If needed, an app can initiate its own

downloads once the product license has been acquired.

 At present, the Windows Store does not provide support for subscription purchases apart from

consumables; third-party providers do offer specific subscription services.

 An in-app purchase can activate or enable a feature in the app but cannot trigger download

and installation of new code from the Store (or any other service, for that matter). That is, the

code must already be present in the app package. In-app purchases of content, on the other

hand, can be used to initiate a download from any service.

 At present, the lowest price tier that the Windows Store offers for in-app purchases is US$0.99,

which means that whatever purchases you offer need to provide at least that much perceived

value to your customers. You should group offers into a single purchase that you would

otherwise think to offer separately at lower but unavailable price points. (Do note that this price

tier is automatically adjusted up or down to reflect different standards of living across regions.)

On the flip side, offering a new full version of an app with new features might generate better sales

than offering the same features as in-app purchases. A major app update is an event that can generate

renewed interest in and energy around your product like the release of a new movie. In-app purchases,

on the other hand, are by nature more prosaic, like the popcorn and drinks you buy in the theater—

always there, and integral to the whole experience, but not particularly exciting outside that context.

The best approach is probably to follow Hollywood’s example and do both!

It’s worthwhile at even the earliest stages of design to think about what kinds of in-app purchases

make sense for your product and how and when to merchandise those options in your app. You might

not even at this time have anything you plan to offer, but you might want to add them later on. In

short, keep the door open for expansion and creativity without necessarily having to revise the app. It’s

equally important to also think about what makes sense for your customers. We emphasize this point

because there have been stories of outright abuse in this area. Apps aimed at young children, for

example, have been known to dangle in-app purchases like candy, enticing those children to press a

“buy” button when they have no sense of the transaction. For this reason, Store policy (section 4.8)

requires that transactions are authenticated (and the Windows Store does this automatically when you

use its commerce engine).

The key thing is that if you try to be sleazy, you probably won’t get far with your app. If you try to

trick users out of their money, your app will certainly decline in ratings and reviews over time. And if

you’re found to be truly abusive, Microsoft does reserve the right to remove your app from the Store

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx#acr_5_0

1124

altogether, if it even passes certification at the outset.

Done well, though, in-app purchases are very effective for exchanging a little bit of money for a

little bit of pain relief. This is a creative matter of user psychology where an app intentionally introduces

small pain points alongside an in-app purchase to avoid that pain. For example, you can make users

wait 15–30 seconds while the app displays an interstitial ad, or inject a visual distraction with ads in

your layout, and then offer an in-app purchase to remove ads altogether. In many games, you can earn

in-app currency through continued play or receive additional currency by simply waiting an hour or a

day. This kind of thing becomes irritating for your more impatient users, so offering an in-app purchase

that immediately relieves their anxiety can be very profitable. (In this context, I love the creative in-app

purchase in Jetpack Joyride called the “counterfeit machine” that doubles all the coins you collect in

the game. I’ve found this much more engaging that buying coins outright.)

All in all, these are considerations that will eventually affect how you set prices in the Store. You'll

need to consider the tradeoffs involved between setting a higher price point with an initial -app

purchase versus monetizing through multiple in-app purchases, and you'll need to be sensitive to how

willing your target customers might be to making one purchase versus making multiple purchases.

Apps that constantly nag their users to make additional purchases will be on par with pushy street

vendors who just won’t leave you alone. Apps that are sensitive to the user’s engagement, on the other

hand, present purchases (which is to say, upsell opportunities) at appropriate times for appropriate

reasons and are thus much more likely to be appreciated than loathed.

Revenue Sharing and Custom Commerce for In-App Purchases

The subject of monetization is not complete without answering one of the most important questions:

how much of the Store-related revenue stream do you, as the publisher of the app, get to keep? The

basic answer is simple: 70% comes to you, 30% goes to the Store (you have to pay your rent). However,

once an app achieves US$25,000 in sales (from both the app and in-app purchases), your share

increases to 80%.

Revenue sharing is always in effect for paid apps. For in-app purchases, however, you have the

option to bypass the Windows Store altogether and use a commerce platform of your own or a third-

party provider (see the Windows Partner Directory and click Payments on the left side). Doing so

potentially allows you to realize a much higher percentage of the revenue. This is an especially great

option if you already have arrangements with a transaction provider through your existing websites.

Be aware that Sections 4.7 through 4.9 of the present Store certification requirements apply here,

where you need to identify the provider at the time of the transaction, ensure that the user enters

credentials for each purchase, and ensure that each transaction meets the PCI Data Security Standards.

With this custom commerce option, you’re pretty much on your own where all the details are

concerned, including UI—the Windows Store API itself doesn’t provide for extensibility of its own

mechanisms. You might draw from The in-app purchase user experience for a customer topic in the

documentation to understand the flow; third-party providers do typically supply their own UI.

http://services.windowsstore.com/
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
https://www.pcisecuritystandards.org/security_standards/index.php
http://msdn.microsoft.com/library/windows/apps/Hh924350.aspx

1125

Growing Your Customer Base and Other Value Exchanges
Whatever your business is with your app, it’s unlikely to fulfill your goals if nobody is using it. When

you’re motivated primarily by fortune or philanthropy, expanding your customer base is likely your

primary concern. And even if you’re shooting for fortune, it might make more sense in the early stages

of your app (or of your overall business) to focus first on growing your customer base and then after a

time shift to monetizing that base. And by “a time” here it’s generally best to think in terms of a couple

of months, to catch the app’s peak traffic levels.

Marketing your product to potential customers that are within reach of your campaigns is obviously

a big part of this, and we’ll talk more of this later in “Getting Known.” What I want to discuss here is

more about expanding your customer base through the app itself, because the strategies for this are

often similar to those you use for monetization.

The general idea is that your customers have assets of value to you other than their money. The

most important of these is their social network. While your general marketing efforts can reach random

populations, reaching other potential customers through your existing ones is much more valuable

because there’s an existing relationship there that gives you some credibility.

I’m sure you’ve seen the effects of this on the receiving end, where friends in your social networks

are posting or tweeting their status or activity in some game or another. The reason why this happens

is that the game rewards your friend’s social activity with some in-app value, such as extra in-game

currency. Oftentimes—and this is an important point for app design—your friend can earn this

currency through social sharing instead of spending real money.

What you’re doing is sacrificing the income from a direct in-app purchase for a bit of marketing to a

customer’s social network, which is something you couldn’t buy even if you had tons of money in your

marketing budget! That is, instead of trying to make money from your existing customers that you

might then spend on marketing, you just shortcut the process and reach new customers directly.

Another valuable asset is a customers’ opinion of your app, meaning the time they might take to

give you a rating and review in the Windows Store, as well as feedback through your own in-app

mechanism. Leaving feedback, in short, is an important customer activity that you can reward with

some in-app feature, rather than trying to monetize that feature. (Do note that it’s not allowed to offer

rewards for positive ratings and reviews, which you cannot determine at run time anyway.)

A third type of asset that your customers have is their usage data. Provided that you protect user

identity, respect privacy, clearly inform your customers that you’re collecting data, and give them the

ability to opt out (see “Instrumenting Your App for Telemetry and Analytics” later), the data you collect

over time can become highly valuable to other businesses. A number of companies earn their revenues

by collecting, processing, packaging, and selling information (through reports, web services, etc.), which

means that their contact points with customers—such as apps and websites—are merely collection

portals rather than products they try to monetize directly.

1126

For example, data collected from a music app can identify consumption trends that music producers

might be very willing to pay for. In this case you’d want to get that app into the hands (and ears) of as

many customers as possible, even to the point of giving away up-front value (such as free downloads)

in an effort to increase your customer base, increase your data collection, and thereby increase the

reliability and value of that data.

In short, when you’re thinking like a businessperson, you’re not thinking only about monetizing the

app you happen to produce: you’re thinking about the larger context in which your business operates

and look for any and all opportunities to earn revenue. It makes you appreciate why “business” is

indeed a creative profession!

Measuring and Experimenting with Revenue Performance

No matter what revenue model or models you choose to employ in your app, you’ll want to know how

well they’re doing in relation to your business goals. The Windows Store itself will provide you with

revenue tracking for paid apps as well as in-app purchases that go through the Store’s commerce

engine. If you’re using a third-party commerce platform, it will provide you with similar information, as

will your advertising providers.

Beyond such backend data, though, you’ll want to instrument your app to collect its own telemetry

where customer behavior is concerned (as we’ll discuss later), especially if you’re providing options like

social sharing in lieu of an in-app purchase. You’ll also want to know when and where, exactly, your

customers are engaging with your monetization strategies, because your providers won’t be able to

make such determinations for you. For example, when and where are your customers most likely to

make an in-app purchase? What ad placements within different pages of your app get the most

impressions and click-throughs? Knowing such things can help you adjust the design of your app to

produce more revenue and can give you valuable insights for other apps you’ll produce.

Such telemetry, along with customer feedback, also enables you to experiment with your

monetization and track the results, which you again use to optimize your apps market performance.

For example, one publisher initially offered a $3.99 game with a seven-day trial but found that most

users finished the game in five days. As a result, they weren’t making much money. So they changed

the model to a feature-differentiated trial—meaning you couldn’t complete the game with just a trial

license—and lowered the price to $2.49. In doing so their revenues rose. Another example is an app

that started out with ads and in-app purchases to add content. Customers expressed interest through

their Store reviews that they’d like to remove ads, so the app added three tiers of in-app purchases to

remove ads for different periods of time.

So don’t be afraid to try different things! After all, part of running a business with your app is

creatively adjusting your business model to the needs of your customers and trends in the market.

1127

The Windows Store APIs

Now that you’ve likely decided on a course for your app, let’s see how you use the Windows Store APIs

to accomplish those ends. These are found in the Windows.ApplicationModel.Store namespace; all

objects referred to in this section are contained in this namespace unless noted.133 Furthermore there’s

only one sample that we’ll be drawing from: Trial app and in-app purchase sample.

For basic licensing and trial enforcement, the good news is that both are effortless: the app doesn’t

need to do anything at all! A user cannot acquire your app without going through the Store, and even

if he did manage to, he’d have to have a developer license to install and run it. Furthermore, because

the Store automatically tracks trial periods for apps, Windows will simply not launch an app once the

trial is expired. Instead, Windows will redirect the user to the product’s page in the Store where the user

can purchase a full license. The same is true is Windows detects that a package has been tampered

with: the Windows will direct the user to repair the app through the Store.

As noted before, apps can enforce a secondary licensing scheme if desired. Here it would ask the

user for a separate registration or a separately acquired license key of some sort. Windows does not

offer an API for this but will not block schemes of your own.

That said, WinRT provides for the following features:

 Retrieving app and product (in-app purchase) information from the Store, including price values

formatted for the user’s current locale.

 Retrieving license information for the app and in-app purchases, indicating trials, expirations,

etc. The app can make any decisions it wants with these details.

 Prompting the user to purchase a full license during or after a trial period; this is especially

useful when the app is running and the trial period expires.

 Handling in-app (product) purchases for durables and consumables, with large catalog support.

 Generating receipts, which are primarily used for secondary validation and purchase tracking.

 Testing all the app’s Store interactions prior to uploading to the store.

Tip Although the Store API retrieves information from its backend service, an app is not required to

declare the Internet (Client) capability itself unless it needs network access for other purposes.

When an app runs for real—that is, after it has been uploaded to the Store and has made its way

into the hands of customers—interaction with the API happens through the static CurrentApp object:

133 The Windows.ApplicationModel.Package class also provides a few details about the installed app package. Usage is

simple, and you can refer to the App package information sample for more.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.aspx
http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.aspx
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa

1128

var currentApp = Windows.ApplicationModel.Store.CurrentApp;

whose methods and properties are as follows:134

Member Description
appId The GUID that uniquely identifies the app in the Store.

linkUri The URI (Windows.Foundation.Uri) to the app’s listing page in the Store. (If you recall

from Chapter 15, “Contracts,” this is the value you always want to place in the

applicationListingUri property of a DataPackage used in the Share contract; doing

so lets user who receive shared data easily find and acquire your app.)

licenseInformation A LicenseInformation object reflecting the app’s licensing state and active licenses for

in-app purchases. The latter is represented by a collection of ProductLicense objects.

loadListingInformationAsync Retrieves the ListingInformation object for the app through which you retrieve

information about in-app products.

requestAppPurchaseAsync Invokes the Store UI to invite the user to upgrade the app from a trial. This is used when

the app is running and detects that a license has expired.

requestProductPurchaseAsync Invokes the Store UI to invite the user to do an in-app purchase. A successful purchase

results in a PurchaseResults object.

getAppReceiptAsync,

getProductReceiptAsync

Requests an XML string that contains receipts for the app and any in-app purchases, or

for a specific in-app purchase, respectively.

reportConsumableFulfillmentAsync Reports that an in-app consumable purchase has been fulfilled (such as content being

successfully downloaded from a service).

getUnfulfilledConsumabledAsync Retrieves those consumables that are still outstanding.

A ListingInformation object contains a number of properties that come pre-localized as

appropriate: ageRating (a number, currently one of 3, 7, 12, and 16), currentMarket (a BCP-47 string

indicating the user’s market that is used for transactions), description (a string containing the app’s

localized description as you provided to the Store dashboard), formattedPrice (a string containing

the app’s purchase price formatted for the user’s current market and currency), name (a string with the

app’s name in the current language, as supplied to the dashboard), and productListings. The latter is

an array of ProductListing objects, each of which represents an in-app purchase that you configured

on the Store dashboard.

On Windows 8.1, a ProductListing contains four properties: productId (a string containing the

app-defined product identifier), formattedPrice (a localized string containing the product price), a

localized name (a string), and a productType value from the ProductType enumeration, which can be

durable (1), consumable (2), or unknown (0). You can see, then, that the listing collection is exactly

134 Excluding a few methods that are exclusive to Windows Phone, namely loadListingInformationBy[Keywords |

ProductId]Async and reportProductFulfillment.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.licenseinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productlicense.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.listinginformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.purchaseresults.aspx
https://appdev.microsoft.com/StorePortals
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productlisting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.producttype.aspx

1129

what you’ll use to present the user with your localized list of in-app purchases, where the productId

could be used to retrieve additional content like images from your package or a web service. You can

also use productType to separate your lists of durable and consumable purchases.

The LicenseInformation object for its part contains simple properties of expirationDate (a

Date), isActive (a Boolean), and isTrial (a Boolean). It has one event, licensechanged, which fires

when these properties change. You can use this to prompt for purchase if a license expires while the

app is running. The remaining property, productLicenses, is a collection of ProductLicense objects.

Each contains the appropriate productId, expirationDate, isActive, and isConsumable properties.

The LicenseInformation.licensechanged event also fires for changes in any ProductLicense.

Tip For globalization purposes, never compare two dates with simple arithmetic operators like <, >,

and =. Instead. Use the Windows.Globalization.Calendar.compareDateTime method, which will

account for the specific needs of different calendar systems that might be in effect.

Roaming and offline access Because a user can make purchases on other devices, Windows makes

sure to roam licenses to and cache them on all the user’s devices. This allows apps to validate

purchases and check license status when a device is offline. The upshot of this is that you should always

use the API to check licenses rather than trying to manage such state yourself.

That’s really the extent of the Store APIs in a nutshell, and we’ll go into all the details in the

discussions that follow. You may notice that the APIs don’t concern themselves with ad-supported

apps, because ads don’t involve the Store itself and are implemented through ad-provider controls.

But you might be asking yourself some very significant questions: how on earth can this API return

any meaningful information while the app is under development and has yet to be uploaded to the

Store in the first place? How can you get product information and test all your purchase features when

there’s nothing yet available to purchase?

These are great questions, and the answers lie in the one other object in the Store namespace (and

our next topic): the Windows Store app simulator.

Sidebar: Use the licensechanged Event for UI Updates

In general, a best practice is to use the licensechanged to update whatever UI is affected by

changes to app licenses or in-app purchases. That is, this event is the central location where you

pick up all changes, be it from purchases (which you are hoping for!) or licenses that expire

(which you hope to convert before then). You have to use this event anyway to handle

expirations while the app is running, and thus it’s better to also use it to process the successful

purchases, rather than doing it within your handlers for the request*PurchaseAsync methods.

http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.comparedatetime.aspx

1130

The CurrentAppSimulator Object
To make it possible to test an app’s interactions with the Store before the app is actually onboarded,

WinRT provides the static CurrentAppSimulator object that is identical to CurrentApp with two

exceptions. First, the simulator object works against data from a local XML file rather than live data

from the Store, which won’t exist until you’ve actually on-boarded the app. By definition, then,

everything you do to test Store interactions before your app is published will use the simulator. The

second difference is that the simulator object has an extra method, reloadSimulatorAsync, to

reinitialize the simulator with such XML.

During development, you use this line of code to start your work with the API:

var currentApp = Windows.ApplicationModel.Store.CurrentAppSimulator;

and then delete the Simulator suffix when you’re ready to send the app to the Store. (If you forget,

you’ll fail Store certification.) Alternately, you can use the method described in Chapter 2, “Quickstart,”

under “Sidebar: Debug or Release?” to select the right object based on your build target. Details are

provided on my blog at A reliable way to differentiate Debug and Release builds for JavaScript apps

and in the DebugRelease example in Chapter 2’s companion content.

When your app accesses CurrentAppSimulator, WinRT looks for a file called WindowsStore-

Proxy.xml in your app data, specifically under %userprofile%\AppData\local\packages\<package

name>\LocalState\Microsoft\Windows Store\ApiData. If it exists, the simulator is initialized from that

data; otherwise the file is created with the following defaults (slightly formatted to fit the page):

<?xml version="1.0" encoding="utf-16" ?>

<CurrentApp>

 <ListingInformation>

 <App>

 <AppId>00000000-0000-0000-0000-000000000000</AppId>

 <LinkUri>

 http://apps.microsoft.com/webpdp/app/00000000-0000-0000-0000-000000000000</LinkUri>

 <CurrentMarket>en-US</CurrentMarket>

 <AgeRating>3</AgeRating>

 <MarketData xml:lang="en-us">

 <Name>AppName</Name>

 <Description>AppDescription</Description>

 <Price>1.00</Price>

 <CurrencySymbol>$</CurrencySymbol>

 <CurrencyCode>USD</CurrencyCode>

 </MarketData>

 </App>

 <Product ProductId="1" LicenseDuration="0">

 <MarketData xml:lang="en-us">

 <Name>Product1Name</Name>

 <Price>1.00</Price>

 <CurrencySymbol>$</CurrencySymbol>

 <CurrencyCode>USD</CurrencyCode>

 </MarketData>

 </Product>

 </ListingInformation>

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.aspx
http://kraigbrockschmidt.com/blog/?p=1285

1131

 <LicenseInformation>

 <App>

 <IsActive>true</IsActive>

 <IsTrial>true</IsTrial>

 </App>

 <Product ProductId="1">

 <IsActive>true</IsActive>

 </Product>

 </LicenseInformation>

 <ConsumableInformation>

 <Product ProductId="2" TransactionId="00000000-0000-0000-0000-000000000000"

 Status="Active" />

 </ConsumableInformation>

</CurrentApp>

The full XML schema for this can be found on the CurrentAppSimulator page (except for the

ConsumableInformation part, which I’ll fill in below), and it’s straightforward to see exactly where you’d

modify the XML to test different scenarios:

 Create additional MarketData elements to specify app details for other locales. The

CurrentMarket element indicates the default.

 Create additional Product elements (including their MarketData children) for each in-app

purchase.

 In the App element under LicenseInformation, change the values of IsActive (that is, not

expired) and IsTrial between true and false to test the variations: active/non-trial,

active/trial, expired/non-trial, and expired/trial. You can also add an ExpirationDate element

to indicate when the app expires (in UTC time), using the form of yyyy-mm-ddThh:mm:ss.ssZ

(replacing yyyy:mm:dd with the date and mm:ss.ss with the time). For automated testing,

additional elements let you hard-code result codes; details on the CurrentAppSimulator page.

 For each in-app purchase, add a Product element under LicenseInformation with the

appropriate ProductId attribute and ProductType attribute (Consumable or Durable).

Supported child elements are IsActive and ExpirationDate, with the same meaning as the

app license.

 For each consumable in-app product, add a Product element under ConsumableInformation

with the appropriate ProductId, an optional OfferId (for large catalogs), the TransactionId

to report when you simulate a purchase, and a Status attribute. The latter can have values of

Active (consumable is available), PurchasePending (waiting fulfillment), PurchaseRevoked

(canceled on the backend), or ServerError. These let you test different scenarios when using

the in-app purchase API for consumables.

Tip When you reach the point of publishing your app to the Store, you’ll be configuring all of these

options for real. By that point, your XML file that you use in development should be the exact

representation of the capabilities that the app expects, so make sure that you accurately transfer all the

details to the Store dashboard.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.aspx

1132

When using the methods in the simulator object that change license status, such as converting a

trial app to a purchased app or acquiring in-app purchases, they will not alter the contents of the

WindowsStoreProxy.xml file. This means you can just restart the app to reset the state of the simulator

object, but it also means you’d need to edit the XML and launch the app again to test how different

variations are handled on startup. (Note also that the Store simulator state is not persisted when the

app is suspended and terminated.)

For this purpose, the simulator object’s reloadSimulatorAsync method takes a StorageFile

containing the XML initialization data. This can very much simplify your testing procedures, and often

you’ll have such files directly in your project folder such that you can refer to them with ms-appx:///

URIs. However, make sure that these files don’t end up in your app package when you upload to the

Store. In Visual Studio, right-click the file in the Solution Explorer pane and select Properties. In the

Property Pages dialog that appears, as shown in Figure 20-1, set Package Action to None.

FIGURE 20-1 Make sure that XML configuration files for the simulator object don’t end up in your Store packages.

The Trial app and in-app purchase sample, which we’ll be drawing from in the explanations ahead,

uses reloadSimulatorAsync to load a specific XML file for each of its scenarios (but note that it has

not set the Package Action to None!). In scenario 7, for example (js/api-listing-uri.js), it loads data/app-

listing-uri.xml as follows:

var currentApp = Windows.ApplicationModel.Store.CurrentAppSimulator;

var page = WinJS.UI.Pages.define("/html/app-listing-uri.html", {

 ready: function (element, options) {

 // ...

 loadAppListingUriProxyFile(); // Initialize the license proxy file

 },

 unload: function () {

 currentApp.licenseInformation.removeEventListener("licensechanged",

 appListingUriRefreshScenario);

 }

});

function loadAppListingUriProxyFile() {

 // We could also use folder.getFileFromPathAsync("ms-appx:///data/app-listing-uri.xml")

 // instead of the two-step process with getFileAsync as shown here.

 Windows.ApplicationModel.Package.current.installedLocation.getFolderAsync("data").done(

 function (folder) {

 folder.getFileAsync("app-listing-uri.xml").done(

 function (file) {

http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a

1133

 currentApp.licenseInformation.addEventListener("licensechanged",

 appListingUriRefreshScenario);

 Windows.ApplicationModel.Store.CurrentAppSimulator

 .reloadSimulatorAsync(file).done();

 });

 });

}

Notice how this sample listens for the licensechanged event and makes sure to call removeEvent-

Listener when the page is unloaded. (See “WinRT Events and removeEventListener” in Chapter 3.)

This same scenario 7 shows the basic retrieval of app information from the Store. When you click the

Show Uri button on that page, it goes to the handler below, which outputs the app’s linkUri property:

function displayLink() {

 WinJS.log && WinJS.log(currentApp.linkUri.absoluteUri, "sample", "status");

}

Getting at the app’s other properties would look the same, just using currentApp.loadListing-

InformationAsync first to obtain that data. This is shown in scenario 1 (js/trial-mode.js):

function trialModeRefreshScenario() {

 currentApp.loadListingInformationAsync().done(

 function (listing) {

 document.getElementById("purchasePrice").innerText =

 "You can buy the full app for: " + listing.formattedPrice + ".";

 });

 displayCurrentLicenseMode();

}

And on that note, let’s look at the rest of the sample more fully because it shows the other use

scenarios of the Store API as a whole.

Trial Versions and App Purchase
When you configure your app on the Store dashboard, the first question under Selling Details is the

Price Tier. If you set this to anything other than Free, you also set the Free Trial Period, as shown in

Figure 20-2. As noted before, offering a free trial increases the likelihood of a customer making a full

purchase by an order of magnitude, so it’s definitely something to consider!

https://appdev.microsoft.com/StorePortals

1134

FIGURE 20-2 Setting a price tier and trial period for an app on the Store dashboard.

In your XML for the CurrentAppSimulator, you set the app price in the ListingInformation > App >

MarketData > Price element and configure a trial period under LicenseInformation > App > IsTrial and

ExpirationDate. Handling a trial is demonstrated in scenario 1 of the Trial app and in-app purchase

sample, and the relevant XML from data/trial-mode.xml is as follows (other parts omitted for brevity):

<CurrentApp>

 <ListingInformation>

 <App>

 <MarketData xml:lang="en-us">

 <Name>Trial management full license</Name>

 <Description>Sample app for demonstrating trial license management</Description>

 <Price>4.99</Price>

 </MarketData>

 </App>

 </ListingInformation>

 <LicenseInformation>

 <App>

 <IsActive>true</IsActive>

 <IsTrial>true</IsTrial>

 <ExpirationDate>2014-01-01T00:00:00.00Z</ExpirationDate>

 </App>

 </LicenseInformation>

</CurrentApp>

When you run this scenario in the sample, as shown in Figure 20-3, the simulator object is initialized

with this XML. The app’s IsActive and IsTrial elements are both set to true, meaning that the app

can run and that it has a valid trial license. The ExpirationDate for this license is set to January 1,

2014, which is in the past as of this writing, so you’ll need to update it to see expiration in the future

rather than the past.

http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a
http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a

1135

FIGURE 20-3 Scenario 1 of the Trial apps and in-app purchases sample (cropped slightly).

The Trial Period button calculates the number of days remaining in the trial period, using basic

arithmetic and the licenseInformation.expirationDate property. Note that you should always use

the licenseInformation.isTrial flag to check for trial validity instead of checking the date yourself,

because it will properly handle regional variations in time/date handling. The sample’s use of the

expirationDate is just for UI purposes.

The Trial Mode and Purchased buttons just output different messages based on the state of the

isActive and isTrial properties. Both button click handlers start like this:

var licenseInformation = currentApp.licenseInformation;

if (licenseInformation.isActive) {

 if (licenseInformation.isTrial) {

What can make the output from these buttons more interesting is modifying the data/trail -

mode.xml file with different initial values for IsActive and IsTrial. Given that you’ll be reading this

book after the 1 January 2014 date in the sample, you’ll see an expiration message on first run

(isActive will be false, regardless of the flag’s value in the XML). So try setting the ExpirationDate

to a time in the future (remembering that its UTC time, not local time), rerun the sample , and you’ll see

that IsActive comes through as to true. Then set ExpirationDate about a minute in the future, set a

breakpoint on the trialModeRefreshScenario function inside js/trial-mode.js, and restart the sample.

You won’t hit your breakpoint immediately after ExpirationDate has passed, however. For

performance reasons, the licensechanged event is not triggered instantly—there could be hundreds

of expiration dates to track throughout the system. The event will instead fire reasonably soon, within

about 20 minutes, so you might start such a test before going out for lunch.

This sample, of course, merely changes some output messages according to the validity of the

1136

license. In a real app you would either disable certain features for an active trial license or let the user

do nothing more except purchase the app if the trial has expired. You’d want to make such checks both

when the app is launched (for any reason) and in the resuming event.

Tip When an app license expires, Windows marks the app tile with an “X” glyph and prevents the app

from being launched. Instead, the user is prompted to buy the app in the Store directly. Although this

suggests that a newly launched app should never see licenseInformation.isActive set to false in

the CurrentApp object, you always want to check for an active license on startup. This guards against

side-loading hacks, because side-loaded apps will always have an inactive license.

Upgrading from an expired trial to a paid license is handled by the Buy App button in this scena rio,

an option that you should have to remind the user anytime they’re running a trial, regardless of

expiration status. This button calls a handler (named doTrialConversion) that makes use of the

CurrentApp.requestAppPurchaseAsync method (js/trial-mode.js):

var licenseInformation = currentApp.licenseInformation;

if (!licenseInformation.isActive || licenseInformation.isTrial) {

 currentApp.requestAppPurchaseAsync(false).done(

 function () {

 if (licenseInformation.isActive && !licenseInformation.isTrial) {

 // Purchase was fulfilled

 } else {

 // Purchase UI was shown, but the user canceled. Trial is still in effect.

 }

 },

 function () {

 // There was an error in the transaction; purchase did not occur

 });

The one argument to requestAppPurchaseAsync indicates whether a receipt string is sent to your

completed handler; see “Receipts” later on. In any case, if the user makes a purchase, the license-

changed event will fire as it does for trial expiration, so you can consolidate your license handling there.

With the CurrentAppSimulator, invoking requestAppPurchaseAsync won’t show the actual Store

UI. Instead you’ll get an ultra-prosaic dialog in which you specify the exact return value (an HRESULT):

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.requestapppurchaseasync.aspx

1137

Sending back S_OK indicates that the purchase was made. The isTrial flag should change to

false and isActive set to true. Returning any of the other errors will invoke the error handler for

requestAppPurchaseAsync. Pressing Cancel, on the other hand, will call your completed handler but

the values of isTrial and isActive will remain unchanged.

In the real world, of course, consumers will not be fiddling around with simulated Store conditions.

Instead, if your app is marked to offer a trial version (something you set while uploading to the Store),

they’ll see a Try button on the app’s listing page like this:

Tapping Try will install the app and set both isActive and isTrial to true. At the point when the

app calls requestAppPurchaseAsync, Windows will launch the Store and take the user to the app’s

listing page where they can tap the Buy button if they choose.

Tip When writing this book, I looked at a number of apps that were available in the Windows Store

and found that although many offered trials, few of them gave me any indication about why and how

to purchase a full version, nor told me that I was even running a trial and how long I had left in the

trial period. I was presented with such an option only when the trial period had passed. If you want to

convert trials into paid licenses, it’s better, even as the sample demonstrates, to inform the user that

she’s running a trial and give her reminders and opportunities to convert!

Expiring apps? It’s possible, when testing an app, to set an expiration time for the full app in the XML

and not just for a trial. However, the Store dashboard doesn’t provide a means to do this for a released

app. Instead, you just stop making the app available.

Listing and Purchasing In-App Products
Working with your in-app purchases, or products as the API calls them, involves three aspects. The first

is retrieving locale-specific product information from the Store for use in your own UI. The second is

then completing the purchase and either activating the product’s license for durables or reporting

fulfillment for consumables. We’ll cover these two steps in this section. The third aspect, covered in the

section that follows, is handling large catalogs of purchase options that exceed the 200-item limit of

the Store dashboard.

In-app purchases are configured on the Store Dashboard under Selling Details, as shown in Figure

20-4. If you check the box for using a third-party commerce system, you’ll be entering details with that

provider and not the Store and you’ll be using that provider’s API rather than what’s discussed here.

But if you’re using the Store, click Use The Windows Store In-App Purchase System link and you’ll go to

the Services page where you add the details, as shown in Figure 20-5.

https://appdev.microsoft.com/StorePortals

1138

FIGURE 20-4 The Store dashboard area for in-app purchases under Selling Details.

FIGURE 20-5 Entering details for in-app purchases on the Store dashboard’s Service page.

Each product has an ID that you assign, a price, a lifetime, and a specific content type. As you can

see in Figure 20-5, the lifetime is where you differentiate durables and consumables, with every option

in this drop-down being for durables except the very last one. As for the content type, this setting is

needed for taxation purposes; it has no effect on the app and isn’t exposed through the API. And note

that when you’re managing a large catalog, the products you describe here will be generic classes or

types of offers for which you’ll fill in specific details at run time (see “Handling Large Catalogs”).

One bit of information you might be wondering about is the actual description of the in-app

purchase that the Store will show to the user. It’s not here because you’ll enter it later after you upload

your app package. At that time you’ll then enter localized descriptions for each language you support

at the same time you provide other descriptive text and graphics:

1139

When using XML to configure the CurrentAppSimulator, you enter the same details (including the

description) within the ListingInformation > Product nodes (for markets, pricing, duration, and

purchase type) and the LicenseInformation > Product nodes (for license status and expiration dates).

You can see some variations in scenarios 2–5 of the Trial app and in-app purchase sample.

Again, a consumable purchase can be repurchased as soon as a previous one is reported as fulfilled.

A durable purchase is similar in that it can have an expiration date, meaning that the product license is

in effect for a time, after which the user needs to repurchase it to continue its use. Either way, be sure

that your app UI fully informs the user about the exact nature of the product at the time of purchase:

don’t surprise your users or they’ll likely surprise you with less than favorable reviews in the Store!

Handling in-app purchases follows this general pattern:

 Retrieving a list of available products from the Store and displaying them in the app as needed.

 Initiating the purchase through the Store API and checking the result status, which reflects the

user’s actions in the Store’s UI.

 Apply the purchase, which might initiate downloads or other async actions. At this point the

particular consumable purchase is temporarily disabled while the transaction is in progress.

 If purchase-related actions for consumables are successful, the app reports fulfillment to

complete the transaction. This is also necessary to re-enable the purchase.

Obtaining a list of in-app purchases is done through CurrentApp.loadListingInformationAsync

to obtain the app’s ListingInformation, whose productListings collection then contains all of the

in-app purchases you’ve registered through the Store dashboard, regardless of type:

currentApp.loadListingInformationAsync().done(

 function (listingInfo) {

 // listingInfo.productListings contains in-app purchase details.

 });

The collection is a MapView object and not an array. To retrieve a specific item in the collection, use

its lookup method:

var product1 = listing.productListings.lookup("product1");

or use a key-based lookup with the [] operator:

var product1 = listing.productListings["product1"];

You would do singular lookups like this when you know ahead of time which specific products you

want to show in some part of your UI. That is, you might have certain set of purchases that you present

in different parts of the app, or even individual purchases that you offer in specific contexts.

http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.listinginformation.productlistings.aspx
http://msdn.microsoft.com/library/windows/apps/br226037.aspx

1140

In other cases you’ll want to iterate the collection and generate a list of applicable purchases in your

UI. This takes a little more work because the MapView does not support index-based lookup nor the

foreach method, as discussed in Chapter 6, “Data Binding, Templates, and Collections.” You instead

use an Iterator obtained through the first method, as shown here:

var iterator = listing.productListings.first()

var product;

while (iterator.hasCurrent) {

 product = iterator.current.value;

 // Use product.productId, name, formattedPrice, and productType to generate your UI.

 iterator.moveNext();

};

Here you’d use the product.productType, which will be durable or consumable (or unknown) to

filter your list by type. For durable in-app purchases, you’ll also likely filter out those products that have

already been purchased. In that case, look up the product license within the CurrentApp.license-

Information.productLicenses collection (a MapView of ProductLicense objects) using the

product’s ID as the key. Here’s how we’d modify the code above to perform this additional step:

var iterator = listing.productListings.first()

var licenses = currentApp.licenseInformation.productLicenses;

var product;

while (iterator.hasCurrent) {

 product = iterator.current.value;

 if (licenses[product.productId].isActive) {

 // Product has already been purchased

 } else {

 // Product is available for purchase

 }

 iterator.moveNext();

};

With each consumable, you instead need to check if there is a pending fulfillment such that it

cannot be repurchased at present. You do this through getUnfulfilledConsumablesAsync, using its

results to omit or disable the appropriate items in your UI. The result of this method is a VectorView of

UnfulfilledConsumable objects, each containing just a productId, a transactionId, and an

offerId (for large catalogs, see the next section):

currentApp.getUnfulfilledConsumablesAsync().done(

 function (unfulfilledList) {

 unfulfilledList.forEach(function (product) {

 // Handle the unfulfilled consumable

 });

 });

http://msdn.microsoft.com/library/windows/apps/br226026.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.getunfulfilledconsumablesasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.unfulfilledconsumable.aspx

1141

To initiate an in-app purchase, call one of the three requestProductPurchaseAsync variants:

Arguments Async result Description

productId PurchaseResults Prompts the user to complete the purchase and provides a

PurchaseResults object to the completed handler, which

includes cancellation cases.

productId, offerId, displayProperties PurchaseResults Prompts the user to complete a purchase, using the information

in the displayProperties object for the UI. The completed handler

is called a PurchaseResults object in all cases.

productId, includeReceipt string Windows 8 only: prompts the user to complete the purchase

and provides the XML receipt to the completed handler if

includeReceipt is true. If the purchase is canceled, the error

handler is called. Note that this is the in-app purchase API that’s

used in Windows 8 for durables only.

To be clear, the third variant above is the one that was available in Windows 8 for durables and

exists for compatibility purposes. When targeting Windows 8.1, you’ll use the first variant for both

durables and consumables and the second when working with a large catalog.

Scenario 2 of the sample shows the most basic in-app durable purchase call, checking first that the

user doesn’t already have a license (js/in-app-purchase.js):

var licenseInformation = currentApp.licenseInformation;

if (!licenseInformation.productLicenses.lookup("product1").isActive) {

 currentApp.requestProductPurchaseAsync("product1").done(

 function () {

 if (licenseInformation.productLicenses.lookup("product1").isActive) {

 WinJS.log && WinJS.log("You bought Product 1.", "sample", "status");

 } else {

 WinJS.log && WinJS.log("Product 1 was not purchased.", "sample", "status");

 }

 },

 function () {

 WinJS.log && WinJS.log("Unable to buy Product 1.", "sample", "error");

 });

}

Note that the error handler for the async call is called only when there’s an error in invoking the

Store UI, such as when the device is offline and the Store cannot communicate with its backend

services. Otherwise the completed handler will be called both when the purchase goes through and

when the user cancels.

If the product already has an active license, requestProductPurchaseAsync will simply call your

completed handler without showing any UI, as none is needed. Otherwise the user will see a series of

prompts to confirm the purchase, including confirmation of their credentials. For the whole flow, see

The in-app purchase user experience for a customer. A typical confirmation message is shown below

(taken from Jetpack Joyride):

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.requestproductpurchaseasync.aspx
http://msdn.microsoft.com/library/windows/apps/Hh924350.aspx

1142

Note that the “Buy” warning in this dialog, which exists to meet regulations in some countries, is not

entirely true: you can also cancel when entering your credentials in the next dialog unless you’ve

specifically configured your account to not prompt for a password with each purchase.

When using the CurrentAppSimulator, of course, you won’t see the Store prompts but only

another simple dialog to control the result:

In the code shown earlier, notice that it is checking the license status within the purchase request

completed handler. It’s better to keep any license-related code inside your licensechanged event

handler instead. This is because the event is also fired if a time-limited product license expires, which is

your signal to make the purchase available again (checking this expiration time for a durable in-app

purchase is shown in scenario 3 of the sample135). It’s likely that you’ll want to alert the user to that

status, perhaps with a toast notification or inline message when the user tries to access that feature.

In your completed handler, then, examine the PurchaseResults result to determine your next step.

This object will contain a transactionId, an offerId (for large catalogs), a receiptXml string, and a

ProductPurchaseStatus value in its status property. For durables the applicable status values are

succeeded, alreadyPurchased, and notPurchased (user canceled). For consumables you can see

succeeded, notPurchased, and notFulfilled, the latter of which means that there’s already an

135 There’s a bug in the sample’s js/expiring-product.js file that throws an exception when you switch to that scenario: a

string "scenario3Product1Message" should be just "product1Message", which is easily corrected.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.purchaseresults.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productpurchasestatus.aspx

1143

outstanding purchase of this item that’s awaiting fulfillment and that this attempted repeat purchase

was blocked. For both durables and consumables alike, then, a status of succeeded indicates that you

can go ahead and download content, activate a feature, or whatever else is necessary.

Checking the status is straightforward, as we can see code from scenario 4 of the sample below

(js/in-app-purchase-consumables.js). Note that when using the CurrentAppSimulator, the purchase

request will give you a simple dialog box in which you can control success and error conditions:

function purchaseProduct1() {

 currentApp.requestProductPurchaseAsync("product1").done(

 function (purchaseResults) {

 if (purchaseResults.status === ProductPurchaseStatus.succeeded) {

 // Grant the user their content here, and then call

 // currentApp.reportConsumableFulfillment when appropriate

 } else if (purchaseResults.status === ProductPurchaseStatus.notFulfilled) {

 // A previous purchase is waiting on fulfillment

 tempTransactionId["product1"] = purchaseResults.transactionId;

 } else if (purchaseResults.status === ProductPurchaseStatus.notPurchased) {

 // User canceled

 }

 },

 function () {

 // There was an error invoking the purchase UI; device could be offline.

 });

}

To see the relationship between purchase and fulfillment of consumables, scenario 5 of the sample,

part of which is shown in Figure 20-6, lets you separately control purchase and fulfillment—and does

so with the warning that you should never require a user action to fulfill a purchase! And in cases where

you attempt to repurchase a consumable that’s still unfulfilled, you’ll see the notFulfilled status.

FIGURE 20-6 Scenario 5 of the Trial apps and in-app purchases sample (cropped) allowing specific control of

purchase and fulfillment of consumables.

1144

Reporting fulfillment of a consumable purchase—which is appropriate when the app can confirm

that it how has full access to whatever value the user believe he or she purchased—is done by calling

reportConsumableFulfillmentAsync with the productId and the transactionId (the latter being

the one reported in the PurchaseResults object). Scenario 4 of the sample does it as follows: (js/in-

app-purchase-consumables.js):

currentApp.reportConsumableFulfillmentAsync(productId, transactionId).done(

 function (result) {

 switch (result) {

 case FulfillmentResult.succeeded:

 break;

 case FulfillmentResult.nothingToFulfill:

 break;

 case FulfillmentResult.purchasePending:

 break;

 case FulfillmentResult.purchaseReverted:

 // User's purchase was revoked, and they got their money back.

 // Revoke the user's access to the consumable content as necessary.

 break;

 case FulfillmentResult.serverError:

 break;

 }

 });

As you can see, this call will provide a FulfillmentResult value so you can determine if you’ve

really completed the transaction. The possibilities here are as follows:

 succeeded The fulfillment is complete and the consumable can be offered again.

 nothingToFulfill The transactionId has already been fulfilled or is otherwise complete.

 purchasePending The purchase has not yet cleared and could still be revoked.

 purchaseReverted The transaction was canceled on the backend and the app should disable

access to the feature or content.

Because it’s the app’s responsibility to fulfill each consumable to complete the transaction, there will

be times when you need to determine which consumable purchases are still outstanding, for example,

to disable those options in your UI. You do this through getUnfulfilledConsumablesAsync, which

results in a VectorView of UnfulfilledConsumable objects, each of which contains just a productId,

a transactionId, and an offerId (for large catalogs, see the next section). Scenario 5 of the sample

uses this to keep a list of pending transactions (js/in-app-purchase-consumabled-advanced.js):

currentApp.getUnfulfilledConsumablesAsync().done(

 function (unfulfilledList) {

 unfulfilledList.forEach(function (product) {

 // Usually check fulfillment and call reportConsumableFulfillment if needed

 tempTransactionId[product.productId] = product.transactionId;

 });

 });

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.reportconsumablefulfillmentasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.fulfillmentresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.getunfulfilledconsumablesasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.unfulfilledconsumable.aspx

1145

This brings up one last question with in-app purchases—how do you cancel an unfulfilled

consumable? For example, if fulfillment depends on acquiring specific data from a backend, but for

some reason that just isn’t possible for that particular request, how do you cancel the transaction and

thus re-enable the purchase for content that is available?

The present answer is that you don’t—there’s not an API to back out a pending purchase as it’s a

relatively rare scenario. Still, if you encounter such a situation, you’ll want to inform the user that the

content they originally selected is no longer available and give them a list of alternate choices. This

encourages them to fulfill the purchase quickly in another way.

Handling Large Catalogs
By design, the Store dashboard limits the number of in-app purchases (durables and consumables

combined) to 200. Although this is plenty for many apps, it is insufficient for apps that want to present

users with a much larger array of choices, such as ebooks, movie libraries, music tracks, stock images,

special reports, and so forth. In these cases, it doesn’t make sense for each and every piece of content

to have its own product ID in the Store. Instead, it makes sense for the products to represent classes of

purchases, each with its own price tier, which can then be particularized further with another identifier.

This way you can have up to 200 such classes, each backed by however many items your identification

scheme can accommodate.

Supporting large catalogs is the purpose of the requestProductPurchaseAsync variant that takes

three arguments: a productId (a string), an offerId (another string), and a ProductPurchaseDisplay-

Properties object. Here, the productId must match one of your entries in the Store dashboard, while

offerId can be whatever you want because the Store does nothing more with it than pass it back to you

in the PurchaseResults.offerId property. (This saves you the trouble of having to maintain your

own associations between productId, offerId, and transactionId—isn’t that considerate?)

The ProductPurchaseDisplayProperties object, and specifically its name property, is how you

then provide an exact description of the offerId.136 Thus, instead of having the Store UI just show the

productId description, which might be “3-day movie rental,” it can show “3-day rental: The Song of

Bernadette” and so forth.

It almost goes without saying that how you map an offerId to names and images is completely up to

you and—most likely—your app’s backend. Indeed, almost every app that needs a large catalog will be

retrieving catalog data from a backend in the first place, and will thus query some database through a

service API, get back a list of applicable items (offerId, name, and image URI), and then show those

results in a ListView or other gallery-style UI. When initiating a purchase, you’d just take the

information from the item in that list, populate the ProductPurchaseDisplayProperties, and make

the requestProductPurchaseAsync call.

Scenario 6 of the Trial app and in-app purchase sample provides a simple demonstration of making

136 The other properties in this object apply only to Windows Phone.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productpurchasedisplayproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productpurchasedisplayproperties.aspx
http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a

1146

the call, though of course it doesn’t work with a large catalog of real data. Instead, it just lets you enter

an offerId and a product name to use in the call (js/in-app-purchase-large-catalog.js):

var offerId = document.getElementById("offerId").value;

var displayPropertiesName = document.getElementById("displayPropertiesName").value;

var displayProperties = new ProductPurchaseDisplayProperties(displayPropertiesName);

currentApp.requestProductPurchaseAsync("product1", offerId, displayProperties).done(

 function (purchaseResults) {

 // Process results

 },

 function () {

 // Failure to show the Store UI

 });

}

As with all other purchases, the CurrentAppSimulator will display its return value dialog; with the

live Store, you’ll instead see the usual confirmation dialog with the specific product name from the

display properties object.

Receipts
As we’ve discussed, an app validates purchases by checking license status and/or PurchaseResults

values at run time. Many apps, however, present in-app purchases for capabilities or content that are

managed on a server. For example, renting a video from a streaming service might have two parts:

making a purchase in the app and then having your backend service validate itself on the app’s behalf

with its secondary providers. As a result, your services need a way to validate those purchases with

some piece of trusted information, because those services don’t have access to the Window Store APIs.

This is the purpose of receipts, which are XML strings that you can obtain from the CurrentApp

requestAppPurchaseAsync and requestProductPurchaseAsync methods. The getAppReceiptAsync

and getProductReceiptAsync methods also provide an all-up receipt (app and products) or an

individual receipt at any time. You then send these XML documents to your services when needed.

Note Receipts are not cached locally for security purposes; the receipt APIs fail if the device is offline.

Receipts can also be used to protect your app against certain hacks that attempt to modify license

information that’s cached on a system. See Protecting your Windows Store app from unauthorized use

for a discussion.

In all cases, the receipt XML contains the app or product id, the dates for both when the purchase

was made and when the receipt was issued, and a digital signature. The details of the XML schema can

be found on the reference pages linked above. As an example, here’s the receipt string provided from

getAppReceiptAsync in scenario 8 of the sample:

<?xml version="1.0" encoding="utf-8"?>

<Receipt Version="1.0" ReceiptDate="2014-02-21T23:20:22Z" CertificateId=""

 ReceiptDeviceId="94c007cb-12b4-47be-8a4a-d7e94d7ba6d6">

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.getappreceiptasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.getproductreceiptasync.aspx
http://social.msdn.microsoft.com/Forums/windowsapps/en-US/8b3cf68d-897d-4a47-ace0-2c42355bf688/protecting-your-windows-store-app-from-unauthorized-use?forum=windowsstore

1147

 <AppReceipt Id="917b34ef-738e-49bb-84ba-c783c2dafba6"

 AppId="Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe"

 PurchaseDate="2014-02-21T23:20:19Z" LicenseType="Full" />

 <ProductReceipt Id="66505c93-fe55-4d77-a941-dbd61e7f1177"

 AppId="Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe"

 ProductId="product2" PurchaseDate="2014-02-21T23:20:19Z"

 ProductType="Durable" ExpirationDate="2014-01-01T00:00:00Z" />

 <ProductReceipt Id="6974609e-5572-44ab-9444-1b24096f7d48"

 AppId="Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe"

 ProductId="product1" PurchaseDate="2014-02-21T23:20:19Z" ProductType="Durable" />

</Receipt>

An individual app or product receipt will look the same but have only one AppReceipt or

ProductReceipt child node under Receipt.

Tip If you want to consume a receipt as an XML document instead of a string (for display, print, or

programmatic traversal), it’s a simple matter to create such an object like we did with tile and

notification XML in Chapter 16:

var receiptDOM = new Windows.Data.Xml.Dom.XmlDocument();

receiptDOM.loadXml(receipt);

In the top-level Receipt node, the ReceiptDate is obviously when it was issued. CertificateId is

a GUID when you get a receipt from the live Store (which is why it’s empty in the sample), and in that

case you’ll also see a Signature node under Receipt. You use both of these on the server to validate

the authenticity of the receipt. For details (using C# code for an ASP.NET service), refer to Using

receipts to verify purchases.

The ReceiptDeviceId is then a unique identifier for the specific device where this receipt was

issued. Remember that the Store maintains licenses for in-app purchases on a per-user basis, so it will

report a valid license on every one of the user’s devices. Each receipt, however, will have a unique

ReceiptDeviceId, so a server can use this attribute to track how many unique requests are coming

from the app under the same user account. This becomes important when your backend is using other

services that have usage limits, such as perhaps five simultaneous sessions or no more than three

requests for the same content. Thus, when your app requests content from a service, it uploads the

receipt. The server validates the receipt and checks its necessary quotas. If access can be granted, the

server responds accordingly; if the quota has been exceeded, the server can instead respond with an

error code and the app can inform the user of that condition. The user might then choose to purchase

additional access rights or will know that he needs to close a session on another device.

Having the purchase and expiration dates within the receipt allows the server to apply its own

validation policies, including enforcing expiration dates and detecting old receipts (“replay attempts”)

that can no longer be used. In addition, the Id attribute of AppReceipt and ProductReceipt uniquely

identifies a given purchase transaction (at a specific time on a specific device), which a server can use

for further authentication and protection.

For further discussion about receipts, see //build 2013 session 3-126, Validating Windows Store

Purchases for Your App.

http://msdn.microsoft.com/library/windows/apps/jj649137.aspx
http://msdn.microsoft.com/library/windows/apps/jj649137.aspx
http://channel9.msdn.com/Events/Build/2013/3-126
http://channel9.msdn.com/Events/Build/2013/3-126

1148

Instrumenting Your App for Telemetry and Analytics

At this stage in your app’s journey you’re getting very near the point of uploading it to the Window

Store and working with real customers. But before you do so, ask yourself this question: how will you

understand what your customers are actually doing with the app?

First of all, the Windows Store provides you quite a bit of information, as described in the topics

under Analyze and improve. This includes average app usage per day with comparisons to other apps

in your category, quality reports (crash dumps, unresponsive events, and JavaScript exceptions, which I

hope you never see!), ratings and reviews, adoption rates, download history, in-app purchases, and app

sales. Furthermore, various third parties, such as Distimo and AppFeds, produce analytics for the

Windows Store as a whole, which is very valuable for tracking overall market trends and activities.

However, none of this really tells you about users’ specific activity within the app itself.

You might be thinking, “Hey, no problem—I’ve littered my code with all kinds of logging. Won’t

that work?” Well, logging is a good start, but logging is generally a tool that you use during

development so that you can diagnose errors and code flows. Logging is typically oriented around the

internal structure of your app rather than reflecting real-world customer usage. In short, logging is how

you collect data about your app in the lab; instrumenting your app for telemetry, on the other hand, is

how you collect data once the app is released into the wild.

Telemetry, or tele-metering, is automated remote measurement and data collection. It’s used in all

kinds of industries, from tracking spacecraft, tracking wildlife, medical monitoring, law enforcement,

and so on. I especially like to think of it in the context of spacecraft, where it is the way in which mission

controllers monitor the health and operation of a very expensive piece of hardware that is otherwise

completely unreachable. Without telemetry, in short, you’re flying blind.

Putting an app into the global market is, in many ways, similar to launching a spacecraft. Your app

represents a significant investment, and once it gets out to more than a handful of customers the main

issue is not so much distance, but scale. And what you need is a way to both collect the data and then

condense it into useful analytics, or reports that human beings can read to make decisions.

These analytics are a gold mine. They enable you to peer over your user’s shoulders (respecting

privacy of course!) and know what they’re really doing. This enables you to answer many questions,

such as:

 How are customers really engaging with the app? Do people use the features you thought they

wanted?

 Where are they spending (or not spending) their time? How long do users spend in each app

session, between sessions, and between suspend/resume?

 What device configurations do your users prefer (view size, screen orientation, display types,

input modalities)?

http://msdn.microsoft.com/library/windows/apps/hh967768

1149

 How are customers using options you provide via Settings?

 What’s going on when crashes happen? How often do users encounter noncrashing errors such

as a failed HTTP request, a failed sync, timeouts, etc.?

 How successful and engaging are the various features of the app? Are social features being

used? Are there usage patterns that you can reward or discourage in some way to drive

behavior?

 How successful are your trial versions and/or in-app purchases? Where are trial conversion

reminders and/or in-app purchase options most effectively displayed? How many users look at

purchase options but don’t buy anything?

 Are users clicking ads (or converting to a paid version to get rid of them)?

 How often do users run online vs. offline?

 Where should you concentrate future investments for quality, performance, and feature

updates? What ideas could you test in your next update or in a separate app?

 Is the app truly serving your business goals?

I can’t imagine that anyone who is serious about their apps business would not want answers to

these kinds of questions, which is why many app developers consider telemetry a must-do for their

apps, starting with any beta-testing or early previews they might put out.

Tip If you collect telemetry for beta or preview apps, be sure to separate that data from production

versions, and also consider separating data from each major version of the app so that you can answer

your questions clearly.

Early in this chapter I said that publishing an app means going into business, and telemetry tells you

a lot about the success of that business. To return for a moment to the four “F’s” as I call them—the

four motivations for writing apps—here’s how telemetry is typically used for each:

Business Type Use of Telemetry

Fame Priority: Growing a customer base.

Are you acquiring new customers? How are you acquiring them? What strategies in the app lead to

new customers?

Fortune Priority: Monetization.

Assuming you’ve done market analysis on the competition, are your differentiating features

succeeding? Are your monetization strategies being employed? What use patterns can you take

advantage of to further monetize?

Fun Priority: Sharing your joy.

Are your customers enjoying themselves and perhaps sharing that joy with their social network?

Philanthropy Priority: Promoting a message.

Are customers inspired by the message and the cause? Are customers willing to support the cause?

1150

The questions you want to answer with your app will lead directly into how you instrument your app

to gather telemetry. That is, your questions lead to telemetry design, and your telemetry design leads

to what are called events. Events are broad, human-readable verbs or actions that you want to track—

generally just strings that you use to categorize your telemetry data. This way they become the basic

unit of organization for the analytics that you’ll eventually get from your telemetry.

Typical apps log about 30 distinct events, which often include (but are not limited to) app start, app

exist, registration, login/log off, settings changes, content sharing, recoverable errors, non-recoverable

exceptions, view content, mark as favorite, comment on content, viewing and item or category in a

catalog, search or filter, add to wishlist, begin/complete/abandon checkout, invite friend, accept a

friend’s invitation, game started, game completed, hint requested, and so on.

The relatively small number of events is driven by the fact that each one surfaces separately in the

analytics that get generated from the telemetry—each event perhaps translates to a separate chart.

Too many (or too few) events makes it difficult to harvest actionable information from the analytics, so

when you think about events you really want to think about the insights you want to gain. For example,

it’s more important to track what content items are being tapped or clicked rather than the pointer

events themselves, except perhaps to gather secondary data about the type of input (mouse, touch, or

stylus).

Events help identify users’ flow through the app and per-page feature usage. As such, they are

usually static (not dynamically generated) and are usually somewhat generic, such as “Article read.”

Event attributes or properties (think adjectives or subject nouns) then provide specific details, such as

the URI or title of the article being read. This way the top-level events answer one level of questions

about app usage, with the attributes providing another level. This becomes very helpful when

generating charts from all this data, where the overall chart is for an event with attributes and

properties providing the individual data points, bars, lines, and so on.

If you think about charting—which is probably the most common way to consume analytics—it’s

also important that the properties and attributes you assign to events will chart well. For this reason,

numerical attributes that can vary widely are best grouped into “buckets” or ranges, rather than

reported as discrete values. For example, you could track the time spent on a given page or the time it

took to complete a game level in terms of 0–5s, 6–10s, 11–20s, 21–60s, 61s–120s, and so on so that a

pie chart or bar chart has a reasonable and meaningful number of elements.

It’s also best to report events at the end of an action when you have all the data you might attach to

it, thereby making each event as rich as you can and reducing clutter in your analytics.

I hope that I’ve convinced you that instrumenting your app for telemetry is a good idea! So how

then do you go about it? Well, you have two choices:

 The hard way Implement some kind of tracing/logging API of your own, sprinkle calls to that

API throughout your app, implement a backend service to which you regularly upload your

collected data (and make sure it can scale to thousands or tens of thousands of users), and then

implement an entire analytics engine to process that data into meaningful reports.

1151

 The easy way Register with a third-party analytics provider who is in the business of doing

most of the hard work for you. Incorporate their SDK into your app, make calls to their API as

needed, and spend most of your time using the analytics to create better apps!

Unless you already have an infrastructure in place , I suspect that you’ll choose the easy way! If you

go to the Windows Partner Directory, where perhaps you’ve already looked for ads and commerce

providers, you can click the Analytics filter and see a number of companies that offer great tools in this

regard. Do note that the directory here intermixes partners that provide telemetry services, like we’re

talking about here, and those who provide services like error tracking, market performance tracking, or

marketwide trend reports (which are also useful, but different). But just spend a little time looking

through the list and you’ll find the right ones—such as Localytics, MarkedUp, AppFireworks, mtiks,

Adobe Omniture, and Parse. (Note that Flurry, the most popular analytics SDK for Windows Phone and

other platforms, is not at present available for Windows Store apps, whereas many of the others in this

list work on both. Furthermore, some providers might not offer an SDK for apps written in JavaScript,

so check on the specifics.) Microsoft is also busy creating an analytics platform of its own called

Application Insights.

What I very much appreciate is that these providers typically offer a free service tier so that you can

get started without any up-front cost and start paying only when your app is successful enough to be

generating significant data.

The typical flow with these providers is that you visit their portal to create an account, download the

SDK and incorporate it into your project, and then register an app for which you receive a unique key.

You provide this key when you initialize the SDK’s main object, and then you call that object’s methods

to log your events. Depending on the SDK, you might need to request an upload of the data, or it

might do it automatically. Either way, after using the app for some time, you visit the provider’s portal

and explore the results.

A few tips:

 Use separate development, beta test, and production keys The purpose of telemetry is to

gather actionable data from real-world users, so you always want to keep any data gathered

during your development phase separate from real customer data. It’s likely that you’ll also

want to separate beta testing data (e.g., for side-loaded versions, which probably has

correlations with distinct time periods) from final production data (for the app acquired from

the Store). This means creating separate keys through the provider’s portal and make sure to

change them when you build each variant of the app.

 Create a telemetry layer in your app This allows you to easily switch providers at any time, if

the need arises, and encapsulates any computation or bucketing logic behind the layer’s

interface so that it doesn’t interfere with the rest of the app. If you define a simple enablement

flag and check it within each method of your layer, it also makes it very easy to turn telemetry

on and off (as when the user opts out) without touching any other part of your code.

 Test your telemetry by visiting the analytics portal early and often At the end of the day,

http://services.windowsstore.com/
http://blogs.msdn.com/b/visualstudioalm/archive/2013/11/13/announcing-application-insights-preview.aspx

1152

you’re doing all of this to get actionable insights from the provider’s analytics. So even when

you first start doing your instrumentation, gather some data and then visit the provider’s portal

to see the results. You’ll quickly find whether the events you defined are meaningful, whether

the attributes and properties you include with the events have the right granularity, and

whether you’re correctly reporting that data.

 Be sure to turn on the Internet (Client) capability in your manifest Otherwise nothing will

ever make it to the backend! Note that so long as you collect no personal information, email

addresses, screenshots, or browsing history, gathering telemetry should not affect your app’s

required age rating.

 Inform the user and allow opt out Telemetry data is a form of user information, though not

personally identifiable. For this reason, make sure that your app’s page in the Store and your

privacy policy, and provide an option in your settings to disable telemetry altogether if the user

chooses to opt out.

As a small example, I instrumented the 15+Puzzle game I have in the Windows Store with telemetry

so that I can determine usage patterns, especially patterns that affect different monetization strategies.

I used the Localytics SDK, but anything specific to that SDK is isolated in my telemetry layer. That layer

is implemented in my own Telemetry namespace that’s defined as follows, where the init function

gets everything going:

WinJS.Namespace.define("Telemetry", {

 inputType: { touch: 0, mouse: 1, keyboard: 2},

 session: null,

 enabled: true,

 _curPage: null,

 _lastNavTime: 0,

 _settingsTime: 0,

 _timeLastStarted: 0,

 _timeLastCompleted: 0,

 _inputTally: new Array(3),

 _now: function () {

 return new Date().getTime();

 },

 _convertToRange: function (value, granularity) {

 //For telemetry, we don’t want to log every number, but should group them together

 // into ranges. This method returns a string based on the granularity. For 25 for

 // example, it’ll create strings "0-24", "25-49", "50-74", etc.

 //Special case a true zero

 if (value === 0) {

 return "0";

 }

 var rangeBase = Math.floor(value / granularity);

http://go.microsoft.com/fwlink/?LinkId=392775

1153

 return (granularity * rangeBase) + "-" + ((granularity * (rangeBase + 1)) — 1);

 },

 init: function () {

 var keyDeveloper = "...";

 var keyBeta = "...";

 var keyProduction = "...";

 Telemetry.session = LocalyticsSession(/* key */);

 Telemetry.session.open();

 Telemetry.session.upload();

 } else {

 Telemetry.session = null;

 }

 Telemetry.enabled = (Telemetry.session !== null);

 //Automatically log app errors

 WinJS.Application.addEventListener("error", function I {

 Telemetry.error("WinJS.Application.onerror", { "Line": e.detail.errorLine,

 "Character": e.detail.errorCharacter, "File": e.detail.errorUrl,

 "Message": e.message });

 });

 },

 // Other event methods, such as error

}

You can see here that I have a generic bucketing method, _convertToRange, which I use elsewhere in

the layer, whose other methods reflect my event design. These include: error, appStarted, syspending,

resuming, visibilityChange, licenseChanged, appResized, newGrid, restarted, pageNav, scoredCleared,

scoresViewChanged, gameStarted, gameRestarted, gameCompleted, tallyInput, optionsEnter, optionsExit,

settingsEnter, settingsExit, and feedback. (This last one, by the way, is how I log user comments in a

Feedback panel that’s part of the app’s Settings. This way I don’t need some other service to collect the

data.)

To show what I mean by encapsulating telemetry logic in this layer, below is the appResized method

that’s called on window.onresize events; as you can see, I gather up information about the device

characteristics, because I want to know if the customer is playing full screen in portrait or landscape,

how large of a screen they’re on, and the size of the app view itself. This data can inform future

investments in layout and user experience. If I know, for example, that customers prefer portrait over

landscape, I can focus on that layout first and landscape second:

appResized: function () {

 if (Telemetry.session === null || !Telemetry.enabled) { return; }

 var wgd = Windows.Graphics.Display;

 var displayInfo = wgd.DisplayInformation.getForCurrentView();

 var w = document.body.clientWidth;

 var h = document.body.clientHeight;

1154

 //Convert orientation enum into a simple string value

 var orientation = "landscape";

 if (displayInfo.currentOrientation == wgd.DisplayOrientations.portrait

 || displayInfo.currentOrientation == wgd.DisplayOrientations.portraitFlipped) {

 orientation = "portrait";

 }

 //Here I group window sizes at a 200px granularity for better analytics.

 var data = {

 "Display Orientation": orientation,

 "Scale": displayInfo.resolutionScale,

 "View Orientation": (w < h) ? "portrait" : "landscape",

 "Width": Telemetry._convertToRange(w, 200),

 "Height": Telemetry._convertToRange(h, 200)

 };

 Telemetry.session.tagEvent("View resized", data);

},

With my gameCompleted event, I also report what kind of input was used to play the game,

bucketing the specific counts, of course. This is data that I want to drive further investments in handling

input, such as my implementation of keyboard support:

gameCompleted: function (data) {

 if (Telemetry.session === null || !Telemetry.enabled) { return; }

 data = data || {};

 Telemetry._timeLastCompleted = Telemetry._now();

 //Add a range for inputs used in this game.

 data["InputTally_Touch"] =

 Telemetry._convertToRange(Telemetry._inputTally[Telemetry.inputType.touch], 25);

 data["InputTally_Mouse"] =

 Telemetry._convertToRange(Telemetry._inputTally[Telemetry.inputType.mouse], 25);

 data["InputTally_Keyboard"] =

 Telemetry._convertToRange(Telemetry._inputTally[Telemetry.inputType.keyboard], 25);

 //Add an attribute for network connectivity: I don’t use this in the game at present,

 //but the data can help me understand whether to add network-related features.

 var connected = false;

 //Returns null if offline

 var profile = Windows.Networking.Connectivity.NetworkInformation

 .getInternetConnectionProfile();

 if (profile != null) {

 var level = profile.getNetworkConnectivityLevel();

 //internetAccess or constrainedInternetAccess is probably acceptable; none or

 //limitedAccess is not.

 connected =

 (level == Windows.Networking.Connectivity.NetworkConnectivityLevel.internetAccess) ||

 (level ==Windows.Networking.Connectivity.NetworkConnectivityLevel

1155

 .constrainedInternetAccess);

 }

 data["Has Connectivity"] = connected;

 Telemetry.session.tagEvent("Game completed", data);

},

Where all of this telemetry and analytics becomes even more valuable is if I decide to produce

multiple apps of the same nature. By collecting telemetry in one app, I learn a great deal that I can

apply to the first versions of subsequent apps. Indeed, one reason why you might choose to release a

free app and strive to build up a large user base is just to acquire telemetry that can then inform a

more significant investment in an app you’d like to monetize. Like I said, people who are serious about

their apps business consider telemetry as a must-do! I strongly encourage you to do the same.

Releasing Your App to the World

We have finally come full circle to the exact point where we started in Chapter 1: onboarding your

world-ready app to the Windows Store and making it available to that world.

Because the onboarding process is well documented already in the Publish your app in the Windows

Store topic, I’m not going to spend our time here giving you too many screenshots from the Store

dashboard, where all of this action takes place. I’ll point you to specific pages in those docs when

appropriate, but it’s definitely a section of the documentation where you should spend some time and

not just assume that you know what’s best. After all, the Windows Store is the retail channel for your

app, so you want to understand that channel as best you can. The Store dashboard is also designed to

lead you through the process directly.

For example, on the “Selling apps” topic there’s a section on Write a great app description. I can’t

encourage you to think about this enough! Why? Because your app description, along with

promotional graphics, are one of the primary ways that users in the Store make a decision about

acquiring your app. Furthermore, if your app happens to be featured in the Store, the first line or two

of that description is what users will see. Every word of that description counts and counts so much that

it’s one of the things that the Store team looks at when selecting apps to feature, because they want

the Store’s home page to look good too. Take time to do this well, and if you don’t feel up to the

challenge, hire a writer for this purpose.

But like I said, that section of the documentation is quite comprehensive, so I’m not going to repeat

it. What I want to focus on here specifically are those aspects of the process that aren’t always so

obvious, based on the real-world experience that I and my teammates in the Windows Ecosystem Team

have gained through working with the partners to submit apps to the Store. Through this I hope to

raise your awareness of issues that you’ll likely face so that you’re more prepared to address them.

http://msdn.microsoft.com/library/windows/apps/br230836
http://msdn.microsoft.com/library/windows/apps/br230836
https://appdev.microsoft.com/StorePortals
https://appdev.microsoft.com/StorePortals
http://msdn.microsoft.com/library/windows/apps/hh694076.aspx

1156

Sidebar: Build Targets and Maintaining Windows 8 and Windows 8.1

Versions

When you create your app package to upload to the Store, be mindful to set your project’s

configuration to Release instead of Debug, otherwise it will fail certification. When choosing the

target platform, set this to “Any CPU” unless you specifically have WinRT components written in

C++. That is, JavaScript and .NET languages (C#/VisualBasic) are architecture-neutral; anything

written in C++, on the other hand, must target x86, x64, and ARM specifically and therefore

requires uploading three builds to the Store.

Similarly, your customer base might require that you support both Windows 8 and Windows

8.1 versions of your app for a time. The Store supports this, and you can find more information

on the blog post Managing your app on Windows 8 and Windows 8.1. Also note that your

Windows 8.1 version must have a higher version number than your Windows 8 version, but be

sure to leave space between the version numbers so that you can update the Windows 8 app and

increment the version number.

Promotional Screenshots, Store Graphics, and Text Copy

Before you starting thinking of the obvious steps of uploading a package to the Store, , review the

topic How your app appears in the Windows Store and a couple of its associated topics: What to name

your app, Your app’s description, Choosing your app images, and Make your app easy to promote.

The reason why I specifically call out these topics is because you’ve invested or you’re going to

invest a lot of time and energy developing your app (and testing it, as we’ll discuss soon), and so you

should make a comparable effort to make it look great in the Store. All of the content described by the

links above—your app’s name and description, its details, keywords (search terms, that is), in-app

purchase descriptions, and its promotional images, localized for each market you want to target—

constitute your customers’ first experience of your app and play a definite role in the possibility of your

app getting featured in the Store. (Go back to Chapter 19 and review “Part 3: Creating a Project for

Nonpackaged Resources” for a complete list of what you’ll need when onboarding your app.)

Let me say that again: all of this information is what potential customers will use to evaluate your

app before they tap any button to acquire it. It’s what the Store team also uses to evaluate the

marketability of your app. In short, it is all marketing material, plain and simple, so make it shine! Spend

time writing really good copy for your app description—even to the point of having it professionally

edited or hiring a professional writer. If you feel your app is fun and engaging, communicate that

experience through your description and imagery. Share everything you love about your own work!

Truly, you want customers’ first impression of your app—just from a quick glance at your app’s page in

the Store—to be WOW! And this content is all that determines that response.

The other reason I emphasize this so strongly is that the Store won’t ask for any of this information

until you’re very near the end of the onboarding process, which is exactly when you’ll be most anxious

http://blogs.windows.com/windows/b/appbuilder/archive/2013/11/05/managing-your-app-on-windows-8-and-windows-8-1.aspx
http://msdn.microsoft.com/library/windows/apps/hh694057.aspx
http://msdn.microsoft.com/library/windows/apps/jj657967.aspx
http://msdn.microsoft.com/library/windows/apps/jj657967.aspx
http://msdn.microsoft.com/library/windows/apps/hh694076.aspx
http://msdn.microsoft.com/library/windows/apps/hh846296.aspx
http://msdn.microsoft.com/library/windows/apps/jj923071.aspx

1157

to complete the process! If you haven’t prepared those materials already—including localized

versions—and you’re trying to get the app out as quickly as possible, you’ll end up cutting some

serious corners. As a result, your app’s first impression will be nowhere near as good as it could be.

Tip You can enable access to the Description area of the dashboard if you upload any package to the

Store for your app, regardless of its completeness. I recommend that you do this early on with any old

test package just so that you can see for yourself what information will be needed later.

I also encourage you to watch Pete Brown’s //build 2013 session entitled The Wow Factor: Making

Your Windows Store App Promotable, where he discusses the many criteria that the Store team uses to

select featured apps and those that are used in demos and conference keynotes. To summarize:

 Build a great app, because that’s what gets attention first and foremost, but then your app also

has to be promotable.

 Have a great Start screen presence with a beautiful tile and/or live tiles. Whenever you see a

Start screen in advertisements, a keynote session, or anywhere else, every tile has been

consciously chosen. If you don’t support live tiles, invest the most in your 150x150 square tile

and be sure your branding is clear. Also provide scaled versions of your tile for maximum

sharpness.

 An app should have a “best-at” statement that’s reflected in the first line of its description. Apps

that have a clear and valuable purpose make a great featured item in the Store, because users

will see it and say “I want this.”

 In your app description, say what the user experiences in your app in support of your best-at

statement. Grab attention with the first sentences (which can show in the Store feature page),

use lists and short paragraphs, avoid dry or pedantic language, and be clear about trials, in app

purchases, and so forth. Get inspiration by reviewing write-ups for other apps, and don’t forget

spelling and grammar.

 Be honest in your app description, and make sure to disclose geographical restrictions,

hardware requirements, partial localization, and why you’ve declared any questionable

capabilities in your manifest.

 If you’re using ads, consciously incorporate them into the app design so that they integrate

naturally and beautifully and contribute, rather than detract, from the user experience.

 Handle view sizing really well so that the app appears beautifully alongside other apps, and

support multiple views if appropriate. Views and view handling are a key differentiator for the

Windows platform as a whole and thus something that’s highlighted in marketing. If your app

works really well in those scenarios, it might be included in that marketing.

 Use the app bar and nav bar intelligently and creatively.

 Offer a trial for paid apps.

http://channel9.msdn.com/Events/Build/2013/2-130
http://channel9.msdn.com/Events/Build/2013/2-130

1158

 Be part of the bigger picture with apps as a whole by supporting contracts like Share.

 Submit awesome age-appropriate screenshots and promotional graphics (the first one being

the most important), and think outside the box a little. Graphics don’t have to be straight-on

screenshots but can show the app in other contexts, including human interaction with the

product. In other words, think like you’re designing a box for your app that would sit on a retail

store shelf—you’d show what the app does but not limit yourself to screenshots.

 Match exact sizes for promotional graphics: 414x180 (the only one if you do one), 414x468

(used more in Windows 8.1), 558x756, and 846x468.

 Support every architecture—x86, x64, and ARM—because otherwise a customer might see your

app in advertising and then be unable to find it on their device.

In short, as much as you plan to build a great app, also plan for its promotion rather than just

leaving it all to chance.

The last bit I’ll mention here is that you also want to make it easy for people outside of the Store

and Microsoft to promote your app. The information on your Store page helps with this, but you

should also offer a “press kit” on your website that includes various forms of promotional text, press

releases, a variety of marketing images, app and/or company logos, links to your Facebook page, your

Twitter handle, links to other web resources (like YouTube videos), and the like. By doing this work

ahead of time, you make it all the easier for others to promote you.

Testing and Pre-Certification Tools

Unless you’re a born tester, app testing is an activity that has little glory and thrill compared to

development, yet it can make a huge difference in the success of your app. Indeed, for many

developers—especially those who have been primarily focused on the web, as I expect many readers

are—rigorous testing is not one of their skill sets. I think this is because the nature of web development,

where you can upload a fix to a site and have it take effect immediately, has not demanded much

testing discipline. How often have you seen one of your favorite websites just blow up one day, hobble

around for a few hours, and then come back to life? (I’ve seen this even with Facebook.) It’s probably

because some developer introduced a nasty bug that was discovered and purged during those hours of

awkwardness. For some sites, that downtime can be disastrous, but for many others the impact is small

to negligible.

The costliness of bugs in web apps is generally quite small because the update time is also very

small. But this is not a reality with apps. The time from when you submit an app to the Windows Store

to when it’s made available averages two days, but it can be longer. This means that each submission is

far more significant.

Just look at it in terms of turnaround time. Let’s say it takes five minutes to upload a fix to a web

app. Compare that to the number of minutes in three days, which is 4320. The ratio? 1 to 864. In other

1159

words, it’s nearly hundreds of times more expensive in terms of time and effort to update an app in the

Store. Practically speaking, this means that you might need to spend orders of magnitude more effort

testing apps than testing websites. That’s significant! (And don’t make the argument that because you

spend zero time testing web apps the multiple still comes out zero.)

If you don’t have some testing methodology in place, start building one, even from the basics. For

example, be sure to always test your app on a clean install of Windows on a machine without a

developer license, as well as on low-end machines whose performance is similar to many ARM devices.

One developer I worked with had an app rejected by the Store because it came up blank on first run—

he never saw this happen because of all the cached data on his development machine!

You also want to develop a solid checklist of how to poke and prod your app to exercise all its code

paths. This should include subjecting it to all the conditions that come from outside your app: changing

view sizes and device orientations; invocation of the different charms; changes in network connectivity;

running on slow networks; varying screen sizes and pixel densities; input from different sources; having

your temp files cleaned out with the Disk Cleanup tool; signing on with different credentials;

suspending, resuming, and restarting after termination; running with high contrast modes and other

accessibility features; and running under different languages. The better your app behaves under all

these circumstances—which are all those things that real-world users will subject the app to!—the

more solid it will look and feel to those same customers who will be writing ratings and reviews.

Having great performance, of course, is also essential, but we already talked about that back in

Chapter 3. Be sure to review the Debugging and Testing Windows Store apps and Analyzing the

performance of Windows Store apps in the documentation.

The other very important part of testing is running your app through the Windows App Certification

Kit, otherwise known as the WACK. This tool—which you can find through the Start screen by searching

on “Cert Kit”—subjects your app to all the automated tests that will happen when you onboard to the

Store, thereby letting you correct any problems it finds beforehand. Passing the tests in the WACK is no

guarantee that your app will be fully certified, but it will certainly save you a great deal of time waiting

for onboarding results and having to resubmit over and over.

You should, in fact, run the WACK just about every day during development. You won’t necessarily

fix everything it brings up immediately, but the ongoing data will be very valuable.

For complete details on the tool and what it does, see Using the Windows App Certification Kit and

Windows App Certification Kit tests.

Tip If you find the WACK coming up blank (showing no apps to test), try uninstalling SDK samples

that you might have run from Visual Studio. It seems the tool can get overloaded sometimes.

Creating the App Package
When you’re confident that your app and its presence in the Store is ready for the world, it’s time to

finally create an app package for upload! To do this, start the submission process for your app on the

http://msdn.microsoft.com/library/windows/apps/hh441481.aspx
http://msdn.microsoft.com/library/windows/apps/hh696636.aspx
http://msdn.microsoft.com/library/windows/apps/hh696636.aspx
http://msdn.microsoft.com/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/library/windows/apps/jj657973.aspx

1160

Store dashboard to create an identity with the Store and reserve names for it (including localized

names). Then, to make sure the information in your app manifest matches what’s in the Store, which is

absolutely necessary if you’re using push notification and similar services, use the Visual Studio menu

command Store > Associate App with Store.

Tip Before building the package, make one last check of the Store Logo image in your manifest’s

Visual Assets section. This graphic is never used at run time and easily escapes your attention, and yet

it’s very visible on your app’s page in the Windows Store.

Now you can create the app package. For starters, remember to set your build target to Release in

Visual Studio, and then select the menu command Store > Create App Package. The first dialog that

appears (see Figure 20-7) asks whether the package you create will be uploaded. (Note that you can

also create a package outside of Visual Studio; see Create an app package at the command prompt.)

FIGURE 20-7 The first dialog box shown when you create an app package in Visual Studio.

If you want to create packages for side-loading (see “Sidebar: Side-Loading” coming up), select No.

If you’re planning to submit now, on the other hand, press Yes and click Next, after which you’ll be

asked to sign in again and then you’ll double-check your app’s association with those you’ve created in

the Store.

Next you’ll specify an output directory for your package and indicate target archi tectures, if needed,

as shown in Figure 20-8. Here’s where I want to explain a little about the Generate App Bundle option

you see there, which is important if you have localized resources, scaled resources (that is, 100%, 140%,

and 180% raster graphics), and resources for different versions of DirectX (which won’t happen with

JavaScript apps, but I wanted to mention it). As I’ve noted elsewhere, such as in “Sidebar: Managing

Overall Package Size” in Chapter 19, having lots of resources to cover variations in scale, language, and

contrast can make your upload package somewhat large (the allowable limit if 8GB). Fortunately, this

mostly affects your upload to the Store rather than customer downloads, if you select If Needed or

Always for Generate App Bundle drop down.

A bundle, in other words, is a way to structure your package so that the Store can selectively

http://msdn.microsoft.com/library/windows/apps/hh924768.aspx

1161

download only those resources that a user needs for their particular device configuration. For most

apps, selecting If Needed is sufficient because it instructs Visual Studio to handle everything

automatically. Choosing between Always and Never applies mostly when you are using C++ code that

must be specifically compiled for x86, x64, and ARM (including any WinRT components). Choosing

Never means that you’ll upload separate architecture-specific packages yourself; selecting Always (or If

Needed) will include builds for each architecture in the bundle, saving you some trouble during upload.

Note You can set the default bundle option in your app manifest in the Packaging > Generate App

Bundle control.

FIGURE 20-8 The second step in creating a package for the Store, where you indicate an output folder, a package

version, specify bundle options, and identify architecture targets.

Speaking of compiled components, another aspect of packaging affects the user experience of app

acquisition: when a user acquires any new app, the Store works with Windows to automatically check

whether the user already any of matching library components installed on their device (checking for

exact version matches, file sizes, and so forth). If so—and this applies to JavaScript libraries as much as

1162

compiled .dll and .winmd files—Windows shares those components between multiple apps, thereby

reducing download time and saving storage space.137 If an app update requires a newer or different

version of a component, of course the Store will bring down the one it needs.

For the most part, this is completely transparent to app developers with one exception: if you’re

using any kind of third-party library or component that might be used by other apps, avoid making

modifications or recompiling that library. If you do, you effectively create another variant of the library

and Windows will not be able to share it with other apps. To be honest, this doesn’t matter much with

small JavaScript libraries: it matters most with large frameworks like game engines that can be

hundreds of megabytes. Still, keep this in mind for any frameworks that you employ.

In any case, once you press Create in the dialog box shown in Figure 20-7, Visual Studio will build

the package in the specified location. When it’s done, if you indicated that you wanted a package to

upload to the Store, the last dialog box (not shown here) gives you the option to run the WACK as a

final check before you upload.

If you go now to the folder where Visual Studio created your package, you’ll see an .appxupload file

(along with a folder ending in _Test that contains what you need for side-loading; see “Sidebar: Side-

Loading”). As explained in Chapter 1, a package is just a ZIP file, so you can append .zip to the full

filename and then explore its contents. What you’ll then find is an .appxbundle file (if you created a

bundle) or an .appx file (if you did not bundle). If you copy these out of the ZIP file and rename them

to .zip as well, you can see the full package contents.

In the case of .appx, you’ll see the structure described in Chapter 1, with your source files,

certificates, and the block map. In the .appxbundle, on the other hand, you’ll see that it contains a

number of individual .appx files organized by scale, language, and DirectX versions, each of which is

somewhat smaller than the full upload package. These smaller .appx packages are the ones that the

Store will download as needed according to each user’s configuration.

Anyway, when you’re ready to upload a package, just make sure that you remove the .zip extension

from your .appxupload file!

Protecting your code When inspecting the package contents for an app written in JavaScript, you’ll

see that all your source code is sitting right there, which means that your customers will get all that

source code on their machines. Naturally, you’ll be asking how you can protect this code from hacks

and/or individuals who would unscrupulously “borrow” from you. For the answers, see Dan Reagan’s

post Protecting your Windows Store app from unauthorized use, which describes some of the steps

that Windows does to validate package integrity, along with my blog post Protecting Your Code.

137 During the production of Windows 8, we investigated whether it made sense to enable separate onboarding of third-

party frameworks and library components to the Store, such that the Store would manage dependencies and updates. In

the end, we concluded that the risk-to-reward ratio was too high and we enabled this sort of thing only for a few libraries
like WinJS. The solution presented here for Windows 8.1 took the previous investigation into account, avoiding the risks

while making faster downloads and saving end-user storage space, which were the primary goals.

http://social.msdn.microsoft.com/Forums/windowsapps/en-US/8b3cf68d-897d-4a47-ace0-2c42355bf688/protecting-your-windows-store-app-from-unauthorized-use
http://kraigbrockschmidt.com/blog/?p=697

1163

Sidebar: Side-Loading

Side-loading means installing an app without going through the Store. This is most common for

developers (who have a developer license on their machine) to share their apps without sharing

their projects, perhaps to get early testing. It’s also used in enterprise environments and line-of-

business apps where the Store isn’t involved. Either way, the process is the same: you create an

app package through Visual Studio as already described, just choosing No in Figure 20-7. This

will take you through the same configuration step as in Figure 20-8 but skips the step to

associate the app with the Store.

Going to the package folder you’ll see a folder whose name ends with _Test. In that folder

you’ll see the following:

 The app package (.appx or .appxbundle file).

 A temporary certificate (.cer file).

 A Dependencies folder that contains any libraries that would normally be provided by the

Store; WinJS is one such library.

 Most importantly, a PowerShell script named Add-AppDevPackage.ps1 (and a folder with

associated resources) that will install the app on a side-loading-capable machine.

Running the PowerShell script installs the app very much like it would be from the Store, so if

testers side-load on a machine where your app has not been installed before, it closely

approximates a typical user’s environment. This way you can truly test the first-run experience of

your app on a variety of devices.

For more information about side-loading, see Deploying enterprise apps and Try It Out:

Sideload Windows Store Apps.

Onboarding and Working through Rejection

With your app package in hand, you’re now ready to send it out from home for the first time.

Uploading your package is done through the Store dashboard in the Packages section for your app.

Visual Studio’s Store > Upload App Package command, for its part, just takes you to the dashboard.

In the Store, you might find that the Packages section is disabled. This means that you probably still

have a few bits to fill in first. If you haven’t done so already, be sure to go into your Selling Details to

set your price tier, set a trial period (if applicable), select the markets in which you want your app to be

available, specify a release date, assign a category and subcategory (if applicable), and check the box

for Accessibility if you’ve honestly done the work we discussed in Chapter 19. See Declaring your app as

accessible.

http://msdn.microsoft.com/library/windows/apps/jj657971.aspx
http://technet.microsoft.com/windows/jj874388.aspx
http://technet.microsoft.com/windows/jj874388.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700322.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700322.aspx

1164

Limiting your app’s initial reach? One feature that you’ll find missing from the present Windows

Store is a way to do beta or preview testing with a limited audience. You can do some of this through

side-loading, but that requires each user to have a developer license, which generally means they need

to install Visual Studio or at least the Remote Debugging tools. Hardly an attractive requirement! (That

said, there are third parties that can help with these arrangements.)

What you can do instead is target only a single market for your initial release—Trinidad and Tobago

seems to be the favorite as it’s the smallest country in the list! Users in that country will be able to see

the app in the Store, but users in other regions will not unless you send them a direct link as part of

your preview invitation.

Next go into Services and, if you have nothing to do here, just click Save. Then visit Age Rating and

Rating Certificates, and carefully read the restrictions for each rating. I emphasis this because the

certification testers take age rating very seriously and will reject your app if you don’t meet those

restrictions. You should also double-check your privacy policy to make sure that you’re being clear and

forthright about how you collect and/or use personal information—such information is typically the

key factor in age ratings. Remember that you must have a privacy policy if the app is network-enabled

in any way (such as declaring the Internet (Client) capability) or uses devices that require consent.

Tip Store requirement 4.1 describes what must be in your privacy statement. Also be sure that your

privacy policy is accessible through your apps Settings commands—the lack of this will cause the app

to fail certification.

Game rating certificates When uploading an app into the Games category, you’ll be required to

provide game rating certificates for different markets in the form of a GDF file. For details, see Prepare

your Windows game for publishing. You upload these certificates on the Age Rating and Rating

Certificates page.

The last piece before you enable the Packages area in the Store dashboard is Cryptography, where

you must declare whether your app calls, supports, contains, or uses cryptography or encryption,

because your country of origin might have export restrictions.

Finally, you’ll get to the Packages section, which might seem anticlimactic after all this! As shown in

Figure 20-9, you’ll just drag and drop your .appxupload file onto this page. This is also where you can

upload both Windows 8 and Windows 8.1 packages. Note that uploading begins as soon as you drag

and drop—wait for the upload to complete before clicking Save.

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh452788.aspx
http://msdn.microsoft.com/library/windows/apps/hh452788.aspx

1165

FIGURE 20-9 The Packages page in the Store dashboard.

Next you’ll go to the Description page, where you enter all the information that will show up on

your app’s page in the Store. It’s ironic that this page comes so near the end of the onboarding process

(and isn’t even enabled until you upload a package) because most developers, I imagine, are getting

quite anxious by this point to get the app certified! But, please, take a deep breath, relax, and convince

yourself that you should invest all the time and energy you need here to make your app shine in the

Store. This is exactly why talked about promotional graphics and text copy much earlier—you shouldn’t

leave these very critical elements of your app to the last minute!

Remember too that you’ll have the opportunity to provide versions of all these details for each

language that you support. This again includes descriptive text (including any necessary disclosure

about keyboard/mouse support for requirement 6.13.4), graphics, descriptions of in-app purchases,

website URIs, a link to your privacy policy, and so forth. A full list can be found on the App submission

checklist and in Chapter 19 in “Part 3: Creating a Project for Nonpackaged Resources.” As I wrote then,

pay special attention to your app’s keywords and prioritize them for localization—even if you do no

other translation work—because customers will be searching the Store in their regional languages.

The very last step in the process is writing notes to testers. Include here any details that are

necessary for a real person to exercise your app as part of the certification process, such as credentials

for a test account, finding nonobvious features, using background tasks, and so on. And yes, a real

human being will look at your app (and read your notes, so be courteous)! Automated tests can only

accomplish so much—in the end, someone needs to run the app and make sure it does what it says.

With all the information and packages in place for your app, you’re ready to click the Submit for

Certification button on the app’s page in the dashboard. After that, you’ll get an acknowledgment

http://msdn.microsoft.com/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/library/windows/apps/hh694062.aspx

1166

email followed by the joy of waiting for the results! I’m told that typical certification turnaround is

about two days. It can be shorter if you happen to submit during a relative lull—when I submitted Here

My Am! as part of writing this chapter it went through in less than two hours! Certification can take

longer, too, if you’re submitting during a busy season or if special circumstances will take more time

(such as declaring special use capabilities with a company account that require written justifications).

Whatever the case, the Store dashboard tries to keep the process transparent.

Once your app has completed the testing process, it will either be accepted or rejected. Acceptance

is really a nonissue—that’s what you’re looking for! The app will then become available either

immediately or on the release date that you specified. So congratulations! You’re in business!

Tip When your app is certified, you’ll get an email with the link to its page in the Store, which looks

like http://apps.microsoft.com/webpdp/app/<app_id> . You can also retrieve this from the Store

dashboard. Click Apps In The Store, and then click Details for that app.

If your app is rejected, on the other hand, the Store will tell you why, specifically citing violations of

the certification requirements. Indeed, these policies contain the only reasons that an app can be

rejected, so any rejection must necessarily indicate the particular requirement that isn’t being met. The

Store also provides some information about failures, such as where an app crashed (a violation of

requirement 1.2).

By and large, most of the policies are straightforward such that if you fail on them, it’s pretty clear

why. A few, however, seem to be more confusing or subjective, and in the early days of Windows 8

previews they were downright mysterious. Now, fortunately, there is an extensive list of reasons why an

app might fail a number of requirements on Resolving certification errors, many of which come from

our experience with real apps submitted to the Store. The Store testers can also provide direct feedback

regarding specific failures, like where and when an app might have crashed, which certainly caused

them to reject it.

Hopefully you only need to correct the problems that are reported and then resubmit your app. If

you get rejected multiple times and just can’t figure out what to do, I suggest asking questions on the

Windows Store forum where you’ll find assistance.

App Updates

One thing that apps and books share in common is that the moment you release them, you’ll find

errors, bugs, typos, and a hundred other things you wish you could change. Fortunately, updating apps

is easier than updating books, which I guess makes up for the fact that fixing a typo in a book is much

easier than fixing a typical app bug!

There are many reasons to issue an update besides fixing obvious problems and adding features

that didn’t make it into your current version. As described on Releasing improved versions, you might

want to respond to user reviews and requests, add more in-app purchase options, add features to

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh921583.aspx
http://msdn.microsoft.com/library/windows/apps/hh921583.aspx
http://social.msdn.microsoft.com/Forums/windowsapps/en-US/home?forum=windowsstore
http://msdn.microsoft.com/library/windows/apps/bg125302.aspx

1167

pursue new opportunities, add new language resources, update your promotional information, or

update your telemetry layer to improve your analytics. In fact, many insights for your next updates will

come from your telemetry.

For nearly all of these purposes, the data that the Store itself gathers will be highly valuable. There is

a series of topics in the documentation on this, starting with Understanding app quality and

performance. This gets you to the index for applicable subtopics, including Viewing app usage,

Reviewing app ratings and feedback, and Tracking app sales. You’ll want to start reviewing the data for

your app as soon as it’s in the Store, and make a plan for monitoring those reports that are most

interesting to you. Monitoring ratings and reviews, for example, is an important part of ongoing

customer support. In fact, schedule some time in the future right now to check in with these reports,

lest you forget they exist. Truly, these reports are your best link to real customers!138 Remember that

you published an app, so you're now running a business!

All such data will surely feed back into your planning and development processes, ultimately

bringing you to the point of once again uploading another app package and perhaps updating other

app information in the Store. A great feature of this in Windows 8.1 is that your update is automatically

deployed to all of your users except those that have specifically opted out. To cover the latter, you

could have your app check its version number, available from Windows.ApplicationModel.-

Package.current.id.version, against your most recent update as reported by a service, so that you

can inform opted-out users that an update is available. You can then direct them to the Store’s update

page by launching the ms-windows-store:Updates URI. If you want to give details about the updates

to your users, you can also have your service provide that data.139

Note Certification requirement 3.4 states that an app update “must not decrease your app’s

functionality in a way that would be unexpected to a reasonable consumer.” This suggests that you can

prune off seldom-used features (as revealed by your telemetry), but you’ll fail certification if you take a

popular feature of your free app, for example, and start charging for it as an in-app purchase.

When creating the new package, be sure to increment the version number in the manifest. (There’s

an option to do that automatically in the Visual Studio dialog; refer back to Figure 20-8.) Onboarding is

then the same as for any other app—no matter how little you might have changed, the app goes

through the whole certification process again (something the Store team is working to improve, by the

way). For this reason, don’t think to make whimsical updates—make each one count! Also, be aware

that the certification requirements change over time, so make it a point to periodically review the

requirements.

In your updated app, be prepared to migrate any state that might already exist on the machine, if

138 These reports will not give you any personal information about your customers, of course. If you want to collect that,

you’ll need to implement an opt-in registration system in the app that complies with requirement 4.1.2.
139 It’s very easy to create a service endpoint through Windows Azure Mobile Services, rather than having to set up a web

host separately. Refer to “Windows Azure and Azure Mobile Services” in Chapter 16.

http://msdn.microsoft.com/library/windows/apps/hh967768
http://msdn.microsoft.com/library/windows/apps/hh967768
http://msdn.microsoft.com/library/windows/apps/hh967785.aspx
http://msdn.microsoft.com/library/windows/apps/hh967781.aspx
http://msdn.microsoft.com/library/windows/apps/jj193594.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.version.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.version.aspx

1168

you’ve changed state versions. We talked about this in Chapter 10, “The Story of State, Part 1,” in “State

Versioning,” where we distinguished between the version of an app and the version of its state; many

app versions can use the same state version. However, if the app now uses a new state version, the old

state must be migrated. Remember too that you can use the servicingComplete background task for

this purpose, as mentioned in Chapter 16 in “Tasks for System Triggers (Non-Lock Screen).” Finally,

once you introduce new versions of your state, roaming data will roam between apps of the same

version only—you’ll be able to migrate old state when the new app is run, but once the state version is

increased, that data will no longer roam to devices with apps that use older state.

Tip To test an update, load both new and old app projects into separate instances of Visual Studio.

Edit each one’s .user file to add a <LayoutDir>[folder]</LayoutDir> element that points to the

same folder in both. Run your old version, exercise the app to establish your state, and then stop it.

Then set breakpoints on your activation and migration code in your new version and run that one.

Another key point about updates is that although your new app package might be fairly large,

existing customers will not have to download the whole thing again. If you go way, way back in this

book to Figure 1-1 in Chapter 1, we talked about the package’s blockmap, which describes how the app

package is segmented into 64K blocks. For an update, only those blocks that have actually changed

between versions are necessary to download. This means that you shouldn’t worry about making a

critical update to your app: if it affects only a small part of the code, the download impact is as little as

64K. (To help this along, try to have more small files in your project than a few large ones, and it’s

better to make changes at the ends of files than at the beginning or the middle.)

Other kinds of updates don’t involve code but do require recertification. Fortunately, recertification

typically goes much quicker, especially if no code changes are involve. One such update is adding a

new set of localized resources to your app. Although this means uploading your app package to the

Store and recertifying, it won’t affect any of your customers except those who are operating in your

newly supported language. Another type of update is when you want to change the pri cing of the app

or in-app purchases or change the app’s name. To do this, you just go into your app’s page on the

Store dashboard, make the necessary changes, and resubmit.

Finally, a kind of nonupdate is if you need to delist the app either temporarily or permanently. You

do this through the Store dashboard on the Details page for your app by clicking Manage Availability >

Remove This App’s Listing. This hides the app in the Store, although existing customers will be able to

reinstall it (but cannot make in-app purchases). So long as you don’t completely delete the app from

your dashboard, you can later click Manage Availability > Restore This App’s Listing to make it available

once again.

Getting Known: Marketing, Discoverability, and the Web

Long ago, when the Internet and the notion of “search engines” first became popular, many people

believed that you could just put up a website to sell whatever trinkets and gazingus pins you happened

1169

to have, and customers would come flocking on their own. We might laugh at such folly today, and yet

oftentimes we make the same mistake with apps. We mistakenly believe that just getting an app into

the Store is enough. Truth is, the Windows Store is fundamentally a distribution mechanism, which just

so happens to handle transactions and highlight a few apps here and there. And although this is a big

improvement over distributing software via the Web, and despite whatever praises we might sing for

app stores in general, they haven’t really changed what’s been true about sof tware for decades: to be

successful, you have to write great software and you have to invest in marketing.

If you were to set up a small brick-and-mortar shop in your home town, you'd immediately engage

in promotional activities of some kind because the business will quickly go under otherwise. And you'd

never question that need especially because you've invested so much in getting the business started,

and the cost of failure is losing that investment. With apps, you can get something in the Store with a

much smaller up-front investment, and so the perceived risk of failure is much lower. As a result,

developers aren't as invested in the success of that app as they might be with a real business. But if you

want that app to succeed and not just exist, you have to treat it like a business investment.

What's also true in business is that when you start to generate revenue from your initial promotions,

part of that stream should go into continued marketing as well as expansion of the business. In other

words, some portion of every dollar you earn with an app should be earmarked for marketing activities,

because that's how you'll begin to build a sustainable flow. By also earmarking another portion for

further development, you're investing in the longer-term sustainability of the business when revenue

from the first product begins to wane.

The bottom line is that although apps stores have brought a new distribution method with built-in

commerce, running a successful software business requires the same dedication and investment as it

always has: have a great product, and invest in the effort to let people know about it.

Toward this end, the Promote section of the documentation has some helpful guidance, some of

which we’ve already covered. It doesn’t talk about promotion outside the Store, however, and for that I

cannot claim much insight for myself. My best recommendation is to find a marketing specialist who

can work for you on an hourly basis initially to get things moving. You can then establish a relationship

into which you can direct later investments when you have the funds. In the meantime, there’s plenty

of material on the web about app marketing, such as The Art of Launching an App: A Case Study

(Smashing Magazine).

One important part that you can do that is outside of the Store is making sure you link your app to

your website, especially if your app is presenting the same or similar content that can show up in search

results. Let’s see those details next.

OEM preinstalls One other promotional possibility is that you might be approached by an OEM to

include the app preinstalled on their devices. If this happens—it’s quite a prize!—the OEM will give you

special instructions about how to onboard and maintain an app specifically for their customers. For

general details, see Working with OEMs.

http://msdn.microsoft.com/library/windows/apps/bg125380
http://uxdesign.smashingmagazine.com/2012/04/05/art-of-launching-app-case-study/
http://msdn.microsoft.com/library/windows/apps/bg125241.aspx

1170

Connecting Your Website and Web-Mapped Search Results
If you have an app, you’ll almost certainly have a site that provides additional information and support.

(Requirement 6.3 deals with support specifically.) What, then, if potentia l customers come to your site

(or some other) first? Surely you’ll want to provide easy ways for them to acquire your app if they’re

running on Windows. The same is also true if they search the web—whether in Internet Explorer or

through the Search charm—and find results from your site that could be displayed in your app.

To make a connection between your site and your app, there are first some URIs that get to your

app’s page in the Store. For browsers, the form is http://apps.microsoft.com/webpdp/app/<app_id>. To

see your specific URI, go to the Apps in the Store section of the Store dashboard and click Details for

the app. You can also get it at run time from CurrentApp.linkUri, which is the same link you include

with data packages through the Share contract, as covered in Chapter 15.

Another URI scheme, ms-windows-store, opens the Store itself on a Windows device, where the

specific URIs are described on Linking to your app:

 ms-windows-store:PDP?PFN=<package_family_name> Links directly to the app’s page; the

package family name is what comes back from Windows.ApplicationModel.Package.-

current.id.familyName.

 ms-windows-store:REVIEW?PFN=<package_family_name> Goes to the Ratings and Reviews

section of the Store for your app, which is what the Rate And Review command in your Settings

pane does. You can launch this URI from your app directly when inviting a review.

 ms-windows-store:Publisher?name=<publisher_display_name> Links to a page that

shows all your apps, which you might do from an About pane in your Settings. The publisher

name can be from Package.current.id.publisher.

 ms-windows-store:Updates Opens the Store’s updates page (no arguments). As described

earlier in “App Updates,” you can use this if you detect that the user is running an older version

of your app, which suggest they’ve opted out of auto-updates.

 ms-windows-store:Search?query=<search_string> Executes a search in the Store.

With Internet Explorer, a little bit of metadata in your web page’s <head> makes it easy for a

customer to acquire your app and even run it if the app is already installed. This is fully explained on

Connect your website to your Windows Store app, which shows how Internet Explorer lets users know

that an app is available. From your point of view, all you need is a bit of markup, such as:

<meta name="msApplication-ID" content="14750NuthatchProductions.HereMyAm"/>

<meta name="msApplication-PackageFamilyName" content="14750NuthatchProductions.HereMyAm"/>

where the two content values come from the Package Name and Package Family Name fields in your

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.linkuri.aspx
http://msdn.microsoft.com/library/windows/apps/hh974767.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.familyname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.familyname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.publisher.aspx
http://msdn.microsoft.com/library/ie/hh781489.aspx

1171

manifest’s Packaging tab. Again, if the user doesn’t have your app, this makes the acquisition process

easy. If the user does have your app, he’ll have the opportunity to launch it, in which case the app will

be activated with the launch kind of protocol. If you want to customize the string passed with

activation, you can add a <meta name="msAapplication-Arguments" content="[string]">. You

can similarly specify an msApplication-MinVersion for the app and also msApplication-OptOut to

prevent the behavior if desired.

Note For a working example, visit the site of Inrix Traffic, one of the earliest app partners who

implemented these features.

The other step you can take to more deeply connect your app and your website is to support app

linking through the Search charm. This means that web-based results that show up in Windows search

can go straight to your app rather than going to the website first only to redirect the user to the app

anyway. To do this, you link your web domain to your app through the Bing webmaster portal, add

markup to your web pages to create mappings to deep links in the app, and then enable deep linking

by processing the arguments in your site’s markup through the app’s activation handler, just as you

would to support secondary tiles. (See “Secondary Tiles” in Chapter 16.)

I’d say more but full information was not available at the time of writing, so refer to Introducing App

Linking for Windows Search.

Face It: You’re Running a Business!

In different parts of this chapter I’ve repeated the sentiment that to publish an app in the Windows

Store is to go into business. You might not think of yourself as a businessperson, but publishing an app

makes you one by default. Thus, whether you’re in business for fame, fortune, fun, or philanthropy, why

not acknowledge that reality, make a business plan, and execute on it to give yourself a better chance

of fulfilling your goals? Here I want to outline some of the aspects of running a business, primarily for

your awareness and inspiration because I cannot personally guarantee your success!

Let’s start with a basic truth: customers acquire apps to solve problems and have an experience.

They do not acquire apps to pay you money, to support you or your cause, or to make you famous—

those are just side effects of their receiving value through your apps. If you do well at solving customer

problems and giving them great experiences, the rewards should follow naturally.

For the sake of simplicity, let me focus now on some principles as they apply to the business of

fortune, because that’s the one that most developers are involved with and one for which there are the

most resources to draw from. (Many of the principles can apply to other business models, of course.140)

140 Two resources that I found helpful are Thinking Like a Businessperson and Stop Thinking Like an Employee.

http://www.inrixtraffic.com/
http://go.microsoft.com/fwlink/?LinkId=392760
http://go.microsoft.com/fwlink/?LinkId=392760
http://www.netplaces.com/start-your-own-business/ready-set-go/thinking-like-a-businessperson.htm
http://lifeofthefreelancer.com/stop-thinking-like-an-employee/

1172

Look for Opportunities
In simple terms, business is commerce, meaning a trade or exchange within some given market. A key

business skill is to look for opportunities in whatever market you might enter. Look for areas where the

market can support another player, or areas that no one has yet explored—analytics services like

Distmo, AppFeds, and AppAnnie are super-valuable here. Watch reports on the global app economy

too, especially to see regions where profit margins are higher and where you might concentrate

localization efforts. Once you identify the opportunity, invest in fulfilling a current market need as soon

as you can, before the opportunity passes by.

A good piece of advice is to not enter a market solely on personal interest: that can help and serve

as a source of inspiration, but focus primarily on picking and solving problems because they are

business opportunities, not because you’re going to change the world through your efforts. This is not

to say that there’s no place for your idealism, but it’s good to balance that idealism with a strong dose

of practicality and reality.

When looking for opportunities, competitive analysis is a must. You have to know what others are

doing in the market that’s similar to you, which helps you identify gaps you can fill, problems you can

solve, and the strengths that your solution can uniquely offer. And remember that your competition

doesn’t sit still, so such analysis is an ongoing process.

Invest in Your Business
Going into business always requires some up-front investment. Ask yourself: what are the core assets

you need for your business to sustain itself? It’s one thing to get started, but another thing altogether

to keep moving and not end up as a “one-shot wonder.” This is one reason why you don’t need to

implement every great idea in the first version of your first app!

Investing also means understanding risk. Look to manage multiple investments to spread your risk,

using safe investments to support riskier ones. Investment is also a long-term concern: it’s a relationship

with your customers, most of all, and also an ongoing relationship with the market in which you’re

operating. Indeed, with app publishing it’s very important to invest in real human relationships. It’s

fascinating that we’ve created a marketplace with app stores where you can write and publish an app

to solve customer problems without ever having contact with another human being. And yet human

beings are behind each and every sale!

Fear Not the Marketing
We’ve talked a bit about this already, but let me say again that you should plan to constantly steer

some of your revenue into marketing to help build and sustain momentum. Otherwise you risk making

a splash and then going silent! Social media channels are essential here too, because they’re one of the

primary ways to keep energy around your apps, but sustaining that energy is always the key.

Cultivating relationships is also important for marketing. Support your customers now and commit

to doing so in the future, because they are your foundation. Also make relationships with other app

1173

publishers, who can provide mutual support if not cross-promotion opportunities. And get involved in

the industry more widely than just your areas of involvement—that is, see yourself as a participant in a

larger reality to which you can contribute and from which you can draw energy and inspiration.

Plan also keep your products fresh and lively, just like a merchant does when stocking shelves. In

your app, this means bringing in new content, making changes in how you present or highlight in-app

purchases, and otherwise helping the user become more away of everything you have to offer. Outside

of the app, consider periodically refreshing your screenshots, promotional graphics, description, and

anything else on your Store page, if for no other reason than keeping energy around it all. I worked for

a while in a retail bookstore where my wife was the gift buyer, and we regularly “fluffed” the shelves

which meant going through the entire store to move things around, tidy up areas that have been

neglected, and move products that were gathering momentum to more prominent positions. We also

made sure to cut losses and discontinue products that weren’t working, thereby releas ing energy to

invest in new areas. In short, don’t get attached to products, features, or how you describe and

promote them: if something isn’t serving the business, an astute businessperson will let it go.

Another marketing trend is to share your expertise to assist buyers, without trying to sell yourself or

your products directly. This follows a principle of providing value first before trying to sell, in order to

earn trust. For example, you can do reviews of apps in your category, being honest about the ir

strengths, even those of your competitors. By positioning yourself as an expert in that area, customers

are more likely to trust what you produce yourself.

Support Your Customers
This almost goes without saying, but many app publishers probably haven’t given this any thought to

customer support at all. As soon as you publish an app, commit some time every day to watch your

ratings, reviews, and other feedback, and be immediately responsive to your customer’s needs.

Demonstrate that you’re listening to their problems, and issue app updates in a timely manner to fix

bugs and provide other critical updates. Along these lines, watch your telemetry and crash reports and

respond to them quickly as well.

Also think about how you’re thanking your customers rather than just trying to exploit them or

ignoring them in your quest to acquire new customers. In other words, your existing customers are the

ones who have already made at least some commitment to you and have given you some of their life

energy. How can you give them some energy in return? Truly, it’s the flow of energy that creates

positive magnetism, so keep that flow strong.

Plan for the Future
This can be put simply: it’s not necessary to implement every idea in the first version of your app, nor is

it necessary to implement every idea in one app. Plan ahead for two major updates, which helps keep

up a flow of ideas and will give your customers reasons to re-engage with your product. Remember

that apps on Windows 8.1 are updated by default, which makes i t much easier to put new features and

capabilities in front of your user base, including new in-app purchases. Also remember to educate your

1174

customers on what’s new in your updates, because they won’t be going to the Store to see what you’ve

written in your release notes.

Plan also for having multiple apps. For one, this builds up a presence in the Store for your business,

not just for one app. The Store encourages this by listing other apps from the same publisher on any

given app’s product page, but if you’re a one-app shop, you’re sacrificing that space to others.

Allowing yourself to spread ideas across multiple apps keeps each app more focused to its primary

purpose. Through contracts including URI scheme activations, you can build a family of apps that work

great together as well as with apps from other publishers. You can also think about repurposing an

existing app, especially games, with new themes that require nothing more than a new set of graphical

assets (as with a “holiday” variant that can sell separately). Doing this reduces per-app costs while

increasing per-app visibility.

In all of this, I think of how movie studios generally have a multiyear pipeline for their releases. This

is necessary in part because it takes several years to produce any given film, but it means those studios

are always looking at their business over a five-year or even ten-year timespan. With apps it might be

more appropriate to think in terms of 6–18 months, but the principle is the same.

Selling Your App When It’s Not Running
User experience is not just what’s on the screen when the app is running: there are a number of places

where you app has a presence when it’s not in the foreground. This include tiles, notifications, raw push

notifications, background tasks, your lock screen presence, your roaming experience, and your

description page in the Store. Think also about your presence in the media, both for your app and

business. Are you blogging? Are you sharing the experience of the app on YouTube (even cheat videos

for your game)? Do you provide press kits on your website so that others understand how to promote

you and have access to the high-quality assets they’d need for that purpose?

Think also about the overall customer experience lifecycle of your app. When we talk about user

experience, we typically refer to the experience inside the app itself, but this is only a small part of the

story. How you attract users in the first place is the first experience users will have of your app and your

business. How are you presenting yourself in social media channels? And are you giving your existing

customers an incentive to share their experience to their social network?

When users first express interest in your app, which means visiting your website and/or your product

page in the Store, how are you orienting them to the experience you provide? You want to make sure

they understand what the app does and why they should care. Again, you want to invest good time

and energy into your app’s description and promotional graphics because these make a huge

difference to potential customers!

I mentioned before the idea of thanking your customers every now and then. This is important for

customer retention; it gives them a reason to come back. That is, an important part of the overall user

experience is the long-term value of the relationship, which is expressed through your updates, fresh

content, re-engagement with your customers, and maybe even the occasional giveaway.

1175

Indeed, thanking your customers is a way to involve them in an emotionally positive way. And once

customers are invested like this, they are more likely to become your advocates or even your

champions. Indeed, be sure to enable and empower your most passionate users to put their own

credibility on the line. When they do, thank them profusely. Give them special previews of new work

you’re doing. Send them chocolate. Do anything you can for them, because their passion is worth far

more than any bits of money you might get from them as a single user.

You’re Not Alone
Publishing apps is something you can do in complete isolation, but that won’t serve you or your

business in the long run. Given that your primary instincts are those of a developer and probably not

those of a businessperson, it’s a good idea to find a business mentor to guide and counsel you, or

perhaps a support group. Your mentor or associates don’t need to be in the software business

specifically—what you’re looking for is experience and magnetism in doing business, which has many

universal principles and best practices. Along these same lines, find opportunities like business lunches

or other events where you can just mix with businesspeople and draw from their magnetism. More

often than not, people at such events are more than happy to discuss your challenges and offer

insights that could make a huge difference for you.

Final Thoughts: Qualities of a Rock Star App

As Gandalf the White says to Frodo, Sam, Merry, and Pippin at the conclusion of the Lord of the Rings

movies, “Here at last, on the shores of the sea, comes the end of our fellowship.” And, my friends, it has

been a delight to share the journey with you! I’d like to leave you with just a few final thoughts.

After Windows 8 was first released, it didn’t take long for the Windows Store to become crowded , so

differentiating your app and yourself as a developer is paramount. There’s plenty to do with marketing

and gaining awareness for your app, of course, as well as being responsive to customers. But beyond

that, what does it really mean to make an app that’s truly special?

Early on, long before Microsoft landed on the rather pedestrian term “Windows Store apps,” we

referred to them as “tailored apps.” To play with that older term, think of what tailoring means in the

context of clothes: well-tailored clothes are very distinctive. They make you look really good. They

make you feel great. That’s how you want the users of your app to feel when they’re immersed in your

experience. Indeed, just as joy and happiness are the undercurrent behind your own app-building

efforts, so also do they live in the hearts of your customers. If you can deliver joy to them through your

app, I think you’ll have a winner!

Another meaning of “tailored” implies that the kinds of apps we’ve been building in this book—

apps that run full screen (usually) and deeply immerse a user in an experience—lend themselves well to

being very specific to both the device and the user’s context. As we saw in Chapter 12, “Input and

Sensors,” sensors give you the ability to know the device’s relationship to the physical world, which is

1176

an extension of the user who is holding that device. Ask then, “What can I do with that information?

How can the app really light up when it has a deeper understanding of where the user is and how the

user is moving about in this world of ours? Is there something more the app can do to say, ‘Aren’t you

glad you brought me along?’”

To differentiate your app, think through how a consumer might use various form factors in different

situations and have the app present itself differently in those contexts. This kind of tailoring means that

the app surfaces the most relevant features or content for the most likely or appropriate use cases. As

shown in the last figure of Chapter 1 within “Sidebar: The Opportunity of Per-User Licensing and Data

Roaming,” I like to think of there being one app across many devices and that the user has a much

stronger relationship to the app than to the devices it’s running on. The app and its underlying state

becomes the consistent element across the whole experience, with the devices just being the vehicles.

The more you can deliver an app that understands and supports this (and obviously roaming data is

important here!), the more I think the app will stand out from others that, sure, run on Windows but

otherwise offer the same experience as we’ve had for many years.

So, what about being a rock star? Let’s be honest here. You’re in this game for name and fame,

right? And for the big money that could come with it? What kind of app will get you there?

In what is now the very last paragraph of the main body of this book, I can’t really give you a bunch

of specific ideas. (Otherwise I’d be writing those apps instead of writing books, but someone has to do

this dirty work….) But ponder this: what makes a rock star in the music industry? Well, it’s not typically

about the philosophical depth of the lyrics or the virtuosity of the musicians, it’s about performance,

personality, and sheer entertainment value. It’s about delivering a joyful experience that turns everyday

customers into raving lunatic fans who can’t wait to be your greatest champions. In a very real way, the

experience is one that truly lets people escape their everyday realities and become part of something

larger for a time, or even just part of a fantasy. And like great music or movies, the app experience is

one that people want to repeat many times over and not just check the box as another “Been there,

done that.” Although there are certainly aspects of timing and sheer luck, all rock stars—along with

great athletes, Oscar-winning movies like Lord of the Rings, and so on—strive for and achieve one thing

above all: excellence. Commit yourself to that. Commit yourself to excellence in everything you do—not

just in your apps but in all parts of your life. Such striving, certainly, will bring many rewards!

What We’ve Just Learned

 An app’s relationship to the Windows Store is closely related to your business as a developer,

because it supports a range of options from free apps, ad-supported apps, limited-time trials,

paid apps, and in-app purchases (using a custom commerce engine for the latter if desired).

 Side-loading of app packages is supported for developers (on a machine with a developer

license) and for enterprises. Otherwise all apps come from the Windows Store.

 The Windows Store APIs provide for managing app licenses, licenses for in-app purchases, and

1177

receipts. During development, the app uses a simulator object where data is obtained from a

local XML file instead of the live Store, which allows for testing different types of transactions

and license conditions.

 To track customer activity within your app directly, instrument it to collect telemetry data

according to your business goals for the app. For this you typically use a third-party provider

who also turns telemetry data into actionable analytics.

 Getting an app in the Store starts with testing the app both manually and through the Windows

App Certification Kit and being prepared for possible rejection during the onboarding process.

 As part of onboarding, you’re asked for an app description, promotional graphics, search

keywords, feature lists, and other information that should be localized for each supported

language. Be sure to give yourself enough time before submission to gather this information.

 App updates can be submitted to the Store at a later time, with improvements based on

feedback and telemetry, and the updated code needs to be ready to migrate state.

 Being in the Windows Store does not reduce the need for marketing. Cross-linking your app

and website and supporting Windows search can very much help discoverability.

 Publishing an app means that you’re running a business, so it’s essential that you start thinking

(at least a little) like a businessperson to help build your business.

1178

Appendix A

Demystifying Promises

In Chapter 3, “App Anatomy and Performance Fundamentals,” we looked at promises that an app

typically encounters in the course of working with WinJS and the WinRT APIs. This included working

with the then/done methods (and their differences), joining parallel promises, chaining and nesting

sequential promises, error handling, and few other features of WinJS promises like the various timeout

methods.

Because promises pop up as often as dandelions in a lawn (without being a noxious weed, of

course!), it helps to study them more deeply. Otherwise, they and certain code patterns that use them

can seem quite mysterious. In this Appendix, we’ll first look at the whole backstory, if you will, about

what promises are and what they really accomplish, going so far as to implement some promise classes

from scratch. We’ll then look at WinJS promises specifically and some of the features we didn’t see in

Chapter 3, such as creating a new instance of WinJS.Promise to encapsulate an async operation of

your own. Together, all of this should give you enough knowledge to understand some interesting

promises code, as we’ll see at the end of this appendix. This wil l also enable you to understand item-

rendering optimizations with the ListView control, as explained in Chapter 7, “Collection Controls.”

Demonstrations of what we’ll cover here can be found in the WinJS Promise sample of the Windows

SDK, which we won’t draw from directly, along with the Promises example in the appendices’

companion content, which we’ll use as our source for code snippets. If you want the fuller backstory on

async APIs, read Keeping apps fast and fluid with asynchrony in the Windows Runtime on the Windows

developer blog. You can also find a combined and condensed version of this material and that from

Chapter 3 in my post All about promises (for Windows Store apps written in JavaScript) on that same

blog.

Finally, as a bonus, this appendix also deconstructs the batching function used to optimize ListView

item rendering, as described in Chapter 7 in the section “Template Functions (Part 2).” It’s a bit of

promise-heavy code, but it’s fascinating to take it apart.

What Is a Promise, Exactly? The Promise Relationships

As noted in the “Using Promises” section of Chapter 3, a promise is just a code construct or a calling

convention with no inherent relationship to async operations. Always keep that in mind, because it’s

easy to think that promises in and of themselves create async behavior. They do not: that’s still

something you have to do yourself, as we’ll see. In other words, as a code construct, a promise is just a

combination of functions, statements, and variables that define a specific way to accomplish a task. A

for loop, for instance, is a programming construct whose purpose is to iterate over a collection. It’s a

http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://code.msdn.microsoft.com/windowsapps/Promise-e1571015
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2013/06/11/all-about-promises-for-windows-store-apps-written-in-javascript.aspx

1179

way of saying, “For each item in this collection, perform these actions” (hence the creation of

forEach!). You use such a construct anytime you need to accomplish this particular purpose, and you

know it well because you’ve practiced it so often!

A promise is really nothing different. It’s a particular code structure for a specific purpose: namely,

the delivery of some value that might not yet be available. This is why a promise as we see it in code is

essentially the same as we find in human relationships: an agreement, in a sense, between the

originator of the promise and the consumer or recipient.

In this relationship between originator and consumer there are actually two distinct stages. I call

these creation and fulfillment, which are illustrated in Figure A-1.

FIGURE A-1 The core relationship encapsulated in a promise.

Having two stages of the relationship is what bring up the asynchronous business. Let’s see how by

following the flow of the numbers in Figure A-1:

1. The relationship begins when the consumer asks an originator for something: “Can you give

me…?” This is what happens when an app calls some API that provides a promise rather than an

immediate value.

2. The originator creates a promise for the goods in question and delivers that promise to the

consumer.

3. The consumer acknowledges receipt of the promise, telling the originator how the promise

should let the consumer know when the goods are ready. It’s like saying, “OK, just call this

number when you’ve got them,” after which the consumer simply goes on with its life

(asynchronously) instead of waiting (synchronously).

1180

4. Meanwhile, the originator works to acquire the promised goods. Perhaps it has to manufacture

the goods or acquire them from elsewhere; the relationship here assumes that those goods

aren’t necessarily sitting around (even though they could be). This is the other place where

asynchronous behavior arises, because acquisition can take an indeterminate amount of time.

5. Once the originator has the goods, it brings them to the consumer.

6. The consumer now has what it originally asked for and can consume the goods as desired.

Now, if you’re clever enough, you might have noticed that by eliminating a part of the diagram—

the stuff around (3) and the arrow that says “Yes, I promise…”—you are left with a simple synchronous

delivery model. Which brings us to this point: receiving a promise gives the consumer a chance to do

something with its time (like being responsive to other requests), while it waits for the originator to get

its act together and deliver the promised goods.

And that, of course, is also the whole point of asynchronous APIs, which is why we use promises with

them. It’s like the difference (to repeat my example from Chapter 3) between waiting in line at a

restaurant’s drive-through for a potentially very long time (the synchronous model) and calling out for

pizza delivery (the asynchronous model): the latter gives you the freedom to do other things while

you’re waiting for the delivery of your munchies.

Of course, there’s a bit more to the relationship that we have to consider. You’ve certainly made

promises in your life, and you’ve had promises made to you. Although many of those promises have

been fulfilled, the reality is that many promises are broken—it is possible for the pizza delivery person

to have an accident on the way to your home! Broken promises are just a fact of life, one that we have

to accept, both in our personal lives and in asynchronous programming.

Within the promise relationship, then, this means that originator of a promise first needs a way to

say, “Well, I’m sorry, but I can’t make good on this promise.” Likewise, the recipient needs a way to

know that this is the case. Secondly, as consumers, we can sometimes be rather impatient about

promises made to us. When a shipping company makes a promise to deliver a package by a certain

date, we want to be able to look up the tracking number and see where that package is! So, if the

originator can track its progress in fulfilling its promise, the consumer also needs a way to receive that

information. And third, the consumer can also tell the originator that it no longer needs whatever it

asked for earlier. That is, the consumer needs the ability to cancel the order or request.

This complete relationship is illustrated in Figure A-2. Here we’ve added the following:

7. While the originator is attempting to acquire the goods, it can let the consumer know what’s

happening with periodic updates. The consumer can also let the originator know that it no

longer needs the promise fulfilled (cancellation).

8. If the originator fails to acquire the goods, it has to apologize with the understanding that

there’s nothing more it could have done. (“The Internet is down, you know?”)

9. If the promise is broken, the consumer has to deal with it as best it can!

1181

With all this in mind, let’s see in the next section how these relationships manifest in code.

FIGURE A-2 The full promise relationship.

The Promise Construct (Core Relationship)

To fulfill the core relationship of a promise between originator and consumer, we need the following:

 A means to create a promise and attach it to whatever results are involved.

 A means to tell the consumer when the goods are available, which means some kind of callback

function into the consumer.

The first requirement suggests that the originator defines an object class of some kind that internally

wraps whatever process is needed to obtain the result. An instance of such a class would be created by

an asynchronous API and returned to the caller.

For the second requirement, we can take two approaches. One way is to have a simple property on

the promise object to which the consumer assigns the callback function. The other is to have a method

on the promise to which the consumer passes its callback. Of the two, the latter (using a method) gives

the originator more flexibility in how it fulfills that promise, because until a consumer assigns a

callback—which is also called subscribing to the promise—the originator can hold off on starting the

1182

underlying work. You know how it is—there’s work you know you need to do, but you just don’t get

around to it until someone actually gives you a deadline! Using a method call thus tells the originator

that the consumer is now truly wanting the results.141 Until that time, the promise object can simply

wait in stasis.

In the definition of a promise that’s evolved within the JavaScript community known as Common

JS/Promises A (the specification that WinJS and WinRT follow), the method for this second requirement

is called then. In fact, this is the very definition of a promise: an object that has a property named ‘then’

whose value is a function.

That’s it. In fact, the static WinJS function WinJS.Promise.is, which tests whether a given object is

a promise, is implemented as follows:

is: function Promise_is(value) {

 return value && typeof value === "object" && typeof value.then === "function";

}

Note In Chapter 3 we also saw a similar function called done that WinJS and WinRT promises use for

error handler purposes. This is not part of the Promises A specification, but it’s employed within

Windows Store apps.

Within the core relationship, then takes one argument: a consumer-implemented callback function

known as the completed handler. (This is also called a fulfilled handler, but I prefer the first term.) Here’s

how it fits into the core relationship diagram shown earlier (using the same number labels):

1. The consumer calls some API that returns a promise. The specific API in question typically

defines the type of object being asked for. In WinRT, for example, the Geolocator.-

getGeolocationAsync method returns a promise whose result is a Geoposition object.

2. The originator creates a promise by instantiating an instance of whatever class it employs for its

work. So long as that object has a then method, it can contain whatever other methods and

properties it wants. Again, by definition a promise must have a method called then, and this

neither requires nor prohibits any other methods and properties.

3. Once the consumer receives the promise and wants to know about fulfillment, it calls then to

subscribe to the promise, passing a completed handler as the first argument. The promise must

internally retain this function (unless the value is already available—see below). Note again that

then can be called multiple times, by any number of consumers, and the promise must

141 The method could be a property setter, of course; the point here is that a method of some kind is necessary for the

object to have a trigger for additional action, something that a passive (non-setter) property lacks.

In this context I’ll also share a trick that Chris Sells, who was my manager at Microsoft for a short time, used on me

repeatedly. For some given deliverable I owed him, he’d ask, “When will you have it done?” If I said I didn’t know, he’d
ask, “When will you know when you’ll have it done?” If I still couldn’t answer that, he’d ask, “When will you know when

you’ll know when you’ll have it done?” ad infinitum until he extracted some kind of solid commitment from me!

http://wiki.commonjs.org/wiki/Promises/A
http://wiki.commonjs.org/wiki/Promises/A
http://msdn.microsoft.com/en-us/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geolocator.getgeopositionasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geolocator.getgeopositionasync.aspx

1183

maintain a list of all those completed handlers.

4. Meanwhile, the originator works to fulfill the promise. For example, the WinRT

getGeolocationAsync API will be busy retrieving information from the device’s sensors or

using an IP address–based method to approximate the user’s location.

5. When the originator has the result, it has the promise object call all its completed handlers

(received through then) with the result.

6. Inside its completed handler, the consumer works with the data however it wants.

As you can see, a promise is again just a programming construct that manages the relationship

between consumer and originator. Nothing more. In fact, it’s not necessary that any asynchronous work

is involved: a promise can be used with results that are already known. In such cases, the promise just

adds the layer of the completed handler, which typically gets called as soon as it’s provided to the

promise through then in step 3 rather than in step 5. While this adds overhead for known values, it

allows both synchronous and asynchronous results to be treated identically, which is very beneficial

with async programming in general.

To make the core promise construct clear and also to illustrate an asynchronous ope ration, let’s look

at a few examples by using a simple promise class of our own as found in the Promises example in the

companion content.

Don’t do what I’m about to show you Implementing a fully functional promise class on your own

gets rather complex when you start addressing all the details, such as the need for then to return

another promise of its own. For this reason, always use the WinJS.Promise class or one from another

library that fully implements Promises A and allows you to easily create robust promises for your own

asynchronous operations. The examples I’m showing here are strictly for education purposes; they do

not implement the full specification.

Example #1: An Empty Promise!
Let’s say we have a function, doSomethingForNothing, whose results are an empty object, { },

delivered through a promise:

//Originator code

function doSomethingForNothing() {

 return new EmptyPromise();

}

We’ll get to the EmptyPromise class in a moment. First, assume that EmptyPromise follows the

definition and has a then method that accepts a completed handler. Here’s how we would use the API

in the consumer:

//Consumer code

var promise = doSomethingForNothing();

http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx

1184

promise.then(function (results) {

 console.log(JSON.stringify(results));

});

The output of this would be as follows:

{}

App.log in the example Although I’m showing console.log in the code snippets here, the Promises

sample uses a function App.log that ties into the WinJS.log mechanism and directs output to the app

canvas directly. This is just done so that there’s meaningful output in the running example app.

The consumer code could be shortened to just doSomethingForNothing().then(function

(results) { ... }); but we’ll keep the promise explicitly visible for clarity. Also note that we can

name the argument passed to the completed handler (results above) whatever we want; it’s just a

variable.

Stepping through the consumer code above, we call promise.then, and sometime later the

anonymous completed handler is called. How long that “sometime later” is, exactly, depends on the

nature of the operation in question.

Let’s say that doSomethingForNothing already knows that it’s going to return an empty object for

results. In that case, EmptyPromise can be implemented as follows (and please, no comments about

the best way to do object-oriented JavaScript):

//Originator code

var EmptyPromise = function () {

 this._value = {};

 this.then = function (completedHandler) {

 completedHandler(this._value);

 }

}

When the originator does a new on this constructor, we get back an object that has a then method

that accepts a completed handler. Because this promise already knows its result, its implementation of

then just turns around and calls the given completed handler. This works no matter how many times

then is called, even if the consumer passes that promise to another consumer.142

Here’s how the code executes, identifying the steps in the core relationship:

142 The specification for then, again, stipulates that its return value is a promise that’s fulfilled when the completed handler
returns, which is one of the bits that makes the implementation of a promise quite complicated. Clearly, we’re ignoring

that part of the definition here; we’ll return to it in “The Full Promise Construct.”

1185

Again, when a promise already knows its results, it can synchronously pass them to whatever

completed handler it received through then. Here a promise is nothing more than an extra layer that

delivers results through a callback rather than directly from a function. For pre-existing results, in other

words, a promise is pure overhead. You can see this by placing another console.log call after

promise.then, and you’ll see that the {} result is logged before promise.then returns.

All this is implemented in scenario 1 of the Promises example.

Example #2: An Empty Async Promise

Using promises with known values seems like a way to waste memory and CPU cycles for the sheer joy

of it, but promises become much more interesting when those values are obtained asynchronously.

Let’s change the earlier EmptyPromise class to do this. Instead of calling the completed handler

right away, we’ll do that after a timeout:

var EmptyPromise = function () {

 this._value = { };

 this.then = function (completedHandler) {

 //Simulate async work with a timeout so that we return before calling completedHandler

 setTimeout(completedHandler, 100, this._value);

 }

}

With the same consumer code as before and suitable console.log calls, we’ll see that

promise.then returns before the completed handler is called. Here’s the output:

promise created

returned from promise.then

{}

Indeed, all the synchronous code that follows promise.then will execute before the completed

handler is called. This is because setTimeout has to wait for the app to yield the UI thread, even if

that’s much longer than the timeout period itself. So, if I do something synchronously obnoxious in the

consumer code like the following, as in scenario 2 of the Promises example:

1186

var promise = doSomethingForNothing();

console.log("promise created");

promise.then(function (results) {

 console.log(JSON.stringify(results));

});

console.log("returned from promise.then");

//Block UI thread for a longer period than the timeout

var sum = 0;

for (var i = 0; i < 500000; i++) {

 sum += i;

}

console.log("calculated sum = " + sum);

the output will be:

promise created

returned from promise.then

calculated sum = 1249999750000

{}

This tells us that for async operation we don’t have to worry about completed handlers being called

before the current function is done executing. At the same time, if we have multiple completed

handlers for different async operations, there’s no guarantee about the order in which they’ll complete.

This is where you need to either nest or chain the operations, as we saw in Chapter 3. There is also a

way to use WinJS.Promise.join to execute parallel promises but have their results delivered

sequentially, as we’ll see later.

Note Always keep in mind that while async operations typically spawn additional threads apart from

the UI thread, all those results must eventually make their way back to the UI thread. If you have a

large number of async operations running in parallel, the callbacks to the completed handlers on the

UI thread can cause the app to become somewhat unresponsive. If this is the case, implement

strategies to stagger those operations in time (e.g., using setTimeout or setInterval to separate

them into batches).

Example #3: Retrieving Data from a URI
For a more realistic example, let’s do some asynchronous work with meaningful results from

XMLHttpRequest, as demonstrated in scenario 3 of the Promises example:

//Originator code

function doXhrGet(uri) {

 return new XhrPromise(uri);

}

var XhrPromise = function (uri) {

 this.then = function (completedHandler) {

 var req = new XMLHttpRequest();

1187

 req.onreadystatechange = function () {

 if (req.readyState === 4) {

 if (req.status >= 200 && req.status < 300) {

 completedHandler(req);

 }

 req.onreadystatechange = function () { };

 }

 };

 req.open("GET", uri, true);

 req.responseType = "";

 req.send();

 }

}

//Consumer code (note that the promise isn't explicit)

doXhrGet("http://kraigbrockschmidt.com/blog/?feed=rss2").then(function (results) {

 console.log(results.responseText);

});

console.log("returned from promise.then");

The key feature in this code is that the asynchronous API we’re using within the promise does not

itself involve promises, just like our use of setTimeout in the second example. XMLHttpRequest.send

does its work asynchronously but reports status through its readystatechange event. So what we’re

really doing here is wrapping that API-specific async structure inside the more generalized structure of

a promise.

It should be fairly obvious that this XhrPromise as I’ve defined it has some limitations—a real

wrapper would be much more flexible for HTTP requests. Another problem is that if then is called more

than once, this implementation will kick off additional HTTP requests rather than sharing the results

among multiple consumers. So don’t use a class like this—use WinJS.xhr instead, from which I

shamelessly plagiarized this code in the first place, or the API in Windows.Web.Http.HttpClient (see

Chapter 4, “Web Content and Services”).

Benefits of Promises

Why wrap async operations within promises, as we did in the previous section? Why not just use

functions like XMLHttpRequest straight up without all the added complexity? And why would we ever

want to wrap known values into a promise that ultimately acts synchronously?

First, by wrapping async operations within promises, the consuming code no longer has to know the

specific callback structure for each API. Just in the examples we’ve written so far, methods like

setImmediate, setTimeout, and setInterval take a callback function as an argument.

XMLHttpRequest raises an event instead, so you have to add a callback separately through its

http://msdn.microsoft.com/en-us/library/windows/apps/br229787.aspx

1188

onreadystatechange property or addEventListener. Web workers, similarly, raise a generic message

event, and other async APIs can pretty much do what they want. By wrapping every such operation

with the promise structure, the consuming code becomes much more consistent.

A second reason is that when all async operations are represented by promises—and thus match

async operations in the Windows Runtime API and WinJS—we can start combining and composing

them in interesting ways. These scenarios are covered in Chapter 3: chaining dependent operations

sequentially, joining promises (WinJS.Promise.join) to create a single promise that’s fulfilled when all

the others are fulfilled, or wrapping promises together into a promise that’s fulfilled when the first one

is fulfilled (WinJS.Promise.any).

This is where using WinJS.Promise.as to wrap potentially known or existing values within promises

becomes useful: they can then be combined with other asynchronous promises. In other words,

promises provide a unified way to deal with values whether they’re delivered synchronously or

asynchronously.

Promises also keep everything much simpler when we start working with the full promise

relationship, as described earlier. For one, promises provide a structure wherein multiple consumers can

each have their own completed handlers attached to the same promise. A real promise class—unlike

the simple ones we’ve been working with—internally maintains a list of completed handlers and calls

all of them when the value is available.

Furthermore, when error and progress handlers enter into the picture, as well as the ability to cancel

an async operation through its promise, managing the differences between various async APIs becomes

exceptionally cumbersome. Promises standardize all that, including the ability to manage multiple

completed/error/progress callbacks along with a consistent cancel method.

Let’s now look at a more complete promise construct, which will help us understand and appreciate

what WinJS provides in its WinJS.Promise class!

The Full Promise Construct

Supporting the full promise relationship means that whatever class we use to implement a promise

must provide additional capabilities beyond what we’ve seen so far:

 Support for error and (if appropriate) progress handlers.

 Support for multiple calls to then—that is, the promise must maintain an arbitrary number of

handlers and share results between multiple consumers.

 Support for cancellation.

 Support for the ability to chain promises.

As an example, let’s expand the XhrPromise class from Example #3 to support error and progress

1189

handlers through its then method, as well as multiple calls to then. This implementation is also a little

more robust (allowing null handlers) and supports a cancel method. It can be found in scenario 4 of

the Promises example:

var XhrPromise = function (uri) {

 this._req = null;

 //Handler lists

 this._cList = [];

 this._eList = [];

 this._pList = [];

 this.then = function (completedHandler, errorHandler, progressHandler) {

 var firstTime = false;

 var that = this;

 //Only create one operation for this promise

 if (!this._req) {

 this._req = new XMLHttpRequest();

 firstTime = true;

 }

 //Save handlers in their respective arrays

 completedHandler && this._cList.push(completedHandler);

 errorHandler && this._eList.push(errorHandler);

 progressHandler && this._pList.push(progressHandler);

 this._req.onreadystatechange = function () {

 var req = that._req;

 if (req._canceled) { return; }

 if (req.readyState === 4) { //Complete

 if (req.status >= 200 && req.status < 300) {

 that._cList.forEach(function (handler) {

 handler(req);

 });

 } else {

 that._eList.forEach(function (handler) {

 handler(req);

 });

 }

 req.onreadystatechange = function () { };

 } else {

 if (req.readyState === 3) { //Some data received

 that._pList.forEach(function (handler) {

 handler(req);

 });

 }

 }

 };

 //Only start the operation on the first call to then

 if (firstTime) {

1190

 this._req.open("GET", uri, true);

 this._req.responseType = "";

 this._req.send();

 }

 };

 this.cancel = function () {

 if (this._req != null) {

 this._req._canceled = true;

 this._req.abort;

 }

 }

}

The consumer of this promise can now attach multiple handlers, including error and progress as

desired:

//Consumer code

var promise = doXhrGet("http://kraigbrockschmidt.com/blog/?feed=rss2");

console.log("promise created");

//Listen to promise with all the handlers (as separate functions for clarity)

promise.then(completedHandler, errorHandler, progressHandler);

console.log("returned from first promise.then call");

//Listen again with a second anonymous completed handler, the same error

//handler, and a null progress handler to test then's reentrancy.

promise.then(function (results) {

 console.log("second completed handler called, response length = " + results.response.length);

}, errorHandler, null);

console.log("returned from second promise.then call");

function completedHandler (results) {

 console.log("operation complete, response length = " + results.response.length);

}

function errorHandler (err) {

 console.log("error in request");

}

function progressHandler (partialResult) {

 console.log("progress, response length = " + partialResult.response.length);

}

As you can see, the first call to then uses distinct functions; the second call just uses an inline

anonymous complete handler and passes null as the progress handler.

Running this code, you’ll see that we pass through all the consumer code first and the first call to

then starts the operation. The progress handler will be called a number of times and then the

completed handlers. The resulting output is as follows (the numbers might change depending on the

current blog posts):

1191

promise created

returned from first promise.then call

returned from second promise.then call

progress, response length = 4092

progress, response length = 8188

progress, response length = 12284

progress, response length = 16380

progress, response length = 20476

progress, response length = 24572

progress, response length = 28668

progress, response length = 32764

progress, response length = 36860

progress, response length = 40956

progress, response length = 45052

progress, response length = 49148

progress, response length = 53244

progress, response length = 57340

progress, response length = 61436

progress, response length = 65532

progress, response length = 69628

progress, response length = 73724

progress, response length = 73763

operation complete, response length = 73763

second completed handler called, response length = 73763

In the promise, you can see that we’re using three arrays to track all the handlers sent to then and

iterate through those lists when making the necessary callbacks. Note that because there can be

multiple consumers of the same promise and the same results must be delivered to each, results are

considered immutable. That is, consumers cannot change those results.

As you can imagine, the code to handle lists of handlers is going to look pretty much the same in

just about every promise class, so it makes sense to have some kind of standard implementation into

which we can plug the specifics of the operation. As you probably expect by now, WinJS.Promise

provides exactly this, as well as cancellation, as we’ll see later.

Our last concern is supporting the ability to chain promises. Although any number of asynchronous

operations can run simultaneously, it’s a common need that results from one operation must be

obtained before the next operation can begin—namely, when those results are the inputs to the next

operation. As we saw in Chapter 2, “QuickStart,” this is frequently encountered when doing file I/O in

WinRT, where you need obtain a StorageFile object, open it, act on the resulting stream, and then

flush and close the stream, all of which are async operations. The flow of such operations can be

illustrated as follows:

1192

The nesting and chaining constructs that we saw in Chapter 3 can accommodate this need equally,

but let’s take a closer look at both.

Nesting Promises

One way to perform sequential async operations is to nest the calls that start each operation within the

completed handler of the previous one. This actually doesn’t require anything special where the

promises are concerned.

To see this, let’s expand upon that bit of UI-thread-blocking code from Example #2 that did a bunch

of counting and turn it into an async operation—see scenario 5 of the Promises example:

function calculateIntegerSum(max, step) {

 return new IntegerSummationPromise(max, step);

}

var IntegerSummationPromise = function (max, step) {

 this._sum = null; //null means we haven't started the operation

 this._cancel = false;

 //Error conditions

 if (max < 1 || step < 1) {

 return null;

 }

 //Handler lists

 this._cList = [];

 this._eList = [];

 this._pList = [];

 this.then = function (completedHandler, errorHandler, progressHandler) {

 //Save handlers in their respective arrays

 completedHandler && this._cList.push(completedHandler);

1193

 errorHandler && this._eList.push(errorHandler);

 progressHandler && this._pList.push(progressHandler);

 var that = this;

 function iterate(args) {

 for (var i = args.start; i < args.end; i++) {

 that._sum += i;

 };

 if (i >= max) {

 //Complete--dispatch results to completed handlers

 that._cList.forEach(function (handler) {

 handler(that._sum);

 });

 } else {

 //Dispatch intermediate results to progress handlers

 that._pList.forEach(function (handler) {

 handler(that._sum);

 });

 //Do the next cycle

 setImmediate(iterate, { start: args.end, end: Math.min(args.end + step, max) });

 }

 }

 //Only start the operation on the first call to then

 if (this._sum === null) {

 this._sum = 0;

 setImmediate(iterate, { start: 0, end: Math.min(step, max) });

 }

 };

 this.cancel = function () {

 this._cancel = true;

 }

}

The IntegerSummationPromise class here is structurally similar to the XhrPromise class in scenario

4 to support multiple handlers and cancellation. Its asynchronous nature comes from using

setImmediate to break up its computational cycles (meaning that it’s still running on the UI thread;

we’d have to use a web worker to run on a separate thread).

To make sequential async operations interesting, let’s say we get our inputs for calculateInteger-

Sum from the following function (completely contrived, of course, with a promise that doesn’t support

multiple handlers):

function getDesiredCount() {

 return new NumberPromise();

}

var NumberPromise = function () {

 this._value = 5000;

 this.then = function (completedHandler) {

1194

 setTimeout(completedHandler, 100, this._value);

 }

}

The calling (consumer) code looks like this, where I’ve eliminated any intermediate variables and

named functions:

getDesiredCount().then(function (count) {

 console.log("getDesiredCount produced " + count);

 calculateIntegerSum(count, 500).then(function (sum) {

 console.log("calculated sum = " + sum);

 },

 null, //No error handler

 //Progress handler

 function (partialSum) {

 console.log("partial sum = " + partialSum);

 });

});

console.log("getDesiredCount.then returned");

The output of all this appears below, where we can see that the consumer code first executes

straight through. Then the completed handler for the first promise is called, in which we start the

second operation. That computation reports progress before delivering its final results:

getDesiredCount.then returned

getDesiredCount produced 5000

partial sum = 124750

partial sum = 499500

partial sum = 1124250

partial sum = 1999000

partial sum = 3123750

partial sum = 4498500

partial sum = 6123250

partial sum = 7998000

partial sum = 10122750

calculated sum = 12497500

Although the consumer code above is manageable with one nested operation, nesting gets messy

when more operations are involved:

operation1().then(function (result1) {

 operation2(result1).then(function (result2) {

 operation3(result2).then(function (result3) {

 operation4(result3).then(function (result4) {

 operation5(result4).then(function (result5) {

 //And so on

 });

 });

 });

 });

1195

});

Imagine what this would look like if all the completed handlers did other work between each call!

It’s very easy to get lost amongst all the braces and indents.

For this reason, real promises can also be chained in a way that makes sequential operations cleaner

and easier to manage. When more than two operations are involved, chaining is typically the preferred

approach.

Chaining Promises
Chaining is made possible by a couple of requirements that a part of the Promises/A spec places on the

then function:

This function [then] should return a new promise that is fulfilled when the given

[completedHandler] or errorHandler callback is finished. The value returned from the callback

handler is the fulfillment value for the returned promise.

Parsing this, it means that any implementation of then must return a promise whose result is the

return value of the completed handler given to then (which is particular for each call to then). With

this characteristic, we can write consumer code in a chained manner that avoids indentation

nightmares:

operation1().then(function (result1) {

 return operation2(result1)

}).then(function (result2) {

 return operation3(result2);

}).then(function (result3) {

 return operation4(result3);

}).then(function (result4) {

 return operation5(result4)

}).then(function (result5) {

 //And so on

});

This structure makes it easier to read the sequence and is generally easier to work with. There’s a

somewhat obvious flow from one operation to the next, where the return for each promise in the

chain is essential. Applying this to the nesting example in the previous section (dropping all but the

completed hander), we have the following:

getDesiredCount().then(function (count) {

 return calculateIntegerSum(count, 500);

}).then(function (sum) {

 console.log("calculated sum = " + sum);

});

Conceptually, when we write chained promises like this, we can conveniently think of the return

value from one completed handler as the promise that’s involved with the next then in the chain: the

result from calculateIntegerSum shows up as the argument sum in the next completed handler. We

went over this concept in detail in Chapter 2.

http://wiki.commonjs.org/wiki/Promises/A

1196

However, at the point that getDesiredCount.then returns, we haven’t even started calculate-

IntegerSum yet. This means that whatever promise is returned from getDesiredCount.then is some

other intermediary promise. This intermediary has its own then method and can receive its own

completed, error, and progress handlers. But instead of waiting directly for some arbitrary

asynchronous operation to finish, this intermediate promise is instead waiting on the results of the

completed handler given to getDesiredCount.then. That is, the intermediate promise is a child or

subsidiary of the promise that created it, such that it can manage its relationship on the parent’s

completed handler.

Looking back at the code from scenario 5 in the last section, you’ll see that none of our then

implementations return anything (and are thus incomplete according to the spec). What would it take

to make it right?

Simplifying the matter for the moment by not supporting multiple calls to then, a promise class

such as NumberPromise would look something like this:

var NumberPromise = function () {

 this._value = 1000;

 this.then = function (completedHandler) {

 setTimeout(valueAvailable, 100, this._value);

 var that = this;

 function valueAvailable(value) {

 var retVal = completedHandler(value);

 that._innerPromise.complete(retVal);

 }

 var retVal = new InnerPromise();

 this._innerPromise = retVal;

 return retVal;

 }

}

Here, then creates an instance of a promise to which we pass whatever our completed handler gives

us. That extra InnerPromise.complete method is the private communication channel through which

we tell that inner promise that it can fulfill itself now, which means it calls whatever completed handlers

it received in its own then.

So InnerPromise might start to look something like this (this is not complete):

var InnerPromise = function (value) {

 this._value = value;

 this._completedHandler = null;

 var that = this;

 //Internal helper

 this._callComplete = function (value) {

 that._completedHandler && that._completedHandler(value);

 }

 this.then = function (completedHandler) {

1197

 if (that._value) {

 that._callComplete(that._value);

 } else {

 that._completedHandler = completedHandler;

 }

 };

 //This tells us we have our fulfillment value

 this.complete = function (value) {

 that._value = value;

 that._callComplete(value);

 }

}

That is, we provide a then of our own (still incomplete), which will call its given handler if the value

is already known; otherwise it saves the completed handler away (supporting only one such handler).

We then assume that our parent promise calls the complete method when it gets a return value from

whatever completed handler it’s holding. When that happens, this InnerPromise object can then fulfill

itself.

So far so good. However, what happens when the parameter given to complete is itself a promise?

That means this InnerPromise must wait for that other promise to finish, using yet another completed

handler. Only then can it fulfill itself. Thus, we need to do something like this within InnerPromise:

 //Test if a value is a promise

 function isPromise(p) {

 return (p && typeof p === "object" && typeof p.then === "function");

 }

 //This tells us we have our fulfillment value

 this.complete = function (value) {

 that._value = value;

 if (isPromise(value)) {

 value.then(function (finalValue) {

 that._callComplete(value);

 })

 } else {

 that._callComplete(value);

 }

 }

We’re on a roll now. With this implementation, the consumer code that chains getDesiredCount

and calculateIntegerSum works just fine, where the value of sum passed to the second completed

handler is exactly what comes back from the computation.

But we still have a problem: InnerPromise.then does not itself return a promise, as it should,

meaning that the chain dies right here. As such, we cannot chain another operation onto the sequence.

What should InnerPromise.then return? Well, in the case where we already have the fulfillment

1198

value, we can just return ourselves (which is in the variable that). Otherwise we need to create yet

another InnerPromise that’s wired up just as we did inside NumberPromise.

 this._callComplete = function (value) {

 if (that._completedHandler) {

 var retVal = that._completedHandler(value);

 that._innerPromise.complete(retVal);

 }

 }

 this.then = function (completedHandler) {

 if (that._value) {

 var retVal = that._callComplete(that._value);

 that._innerPromise.complete(retVal);

 return that;

 } else {

 that._completedHandler = completedHandler;

 //Create yet another inner promise for our return value

 var retVal = new InnerPromise();

 this._innerPromise = retVal;

 return retVal;

 }

 };

With this in place, InnerPromise supports the kind of chaining we’re looking for. You can see this in

scenario 6 of the Promises example. In this scenario you’ll find two buttons on the page. The first runs

this condensed consumer code:

getDesiredCount().then(function (count) {

 return calculateIntegerSum(count, 500);

}).then(function (sum1) {

 console.log("calculated first sum = " + sum1);

 return calculateIntegerSum(sum1, 500);

}).then(function (sum2) {

 console.log("calculated second sum = " + sum2);

});

where the output is:

calculated first sum = 499500

calculated second sum = 124749875250

The second button runs the same consumer code but with explicit variables for the promises. It also

turns on noisy logging from within the promise classes so that we can see everything that’s going on.

For this purpose, each promise class is tagged with an identifier so that we can keep track of which is

which. I won’t show the code, but the output is as follows:

p1 obtained, type = NumberPromise

InnerPromise1 created

p1.then returned, p2 obtained, type = InnerPromise1

InnerPromise1.then called

InnerPromise1.then creating new promise

1199

InnerPromise2 created

p2.then returned, p3 obtained, type = InnerPromise2

InnerPromise2.then called

InnerPromise2.then creating new promise

InnerPromise3 created

p3.then returned (end of chain), returned promise type = InnerPromise3

NumberPromise completed.

p1 fulfilled, count = 1000

InnerPromise1.complete method called

InnerPromise1 calling IntegerSummationPromise.then

IntegerSummationPromise started

IntegerSummationPromise completed

IntegerSummationPromise fulfilled

InnerPromise1 calling completed handler

p2 fulfilled, sum1 = 499500

InnerPromise2.complete method called

InnerPromise2 calling IntegerSummationPromise.then

IntegerSummationPromise started

IntegerSummationPromise completed

IntegerSummationPromise fulfilled

InnerPromise2 calling completed handler

p3 fulfilled, sum2 = 124749875250

InnerPromise3.complete method called

InnerPromise3 calling completed handler

This log reveals what’s going on in the chain. Because each operation in the sequence is

asynchronous, we don’t have any solid values to pass to any of the completed handlers yet. But to

execute the chain of then calls—which all happens a synchronous sequence—there has to be some

promise in there to do the wiring. That’s the purpose of each InnerPromise instance. So, in the first

part of this log you can see that we’re basically creating a stack of these InnerPromise instances, each

of which is waiting on another.

Once all the then methods return and we yield the UI thread, the async operations can start to fulfill

themselves. You can see that the NumberPromise gets fulfilled, which means that InnerPromise1 can

be fulfilled with the return value from our first completed handler. That happens to be an Integer-

SummationPromise, so InnerPromise1 attaches its own completed handler. When that handler is

called, InnerPromise1 can call the second completed handler in the consumer code. The same thing

then happens again with InnerPromise2, and so on, until the stack of inner promises are all fulfilled.

It’s at this point that we run out of completed handlers to call and the chain comes to an end.

In short, having then methods return another promise to allow chaining basically means that a

chain of async operations builds a stack of intermediate promises to manage the connections between

as-yet-unfulfilled promises and their completed handlers. As results start to come in, that stack is

unwound such that the intermediate results are passed to the appropriate handler so that the next

async operation can begin.

Let me be very clear about what we’ve done so far: the code above shows how chaining really works

in the guts of promises, and yet we still have a number of unsolved problems:

1200

 InnerPromise.then can manage only a single completed handler and doesn’t provide for error

and progress handlers.

 There’s no provision for handling exceptions in a completed handler, as specified by Promises A.

 There’s no provision for cancellation of the chain—namely, that canceling the promise

produced by the chain as a whole should also cancel all the other promises involved.

 Some code structures are repeated, so some kind of consolidation seems appropriate.

 This code hasn’t been fully tested.

I will openly admit that I’m not right kind of developer to solve such problems—I’m primarily a

writer! A number of subtle issues start to arise when you put this kind of thing into practice, but

fortunately some software engineers adore this kind of a challenge, and fortunately a number of them

work in the WinJS team. As a result, they’ve done all the hard work for us within the WinJS.Promise

class. And we’re now ready to see—and fully appreciate!—what that library provides.

Promises in WinJS (Thank You, Microsoft!)

When writing Windows Store apps in JavaScript, promises pop up anytime an asynchronous API is

involved and even at other times. Those promises all meet the necessary specifications, because their

underlying classes are supplied by the operating system, which is to say, WinJS. From the consuming

code’s point of view, then, these promises can be used to their fullest extent possible: nested, chained,

joined, and so forth. These promises can also be trusted to manage any number of handlers, to

correctly process errors, and basically to handle any other subtleties that might arise.

I say all this because the authors of WinJS have gone to great effort to provide highly robust and

complete promise implementations, and this means there is really no need to implement custom

promise classes of your own. WinJS provides an extensible means to wrap any kind of async operation

within a standardized and well-tested promise structure, so you can focus on the operation and not on

the surrounding construct.

We’ve already covered most of the consumer-side WinJS surface area for promises in Chapter 3,

including all the static methods of the WinJS.Promise object: is, theneach, as, timeout, join, and

any. The latter of these are basically shortcuts to create promises for common scenarios. Scenario 7 of

the Promises example gives a short demonstration of many of these.

In Chapter 4 we also saw the WinJS.xhr function that wraps XMLHttpRequest operations in a

promise, which is a much better choice than the wrapper we have in scenario 4 of the Promises

example (though we might go all the way and use Windows.Web.Http.HttpClient instead). Here, in

fact, is the equivalent (and condensed) consumer code from scenario 7 that matches that of scenario 4:

http://msdn.microsoft.com/en-us/library/windows/apps/br229787.aspx

1201

var promise = WinJS.xhr("http://kraigbrockschmidt.com/blog/?feed=rss2");

promise.then(function (results) {

 console.log("complete, response length = " + results.response.length);

},

function (err) {

 console.log("error in request: " + JSON.stringify(err));

},

function (partialResult) {

 console.log("progress, response length = " + partialResult.response.length);

});

What’s left for us to discuss is the instantiable WinJS.Promise class itself, with which you can, as an

originator, easily wrap any async operation of your own in a full promise construct.

Note The entire source code for WinJS promises can be found in its base.js file, accessible through any

app project that has a reference to WinJS. (In Visual Studio’s Solution Explorer, expand References >

Windows Library For JavaScript > js under a project, and you’ll see base.js.)

The WinJS.Promise Class

Simply said, WinJS.Promise is a generalized promise class that allows you to focus on the nature of a

custom async operation, leaving WinJS.Promise to deal with the promise construct itself, including

implementations of then and cancel methods, management of handlers, and handling complex

cancellation processes involved with promise chains.

As a comparison, in scenario 6 of the Promises example we created distinct promise classes that the

getDesiredCount and calculateIntegerSum functions use to implement their async behavior. All

that code got to be rather intricate, which means it will be hard to debug and maintain! With

WinJS.Promise, we can dispense with those separate promise classes altogether. Instead, we just

implement the operations directly within a function like calculateIntegerSum. This is how it now

looks in scenario 8 (omitting bits of code to handle errors and cancellation, and pulling in the code

from default.js where the implementation is shared with other scenarios):

function calculateIntegerSum(max, step) {

 //The WinJS.Promise constructor's argument is a function that receives

 //dispatchers for completed, error, and progress cases.

 return new WinJS.Promise(function (completeDispatch, errorDispatch, progressDispatch) {

 var sum = 0;

 function iterate(args) {

 for (var i = args.start; i < args.end; i++) {

 sum += i;

 };

 if (i >= max) {

 //Complete--dispatch results to completed handlers

 completeDispatch(sum);

 } else {

 //Dispatch intermediate results to progress handlers

 progressDispatch(sum);

http://msdn.microsoft.com/en-us/library/windows/apps/br211866.aspx

1202

 setImmediate(iterate, { start: args.end, end: Math.min(args.end + step, max) });

 }

 }

 setImmediate(iterate, { start: 0, end: Math.min(step, max) });

 });

}

Clearly, this function still returns a promise, but it’s an instance of WinJS.Promise that’s essentially

been configured to perform a specific operation. That “configuration,” if you will, is supplied by the

function we passed to the WinJS.Promise constructor, referred to as the initializer. The core of this

initializer function does exactly what we did with IntegerSummationPromise.then in scenario 6. The

great thing is that we don’t need to manage all the handlers nor the details of returning another

promise from then. That’s all taken care of for us. Whew!

All we need is a way to tell WinJS.Promise when to invoke the completed, error, and progress

handlers it’s managing on our behalf. That’s exactly what’s provided by the three dispatcher arguments

given to the initializer function. Calling these dispatchers will invoke whatever handlers the promise has

received through then or done, just like we did manually in scenario 6. And again, we no longer need

to worry about the structure details of creating a proper promise—we can simply concentrate on the

core functionality that’s unique to our app.

By the way, a helper function like WinJS.Promise.timeout also lets us eliminate a custom promise

class like the NumberPromise we used in scenario 6 to implement the getDesiredCount. We can now

just do the following (taken from scenario 8, which matches the quiet output of scenario 6 with a lot

less code!):

function getDesiredCount() {

 return WinJS.Promise.timeout(100).then(function () { return 1000; });

}

To wrap up, a couple of other notes on WinJS.Promise:

 Doing new WinJS.Promise() (with no parameters) will throw an exception: an initializer

function is required.

 If you don’t need the errorDispatcher and progressDispatcher methods, you don’t need to

declare them as arguments in your function. JavaScript is nice that way!

 Any promise you get from WinJS (or WinRT for that matter) has a standard cancel method that

cancels any pending async operation within the promise, if cancellation is supported. It has no

effect on promises that contain already-known values.

 To support cancellation, the WinJS.Promise constructor also takes an optional second

argument: a function to call if the promise’s cancel method is called. Here you halt whatever

operation is underway. The full calculateIntegerSum function of scenario 8, for example

(again, it’s in default.js), has a simple function to set a _cancel variable that the iteration loop

checks before calling its next setImmediate.

1203

Originating Errors with WinJS.Promise.WrapError
In Chapter 3 we learned about handling async errors as a consumer of promises and the role of the

done method vs. then. When originating a promise, we need to make sure that we cooperate with how

all that works.

When implementing an async function, you must handle two different error conditions. One is

obvious: you encounter something within the operation that causes it to fail, such as a network

timeout, a buffer overrun, the inability to access a resource, and so on. In these cases you call the error

dispatcher (the second argument given to your initialization function by the WinJS.Promise

constructor), passing an error object that describes the problem. That error object is typically created

with WinJS.ErrorFromName (using new), using an error name and a message, but this is not a strict

requirement. WinJS.xhr, for example, passes the request object directly to the error handler because

that object contains much richer information already.

To contrive an example, if calculateIntegerSum (from default.js) encountered some error while

processing its operation, it would do the following:

if (false /* replace with any necessary error check -- we don't have any here*/) {

 errorDispatch(new WinJS.ErrorFromName("calculateIntegerSum", "error occurred"));

}

The other error condition is more interesting. What happens when a function that normally returns a

promise encounters a problem such that it cannot create its usual promise? It can’t just return null,

because that would make it very difficult to chain promises together. What it needs to do instead is

return a promise that already contains an error, meaning that it will immediately call any error handlers

given to its then.

For this purpose, WinJS has a special function WinJS.Promise.wrapError whose argument is an

error object (again typically a WinJS.ErrorFromName). wrapError creates a promise that has no

fulfillment value and will never call a completed handler. It will pass its error to any error handler only if

you call then or done. Still, its then function must yet return a promise itself; in this case it returns a

promise whose fulfillment value is the error object.

For example, if calculateIntegerSum receives max or step arguments that are less than 1, it has to

fail and can just return a promise from wrapError (see default.js):

if (max < 1 || step < 1) {

 var err = new WinJS.ErrorFromName("calculateIntegerSum (scenario 7)"

 , "max and step must be 1 or greater");

 return WinJS.Promise.wrapError(err);

}

The consumer code looks like this, as found in scenario 8:

calculateIntegerSum(0, 1).then(function (sum) {

 console.log("calculateIntegerSum(0, 1) fulfilled with " + sum);

}, function (err) {

 console.log("calculateIntegerSum(0, 1) failed with error: '" + err.message +"'");

http://msdn.microsoft.com/en-us/library/windows/apps/br211689.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229784.aspx

1204

 return "value returned from error handler";

}).then(function (value) {

 console.log("calculateIntegerSum(0, 1).then fulfilled with: '" + value + "'");

});

Some tests in scenario 8 show this output:

calculateintegersum(0, 1) failed with error: 'max and step must be 1 or greater'

calculateIntegerSum(0, 1).then fulfilled with: 'value returned from error handler'

Another way that an asynchronous operation can fail is by throwing an exception rather than calling

the error dispatcher directly. This is important with async WinRT APIs, as those exceptions can occur

deep down in the operating system. WinJS accommodates this by wrapping the exception itself into a

promise that can then be involved in chaining. The exception just shows up in the consumer’s error

handler.

Speaking of chaining, WinJS makes sure that errors are propagated through the chain to the error

handler given to the last then/done in the chain, allowing you to consolidate your handling there. This

is why promises from wrapError are themselves fulfilled with the error value, which they send to their

completed handlers instead of the error handlers.

However, because of some subtleties in the JavaScript projection layer for the WinRT APIs,

exceptions thrown from async operations within a promise chain will get swallowed and will not surface

in that last error handler. Mind you, this doesn’t happen with a single promise and a single call to then,

nor with nested promises, but most of the time the consumer is chaining multiple operations. Such is

why we have the done method alongside then. By using this in the consumer at the end of a promise

chain, you ensure that any error in the chain is propagated to the error handler given to done.

Some Interesting Promise Code

Finally, now that we’ve thoroughly explored promises both in and out of WinJS, we’re ready to dissect

various pieces of code involving promises and understand exactly what they do, beyond the basics of

chaining that we’ve seen.

Delivering a Value in the Future: WinJS.Promise.timeout

To start with a bit of review, the simple WinJS.Promise.timeout(<n>).then(function () {

<value> }); pattern delivers a known value at some time in the future:

var p = WinJS.Promise.timeout(1000).then(function () { return 12345; });

Of course, you can return another promise inside the first completed handler and chain more then

calls, which is just an example of standard chaining.

1205

Internals of WinJS.Promise.timeout
The first two cases of WinJS.Promise.timeout, timeout() and timeout(n), are implemented as

follows, using a new instance of WinJS.Promise where the initializer calls either setImmediate or

setTimeout(n):

// Used for WinJS.Promise.timeout() and timeout(n)

function timeout(timeoutMS) {

 var id;

 return new WinJS.Promise(

 function (c) {

 if (timeoutMS) {

 id = setTimeout(c, timeoutMS);

 } else {

 setImmediate(c);

 }

 },

 function () {

 if (id) {

 clearTimeout(id);

 }

 }

);

}

The WinJS.Promise.timeout(n, p) form is more interesting. As before, it fulfills p if it happens

within n milliseconds; otherwise p is canceled. Here’s the core of its implementation:

function timeoutWithPromise(timeout, promise) {

 var cancelPromise = function () { promise.cancel(); }

 var cancelTimeout = function () { timeout.cancel(); }

 timeout.then(cancelPromise);

 promise.then(cancelTimeout, cancelTimeout);

 return promise;

}

The timeout argument comes from calling WinJS.Promise.timeout(n), and promise is the p from

WinJS.Promise.timeout(n, p). As you can see, promise is just returned directly. However, see how

the promise and the timeout are wired together. If the timeout promise is fulfilled first, it calls

cancelPromise to cancel promise. On the flipside, if promise is fulfilled first or encounters an error, it

calls cancelTimeout to cancel the timer.

Parallel Requests to a List of URIs

If you need to retrieve information from multiple URIs in parallel, here’s a little snippet that gets a

WinJS.xhr promise for each and joins them together:

// uris is an array of URI strings

WinJS.Promise.join(

 uris.map(function (uri) { return WinJS.xhr({ url: uri }); })

).then(function (results) {

1206

 results.forEach(function (result, i) {

 console.log("uri: " + uris[i] + ", " + result);

 });

});

The array map method simply generates a new array with the results of the function you give it

applied to each item in the original array. This new array becomes the argument to join, which is

fulfilled with an array of results.

You can of course replace WinJS.xhr with Windows.Web.Http.HttpClient.get* methods (see

Chapter 4 in the section “Using Windows.Web.Http.HttpClient”) or use any other array of input values

for uris and any other async method for that matter.

Parallel Promises with Sequential Results

WinJS.Promise.join and WinJS.Promise.any work with parallel promises—that is, with parallel

async operations. The promise returned by join will be fulfilled when all the promises in an array are

fulfilled. However, those individual promises can themselves be fulfilled in any given order. What if you

have a set of operations that can execute in parallel but you want to process their results in a well -

defined order—namely, the order that their promises appear in an array?

The trick is to basically join each subsequent promise to all of those that come before it, and the

following bit of code does exactly that. Here, list is an array of values of some sort that are used as

arguments for some promise-producing async call that I call doOperation:

list.reduce(function callback (prev, item, i) {

 var result = doOperation(item);

 return WinJS.Promise.join({ prev: prev, result: result}).then(function (v) {

 console.log(i + ", item: " + item+ ", " + v.result);

 });

})

To understand this code, we have to first understand how the array’s reduce method works,

because it’s slightly tricky. For each item in the array, reduce calls the function you provide as its

argument, which I’ve named callback for clarity. This callback receives four arguments (only three of

which are used in the code):

 prev The value that’s returned from the previous call to callback. For the first item, prev is

null.

 item The current value from the array.

 i The index of item in the list.

 source The original array.

It’s also important to remember that WinJS.Promise.join can accept a list in the form of an

http://msdn.microsoft.com/en-us/library/ie/ff679975(v=vs.94).aspx

1207

object, as shown here, as well as an array (it uses Object.keys(list).forEach to iterate).

To make this code clearer, it helps to write it out with explicit promises:

list.reduce(function callback (prev, item, i) {

 var opPromise = doOperation(item);

 var join = WinJS.Promise.join({ prev: prev, result: opPromise});

 return join.then(function completed (v) {

 console.log(i + ", item: " + item+ ", " + v.result);

 });

})

By tracing through this code for a few items in list, we’ll see how we build the sequential

dependencies.

For the first item in the list, we get its opPromise and then join it with whatever is contained in

prev. For this first item prev is null, so we’re essentially joining, to express it in terms of an array,

[WinJS.Promise.as(null), opPromise]. But notice that we’re not returning join itself. Instead,

we’re attaching a completed handler (which I’ve called completed) to that join and returning the

promise from its then.

Remember that the promise returned from then will be fulfilled when the completed handler

returns. This means that what we’re returning from callback is a promise that’s not completed until

the first item’s completed handler has processed the results from opPromise. And if you look back at

the result of a join, it’s fulfilled with an object that contains the results from the promises in the original

list. That means that the fulfillment value v will contain both a prev property and a result property,

the values of which will be the values from prev (which is null) and opPromise. Therefore v.result is

the result of opPromise.

Now see what happens for the next item in list. When callback is invoked this time, prev

contains the promise from the previous join.then. So, in the second pass through callback we create

a new join of opPromise
2
 and opPromise

1
.then. As a result, this join will not complete until both

opPromise
2
 is fullfilled and the completed handler for opPromise

1
 returns. Voila! The completed

2

handler we now attach to this join will not be called until after completed
1
 has returned.

In short, the same dependencies continue to be built up for each item in list—the promise from

join.then for item n will not be fulfilled until completed
n
 returns, and we’ve guaranteed that the

completed handlers will be called in the same sequence as list.

A working example of this construct using calculateIntegerSum and an array of numbers can be

found in scenario 9 of the Promises example. The numbers are intentionally set so that some of the

calculations will finish before others, but you can see that the results are delivered in order.

1208

Constructing a Sequential Promise Chain from an Array
A similar construct to the one in the previous section is to use the array’s reduce method to build up a

promise chain from an array of input arguments such that each async operation doesn’t start before

the previous one is complete. Scenario 10 of the Promises example demonstrates this:

//This just avoids having the prefix everywhere

var calculateIntegerSum = App.calculateIntegerSum;

//This op function attached other arguments to each call

var op = function (arg) { return calculateIntegerSum(arg, 100); };

//The arguments we want to process

var args = [1000000, 500000, 300000, 150000, 50000, 10000];

//This code creates a parameterized promise chain from the array of args and the async call

//in op. By using WinJS.Promise.as for the initializer we can just call p.then inside

//the callback.

var endPromise = args.reduce(function (p, arg) {

 return p.then(function (r) {

 //The first result from WinJS.Promise.as will be undefined, so skip logging

 if (r !== undefined) { App.log("operation completed with results = " + r) };

 return op(arg);

 });

}, WinJS.Promise.as());

//endPromise is fulfilled with the last operation's results when the whole chain is complete.

endPromise.done(function (r) {

 App.log("Final promise complete with results = " + r);

});

PageControlNavigator._navigating (Page Control Rendering)

The final piece of code we’ll look at in this appendix comes from the navigator.js file that’s included

with the Visual Studio templates that employ WinJS page controls. This is an event handler for the

WinJS.Navigation.onnavigating event, and it performs the actual loading of the target page (using

WinJS.UI.Pages.render to load it into a newly created div, which is then appended to the DOM) and

unloading of the current page (by removing it from the DOM):

_navigating: function (args) {

 var newElement = this._createPageElement();

 var parentedComplete;

 var parented = new WinJS.Promise(function (c) { parentedComplete = c; });

 this._lastNavigationPromise.cancel();

 this._lastNavigationPromise = WinJS.Promise.timeout().then(function () {

 return WinJS.UI.Pages.render(args.detail.location, newElement,

 args.detail.state, parented);

 }).then(function parentElement(control) {

1209

 var oldElement = this.pageElement;

 if (oldElement.winControl && oldElement.winControl.unload) {

 oldElement.winControl.unload();

 }

 WinJS.Utilities.disposeSubTree(this._element);

 this._element.appendChild(newElement);

 this._element.removeChild(oldElement);

 oldElement.innerText = "";

 parentedComplete();

 }.bind(this));

 args.detail.setPromise(this._lastNavigationPromise);

},

First of all, this code cancels any previous navigation that might be happening, then creates a new

one for the current navigation. The args.detail.setPromise call at the end is the WinJS deferral

mechanism that’s used in a number of places. It tells WinJS.Navigation.onnavigating to defer its

default process until the given promise is fulfilled. In this case, WinJS waits for this promise to be

fulfilled before raising the subsequent navigated event.

Anyway, the promise in question here is what’s produced by a WinJS.Promise.timeout().-

then().then() sequence. Starting with a timeout() promise means that the process of rendering a

page control first yields the UI thread via setImmediate, allowing other work to complete before we

start the rendering process.

After yielding, we then enter into the first completed handler that starts rendering the new page

control into newElement with WinJS.UI.Pages.render. Rendering is an async operation itself (it

involves a file loading operation, for one thing), so render returns a promise. At this point, newElement

is an orphan—it’s not yet part of the DOM, just an object in memory—so all this rendering is just a

matter of loading up the page control’s contents and building that standalone chunk of DOM.

When render completes, the next completed handler in the chain, which is actually named

parentElement (“parent” in this case being a verb), receives the newly loaded page control object.

This code doesn’t make use of this argument, however, because it knows that it’s the contents of

newElement (newElement.winControl, to be precise). So we now unload any page control that’s

currently loaded (that.pageElement.winControl), calling its unload method, if available, and also

making sure to free up event listeners and whatnot with WinJS.Utilities.disposeSubtree. Then we

can attach the new page’s contents to the DOM and remove the previous page’s contents. This means

that the new page contents will appear in place of the old the next time the rendering engine gets a

chance to do its thing.

Finally, we call this function parentedComplete. This last bit is really a wiring job so that WinJS will

not invoke the new page’s ready method until it’s been actually added to the DOM. This means that

we need a way for WinJS to hold off making that call until parenting has finished.

1210

Earlier in _navigating, we created a parentedPromise variable, which was then given as the fourth

parameter to WinJS.UI.Pages.render. This parentedPromise is very simple: we’re just calling new

WinJS.Promise and doing nothing more than saving its completed dispatcher in the parented-

Complete variable, which is what we call at the end of the process.

For this to serve any purpose, of course, someone needs to call parentedPromise.then and attach

a completed handler. A WinJS page control does this, and all its completed handler does is call ready.

Here’s how it looks in base.js:

this.renderComplete.then(function () {

 return parentedPromise;

}).then(function Pages_ready() {

 that.ready(element, options);

})

In the end, this whole _navigating code is just saying, “After yielding the UI thread, asynchronously

load up the new page’s HTML, add it to the DOM, clean out and remove the old page from the DOM,

and tell WinJS that it can call the new page’s ready method, because we’re not calling it directly

ourselves.”

Bonus: Deconstructing the ListView Batching Renderer

The last section of Chapter 7, titled “Template Functions (Part 2): Optimizing Item Rendering,” talks

about the multistage batching renderer found in scenario 1 of the HTML ListView optimizing

performance sample. The core of the renderer is a function named thumbnailBatch, whose purpose is

to return a completed handler for an async promise chain in the renderer:

renderComplete: itemPromise.then(function (i) {

 item = i;

 // ...

 return item.ready;

}).then(function () {

 return item.loadImage(item.data.thumbnail);

}).then(thumbnailBatch()

).then(function (newimg) {

 img = newimg;

 element.insertBefore(img, element.firstElementChild);

 return item.isOnScreen();

}).then(function (onscreen) {

 //...

})

To understand how this works, we first need a little more background as to what we’re try ing to

accomplish. If we just had a ListView with a single item, various loading optimizations wouldn’t be

noticeable. But ListViews typically have many items, and the rendering function is called for each one.

In the multistage renderer described in Chapter 7, the rendering of each item kicks off an async

item.loadImage operation to download its thumbnail from an arbitrary URI, and each operation can

http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0

1211

take an arbitrary amount of time. For the list as a whole, we might have a bunch of simultaneous

loadImage calls going on, with the rendering of each item waiting on the completion of its particular

thumbnail. So far so good.

An important characteristic that’s not at all visible in the multistage renderer, however, is that the

img element for the thumbnail is already in the DOM, and the loadImage function will set that image’s

src attribute as soon as the download has finished. This in turn triggers an update in the rendering

engine as soon as we return from the rest of the promise chain.

It’s possible, then, that a bunch of thumbnails could come back to the UI thread within a short

amount of time. This will cause excess churn in the rendering engine and poor visual performance. To

avoid this churn, we need to create and initialize the img elements before they’re in the DOM, and then

we need to add them in batches such that they’re all handled in a single rendering pass.

This is the purpose of the function in the sample called createBatch, which is called just once to

produce the oft-used thumbnailBatch function:

var thumbnailBatch;

thumbnailBatch = createBatch();

As shown above, a call to this thumbnailBatch function, as I’ll refer to it from here on, is inserted

into the promise chain of the renderer. This purpose of this insertion, given the nature of the batching

code that we’ll see shortly, is to group together a set of loaded img elements, releasing them for further

processing at suitable intervals. Again, just looking at the promise chain in the renderer, a call to

thumbnailBatch() must return a completed handler function that accepts, as a result, whatever

loadImage produces (an img element). In this case, loadImage is creating that img element for us,

unlike the previous multistage renderer that uses one that’s already in the DOM.

Because the call to thumbnailBatch is in a chain, the completed handler it produces must also

return a promise whose the fulfillment value (looking at the next step in the chain) must be an img

element that can then be added to the DOM as part of a batch.

Now let’s see how that batching works. Here’s the createBatch function in its entirety:

function createBatch(waitPeriod) {

 var batchTimeout = WinJS.Promise.as();

 var batchedItems = [];

 function completeBatch() {

 var callbacks = batchedItems;

 batchedItems = [];

 for (var i = 0; i < callbacks.length; i++) {

 callbacks[i]();

 }

 }

 return function () {

 batchTimeout.cancel();

 batchTimeout = WinJS.Promise.timeout(waitPeriod || 64).then(completeBatch);

1212

 var delayedPromise = new WinJS.Promise(function (c) {

 batchedItems.push(c);

 });

 return function (v) {

 return delayedPromise.then(function () {

 return v;

 });

 };

 };

}

Again, createBatch is called just once and its thumbnailBatch result is called for every item in the

list. The completed handler that thumbnailBatch generates is then called whenever a loadImage

operation completes.

Such a completed handler might just as easily have been inserted directly into the rendering

function, but what we’re trying to do here is coordinate activities across multiple items rather than just

on a per-item basis. This coordination is achieved through the two variables created and initialized at

the beginning of createBatch: batchedTimeout, initialized as an empty promise, and batchedItems,

initialized an array of functions that’s initially empty. createBatch also declares a function,

completeBatch, that simply empties batchedItems, calling each function in the array:

 function completeBatch() {

 //Copy and clear the array so that the next batch can start to accumulate

 //while we're processing the previous one.

 var callbacks = batchedItems;

 batchedItems = [];

 for (var i = 0; i < callbacks.length; i++) {

 callbacks[i]();

 }

 }

Now let’s see what happens within thumbnailBatch (the function returned from createBatch),

which is again called for each item being rendered. First, we cancel any existing batchedTimeout and

immediately re-create it:

 batchTimeout.cancel();

 batchTimeout = WinJS.Promise.timeout(waitPeriod || 64).then(completeBatch);

The second line shows the future delivery/fulfillment pattern discussed earlier: it says to call

completeBatch after a delay of waitPeriod milliseconds (with a default of 64ms). This means that so

long as thumbnailBatch is being called again within waitPeriod of a previous call, batchTimeout will

be reset to another waitPeriod. And because thumbnailBatch is called only after an item.loadImage

call completes, we’re effectively saying that any loadImage operations that complete within waitPeriod

of the previous one will be included in the same batch. When there’s a gap longer than waitPeriod, the

batch is processed (images are added to the DOM) and the next batch begins.

After handling this timeout business, thumbnailBatch creates a new promise that simply pushes the

complete dispatcher function into the batchedItems array:

1213

 var delayedPromise = new WinJS.Promise(function (c) {

 batchedItems.push(c);

 });

Remember that a promise is just a code construct, and that’s all we have here. The newly created

promise has no async behavior in and of itself: we’re just adding the comple te dispatcher function, c, to

batchedItems. But, of course, we don’t do anything with the dispatcher until batchedTimeout

completes (asynchronously), so there is in fact an async relationship here. When the timeout happens

and we clear the batch (inside completeBatch), we’ll invoke any completed handlers given elsewhere

to delayedPromise.then.

This brings us to the last line of code in createBatch, which is the function that thumbnailBatch

actually returns. This function is exactly the completed handler that gets inserted into the renderer’s

whole promise chain:

 return function (v) {

 return delayedPromise.then(function () {

 return v;

 });

 };

In fact, let’s put this piece of code directly into the promise chain so that we can see the resulting

relationships:

 return item.loadImage(item.data.thumbnail);

 }).then(function (v) {

 return delayedPromise.then(function () {

 return v;

 });

).then(function (newimg) {

Now we can see that the argument v is the result of item.loadImage, which is the img element

created for us. If we didn’t want to do batching, we could just say return WinJS.Promise.as(v) and

the whole chain would still work: v would then be passed on synchronously and show up as newimg in

the next step.

Instead, however, we’re returning a promise from delayedPromise.then that won’t be fulfilled—

with v—until the current batchedTimeout is fulfilled. At that time—when again there’s a gap of

waitPeriod between loadImage completions—those img elements are delivered to the next step in the

chain where they’re added to the DOM.

And that’s it. Now you know!

1214

Appendix B

WinJS Extras

In this appendix:

 Exploring WinJS.Class Patterns

 Obscure WinJS Features

 Extended Splash Screens

 Custom Layouts for the ListView Control

Exploring WinJS.Class Patterns

Much has been written in the community about object-oriented JavaScript, and various patterns have

emerged to accomplish with JavaScript’s flexible nature the kinds of behaviors that are built directly

into languages like C++. Having done more C++ than functional programming in the past, I’ve found

the object-oriented approach to be more familiar and comfortable. If you are in the same camp, you’ll

find that the WinJS.Class API encapsulates much of what you need.

WinJS.Class.define

One place object-oriented programmers quickly hit a bump in JavaScript is the lack of a clear “class”

construct—that is, the definition of a type of object that can be instantiated. JavaScript, in short, has no

class keyword. Instead, it has functions, and only functions. Conveniently, however, if you create a

function that populates members of its this variable, the name of that function works exactly like the

name of a class such that you can create an instance with the new operator.

To borrow a snippet of code from Eloquent JavaScript (a book I like for its depth and brevity, and

which is also available for free in electronic form—thank you Marijn!), take the following function

named Rabbit:

function Rabbit(adjective) {

 this.adjective = adjective;

 this.speak = function (line) {

 print("The ", this.adjective, " rabbit says '", line, "'");

 };

}

By itself, this function doesn’t do anything meaningful. You can call it from wherever and this will

end up being your global context. Maybe handy if you like to pollute the global namespace!

http://eloquentjavascript.net/

1215

When used with the new operator, on the other hand, the function becomes an object constructor

and effectively defines a class as we know in object-oriented programming. For example:

var fuzzyBunny = new Rabbit("cutie");

fuzzyBunny.speak("nibble, nibble!");

As Marijn points out, using new with a constructor function like this has a nice side effect that assigns

the object’s constructor property with the constructor function itself. This is not true if you just create

a function that returns a newly instantiated object.

To make our class even more object-oriented, the other thing that we typically do is assign default

values to properties and assign methods within the class, rather than on individual instances. In the first

example above, each instance gets a new copy of the anonymous function assigned to speak. It would

be better to define that function such that a single copy is used by the different instances of the class.

This is accomplished by assigning the function to the class’s prototype:

function Rabbit(adjective) {

 this.adjective = adjective;

}

Rabbit.prototype.speak = function (line) {

 print("The ", this.adjective, " rabbit says '", line, "'");

};

Of course, having to write this syntax out for each and every member of the class that’s shared

between instances is both cumbersome and prone to errors. Personally, I also like to avoid messing

with prototype because you can really hurt yourself if you’re not careful.

WinJS provides a helper that provides a cleaner syntax as well as clear separation between the

constructor function, instance members, and static members: WinJS.Class.define:

var ClassName = WinJS.Class.define(constructor, instanceMembers, staticMembers);

where constructor is a function and instanceMembers and staticMembers are both objects. The general

structure you see in code looks like this (you can find many examples in the WinJS source code itself):

var ClassName = WinJS.Class.define(

 function ClassName_ctor() { //adding _ctor is conventional

 },

 {

 //Instance members

 },

 {

 //Static members

 }

);

Because many classes don’t have static members, the third parameter is often omitted. Also, if you

pass null as the constructor, WinJS will substitute an empty function in its place. You can see this in

the WinJS source code for define (base.js, comments added):

http://msdn.microsoft.com/library/windows/apps/br229813.aspx

1216

function define(constructor, instanceMembers, staticMembers) {

 constructor = constructor || function () { };

 //Adds a supportedForProcessing property set to true. This is needed by

 //WinJS.UI.process[All], WinJS.Binding.process, and WinJS.Resources.process.

 WinJS.Utilities.markSupportedForProcessing(constructor);

 if (instanceMembers) {

 initializeProperties(constructor.prototype, instanceMembers);

 }

 if (staticMembers) {

 initializeProperties(constructor, staticMembers);

 }

 return constructor;

}

You can also see how define treats static and instance members (initializeProperties is a

helper that basically iterates the object in the second parameter and copies its members to the object

in the first). Static members are specifically added as properties to the class function itself,

constructor. This means they exist singularly on that object—if you change them anywhere, those

changes apply to all instances. I consider that a rather dangerous practice, so I like to consider static

members as read-only.

Instance members, on the other hand, are specifically added to constructor.prototype, so they

are defined just once (especially in the case of methods) while still giving each individual instance a

copy of the properties that can be changed without affecting other instances.

You can see, then, that WinJS.Class.define is just a helper: you can accomplish everything it does

with straight JavaScript, but you end up with code that’s generally harder to maintain. Indeed, the team

that wrote WinJS needed these structures for themselves to avoid making lots of small mistakes. But

otherwise there is nothing magical about define, and you can use it in your own app code or not.

Along these lines, people have asked how define relates to the class structures of TypeScript. When

all is said and done, they accomplish the same things. In fact, you can derive WinJS classes from

TypeScript classes and vice versa because they all end up working on the prototype level.

The one exception is that call to WinJS.Utilities.markSupportedForProcessing in WinJS. This is

a requirement for functions that are used from other parts of WinJS (see Chapter 5, “Controls and

Control Styling,” in the section “Strict Processing and processAll Functions”) and is the only “hidden”

benefit in WinJS. If you use TypeScript or other libraries to create classes, you’ll need to call that

function directly.

Sidebar: Asynchronous Constructors?

The constructors created through WinJS.Class.define are inherently synchronous, and there’s

no simple pattern to create an asynchronous constructor. Instead, use the usual synchronous

constructor and then include an initializeAsync method in the class that must be called to

make the rest of the instance usable. Your async construction work then happens within

initializeAsync, which should return a promise that’s completed when initialization is done.

1217

WinJS.Class.derive
The next part of object-oriented programming that we typically need is the ability to create derived

classes—that is, to add instance and static members to an existing class. This is the purpose of

WinJS.Class.derive. The syntax is:

WinJS.Class.derive(baseClass, constructor, instanceMembers, staticMembers);

where baseClass is the name of a class previously defined with WinJS.Class.define or

WinJS.Class.derive, or, for that matter, any other object. The other three parameters are the same as

those of define, with the same meaning.

Peeking into the WinJS sources (base.js), we can see how derive works:

if (baseClass) {

 constructor = constructor || function () { };

 var basePrototype = baseClass.prototype;

 constructor.prototype = Object.create(basePrototype);

 WinJS.Utilities.markSupportedForProcessing(constructor);

 Object.defineProperty(constructor.prototype, "constructor", { value: constructor, writable:

true, configurable: true, enumerable: true });

 if (instanceMembers) {

 initializeProperties(constructor.prototype, instanceMembers);

 }

 if (staticMembers) {

 initializeProperties(constructor, staticMembers);

 }

 return constructor;

} else {

 return define(constructor, instanceMembers, staticMembers);

}

You can see that if baseClass is null, derive is just an alias for define, and if you indicate null

for the constructor, an empty function is provided. Otherwise you can see that the derived class is given

a copy of the base class’s prototype so that the two won’t interfere with each other. After that, derive

adds the static and instance properties as did define.

Because baseClass already has its own instance and static members, they’re present in its

prototype, so those members carry over into the derived class, as you’d expect. But again, if you make

later changes to members of that original baseClass, those changes affect only the derivation and not

the original.

Looking around the rest of WinJS, you’ll see that derive is used in a variety of places to centralize

implementation that’s shared between similar controls and data sources, for example.

http://msdn.microsoft.com/library/windows/apps/br229815.aspx

1218

Mixins
Having covered the basics of WinJS.Class.define and WinJS.Class.derive, we come to the third

method in WinJS.Class: the mix method.

Let’s first see what differentiates a mixin from a derived class. When you derive one class from

another, the new class is the combination of the base class’s members and those additional ones you

specify for the derivation. In WinJS.Class.derive, you can specify only one base class.

Object-oriented programming includes the concept of multiple inheritance whereby you can derive a

class from multiple base classes. This is frequently used to attach multiple independent interfaces on

the new class. (It’s used all the time in Win32/COM programming, where an interface is typically

defined as a virtual base class with no implementation and supplies the necessary function signatures

to the derived class.)

JavaScript doesn’t have object-oriented concepts baked into the language—thus necessitating

helpers like WinJS.Class.define to play the necessary tricks with prototypes and all that—so there

isn’t a built-in method to express multiple inheritance.

Hence the idea of a mix or mixin, which isn’t unique to WinJS, as evidenced by this mixin article on

Wikipedia. WinJS.Class.mix is a way to do something like multiple inheritance by simply combining

all the instance members of any number of other objects. The description in the documentation for

WinJS.Class.mix puts it this way: “Defines a class using the given constructor and the union of the set

of instance members specified by all the mixin objects. The mixin parameter list is of variable length.”

Here we see two other differences between a mix and a derivation: a mix does not operate on static

members, and it does not concern itself with any constructors other than the one given directly to mix.

(This is also why it’s not multiple inheritance in the strict object-oriented sense.)

WinJS itself uses the mixin concept for its own implementation. If you look in the docs, you’ll see

several mixins in WinJS that you can use yourself:

 WinJS.UI.DOMEventMixin contains standard implementations of addEventListener,

removeEventListener, dispatchEvent, and setOptions, which are commonly used for

controls. All the WinJS controls bring this into their mix.

 WinJS.Utilities.eventMixin is the same as DOMEventMixin but without setOptions. It’s

meant for objects that don’t have associated UI elements and thus can’t use the listener

methods on an element in the DOM. The mixin supplies its own implementation of these

methods.

 WinJS.Binding.observableMixin adds functionality to an object that makes it “observable,”

meaning that it can participate in data binding. This consists of methods bind, unbind, and

notify. This is used with the WinJS.Binding.List class (see Chapter 6, “Data Binding,

Template, and Collections”).

http://msdn.microsoft.com/library/windows/apps/br229836.aspx
http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Mixin
http://msdn.microsoft.com/library/windows/apps/br229836.aspx
http://msdn.microsoft.com/library/windows/apps/hh700596.aspx
http://msdn.microsoft.com/library/windows/apps/br211693.aspx
http://msdn.microsoft.com/library/windows/apps/hh701055.aspx
http://msdn.microsoft.com/library/windows/apps/hh700774.aspx

1219

 WinJS.Binding.dynamicObservableMixin builds on the observableMixin with methods

called setProperty, getProperty, updateProperty, addProperty, and removeProperty. This

is helpful for wiring up two-way data binding, something that WinJS doesn’t do but that isn’t

too difficult to pull together. The Declarative binding sample in the Windows SDK shows how.

With events (in the first two mixins) you commonly use WinJS.Utilities.createEvent-

Properties to also create all the stuff a class needs to support named events. createEvent-

Properties returns a mixin object that you can then use with WinJS.Class.mix. For example, if you

pass this method an array with just ["statusChanged"], you’ll get a function property in the mixin

named onstatuschanged and the ability to create a listener for that event.

Mixins, again, are a way to add pre-canned functionality to a class and a convenient way to

modularize code that you’ll use in multiple classes. It’s also good to know that you can call

WinJS.Class.mix multiple times with additional mixins and the results simply accumulate (if there are

duplicates, the last member mixed is the one retained).

Obscure WinJS Features

In the main chapters of this book we generally encounter the most common features of WinJS, but if

you dig around in the documentation you’ll find that there are a bunch of other little features hanging

off the WinJS tree like pieces of fruit. To enjoy that harvest a bit, let’s explore those features, if for no

other reason than to make you aware that they exist!

Wrappers for Common DOM Operations
The first set of features are simple wrappers around a few common DOM operations.

WinJS.Utilities.QueryCollection is a class that wraps an element.querySelectorAll or

document.querySelectorAll with a number of useful methods. An instance of this class is created by

calling WinJS.Utilities.query(<query>[,]) where <query> is a usual DOM query string and the

optional <element> scopes the query. That is, if you provide <element>, the instance wraps

element.querySelectorAll(<query>); if you omit <element>, the instance uses

document.querySelectorAll(<query>). Similarly, WinJS.Utilities.QueryCollection(<id>) does

a document.getElementById(<id>) and then passes the result to new WinJS.Utilities.-

QueryCollection. WinJS.Utilities.QueryCollection creates a QueryCollection that contains

children of a specified element.

Anyway, once you have a QueryCollection instance, it provides methods to work with its

collection—that is, with the results of the DOM query that in and of itself is just an array. As such, you’d

normally be writing plenty of loops and iterators to work with the items in the array, and that’s exactly

what QueryCollection provides as a convenience. It follows along with other parts of WinJS, which

are utilities that most developers end up writing anyway, so it might as well be in a library!

http://msdn.microsoft.com/library/windows/apps/hh700607.aspx
http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5
http://msdn.microsoft.com/library/windows/apps/br211878.aspx
http://msdn.microsoft.com/library/windows/apps/br211878.aspx
http://msdn.microsoft.com/library/windows/apps/br211878.aspx

1220

We can see this in what the individual methods do:

 forEach calls Array.prototype.forEach.apply on the collection, using the given callback

function and this argument.

 get returns [<index>] from the array.

 setAttribute iterates the collection and calls setAttribute for each item.

 getAttribute gets an attribute for the first item in the collection.

 addClass, hasClass, removeClass, toggleClass each iterates the collection and calls

WinJS.Utilities.addClass, hasClass, removeClass, or toggleClass for each item,

respectively.

 listen, removeEventListener iterates the collection, calling addEventListener or

removeEventListener for each item.

 setStyle and clearStyle iterate the collection, setting a given style to a value or "",

respectively.

 include adds other items to this collection. The items can be in an array, a document fragment

(DOM node), or a single item.

 query executes a querySelectorAll on each item in the collection and calls include for each

set of results. This could be used, for instance, to extract specific children of the items in the

collection and add them to the collection.

 control, given the name of a control constructor (a function) and an options object (as WinJS

controls typically use), creates an instance of that control and attaches it to each item in the

collection. It’s allowable to call this method with just an options object as the first argument, in

which case the method calls WinJS.UI.process on each item in the collection followed by

WinJS.UI.setOptions for each control therein. This allows the collection to contain elements

that have WinJS control declarations (data-win-control attributes) that have not yet been

instantiated.

 template renders a template element that is bound to the given data and parented to the

elements included in the collection. If the collection contains multiple elements, the template is

rendered multiple times, once at each element per item of data passed.

As for WinJS.Utilities.addClass, removeClass, hasClass, and toggleClass, as used above,

these are helper functions that simply add one or more classes (space delimited) to an element, remove

a single class from an element, check whether an element has a class, and add or remove a class from

an element depending on whether it’s already applied. These operations sound simple, but their

implementation is nontrivial. Take a look at the WinJS source code (in base.js) to see what I mean!

Good code that you don’t have to write.

http://msdn.microsoft.com/library/windows/apps/br229798.aspx
http://msdn.microsoft.com/library/windows/apps/br229848.aspx
http://msdn.microsoft.com/library/windows/apps/br229851.aspx

1221

WinJS.Utilities.data, convertToPixels, and Other Positional

Methods

The next few methods in WinJS to look at are WinJS.Utilities.data and WinJS.Utilities.-

convertToPixels.

WinJS.Utilities.data is documented as “gets a data value associated with the specific element.”

The data value is always an object and is attached to the element by using a property name of

_msDataKey. So WinJS.Utilities.data(<element>) always just gives you back that object, or it

creates one if one doesn’t yet exist. You can then add properties to that object or retrieve them.

Basically, this is a tidy way to attach extra data to an arbitrary element, knowing that you won’t

interfere with the element otherwise. WinJS uses this internally in various places.

WinJS.Utilities.convertToPixels sounds fancier than it is. It’s just a helper to convert a CSS

positioning string for an element to a real number. In CSS you often use values suffixes like “px” and

“em” that aren’t meaningful values in any computations. This function converts those values to a

meaningful number of pixels. With “px” values, or something without suffixes, it’s easy—just pass it to

parseInt, which will strip “px” automatically if it’s there. For other CSS values—basically anything that

starts with a number—this function assigns the value to the element’s left property (saving the prior

value so that nothing gets altered) and then reads back the element’s pixelLeft property. In other

words, it lets the DOM engine handle the conversion, which will produce 0 if the value isn’t convertible.

Along these same lines are the following WinJS.Utilities methods:

 getRelativeLeft gets the left coordinate of an element relative to a specified parent. Note

that the parent doesn’t have to be the immediate parent but can be any other node in the

element’s tree. This function then takes the offsetLeft property of the element and keeps

subtracting off the offsetLeft of the next element up until the designated ancestor is reached.

 getRelativeTop does the same thing as getRelativeLeft except with offsetTop.

 getContentWidth returns the offsetWidth of an element minus the values of

borderLeftWidth, borderRightWidth, paddingLeft, and paddingRight, which results in the

actual width of the area where content is shown.

 getTotalWidth returns the offsetWidth of the element plus the marginLeft and

marginRight values.

 getContentHeight returns the offsetHeight of an element minus the values of

borderTopWidth, borderBottomWidth, paddingTop, and paddingBottom, which results in the

actual height of the area where content is shown.

 getTotalHeight returns the offsetHeight of the element plus the marginTop and

marginBottom values.

 getPosition returns an object with the left, top, width, and height properties of an element

http://msdn.microsoft.com/library/windows/apps/br229812.aspx
http://msdn.microsoft.com/library/windows/apps/br229810.aspx
http://msdn.microsoft.com/library/windows/apps/br229825.aspx
http://msdn.microsoft.com/library/windows/apps/br229826.aspx
http://msdn.microsoft.com/library/windows/apps/br229822.aspx
http://msdn.microsoft.com/library/windows/apps/br229828.aspx
http://msdn.microsoft.com/library/windows/apps/br229810.aspx
http://msdn.microsoft.com/library/windows/apps/br229827.aspx
http://msdn.microsoft.com/library/windows/apps/br229824.aspx

1222

relative to the topmost element in the tree (up to document or body), taking scroll positions

into account.

Again, take a look in base.js for the implementation of these functions so that you can see what

they’re doing and appreciate the work they’ll save you!

WinJS.Utilities.empty, eventWithinElement, and getMember
Before leaving the WinJS.Utilities namespace, let’s finish off the last few obscure methods found

therein. First, the empty method removes all child nodes from a specified element. This is basically a

simple iteration over the element’s childNodes property, calling removeNode for each in turn (actually

in reverse order). A simple bit of code but one that you don’t need to write yourself.

Next is eventWithinElement. To this you provide an element and an eventArgs object as you

received it from some event. The method then checks to see if the eventArgs.relatedTarget

element is contained within the element you provide. This basically says that an event occurred

somewhere within that element, even if it’s not directly on that element. This is useful for working with

events on controls that contain some number of child elements (like a ListView).

Finally there’s getMember, to which you pass a string name of a “member” and a root object (this

defaults to the global context). The documentation says that this “Gets the leaf-level type or

namespace specified by the name parameter.” What this means is that if you give it a name like

“navigate”, it will look within the namespace of the root you give for that member and return it. In the

case of “navigate”, it will find WinJS.Navigation.navigate. Personally, I don’t know when I’d use this,

but it’s an interesting function nonetheless!

WinJS.UI.scopedSelect and getItemsFromRanges

Wrapping up our discussion of obscure features are two members of the WinJS.UI namespace that

certainly match others in WinJS.Utilites for obscurity!

The first is WinJS.UI.scopedSelect, to which you provide a CSS selector and an element. This

function is documented like this: “Walks the DOM tree from the given element to the root of the

document. Whenever a selector scope is encountered, this method performs a lookup within that scope

for the specified selector string. The first matching element is returned.” What’s referred to here as a

“selector scope” is a property called msParentSelectorScope, which WinJS sets on child elements of a

fragment, page control, or binding template. In this way, you can do a querySelector within the

scope of a page control, fragment, or template without having to start at the document level. The fact

that it keeps going up toward the document root means that it will work with nested page controls or

templates.

The other is WinJS.UI.getItemsFromRanges, which takes a WinJS.Binding.List and an array of

ISelectionRange objects (with firstIndex and lastIndex properties). It then returns a promise

whose results are an array of items in that data source for those ranges. This exists to translate multiple

selections in something like a ListView control into a flat array of selected items—and, in fact, is what’s

http://msdn.microsoft.com/library/windows/apps/br229816.aspx
http://msdn.microsoft.com/library/windows/apps/hh701584.aspx
http://msdn.microsoft.com/library/windows/apps/br229823.aspx
http://msdn.microsoft.com/library/windows/apps/hh921605.aspx
http://msdn.microsoft.com/library/windows/apps/hh872208.aspx
http://msdn.microsoft.com/library/windows/apps/hh700774.aspx
http://msdn.microsoft.com/library/windows/apps/hh872196.aspx

1223

used to implement the getItems method of a ListView’s selection property. So if you implement a

control of your own around a WinJS.Binding.List, you can use getItemsFromRanges to do the

same. The method is provided, in other words, to work with the data source because that is a separate

concern from the ListView control itself.

Extended Splash Screens

In most cases, it’s best for an app to start up as quickly as it can and bring the user to a point of

interactivity with the app’s home page, as discussed in “Optimizing Startup Time” in Chapter 3, “App

Anatomy and Performance Fundamentals.” In some scenarios, though, an app might have a great deal

of unavoidable processing to complete before it can bring up that first page. For example, games must

often decompress image assets to optimize them for the device’s specific hardware—the time spent at

startup makes the whole game run much smoother from then on. Other apps might need to process an

in-package data file and populate a local database for similar reasons or might need to make a number

of HTTP requests. In short, some scenarios demand a tradeoff between startup time and the

performance of the app’s main workflows.

It’s also possible for the user to launch your app shortly after rebooting the system, in which case

there might be lots of disk activity going on. As a result, any disk I/O in your activation path could take

much longer than usual.

In all these cases, it’s good to show the user that something is actually happening so that she

doesn’t think to switch away from the default splash screen and risk terminating the app. You might

also just want to create a more engaging startup experience than the default splash screen provides.

An extended splash screen allows you to fully customize the splash screen experience. In truth, an

extended splash screen is not a system construct—it’s just an implementation strategy for your app’s

initial page behind which you’ll do your startup work before displaying your real home page. In fact, a

typical approach is to just overlay a full-sized div on top of your home page for this purpose and then

remove that div from the DOM (or animate it out of view) when initialization is complete.

The trick (as described on Guidelines for splash screens) is to make this first app page initially look

exactly like the default splash screen so that there’s no visible transition between the two. At this point

many apps simply add a progress indicator with some kind of a “Please go grab a drink, do some

jumping jacks, or enjoy a few minutes of meditation while we load everything” message. Matching the

system splash screen, however, doesn’t mean that the extended splash screen has to stay that way.

Because the entire display area is now under your control, you can create whatever experience you

want: you can kick off animations, perform content transitions, play videos, and so on. And because

your first page is up, meaning that you’ve returned from your activated handler, you’re no longer

subject to the 15-second timeout. In fact, you can hang out on this page however long you need, even

waiting for user input (as when you require a login to use the app).

http://msdn.microsoft.com/library/windows/apps/br211852.aspx
http://msdn.microsoft.com/library/windows/apps/hh465338.aspx

1224

I recommend installing and running various apps from the Store to see different effects in action.

Some apps gracefully slide the default splash screen logo up to make space for a simple progress ring.

Others animate the default logo off the screen and pull in other interesting content or p lay a vido. Now

compare the experience such extended splash screens to the static default experience that other apps

provide. Which do you prefer? And which do you think users of your app will prefer, if you must make

them wait?

Making a seamless transition from the default splash screen is the purpose of the args.detail.-

splashScreen object included with the activated event. This object—see Windows.Application-

Model.Activation.SplashScreen—contains an imageLocation property (a Windows.Foundation.-

Rect) indicating the placement and size of the splash screen image on the current display. (These

values depend on the screen resolution and pixel density.) On your extended splash screen page, then,

initially position your default image at this exact location and entertain your users by animating it

elsewhere. You also use imageLocation to determine where to place other messages, progress

indicators, and other content relative to that image.

The splashScreen object also provides an ondismissed event so that you can perform specific

actions when the system-provided splash screen is dismissed and your extended splash screen comes

up. This is typically used to trigger the start of on-page animations, starting video playback, and so on.

Important Because an extended splash screen is just a page in your app, it can be placed into any

view at any time. As with every other page in your app, make sure your extended splash screen can

handle different sizes and orientations, as discussed in Chapter 8, “Layout and Views.” See also

“Adjustments for View Sizes” later in this appendix.

For one example of an extended splash screen, refer to the Splash screen sample in the Windows

SDK. Although it shows the basic principles in action, all it does it add a message and a button that

dismisses the splash screen (plus the SDK sample structure muddies the story somewhat). So let’s see

something more straightforward and visually interesting, which you can find in the ExtendedSplash-

Screen1 example in the companion content for the appendices. The four stages of this splash screen

(for a full landscape view) are shown in Figure B-1, and you can find a video demonstration of all this in

Video B-1. (The caveat is that this example doesn’t handle other views, but we’ll come back to that in

the next section.)

The first stage, in the upper left of Figure B-1, is the default splash screen that uses only the logo

image. The pie graphic in the middle is 300x300 pixels, with the rest of the PNG file transparent so that

the background color shows through. Now let’s see what happens when the app gets control.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://code.msdn.microsoft.com/windowsapps/Splash-screen-sample-89c1dc78

1225

FIGURE B-1 Four stages of the ExtendedSplashScreen1 example: (1) the default splash screen, upper left, (2)

animating the logo and the title, upper right, (3) showing the progress indicator, lower left, and (4) fading out the

extended splash screen to reveal the main page, lower right. A 10-second countdown in the upper left corner of the

screen simulates initialization work.

The home page for the app, default.html, contains two div elements: one with the final (and

thoroughly unexciting) page contents and another with the contents of the extended splash screen:

<div id="mainContent">

 <h1>This is the real start page</h1>

 <p>Other content goes here.</p>

</div>

<div id="splashScreen">

 <p></p>

 <progress id="progress" class="win-ring win-large"></progress>

</div>

In the second div, which overlays the first because it’s declared last, the counter element shows a

countdown for debug purposes, but you can imagine such a counter turning into a determinate

progress bar or a similar control. The rest of the elements provide the images and a progress ring. But

we can’t position any of these elements in CSS until we know more about the size of the screen. The

best we can do is set the splashScreen element to fill the screen with the background color and set

the position style of the other elements to absolute so that we can set their exact location from

code. This is done in default.css:

1226

#splashScreen {

 background: #B25000; /* Matches the splash screen color in the manifest */

 width: 100%; /* Cover the whole display area */

 height: 100%;

}

 #splashScreen #counter {

 margin: 10px;

 font-size: 20px;

 }

 #splashScreen #logo {

 position: absolute;

 }

 #splashScreen #title {

 position: absolute;

 }

 #splashScreen #progress {

 position: absolute;

 color: #fc2; /* Use a gold ring instead of default purple */

 }

In default.js now, we declare some modulewide variables for the splash screen elements, plus two

values, one to control how long the extended splash screen is displayed (simulating initialization work)

and one that indicates when to show the progress ring:

var app = WinJS.Application;

var activation = Windows.ApplicationModel.Activation;

var ssDiv = null; //Splash screen overlay div

var logo = null; //Child elements

var title = null;

var progress = null;

var initSeconds = 10; //Length in seconds to simulate loading

var showProgressAfter = 4; //When to show the progress control in the countdown

var splashScreen = null;

In the activated event handler, we can now position everything based on the args.detail.-

splashScreen.imageLocation property (note the comment regarding WinJS.UI.processAll and

setPromise, which we’re not using here):

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 //WinJS.UI.processAll is needed ONLY if you have WinJS controls on the extended

 //splash screen, otherwise you can skip the call to setPromise, as we're doing here.

 //args.setPromise(WinJS.UI.processAll());

 ssDiv = document.getElementById("splashScreen");

 splashScreen = args.detail.splashScreen; //Need this for later

 var loc = splashScreen.imageLocation;

1227

 //Set initial placement of the logo to match the default start screen

 logo = ssDiv.querySelector("#logo");

 logo.style.left = loc.x + "px";

 logo.style.top = loc.y + "px";

 //Place the title graphic offscreen to the right so we can animate it in

 title = ssDiv.querySelector("#title");

 title.style.left = ssDiv.clientWidth + "px"; //Just off to the right

 title.style.top = loc.y + "px"; //Same height as the logo

 //Center the progress indicator below the graphic and initially hide it

 progress = ssDiv.querySelector("#progress");

 progress.style.left = (loc.x + loc.width / 2 - progress.clientWidth / 2) + "px";

 progress.style.top = (loc.y + loc.height + progress.clientHeight / 4) + "px";

 progress.style.display = "none";

At this stage, the display still appears exactly like the upper left of Figure B-1, only it’s our extended

splash screen page and not the default one. Thus, we can return from the activated handler at this

point (or complete the deferral) and the user won’t see any change, but now we can do something

more visually interesting and informational while the app is loading.

To simulate initialization work and make some time for animating the logo and title, we have a

simple countdown timer using one-second setTimeout calls:

 //Start countdown to simulate initialization

 countDown();

 }

};

function countDown() {

 if (initSeconds == 0) {

 showMainPage();

 } else {

 document.getElementById("counter").innerText = initSeconds;

 if (--showProgressAfter) {

 progress.style.display = "";

 }

 initSeconds--;

 setTimeout(countDown, 1000);

 }

}

Notice how we show our main page when (our faked) initialization is complete and how the

previously positioned (but hidden) progress ring is shown after a specified number of seconds. You

can see the progress ring on the lower left of Figure B-1.

To fade from our extended splash screen to the main page (a partial fade is shown on the lower

right of Figure B-1), the showMainPage function employs the WinJS Animations Library as below, where

WinJS.UI.Animation.fadeOut takes an array of the affected elements. fadeOut returns a promise, so

http://msdn.microsoft.com/library/windows/apps/br212674.aspx

1228

we can attach a completed handler to know when to hide the now-invisible overlay div, which we can

remove from the DOM to free memory:

function showMainPage() {

 //Hide the progress control, fade out the rest, and remove the overlay

 //div from the DOM when it's all done.

 progress.style.display = "none";

 var promise = WinJS.UI.Animation.fadeOut([ssDiv, logo, title]);

 promise.done(function () {

 ssDiv.removeNode(true);

 splashScreen.ondismissed = null; //Clean up any closures for this WinRT event

 });

}

Refer to Chapter 14, “Purposeful Animations,” for details on the animations library. Keep in mind is

that animations run in the GPU (graphics processing unit) when they affect only transform and opacity

properties; animating anything else runs on the CPU and generally performs poorly.

To complete the experience, we now want to add some animations to translate and spin the logo to

the left and to slide in the title graphic from its initial position off the right side of the screen. The

proper time to start these animations is when the args.detail.splashScreen.ondismissed event is

fired, as I do within activated just before calling my countDown function. This dismissed event

handler simply calculates the translation amounts for the logo and title and sets up a CSS transition for

both using the helper function WinJS.UI.executeTransition:

 //Start our animations when the default splash screen is dismissed

 splashScreen.ondismissed = function () {

 var logoImageWidth = 300; //Logo is 620px wide, but image is only 300 in the middle

 var logoBlankSide = 160; //That leaves 160px to either side

 //Calculate the width of logo image + separator + title. This is what we want to end

 //up being centered on the screen.

 var separator = 40;

 var combinedWidth = logoImageWidth + separator + title.clientWidth;

 //Final X position of the logo is screen center - half the combined width - blank

 //area. The (negative) translation is this position minus the starting point (loc.x)

 var logoFinalX = ((ssDiv.clientWidth - combinedWidth) / 2) - logoBlankSide;

 var logoXTranslate = logoFinalX - loc.x;

 //Final X position of the title is screen center + half combined width - title width.

 //The (negative) translation is this position minus the starting point (screen width)

 var titleFinalX = ((ssDiv.clientWidth + combinedWidth) / 2) - title.clientWidth;

 var titleXTranslate = titleFinalX - ssDiv.clientWidth;

 //Spin the logo at the same time we translate it

 WinJS.UI.executeTransition(logo, {

 property: "transform", delay: 0, duration: 2000, timing: "ease",

 to: "translateX(" + logoXTranslate + "px) rotate(360deg)"

 });

http://msdn.microsoft.com/library/windows/apps/hh779763.aspx

1229

 //Ease in the title after the logo is already moving (750ms delay)

 WinJS.UI.executeTransition(title, {

 property: "transform", delay: 750, duration: 1250, timing: "ease",

 to: "translateX(" + titleXTranslate + "px)"

 });

 }

This takes us from the upper left of Figure B-1 through the upper right stage, to the lower left stage.

To really appreciate the effect, of course, run the example!

This code structure will likely be similar to what you need in your own apps, only use a single

setTimeout call to delay showing a progress control, replace the countDown routine with your real

async initialization work, and set up whatever elements and animations are specific to your splash

screen design. Take special care that the majority of your initialization work happens either

asynchronously or is started within the dismissed handler so that the default splash screen is dismissed

quickly. Never underestimate a user’s impatience!

As for handling different views, this is a matter of handling the window.onresize event and

adjusting element positions accordingly.

Adjustments for View Sizes
The ExtendedSplashScreen1 example we saw in the previous section works great for full screen

activation or when the app is launched into a smaller width or portrait mode to begin with. If the view

is changed while the extended splash screen is active, however—to a narrower landscape view, a very

narrow portrait view, or full screen portrait, for instance—we get dreadful results:

If we used only static content on the extended splash screen, we could take care of these situations

with CSS. Our example, however, uses absolute positioning so that we can place elements relative to

the default splash screen image and animate them to their final positions. What we need to pay

1230

attention to now is the fact that the default position might be different on startup and can then change

while the extended splash screen is visible. (While testing all this, by the way, I set the countdown timer

to 100 seconds instead of 10, giving me much more time to change the view’s size and position.)

Here’s how we can handle the important events:

 Within the activated event, where we receive the default splash screen image location, we

initially move the logo, title, and progress ring to positions relative to that location, scale them if

needed, and set up the splash screen dismissed handler.

 While the default splash screen is still visible, we use window.onresize to reposition and rescale

those elements as needed. That is, the user can modify the view in the short time the default

splash screen is visible.

 Once the splash screen’s dismissed event fires, we check if the view has a landscape aspect

ratio that’s 1024px or wider. If so, we can place the logo and title side by side as we did

originally, using the same animations as before. Otherwise we’re in a view that’s too narrow for

that design, so we stack the logo and title vertically and instead of animating the logo to the

left we animate it upwards.

 Once we get the extended splash screen going, we change the window.onresize handler to

reposition the elements in their final (post-animation) locations. If a resize happens while

animations are in progress, those animations are canceled (by canceling their promises). A resize

can switch the view between the wide landscape layout and the vertica l layout, so we just

change element positions accordingly.

These changes are demonstrated in the ExtendedSplashScreen2 example, which now adapts well to

different views:

1231

Not quite perfect The one case in this example that still doesn’t work is when you resize the default

splash screen in the short time before the extended splash screen appears. The problem is that

Windows does not (in my tests) update the splashScreen.imageLocation coordinates, so the

placement of your extended splash screen elements is inaccurate. I have not found a workaround for

this particular issue, unfortunately.

Custom Layouts for the ListView Control

For everything that the GridLayout, ListLayout, and CellSpanningLayout classes provide for a

ListView, they certainly don’t support every layout your designers might dream up for a collection, such

as a cell-spanning ListLayout, a vertically panning cell-spanning layout, or nonlinear layouts.

What’s very important to understand about this model is how much the ListView is still doing on

your behalf when a custom layout is involved. HTML and CSS let you create any kind of layout you

want without a ListView, but then you’d have to implement your own keyboarding support,

accessibility, data binding, selection and invocation behaviors, grouping, and so forth. By using a

custom layout, you take advantage of all those features, so you need concern yourself with only the

positional relationships of the items within the ListView and a few layout-specific details like

virtualization and animation, if needed.

Fortunately, it’s straightforward to create a custom layout by using some CSS and a class with a few

methods through which the ListView talks to the layout. The simplest custom layout, in fact, doesn’t

require much of anything: just a class with one method called initialize, which can itself be empty.

But to understand this better, let’s first look at the general structure of the layout object and how the

ListView uses it.

Did you know? Custom layouts were possible with WinJS 1.0 but were exceeding difficult to

implement because of the ListView’s use of absolute positioning and the fact that it wasn’t designed

for layout extensibility. ListView was revamped for WinJS 2.0 to use a straight-up CSS layout (grid or

flexbox), a change that enables you to write custom layouts without a WinJS Ph.D.! This change is also

responsible for the removal of item recycling within template functions, if you care to know that detail.

A layout class selectively implements the methods and properties of the WinJS.UI.ILayout2

interface.143 The one read-write property is orientation, which can have a value from the

WinJS.UI.Orientation interface (horizontal or vertical); the methods are as follows:

143 There are ILayout and ILayoutSite interfaces in WinJS 1.0 that are used with the WinJS 1.0 ListView. These are much

more complicated and should not be confused with the WinJS 2.0 interfaces.

http://msdn.microsoft.com/library/windows/apps/dn255168.aspx

1232

ILayout2 method Description

initialize Called to provide the layout with the rendering site object and a flag indicating whether grouping is

enabled in the ListView. The site object implements the WinJS.UI.ILayoutSite2 interface and is how

the layout gets information from the ListView.

uninitialize Called to release resources obtained during initialize, typically when the ListView changes layouts.

layout Performs a layout pass given information about the most recently affected items.

itemsFromRange Returns the indices of items within a pixel range (start and end arguments).

getAdjacent Called when arrow keys, Page Up, or Page Down are used in the ListView to navigate items. This

method receives the current item and the pressed key as arguments, and returns the next item to

receive keyboard focus.

dragLeave Called when a drag and drop item leaves the ListView. This tells the layout to remove any drop

indicators or to readjust any layout changes made for potential reordering (see dragOver below). If

the ListView has itemsDraggable: true, the layout can use dragLeave to visually indicate that the

item has been taken out of the list. If the ListView has itemsReorderable: true, and the layout

adjusts itself in dragOver to make visual space for a drop, dragLeave is used to readjust the layout

back to its original state.

hitTest, dragOver If the ListView’s itemsReorderable is true, these are called when an item is dragged over the

ListView. hitTest determines which item is at a particular (x,y) coordinate; dragOver receives the

coordinates and a dragInfo object and signals the layout to open up potential drop space for the

item being dragged.

setupAnimations,

executeAnimations

Called when it’s the right time to configure and execute animations, typically in response to

movement of items in the ListView. Neither method has arguments.

Fortunately, the ListView magnanimously allows you to implement only those parts of a layout class

that you really need and ignore the rest (the ListView will provide no-op stubs for methods you don’t

implement). We call this a “pay for play” model. In the following table, the required method,

initialize, is shaded in orange, the recommended methods in green (to support the most flexibility

depending on your scenario), and truly optional methods in blue:

Layout capability Applicable methods

minimal initialize (plus uninitialize if there’s any cleanup work)

non-vertical layout Minimal plus layout

virtualization support Minimal plus itemsFromRange

keyboard support Minimal plus getAdjacent

drag and drop visual indicators (general) Add dragLeave

reordering and positional drag and drop indicators Add hitTest, dragOver (both are required together)

animations Add setupAnimations, executeAnimations

All this means again that the most basic custom layout object need only support initialize and

possibly uninitialized, which will produce a vertical layout by default. To do a horizontal or

nonlinear layout, you’ll need the layout method, and then you can add others as you like to support

additional features. Let’s look at a number of examples.

http://msdn.microsoft.com/library/windows/apps/dn255175.aspx

1233

Minimal Vertical Layout
Our first example is scenario 1 of the HTML ListView custom layout sample, whose data source (of ice

cream flavors once again!) is a WinJS.Binding.List defined in js/data.js and accessed through the

Data.list and Data.groupedList variables.

The custom layout object in scenario 1 is named SDKSample.Scenario1.StatusLayout and is

created with WinJS.Class.define (js/scenario1.js):

WinJS.Namespace.define("SDKSample.Scenario1", {

 StatusLayout: WinJS.Class.define(function (options) {

 this._site = null;

 this._surface = null;

 },

 {

 // This sets up any state and CSS layout on the surface of the custom layout

 initialize: function (site) {

 this._site = site;

 this._surface = this._site.surface;

 // Add a CSS class to control the surface level layout

 WinJS.Utilities.addClass(this._surface, "statusLayout");

 // This isn't really used, create an orientation property instead

 return WinJS.UI.Orientation.vertical;

 },

 // Reset the layout to its initial state

 uninitialize: function () {

 WinJS.Utilities.removeClass(this._surface, "statusLayout");

 this._site = null;

 this._surface = null;

 },

 })

});

And if you look in css/default.css you’ll see that the styles assigned to the statusLayout class are also

quite minimal (everything else in css/scenario1.css is for the item templates, not the layout):

.listView .statusLayout {

 position: static; /* This isn't explicitly needed as it's the default anyway */

}

 .listView .statusLayout .win-container {

 width: 250px;

 margin-top: 10px;

 }

 .listView .statusLayout .win-item {

 width: 250px;

 height: 100%;

 background-color: #eee;

 }

http://code.msdn.microsoft.com/HTML-ListView-custom-9676a187

1234

Together, then, you can see that this custom layout doesn’t do much in terms of customization: it

merely defines a set width and background color but doesn’t say anything spec ific about where items

are placed. It simply relies on the default positioning provided by the app host’s layout engine, just as it

provides for all other HTML in your app.

The rest of the code in js/scenario1.js and css/scenario1.css is all about setting up and styling item

templates for the ListView and doesn’t affect the layout portion that we’re concerned with here. The

same is true for most of html/scenario1.html, the bulk of which are the declarative item templates. The

one line we care about with our layout is the ListView declaration at the end:

<div class="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{itemDataSource: Data.list.dataSource,

 layout: {type: SDKSample.Scenario1.StatusLayout}}"></div>

Here you can see that we specify a custom layout just as we would a built-in one, using the

ListView.layout option. Remember from Chapter 7, “Collection Controls,” that layout is an object

whose type property contains the name of the layout object constructor. Any other properties you

provide will then be passed to the constructor as the options argument. That is, the following markup:

layout: { type: <layout_class>, <option1>: <value1>, <option2>: <value2>, ...}

is the same thing as using the following code in JavaScript:

listView.layout = new <layout_class>({ <option1>: <value1>, <option2>, <value2>, ... });

And that’s it! Running the sample with this layout now in portrait mode, as shown in Figure B -2, we

see that the result is a simple vertically oriented ListView, with each item’s height determined naturally

by its item template. What’s impressive about this is that it took almost no code to effectively create

the equivalent of a variable-size vertical ListLayout, something that was amazingly difficult to do in

WinJS 1.0 (and was one of the most requested features for WinJS 2.0!).

The reason for this is that the ListView builds up a DOM tree of div elements for the items in the list,

but otherwise it leaves it to the layout to define their positioning. Because our layout doesn’t do

anything special, we end up with the default layout behavior of the app host. Because div elements

use block layout by default (position: static), they are rendered vertically like any other markup.

In running the sample, also notice that all the usual ListView item interactions are fully present

within the custom layout. The layout, in other words, has no effect on item behavior: all that is still

controlled by the ListView.

1235

FIGURE B-2 Scenario 1 of the HTML ListView custom layout sample, shown in portrait view so that we can see more

of the control. The templates as defined in html/scenario1.html are also shown here. Because each item in the list is

rendered in a div and a div uses block layout in the rendering engine, the items render vertically by default.

Minimal Horizontal Layout
Given the default vertical behavior, how would we change scenario 1 of the sample to do a horizontal

layout? It’s mostly just a matter of styling:

 Style the win-itemscontainer class to use a horizontal layout, such as a flexbox with a row

direction. This is the most essential piece because it tells the rendering engine to do something

other than the default vertical stacking. You could also use a CSS grid.

 Define an orientation property in the layout class with the value of “horizontal”. This tells

the ListView to use the win-horizontal style on itself rather than win-vertical (the default).

Note that the return value from the layout’s initialize method doesn’t have an effect here,

though for good measure it should return WinJS.UI.Orientation.horizontal as well.

 Change the app’s styles for the ListView to be appropriate for horizontal, such as using width:

100% instead of height: 100%.

1236

 Implement the layout class’s layout method as needed.

These changes are implemented in scenario 1 of the Custom Layout Extras example in the

companion content for the appendices. We first change the statusLayout class set within the layout’s

initialize method to statusLayoutHorizontal and return the horizontal orientation. Let’s also add the

orientation property (other code omitted):

WinJS.Namespace.define("SDKSample.Scenario1", {

 StatusLayoutHorizontal: WinJS.Class.define(function (options) {

 // ...

 this.orientation = "horizontal";

 },

 {

 initialize: function (site) {

 // ...

 WinJS.Utilities.addClass(this._surface, "statusLayoutHorizontal");

 return WinJS.UI.Orientation.horizontal;

 },

 // ...

 })

});

Hint Make sure that orientation is spelled correctly in your property name or else the ListView won’t

find it. I made the mistake of leaving out the last i and was scratching my head trying to understand

why the ListView wasn’t responding properly!

Note The sample uses a listView style class in css/default.css across all its scenarios, so making changes

in default.css will apply everywhere. It’s best to change the class in html/scenario1.html on the ListView

to something like listview_s1 and keep scenario-specific styles in css/scenario1.css.

Next, taking the note above into account, let’s style the ListView as follows in css/scenario1.css:

.listView_s1 {

 width: 100%; /* Stretch horizontally */

 height: 270px; /* Fixed height */

}

/* Change the layout model for the ListView */

.listView_s1 .statusLayoutHorizontal .win-itemscontainer {

 height: 250px;

 display: -ms-flexbox;

 -ms-flex-direction: row;

}

/* These are for the items, same as the vertical orientation */

.listView_s1 .statusLayoutHorizontal .win-item {

 width: 100%;

 height: 100%;

 background-color: #eee;

}

1237

I also figured that we’ll want variable widths on the items rather than heights. Making some CSS

changes for the small items, we get the following result:

The one problem we have, however, is that the ListView doesn’t pan horizontally, nor do scrollbars

appear. This is because the win-itemscontainer element with the flexbox gets a computed width

equal to the width of the win-surface element that contains it. To correct this, we need to make sure

that this element has a width appropriate to all the items it contains. Of course, unless we know we

have a fixed number of items in the underlying data source, we won’t know this ahead of time to

specify directly in CSS.

This is where the layout method comes into play, because it’s where the layout object receives the

tree of elements that it’s working with:

layout: function (tree, changedRange, modifiedElements, modifiedGroups) {

 // ...

 return WinJS.Promise.as();

}

The first argument is clearly the element tree. The other three signal when changes happen because

of items being added and moved, allowing you to minimize the modifications you need to make to

other items (and thus to reduce rendering overhead). The return value of layout is a promise that’s

fulfilled when the layout is complete. Or, for more optimization, you can return an object with two

promises, one that’s fulfilled when the layout of the modified range is complete and the other when all

layout is complete.

Anyway, in this particular layout we need to add up the item sizes and set the width of the win-

itemscontainer element. To do this, we iterate the item list and do a lookup of each item’s size by

using an itemInfo method and a size map:

layout: function (tree, changedRange, modifiedElements, modifiedGroups) {

 var container = tree[0].itemsContainer;

 var items = container.items;

 var realWidth = 0;

 var itemsLength = items.length;

 var type;

 for (var i = 0; i < itemsLength; i++) {

 type = this._itemInfo(i).type;

 realWidth += this._itemSizeMap[type].width;

 }

http://msdn.microsoft.com/library/windows/apps/dn255174.aspx

1238

 //Set the true width of the itemscontainer now.

 container.element.style.width = realWidth + "px";

 // Return a Promise or {realizedRangeComplete: Promise, layoutComplete: Promise};

 return WinJS.Promise.as();

},

Tip Remember that a style.width property must include units. In my first tests I left off the “px” on

the second-to-last line of code above, so nothing worked, much to my confusion!

If you’ve played around with the CellSpanningLayout in WinJS, the idea of an itemInfo function

will be familiar. To generalize for a moment, the ILayout2 interface is what the ListView uses to

communicate with the layout object, but that same layout object can provide other methods and

properties through which it can communicate with the app. After all, the app must create the layout

object and supply it to the ListView, so the layout can supply added members.

In this case, the StatusLayoutHorizontal class that we’re implementing here supports two additional

properties, itemInfo and itemSizeMap, with internal defaults, of course:

/*

 * These members are not part of ILayout2

 */

// Default implementation of the itemInfo function

_itemInfo: function (i) {

 return "status";

},

//Default size map

_itemSizeMap: {

 status: { width: 100 },

},

// getters and setters for properties

itemInfo: {

 get: function () {

 return this._itemInfo;

 },

 set: function (itemInfoFunction) {

 this._itemInfo = itemInfoFunction;

 }

},

itemSizeMap: {

 get: function () {

 return this._itemSizeMap;

 },

 set: function (value) {

 this._itemSizeMap = value;

 }

}

1239

You can see that if the app doesn’t supply its own itemInfo and itemSizeMap properties, each item

will be set to a width of 100. In the example, however, the layout is created this way:

this._listView.layout = new CustomLayouts.StatusLayoutHorizontal({itemInfo: this._itemInfo,

 itemSizeMap: itemSizeMap });

where the app’s _itemInfo and itemSizeMap are as follows:

var itemSizeMap = {

 status: { width: 160 }, // plus 10 pixels to incorporate the margin

 photo: { width: 260 } // plus 10 pixels to incorporate the margin

};

// Member of the page control

_itemInfo: function (i) {

 var item = Data.list.getItem(i);

 return { type: item.data.type };

}

When the layout processes the items within its layout method, it will get back widths of either 160

or 260, allowing the layout to compute the exact width and style the container accordingly.

The key here is that we have a clear interface between the layout and the app that’s using it. We

could easily write the layout to draw from app variables directly, which could be more efficient if you’re

really sensitive to performance. For good reusability of your layout, however, using a scheme like the

one shown here is preferable.

Two-Dimensional and Nonlinear Layouts

Having seen basic vertical and horizontal layouts, let’s see what other creative ideas we can implement.

Let’s start with a grid layout like WinJS.UI.GridLayout but one that pans vertically and populates

items across and then down (instead of down and across). The easiest way to do this is with a CSS

flexbox with row wrapping. (It’s also possible to do something similar with a CSS grid, but it gets more

complicated because you need to figure out how many rows and columns to use in styling.)

The flexbox approach can be done completely in CSS, as demonstrated in scenario 2 of the Custom

Layout Extras example, where CustomLayouts.VerticalGrid_Flex is implemented in js/scenario2.js

with only the skeletal methods that adds the class verticalGrid_Flex to the ListView’s win-surface

element. The declared ListView in html/scenario2.html references this layout and uses a simple item

template that just shows a single image. What makes it all work are just these bits in css/scenario2.css:

.listView_s2 .verticalGrid_Flex .win-itemscontainer {

 width: 100%;

 height: 100%;

 display: -ms-flexbox;

 -ms-flex-direction: row;

 -ms-flex-wrap: wrap;

}

/* Tighten the default margins on the ListView's per-item container */

1240

.listView_s2 .verticalGrid_Flex .win-container {

 margin: 2px;

}

We can clearly see that the items are being laid out left to right and then top to bottom (this is

panned down a little so we can see the wrapping effect):

Now let’s go way outside the box and implement a circular layout, as shown in Figure B-3 and

implemented in scenario 3 of the example (thanks to Mike Mastrangelo of the WinJS team for this one,

although I added the spiral option). Note that you may need to run on a larger monitor to see a good

effect; on 1366x768 it gets rather cramped. Video B-2 also shows the animation effect.

FIGURE B-3 Scenario 3 of the Custom Layout Extras example, showing a circular layout in the middle of animating

new items into the list.

With this layout, all that’s needed is a little CSS and a layout function. First, here’s the extent of the

markup in html/scenario3.html:

1241

<div class="itemTemplate_s3" data-win-control="WinJS.Binding.Template">

</div>

<div class="listView_s3" data-win-control="WinJS.UI.ListView" data-win-options="{

 itemDataSource: Data.smallList.dataSource, itemTemplate: select('.itemTemplate_s4'),

 layout: { type: CustomLayouts.CircleLayout }}">

</div>

and the full extent of the CSS, where you can see we’ll use absolute positioning for the layout

(css/scenario3.css):

.listView_s3 .win-container {

 position: absolute;

 top: 0;

 left: 0;

 transform: rotate(180deg);

 transition: transform 167ms linear, opacity 167ms linear;

}

.listView_s3 img {

 display: block;

}

Note that the win-container selector here targets the individual items, not the whole layout

surface. Also note the small transition set up on the transform property, which is initially set to 180

degrees. This, along with some of the JavaScript code in layout, creates the fade-in spinning effect

seen in Video B-2.

I’ll leave it to you to look at the layout code in detail; it’s mostly just calculating a position for each

item along the circle. The spiral option that I’ve added plays a little with a variable radius as well.

What’s very powerful with this example is that even in the circular layout you still get all the other

ListView behaviors, such as selection, invocation, keyboarding, and so forth. Again, this is the main

advantage of custom layouts over implementing your own collection control from scratch!

Virtualization
The next bit you can add to a custom layout is the itemsFromRange method to support virtualization.

Virtualization means that the layout has a conversation with the ListView about what items are visible,

because the ListView is creating and destroying elements as panning happens (clearly this isn’t

important for something like the circular layout where all the items are always in view). The layout, for

its part, needs to have an understanding about instructing the app host how and where to render those

visible items. The essence of that conversation is as follows:

 When the ListView is panned, it asks the layout about which items are visible for a particular

pixel range through itemsFromRange, because the layout understands how big its items are

and where they’re placed.

1242

 Once the ListView knows what items are visible, it calls layout with only those items in the tree

argument. The layout, accordingly, sets the necessary styles and positioning on those items.

Scenario 2 of the HTML ListView custom layout sample now (the one from the Windows SDK, not

the example in the companion content) shows the addition of virtualization support. The ListView’s

options, including the layout and its options, are also set from JavaScript in js/scenario2.js:

this._listView.layout = new SDKSample.Scenario2.StatusLayout(

 { itemInfo: this._itemInfo, cssClassSizeMap: cssClassSizeMap });

this._listView.itemTemplate = this._statusRenderer.bind(this);

this._listView.itemDataSource = Data.list.dataSource;

The custom layout here has two options: an itemInfo function and a cssClassSizeMap (very much

like we did with the horizontal layout earlier). It uses these to perform size lookup on a per-item basis:

_itemInfo: function (itemIndex) {

 var item = Data.list.getItem(itemIndex);

 var cssClass = "statusItemSize";

 if (item.data.type === "photo") {

 cssClass = "photoItemSize";

 }

 return cssClass;

}

var cssClassSizeMap = {

 statusItemSize: { height: 90 }, // plus 10 pixels to incorporate the margin-top

 photoItemSize: { height: 260 } // plus 10 pixels to incorporate the margin-top

};

Again, be very, very clear that such constructs are entirely specific to the custom layout and have no

impact whatsoever on the ListView itself except as the layout implements methods like layout and

itemsFromRange. In the sample, layout just uses this to cache various information about the items to

improve performance. itemsFromRange, for its part, uses that cached size information to translate

pixels to indexes for items. Here’s how it’s implemented in js/scenario2.js:

itemsFromRange: function (firstPixel, lastPixel) {

 var totalLength = 0;

 // Initialize firstIndex and lastIndex to be an empty range

 var firstIndex = 0;

 var lastIndex = -1;

 var firstItemFound = false;

 var itemCacheLength = this._itemCache.length;

 for (var i = 0; i < itemCacheLength; i++) {

 var item = this._itemCache[i];

 totalLength += item.height;

 // Find the firstIndex

 if (!firstItemFound && totalLength >= firstPixel) {

1243

 firstIndex = item.index;

 lastIndex = firstIndex;

 firstItemFound = true;

 } else if (totalLength >= lastPixel) {

 // Find the lastIndex

 lastIndex = item.index;

 break;

 } else if (firstItemFound && i === itemCacheLength - 1) {

 // If we are at the end of the cache and we have found the firstItem,

 // the lastItem is in the range

 lastIndex = item.index;

 }

 }

 return { firstIndex: firstIndex, lastIndex: lastIndex };

},

The most important thing to keep in mind with itemsFromRange is to make it fast. This is why the

sample employs a caching strategy, which would become essential if you had a large data source.

Along these lines, be careful about the properties you access on HTML elements—some of them can

trigger layout passes especially if other layout-related properties have been changed. That is, the

accuracy of dimensional properties requires that the layout is up to date before values can be returned,

and clearly you don’t want this to happen inside a method like itemsFromRange.

Grouping

When a ListView has a group data source in addition to its item data source, what changes for a

custom layout is that the tree argument to the layout method will contain more than one item. Each

item in tree is a single group that contains whatever items belong to that group. That is, we’ve been

using code like this to look at the items:

var container = tree[0].itemsContainer;

but now we need to process the whole tree array instead. Scenarios 3 and 4 of the HTML ListView

custom layout sample (again, the SDK sample) do this, as shown here from js/scenario3.js:

layout: function (tree, changedRange, modifiedElements, modifiedGroups) {

 var offset = 0;

 var treeLength = tree.length;

 for (var i = 0; i < treeLength; i++) {

 this._layoutGroup(tree[i], offset);

 offset += tree[i].itemsContainer.items.length;

 }

 return WinJS.Promise.wrap();

},

// Private function that is responsible for laying out just one group

_layoutGroup: function (tree, offset) {

 var items = tree.itemsContainer.items;

http://code.msdn.microsoft.com/HTML-ListView-custom-9676a187
http://code.msdn.microsoft.com/HTML-ListView-custom-9676a187

1244

 var itemsLength = items.length;

 for (var i = 0; i < itemsLength; i++) {

 // Get CSS class by item index

 var cssClass = this._itemInfo(i + offset);

 WinJS.Utilities.addClass(items[i], cssClass);

 }

}

All this is again a matter of adding CSS styles to various elements; the layout of the group headers

themselves are defined by the headerTemplate element in html/scenario3.html and applicable styles in

css/scenario3.css. As shown below, this is just a large character for each group (the groups are arranged

vertically; I’m showing portions of each horizontally here):

In short, support for grouping isn’t tied to the implementation of specific ILayout2 methods—it’s

primarily a matter of how you implement the layout method itself.

You can, of course, implement both grouping and virtualization together by including

itemsFromRange, as we saw in the previous section. Scenario 4 of the sample demonstrates this by

basically combining the code from scenarios 2 and 3.

The Other Stuff
Let’s now look at the remaining methods of ILayout2, most of which are demonstrated in scenario 4

of the Custom Layout Extras example, which extends the minimum horizontal layout in scenario 2.

Some of these methods must return an object that contains an item index and a type (a value from

WinJS.UI.ObjectType). This object doesn’t have an assigned class but looks like these examples:

return { type: WinJS.UI.ObjectType.item, index: itemIndex };

return { type: WinJS.UI.ObjectType.groupHeader, index: headerIndex };

The hitTest method should also include an insertAfterIndex in the object it returns so as to

indicate the actual insertion point of a moved item.

http://msdn.microsoft.com/library/windows/apps/dn301905.aspx

1245

Keyboard Support: getAdjacent

The ListView calls getAdjacent in response to the arrow keys as well as page up and page down,

because the layout object is what knows how items are arranged in relation to one another. Without

this method, the default behavior (as you can see in scenario 2) is that the right arrow, down arrow, and

page down move the focus to the next item in the list, and left arrow, up arrow, and page up go to the

previous item. (Home and End always go to the first and last item.)

In a top-to-bottom grid layout, however, we want the up, down, page up, and page down to work

by rows (one row or three rows at a time). We implement getAdjacent, then, which accepts an item

object (containing index and type properties as in the return object) and a WinJS.UtilitiesKey and

which returns an object describing the next item to get the focus. (If you simply return an object with

index set to item.index+1 or item.index-1, for forward and backward keys, respectively, and type:

WinJS.UI.ObjectType.item, you’ll duplicate the default behavior.)

In our case we need to determine how many items are in a row. This is fairly straightforward.

Remember the site object we get through initialize? It contains a viewportSize property whose

width tells us the width of the ListView. If we divide this by the item width—and it’s best to have a

property on the layout object through which the app can specify this as a fixed size—we get the items

per row. Because this value will change only when the layout is recomputed, we can do this in the

layout method:

layout: function() {

 this._itemsPerRow = Math.floor(this._site.viewportSize.width / this._itemWidth);

 this._totalRows = Math.floor(this._site.itemCount._value / this._itemsPerRow);

 //We don't need to do anything else.

 return WinJS.Promise.as();

},

Assuming that we have an itemWidth property on the layout that’s been set appropriately for the

real item size (content size + borders, etc.), we can implement getAdjacent as follows. Here, page up

and page down move three rows at a time, and up/down arrow one row:

getAdjacent: function (item, key) {

 var Key = WinJS.Utilities.Key;

 var index = item.index;

 var curRow = Math.floor(index / this._itemsPerRow);

 var curCol = index % this._itemsPerRow;

 var newRow;

 //The ListView is gracious enough to ignore our return index if it's out of bounds,

 //so we don't have to check for that here.

 switch (key) {

 case Key.rightArrow:

 index = index + 1;

 break;

 case Key.downArrow:

1246

 index = index + this._itemsPerRow;

 break;

 case Key.pageDown:

 //If we page down past the last item, this will go to the last item

 newRow = Math.min(curRow + 3, this._totalRows);

 index = curCol + (newRow * this._itemsPerRow);

 break;

 case Key.leftArrow:

 index = index - 1;

 break;

 case Key.upArrow:

 index = index - this._itemsPerRow;

 break;

 case Key.pageUp:

 newRow = Math.max(curRow - 3, 0);

 index = curCol + (newRow * this._itemsPerRow);

 break;

 }

 return { type: WinJS.UI.ObjectType.item, index: index };

},

With this, we get good keyboard navigation within the layout. Note the comment that the ListView

will ignore invalid index values; we don’t have to sweat over validating what we return.

Drag and Drop: dragLeave, dragOver, and hitTest

One drag-and-drop scenario for a ListView is that it can serve as a general drop source by setting its

itemsDraggable property to true. If so, the ListView will check for and call the layout’s dragLeave

method whenever an item is dragged out of the ListView control, as well as when an item is dragged

and dropped back in the list.

This method has no arguments and no return value, so it’s simply a notification for the layout to

take any desired action. To be honest, there’s not too much it can do in this case. It’s more interesting

when items are reorderable as well—that is, when the ListView’s itemsReorderable property is also

true (html/scenario4.html):

<div class="listView_s4" data-win-control="WinJS.UI.ListView"

 data-win-options="{

 itemDataSource: Data.list.dataSource,

 itemTemplate: select('.itemTemplate_s4'),

 itemsDraggable: true,

 itemsReorderable: true,

 layout: {type: CustomLayouts.VerticalGrid_Flex4, itemWidth: 65, itemHeight: 65}}">

</div>

1247

Here you must also implement hitTest and dragOver together. hitTest is pretty simple to think

about: given x/y coordinates within the layout surface, return an item object for whatever is at those

coordinates where the object contains type, index, and insertAfterIndex properties, as described

earlier. In scenario 4 of the example, we can use the same itemWidth/itemHeight properties that help

with getAdjacent (js/scenario4.js):

_indexFromCoordinates: function (x, y) {

 var row = Math.floor(y / this._itemHeight);

 var col = Math.floor(x / this._itemWidth);

 return (row * this._itemsPerRow) + col;

},

hitTest: function (x, y) {

 var index = this._indexFromCoordinates(x, y);

 //Only log the output if the index changes.

 if (this._lastIndex != index) {

 console.log("hitTest on (" + x + ", " + y + "), index = " + index);

 this._lastIndex = index;

 }

 return { type: WinJS.UI.ObjectType.item, index: index, insertAfterIndex: index - 1 };

},

Note If you support variable item sizes, you can’t rely on fixed values here and need to have an

itemInfo function to retrieve these dimensions individually. You’d want to cache these values within

the layout method as well so that hitTest can return more quickly.

The insertAfterIndex is important for reordering the ListView, because the control automatically

moves an item dragged within the list to this index. Note that insertAfterIndex should be set to -1

to insert at the beginning of the list.

With hitTest in place, the dragOver method is then called whenever the index from hitTest

changes. It receives the x/y coordinates of the drag operation (along with an object called dragInfo

that’s for the ListView’s internal use). The method doesn’t have a return value , so its whole purpose is to

give your layout an opportunity to visually indicate the result of a drop. For example, you can highlight

the insertion point, show a little wiggle room in the layout (the built-in layouts move hit-tested items

by 12px), or whatever else you want. You then use dragLeave, of course, to reset that indicator. (If you

want to look at what the built-in layouts do for dragOver, look in the ui.js file of WinJS for the

_LayoutCommon_dragOver function.)

In the example (still in scenario 4) I just rotate the item at the drop point a little (see Video B-3) and

make sure to clear that transform on dragLeave:

dragOver: function (x, y, dragInfo) {

 //Get the index of the item on which we’re dropping

 var index = this._indexFromCoordinates(x, y);

 console.log("dragOver on index = " + index);

1248

 //Get the element and scale it a little (like a button press)

 var element = this._site.tree[0].itemsContainer.items[index];

 element && this._addAnimateDropPoint(element);

 this._lastRotatedElement && this._clearAnimateDropPoint(this._lastRotatedElement);

 this._lastRotatedElement = element;

},

dragLeave: function () {

 console.log("dragLeave");

 if (this._lastRotatedElement) {

 this._clearAnimateDropPoint(this._lastRotatedElement);

 this._lastRotatedElement = null;

 }

},

_addAnimateDropPoint: function (element) {

 element.style.transition = "transform ease 167ms";

 element.style.transform = "rotate(-20deg)";

},

_clearAnimateDropPoint: function (element) {

 element.style.transition = "";

 element.style.transform = "";

}

With this, the ListView will automatically take care of moving items around in the data source

without any other special handling. In the example, I’ve added identification numbers to each of the

items in the list so that you can see the effects.

Animations: setupAnimations and executeAnimations

The last two members of ILayout2 are setupAnimations and executeAnimations, whose purpose is

to animate the layout in response to a change in the data source, as when an item is dragged within

the ListView.

These are somewhat involved, however, and the best place to learn about these is in the WinJS

source code itself. Search for “Animation cycle,” and you’ll find a page-long comment on the subject!

1249

Appendix C

Additional Networking Topics

In this appendix:

 XMLHttpRequest and WinJS.xhr

 Breaking up large files (background transfer API)

 Multipart uploads (background transfer API)

 Notes on Encryption, Decryption, Data Protection, and Certificates

 Syndication: RSS and AtomPub APIs in WinRT

 Sockets

 The Credential Picker UI

 Other Networking SDK Samples

XMLHttpRequest and WinJS.xhr

Transferring data to and from web services through HTTP requests is a common activity for Windows

Store apps, especially those written in JavaScript for which handling XML and/or JSON is straight-

forward. For this purpose there is the Windows.Web.Http.HttpClient API, but apps can also use the

XMLHttpRequest object as well as the WinJS.xhr wrapper that turns the XMLHttpRequest structure

into a simple promise. For the purposes of this section I’ll refer to both of these together as just XHR.

To build on what we already covered in the “HTTP Requests” section in Chapter 4, “Web Content

and Services,” I need to make a few other points where XHR is concerned, most of which come from

the section in the documentation entitled Connecting to a web service.

First, Downloading different types of content provides the details of the different content types

supported by XHR for Windows Store apps, summarized here:

Type Use responseText responseXML

arraybuffer Binary content as an array of Int8 or Int64, or another integer or

float type.

undefined undefined

Blob Binary content represented as a single entity. undefined undefined

document An XML DOM object representing XML content (MIME type of

text/XML).

undefined The XML

content

json JSON strings. The JSON string undefined

ms-stream Streaming data; see XMLHttpRequest enhancements. undefined undefined

Text Text (the default). The text string undefined

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/library/windows/apps/hh453379.aspx
http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://msdn.microsoft.com/library/windows/apps/hh761502.aspx
http://msdn.microsoft.com/library/windows/apps/hh868280.aspx
http://msdn.microsoft.com/library/windows/apps/hh673569.aspx

1250

Second, know that XHR responses can be automatically cached, meaning that later requests to the

same URI might return old data. To resend the request despite the cache, add an If-Modified-Since

HTTP header, as shown on How to ensure that WinJS.xhr resends requests.

Along similar lines, you can wrap a WinJS.xhr operation in another promise to encapsulate

automatic retries if there is an error in any given request. That is, build your retry logic around the core

XHR operation, with the result stored in some variable. Then place that whole block of code within

WinJS.Promise.as (or a new WinJS.Promise) and use that elsewhere in the app.

In each XHR attempt, remember that you can also use WinJS.Promise.timeout in conjunction with

WinJS.Xhr, as described on Setting timeout values with WinJS.xhr., because WinJS.xhr doesn’t have a

timeout notion directly. You can, of course, set a timeout in the raw XMLHttpRequest object, but that

would mean rebuilding everything that WinJS.xhr already does or copying it from the WinJS source

code and making modifications.

Generally speaking, XHR headers are accessible to the app with the exception of cookies (the set-

cookie and set-cookie2 headers)—these are filtered out by design for XHR done from a local context.

They are not filtered for XHR from the web context. Of course, access to cookies is one of the bene fits

of Windows.Web.Http.HttpClient.

Finally, avoid using XHR for large file transfers because such operations will be suspended when the

app is suspended. Use the Background Transfer API instead (see Chapter 4), which uses HTTP requests

under the covers, so your web services won’t know the difference anyway!

Tips and Tricks for WinJS.xhr
Without opening the whole can of worms that is XMLHttpRequest, it’s useful to look at just a couple of

additional points around WinJS.xhr. This section is primarily provided for developers who might still

be targeting Windows 8.0 where the preferred WinRT HttpClient API is not available.

First, notice that the single argument to WinJS.xhr is an object that can contain a number of

properties. The url property is the most common, of course, but you can also set the type (defaults to

“GET”) and the responseType for other sorts of transactions, supply user and password credentials, set

headers (such as If-Modified-Since with a date to control caching), and provide whatever other

additional data is needed for the request (such as query parameters for XHR to a database). You can

also supply a customRequestInitializer function that will be called with the XMLHttpRequest object

just before it’s sent, allowing you to perform anything else you need at that moment.

The second tip is setting a timeout on the request. You can use the customRequestInitializer for

this purpose, setting the XMLHttpRequest.timeout property and possibly handling the ontimeout

event. Alternately, use the WinJS.Promise.timeout function to set a timeout period after which the

WinJS.xhr promise (and the async operation connected to it) will be canceled. Canceling is

accomplished by simply calling a promise’s cancel method. Refer to “The WinJS.Promise Class” in

Appendix A, “Demystifying Promises,” for details on timeout.

http://msdn.microsoft.com/library/windows/apps/hh868281.aspx
http://msdn.microsoft.com/library/windows/apps/hh868283.aspx

1251

You might have need to wrap WinJS.xhr in another promise, perhaps to encapsulate other

intermediate processing with the request while the rest of your code just uses the returned promise as

usual. In conjunction with a timeout, this can also be used to implement a multiple retry mechanism.

Next, if you need to coordinate multiple requests together, you can use WinJS.Promise.join,

which is again covered in Chapter 3 in the section “Joining Parallel Promises.”

Finally, for Windows Store apps, using XHR with localhost: URIs (local loopback) is blocked by

design. During development, however, this is very useful for debugging a service without deploying it.

You can enable local loopback in Visual Studio by opening the project properties dialog (Project menu

> <project> Properties…), selecting Debugging on the left side, and setting Allow Local Network

Loopback to Yes. Using the localhost is discussed also in Chapter 4.

Breaking Up Large Files (Background Transfer API)

Because the outbound (upload) transfer rates of most broadband connections are significantly slower

than the inbound (download) rates and might have other limitations, uploading a large file to a server

(generally using the background transfer API) is typically a riskier operation than a large download. If

an error occurs during the upload, it can invalidate the entire transfer—a frustrating occurrence if

you’ve already been waiting an hour for that upload to complete!

For this reason, a cloud service might allow a large file to be transferred in discrete chunks, each of

which is sent as a separate HTTP request, with the server reassembling the single file from those

requests. This minimizes, or at least reduces, the overall impact of connectivity hiccups.

From the client’s point of view, each piece would be transferred with an individual

UploadOperation; that much is obvious. The tricky part is breaking up a large file in the first place.

With a lot of elbow grease—and what would likely end up being a complex chain of nested async

operations—it is possible to create a bunch of temporary files from the single source. If you’re up to a

challenge, I invite to you write such a routine and post it somewhere for the rest of us to see!

But there is an easier path: BackgroundUploader.createUploadFromStreamAsync, through which

you can create separate UploadOperation objects for different segments of the stream. Given a

StorageFile for the source, start by calling its openReadAsync method, the result of which is an

IRandomAccessStreamWithContentType object. Through its getInputStreamAt method you then

obtain an IInputStream for each starting point in the stream (that is, at each offset depending on your

segment size). You then create an UploadOperation with each input stream by using

createUploadFromStreamAsync. The last requirement is to tell that operation to consume only some

portion of that stream. You do this by calling its setRequestHeader("content-length", <length>)

where <length> is the size of the segment plus the size of other data in the request; you’ll also want to

add a header to identify the segment for that particular upload. After all this, call each operation’s

startAsync method to begin its transfer.

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx

1252

Multipart Uploads (Background Transfer API)

In addition to the createUpload and createUploadFromStreamAsync methods, the

BackgroundUploader provides another method, called createUploadAsync (with three variants),

which handles what are called multipart uploads.

From the server’s point of view, a multipart upload is a single HTTP request that contains various

pieces of information (the parts), such as app identifiers, authorization tokens, and so forth, along with

file content, where each part is possibly separated by a specific boundary string. Such uploads are used

by online services like Flickr and YouTube, each of which accepts a request with a multipart Content-

Type. (See Content-type: multipart for a reference.) For example, as shown on Uploading Photos –

POST Example, Flickr wants a request with the content type of multipart/form-data, followed by

parts for api_key, auth_token, api_sig, photo, and finally the file contents. With YouTube, as

described on YouTube API v2.0 – Direct Uploading, it wants a content type of multipart/related

with parts containing the XML request data, the video content type, and then the binary file data.

The background uploader supports all this through the BackgroundUploader.createUploadAsync

method. (Note the Async suffix that separates this from the synchronous createUpload.) There are

three variants of this method. The first takes the server URI to receive the upload and an array of

BackgroundTransferContentPart objects, each of which represents one part of the upload. The

resulting operation will send a request with a content type of multipart/form-data with a random

GUID for a boundary string. The second variation of createUploadAsync allows you to specify the

content type directly (through the sub-type, such as related), and the third variation then adds the

boundary string. That is, assuming parts is the array of parts, the methods look like this:

var uploadOpPromise1 = uploader.createUploadAsync(uri, parts);

var uploadOpPromise2 = uploader.createUploadAsync(uri, parts, "related");

var uploadOpPromise3 = uploader.createUploadAsync(uri, parts, "form-data", "-------123456");

To create each part, first create a BackgroundTransferContentPart by using one of its three

constructors:

 new BackgroundContentPart() Creates a default part.

 new BackgroundContentPart(<name>) Creates a part with a given name.

 new BackgroundContentPart(<name>, <file>) Creates a part with a given name and a

local filename.

In each case you further initialize the part with a call to its setText, setHeader, and setFile

methods. The first, setText, assigns a value to that part. The second, setHeader, can be called multiple

times to supply header values for the part. The third, setFile, is how you provide the StorageFile to

a part created with the third variant above.

http://msdn.microsoft.com/library/windows/apps/br207140.aspx
http://msdn.microsoft.com/library/ms527355.aspx
http://www.flickr.com/services/api/upload.example.html
http://www.flickr.com/services/api/upload.example.html
https://developers.google.com/youtube/2.0/developers_guide_protocol_direct_uploading
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.backgroundtransfercontentpart.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.backgroundtransfercontentpart.aspx

1253

Scenario 2 of the Background transfer sample shows the latter using an array of random files that

you choose from the file picker, but probably few services would accept a request of this nature. Let’s

instead look at how we’d create the multipart request for Flickr shown on Uploading Photos – POST

Example. For this purpose I’ve created the MultipartUpload example in the appendices’ companion

content. Here’s the code from js/uploadMultipart.js that creates all the necessary parts for the

tinyimage.jpg file in the app package:

// The file and uri variables are already set by this time. bt is a namespace shortcut

var bt = Windows.Networking.BackgroundTransfer;

var uploader = new bt.BackgroundUploader();

var contentParts = [];

// Instead of sending multiple files (as in the original sample), we'll create those parts that

// match the POST example for Flickr on http://www.flickr.com/services/api/upload.example.html

var part;

part = new bt.BackgroundTransferContentPart();

part.setHeader("Content-Disposition", "form-data; name=\"api_key\"");

part.setText("3632623532453245");

contentParts.push(part);

part = new bt.BackgroundTransferContentPart();

part.setHeader("Content-Disposition", "form-data; name=\"auth_token\"");

part.setText("436436545");

contentParts.push(part);

part = new bt.BackgroundTransferContentPart();

part.setHeader("Content-Disposition", "form-data; name=\"api_sig\"");

part.setText("43732850932746573245");

contentParts.push(part);

part = new bt.BackgroundTransferContentPart();

part.setHeader("Content-Disposition", "form-data; name=\"photo\"; filename=\"" + file.name +

"\"");

part.setHeader("Content-Type", "image/jpeg");

part.setFile(file);

contentParts.push(part);

// Create a new upload operation specifying a boundary string.

uploader.createUploadAsync(uri, contentParts,

 "form-data", "-----------------------------7d44e178b0434")

 .then(function (uploadOperation) {

 // Start the upload and persist the promise

 upload = uploadOperation;

 promise = uploadOperation.startAsync().then(complete, error, progress);

 }

);

The resulting request will look like this, very similar to what’s shown on the Flickr page (just with

some extra headers):

http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://www.flickr.com/services/api/upload.example.html
http://www.flickr.com/services/api/upload.example.html

1254

POST /website/multipartupload.aspx HTTP/1.1

Cache-Control=no-cache

Connection=Keep-Alive

Content-Length=1328

Content-Type=multipart/form-data; boundary="-----------------------------7d44e178b0434"

Accept=*/*

Accept-Encoding=gzip, deflate

Host=localhost:60355

User-Agent=Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0; Touch)

UA-CPU=AMD64

-------------------------------7d44e178b0434

Content-Disposition: form-data; name="api_key"

3632623532453245

-------------------------------7d44e178b0434

Content-Disposition: form-data; name="auth_token"

436436545

-------------------------------7d44e178b0434

Content-Disposition: form-data; name="api_sig"

43732850932746573245

-------------------------------7d44e178b0434

Content-Disposition: form-data; name="photo"; filename="tinysquare.jpg"

Content-Type: image/jpeg

{RAW JFIF DATA}

-------------------------------7d44e178b0434--

To run the sample and also see how this request is received, you’ll need two things. First, set up your

localhost server as described in “Sidebar: Using the Localhost” in Chapter 4. Then install Visual Studio

Express for Web (which is free) through the Web Platform Installer. Now go to the MultipartUpload-

Server folder in appendices’ companion content, load website.sln into Visual Studio Express for Web,

open MultipartUploadServer.aspx, and set a breakpoint on the first if statement inside the Page_Load

method. Start the site in the debugger (which runs it in Internet Explorer), which opens that page on a

localhost debugging port (and click Continue in Visual Studio when you hit the breakpoint). Copy that

page’s URI from Internet Explorer for the next step.

Switch to the MultipartUpload example running in Visual Studio for Windows, paste that URI into

the URI field, and click the Start Multipart Transfer. When the upload operation’s startAsync is called,

you should hit the server page breakpoint in Visual Studio for Web. You can step through that code if

you want and examine the Request object; in the end, the code will copy the request into a file named

multipart-request.txt on that server. This will contain the request contents as above, where you can see

the relationship between how you set up the parts in the client and how they’re received by the server.

http://www.microsoft.com/web/downloads/platform.aspx

1255

Notes on Encryption, Decryption, Data Protection, and

Certificates

The documentation on the Windows Developer Center along with APIs in the Windows.Security

namespace are helpful to know about where protecting user credentials and other data is concerned.

One key resource is the How to secure connections and authenticate requests topic; another is the

Banking with strong authentication sample, which demonstrates secure authentication and

communication over the Internet. A full writeup on this sample is found on Tailored banking app code

walkthrough.

As for WinRT APIs, first is Windows.Security.Cryptography. Here you’ll find the

CryptographicBuffer class that can encode and decode strings in hexadecimal and base64 (UTF-8 or

UTF-16) and also provide random numbers and a byte array full of such randomness. Refer to scenario

1 of the CryptoWinRT sample for some demonstrations, as well as scenarios 2 and 3 of the Web

authentication broker sample. WinRT’s base64 encoding is fully compatible with the JavaScript atob

and btoa functions.

Next is Windows.Security.Cryptography.Core, which is truly about encryption and decryption

according to various algorithms. See the Encryption topic, scenarios 2–8 of the CryptoWinRT sample,

and again scenarios 2 and 3 of the Web authentication broker sample.

Third is Windows.Security.Cryptography.DataProtection, whose single class,

DataProtectionProvider, deals with protecting and unprotecting both static data and a data stream.

This applies only to apps that declare the Enterprise Authentication capability. For details, refer to Data

protection API along with scenarios 9 and 10 of the CryptoWinRT sample.

Fourth, Windows.Security.Cryptography.Certificates provides several classes through which

you can create certificate requests and install certificate responses. Refer to Working with certificates

and the Certificate enrollment sample for more.

Fifth, some of the early W3C cryptography APIs have made their way into the app host, accessed

through the window.msCrypto object.

And lastly it’s worth at least listing the API under Windows.Security.ExchangeActiveSync-

Provisioning for which there is the EAS policies for mail clients sample. I’m assuming that if you know

why you’d want to look into this, well, you’ll know!

Syndication: RSS, AtomPub, and XML APIs in WinRT

When we first looked at doing HTTP requests in Chapter 4, we grabbed the RSS feed from the Windows

Developer Blog with the URI http://blogs.msdn.com/b/windowsappdev/rss.aspx. We learned then that

WinJS.xhr returned a promise, the result of which contained a responseXML property, which is itself a

http://msdn.microsoft.com/library/windows/apps/hh986970.aspx
http://code.msdn.microsoft.com/windowsapps/Metro-style-banking-app-7d963c00
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.core.aspx
http://msdn.microsoft.com/library/windows/apps/hh464976.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.certificates.aspx
http://msdn.microsoft.com/library/windows/apps/hh465044.aspx
http://code.msdn.microsoft.com/windowsapps/Certificate-Enrollment-SDK-7ecf4976
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html
http://msdn.microsoft.com/library/ie/dn302339(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.exchangeactivesyncprovisioning.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.exchangeactivesyncprovisioning.aspx
http://code.msdn.microsoft.com/windowsapps/Web-authentication-for-b9b8ed1a
http://blogs.msdn.com/b/windowsappdev/rss.aspx

1256

DomParser through which you can traverse the DOM structure and so forth.

Working with syndicated feeds by using straight HTTP requests is completely supported for

Windows Store apps. In fact, the How to create a mashup topic in the documentation describes exactly

this process, components of which are demonstrated in the Integrating content and controls from web

services sample.

That said, WinRT offers additional APIs for dealing with syndicated content in a more structured

manner, which could be better suited for some programming languages. One, Windows.Web.-

Syndication, offers a more structured way to work with RSS feeds. The other, Windows.Web.AtomPub,

provides a means to publish and manage feed entries.

There is also an API for dealing with XML in Windows.Data.Xml.Dom (see the Windows Runtime

XML data API sample), but this API is somewhat redundant with the built-in XML/DOM APIs present in

JavaScript.

Reading RSS Feeds
The primary class within Windows.Web.Syndication is the SyndicationClient. To work with any

given feed, you create an instance of this class and set any necessary properties. These are

serverCredential (a PasswordCredential), proxyCredential (another PasswordCredential),

timeout (in milliseconds; default is 30000 or 30 seconds), maxResponseBufferSize (a means to

protect from potentially malicious servers), and bypassCacheOnRetrieve (a Boolean to indicate

whether to always obtain new data from the server). You can also make as many calls to its

setRequestHeader method (passing a name and value) to configure the HTTP request header.

The final step is to then call the SyndicationClient.retrieveFeedAsync method with the URI of

the desired RSS feed (a Windows.Foundation.Uri). Here’s an example derived from the Syndication

sample, which retrieves the RSS feed for the Building Windows 8 blog:

uri = new Windows.Foundation.Uri("http://blogs.msdn.com/b/b8/rss.aspx");

var client = new Windows.Web.Syndication.SyndicationClient();

client.bypassCacheOnRetrieve = true;

client.setRequestHeader("User-Agent",

 "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)");

client.retrieveFeedAsync(uri).done(function (feed) {

 // feed is a SyndicationFeed object

}

The result of retrieveFeedAsync is a Windows.Web.Syndication.SyndicationFeed object; that

is, the SyndicationClient is what you use to talk to the service, and when you retrieve the feed you

get an object though which you can then process the feed itself. If you take a look at Syndication-

Feed by using the link above, you’ll see that it’s wholly stocked with properties that represent all the

parts of the feed, such as authors, categories, items, title, and so forth. Some of these are

represented themselves by other classes in Windows.Web.Syndication, or collections of them, where

http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/windows.data.xml.dom.aspx
http://code.msdn.microsoft.com/windowsapps/XML-API-Scenario-Sample-42ce708b
http://code.msdn.microsoft.com/windowsapps/XML-API-Scenario-Sample-42ce708b
http://msdn.microsoft.com/library/windows/apps/br244529.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationclient.aspx
http://code.msdn.microsoft.com/windowsapps/Syndication-sample-07ef6b0d
http://code.msdn.microsoft.com/windowsapps/Syndication-sample-07ef6b0d
http://blogs.msdn.com/b/b8/rss.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationfeed.aspx

1257

simpler types aren’t sufficient: SyndicationAttribute, SyndicationCategory, SyndicationContent,

SyndicationGenerator, SyndicationItem, SyndicationLink, SyndicationNode,

SyndicationPerson, and SyndicationText. I’ll leave the many details to the documentation.

We can see some of this in the sample, picking up from inside the completed handler for

retrieveFeedAsync. Let me offer a more annotated version of that code:

client.retrieveFeedAsync(uri).done(function (feed) {

 currentFeed = feed;

 var title = "(no title)";

 // currentFeed.title is a SyndicationText object

 if (currentFeed.title) {

 title = currentFeed.title.text;

 }

 // currentFeed.items is a SyndicationItem collection (array)

 currentItemIndex = 0;

 if (currentFeed.items.size > 0) {

 displayCurrentItem();

 }

}

// ...

function displayCurrentItem() {

 // item will be a SyndicationItem

 var item = currentFeed.items[currentItemIndex];

 // Display item number.

 document.getElementById("scenario1Index").innerText = (currentItemIndex + 1) + " of "

 + currentFeed.items.size;

 // Display title (item.title is another SyndicationText).

 var title = "(no title)";

 if (item.title) {

 title = item.title.text;

 }

 document.getElementById("scenario1ItemTitle").innerText = title;

 // Display the main link (item.links is a collection of SyndicationLink objects).

 var link = "";

 if (item.links.size > 0) {

 link = item.links[0].uri.absoluteUri;

 }

 var scenario1Link = document.getElementById("scenario1Link");

 scenario1Link.innerText = link;

 scenario1Link.href = link;

 // Display the body as HTML (item.content is a SyndicationContent object, item.summary is

 // a SyndicationText object).

1258

 var content = "(no content)";

 if (item.content) {

 content = item.content.text;

 }

 else if (item.summary) {

 content = item.summary.text;

 }

 document.getElementById("scenario1WebView").innerHTML = window.toStaticHTML(content);

 // Display element extensions. The elementExtensions collection contains all the additional

 // child elements within the current element that do not belong to the Atom or RSS standards

 // (e.g., Dublin Core extension elements). By creating an array of these, we can create a

 // WinJS.Binding.List that's easily displayed in a ListView.

 var bindableNodes = [];

 for (var i = 0; i < item.elementExtensions.size; i++) {

 var bindableNode = {

 nodeName: item.elementExtensions[i].nodeName,

 nodeNamespace: item.elementExtensions[i].nodeNamespace,

 nodeValue: item.elementExtensions[i].nodeValue,

 };

 bindableNodes.push(bindableNode);

 }

 var dataList = new WinJS.Binding.List(bindableNodes);

 var listView = document.getElementById("extensionsListView").winControl;

 WinJS.UI.setOptions(listView, { itemDataSource: dataList.dataSource });

}

It’s probably obvious that the API, under the covers, is probably just using the XmlDocument API to

retrieve all these properties. In fact, its getXmlDocument returns that XmlDocument if you want to access

it yourself.

You can also create a SyndicationFeed object around the XML for a feed you might already have.

For example, if you obtain the feed contents by using WinJS.xhr, you can create a new Syndication-

Feed object and call its load method with the request’s responseXML. Then you can work with the feed

through the class hierarchy. When using the Windows.Web.AtomPub API to manage a feed, you also

create a new or updated SyndicationItem to send across the wire, settings its values through the

other objects in its hierarchy. We’ll see this in the next section.

If retrieveFeedAsync throws an exception, by the way, which would be picked up by an error

handler you provide to the promise’s done method, you can turn the error code into a

SyndicationErrorStatus value. Here’s how it’s used in the sample’s error handler:

function onError(err) {

 // Match error number with a SyndicationErrorStatus value. Use

 // Windows.Web.WebErrorStatus.getStatus() to retrieve HTTP error status codes.

 var errorStatus = Windows.Web.Syndication.SyndicationError.getStatus(err.number);

 if (errorStatus === Windows.Web.Syndication.SyndicationErrorStatus.invalidXml) {

 displayLog("An invalid XML exception was thrown. Please make sure to use a URI that"

 + "points to a RSS or Atom feed.");

 }

}

1259

As a final note, the Feed reader sample in the SDK provides another demonstration of the

Windows.Web.Syndication API. Its operation is fully described on the Feed reader sample page in the

documentation.

Using AtomPub
On the flip side of reading an RSS feed, as we’ve just seen, is the need to possibly add, remove, and edit

entries on a feed, as with an app that lets the user actively manage a specific blog or site.

The API for this is found in Windows.Web.AtomPub and demonstrated in the AtomPub sample. The

main class is the AtomPubClient that encapsulates all the operations of the AtomPub protocol. It has

methods like createResourceAsync, retrieveResourceAsync, updateResourceAsync, and

deleteResourceAsync for working with those entries, where each resource is identified with a URI and

a SyndicationItem object, as appropriate. Media resources for entries are managed through

createMediaResourceAsync and similarly named methods, where the resource is provided as an

IInputStream.

The AtomPubClient also has retrieveFeedAsync and setRequestHeader methods that do the

same as the SyndicationClient methods of the same names, along with a few similar properties like

serverCredential, timeout, and bypassCacheOnRetrieve. Another method, retrieveService-

DocumentAsync, provides the workspaces/service documents for the feed (in the form of a

Windows.Web.AtomPub.ServiceDocument object).

Again, the AtomPub sample demonstrates the different operations: retrieve (Scenario 1), create

(Scenario 2), delete (Scenario 3), and update (Scenario 4). Here’s how it first creates the AtomPubClient

object (see js/common.js), assuming there are credentials:

function createClient() {

 client = new Windows.Web.AtomPub.AtomPubClient();

 client.bypassCacheOnRetrieve = true;

 var credential = new Windows.Security.Credentials.PasswordCredential();

 credential.userName = document.getElementById("userNameField").value;

 credential.password = document.getElementById("passwordField").value;

 client.serverCredential = credential;

}

Updating an entry (js/update.js) then looks like this, where the update is represented by a newly

created SyndicationItem:

function getCurrentItem() {

 if (currentFeed) {

 return currentFeed.items[currentItemIndex];

 }

 return null;

}

var resourceUri = new Windows.Foundation.Uri(/* service address */);

createClient();

http://code.msdn.microsoft.com/windowsapps/Feed-reader-sample-e0658c8d
http://msdn.microsoft.com/library/windows/apps/dn263105.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.atompub.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e
http://msdn.microsoft.com/library/windows/apps/br243412.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e

1260

var currentItem = getCurrentItem();

if (!currentItem) {

 return;

}

// Update the item

var updatedItem = new Windows.Web.Syndication.SyndicationItem();

var title = document.getElementById("titleField").value;

updatedItem.title = new Windows.Web.Syndication.SyndicationText(title,

 Windows.Web.Syndication.SyndicationTextType.text);

var content = document.getElementById("bodyField").value;

updatedItem.content = new Windows.Web.Syndication.SyndicationContent(content,

 Windows.Web.Syndication.SyndicationTextType.html);

client.updateResourceAsync(currentItem.editUri, updatedItem).done(function () {

 displayStatus("Updating item completed.");

}, onError);

Error handling in this case works with the Window.Web.WebError class (see js/common.js):

function onError(err) {

 displayError(err);

 // Match error number with a WebErrorStatus value, in order to deal with a specific error.

 var errorStatus = Windows.Web.WebError.getStatus(err.number);

 if (errorStatus === Windows.Web.WebErrorStatus.unauthorized) {

 displayLog("Wrong username or password!");

 }

}

Sockets

Sockets are a fundamental transport for networking and devices. Unlike HTTP requests, where a client

sends a request to a server and the server responds—essentially an isolated transaction—sockets are a

connection between client and server IP ports such that either one can send information to the other at

any time. A similar mechanism can be found in the Windows Push Notification Service (WNS, see

Chapter 16, “Alive with Activity”), but WNS is limited to notifications and is specifically designed to

issue tile updates or notifications for apps that aren’t running. Sockets, on the other hand, are for

ongoing data exchange between a server (or a device acting as one)and a running client.

Sockets are generally used when there isn’t a higher-level API or other abstraction for your

particular scenario, when there’s a custom protocol involved, when you need two-way communication,

or when it makes sense to minimize the overhead of each exchange. Consider HTTP, a protocol that is

itself built on lower-level sockets. A single HTTP request generally includes headers and lots of other

information beyond just the bit of data involved, so it’s an inefficient transport when you need to send

lots of little bits. It’s better to connect directly with the server and exchange data with a minimized

http://msdn.microsoft.com/library/windows/apps/windows.web.weberror.aspx

1261

custom protocol. VoIP is another example where sockets work well, as are multicast scenarios like

multiplayer games. In the latter, one player’s machine, acting as a server within a local subnet, can

broadcast a message to all the other players, and vice versa, again with minimal overhead.

In the world of sockets, exchanging data can happen in two ways: as discrete packets/messages (like

water balloons) or as a continuous stream (like water running through a hose). These are called

datagram sockets and stream sockets, respectively, and both are supported through the WinRT API.

WinRT also supports both forms of exchange through the WebSocket protocol, a technology originally

created for web browsers and web servers that has become increasingly interesting for general purpose

use within apps. All of the applicable classes can be found in the Windows.Networking.Sockets API

(or occasionally in the parent Windows.Networking namespace), as we’ll see in the following sections.

Note that because some overlap between the different types of sockets exists, these sections are meant

to be read in sequence so that I don’t have to repeat myself too much!

Suspend and resume with sockets As a general note, always close an open socket when your app is

suspended, and reopen it when the app is resumed.

Datagram Sockets
In the language of sockets, a water balloon is called a datagram, a bundle of information sent from one

end of the socket to the other—even without a prior connection—according to the User Datagram

Protocol (UDP) standard. UDP, as I summarize here from its description on Wikipedia, is simple,

stateless, unidirectional, and transaction-oriented. It has minimal overhead and lacks retransmission

delays, and for these reasons it cannot guarantee that a datagram will actually be delivered. Thus, it’s

used where error checking and correction aren’t necessary or where they are done by the apps

involved rather than at the network interface level. In a VoIP scenario, for example, this allows data

packets to just be dropped if they cannot be delivered, rather than having everything involved wait for

a delayed packet. As a result, the quality of the audio might suffer, but it won’t start stuttering or make

your friends and colleagues sound like they’re from another galaxy. In short, UDP might be unreliable,

but it minimizes latency. Higher-level protocols like the Real-time Transport Protocol (RTP) and the

Real Time Streaming Protocol (RTSP) are built on UDP.

A Windows Store app works with this transport—either as a client or a server—using the

DatagramSocket class, which you instantiate with the new operator to set up a specific connection and

listen for messages:

var listener = new Windows.Networking.Sockets.DatagramSocket();

On either side of the conversation, the next step is to listen for the object’s messagereceived event:

// Event from WinRT: remember to call removeEventListener as needed

listener.addEventListener("messagereceived", onMessageReceived);

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.aspx
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.messagereceived.aspx

1262

When data arrives, the handler receives a—wait for it!—DatagramSocketMessageReceived-

EventArgs object (that’s a mouthful). This contains localAddress and remoteAddress properties,

both of which are a Windows.Networking.HostName object that contains the IP address, a display

name, and a few other bits. See the “Network Information (the Network Object Roster)” section early in

Chapter 4 for details. The event args also contains a remotePort string. More importantly, though, are

the two methods from which you extract the data. One is getDataStream, which returns an

IInputStream through which you can read sequential bytes. The other is getDataReader, which

returns a Windows.Storage.Streams.DataReader object. As discussed in Chapter 10, “The Story of

State, Part 1” in the section “Folders, Files, and Streams,” this is a higher-level abstraction built on top of

the IInputStream that helps you read specific data types directly. Clearly, if you know the data

structure you expect to receive in the message, using the DataReader will relieve you from doing type

conversions yourself.

Of course, to get any kind of data from a socket, you need to connect it to something. For this

purpose DatagramSocket includes a few methods for establishing and managing a connection:

 connectAsync Starts a connection operation given a HostName object and a service name (or

UDP port, a string) of the remote network destination. This is used to create a one-way client to

server connection.

 Another form of connectAsync takes a Windows.Networking.EndpointPair object that

specifies host and service names for both local and remote endpoints. This is used to create a

two-way client/server connection, as the local endpoint implies a call to bindEndpointAsync as

below.

 bindEndpointAsync For a one-way server connection—that is, to only listen to but not send

data on the socket—this method just binds a local endpoint given a HostName and a service

name/port. Binding the service name by itself can be done with bindServiceNameAsync.

 joinMulticastGroup Given a HostName, connects the Datagram socket to a multicast group.

 close Terminates the connection and aborts any pending operations.

Tip To open a socket to a localhost port for debugging purposes, use connectAsync as follows:

var socket = new Windows.Networking.Sockets.DatagramSocket();

socket.connectAsync(new Windows.Networking.Sockets.DatagramSocket("localhost",

 "12345", Windows.Networking.Sockets.SocketProtectionLevel.plainSocket)

 .done(function () {

 // ...

 }, onError);

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.getdatastream.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.getdatareader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx

1263

Note that any given socket can be connected to any number of endpoints—you can call connect-

Async multiple times, join multiple multicast groups, and bind multiple local endpoints with bindEnd-

pointAsync and bindServiceNameAsync. The close method, mind you, closes everything at once!

Once the socket has one or more connections, connection information can be retrieved with the

DatagramSocket.information property (a DatagramSocketInformation). Also, note that the static

DatagramSocket.getEndpointPairsAsync method provides (as the async result) a vector of available

EndpointPair objects for a given remote hostname and service name. You can optionally indicate that

you’d like the endpoints sorted according to the optimizeForLongConnections flag. See the

documentation page linked here for details, but it basically lets you control which endpoint is preferred

over others based on whether you want to optimize for a high-quality and long-duration connection

that might take longer to connect to initially (as for video streaming) or for connections that are easiest

to acquire (the default).

Control data can also be set through the DatagramSocket.control property, a Datagram-

SocketControl object with qualityOfService and outputUnicastHopLimit properties.

All this work, of course, is just a preamble to sending data on the socket connection. This is done

through the DatagramSocket.outputStream property, an IOutputStream to which you can write

whatever data you need using its writeAsync and flushAsync methods. This will send the data on

every connection within the socket. Alternately, you can use one of the variations of

getOutputStreamAsync to specify a specific EndpointPair or HostName/port to which to send the

data. The result of both of these async operations is again an IOutputStream. And in all cases you can

create a higher-level DataWriter object (see Chapter 10) around that stream:

var dataWriter = new Windows.Storage.Streams.DataWriter(socket.outputStream)

Here’s how it’s all demonstrated in the DatagramSocket sample, a little app in which you need to

run each of the scenarios in turn. Scenario 1, for starters, sets up the server-side listener of the

relationship on the localhost, using port number 22112 (the service name) by default. To do this, it

creates the sockets, adds the listener, and calls bindServiceNameAsync (js/startListener.js):

socketsSample.listener = new Windows.Networking.Sockets.DatagramSocket();

// Reminder: call removeEventListener as needed; this can be common with socket relationships

// that can come and go through the lifetime of the app.

socketsSample.listener.addEventListener("messagereceived", onServerMessageReceived);

socketsSample.listener.bindServiceNameAsync(serviceName).done(function () {

 // ...

}, onError);

When a message is received, this server-side component takes the contents of the message and

writes it to the socket’s output stream so that it’s reflected in the client side. This looks a little confusing

in the code, so I’ll show the core path of this process with added comments:

function onServerMessageReceived(eventArgument) {

 // [Code here checks if we already got an output stream]

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.getendpointpairsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.qualityofservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.outboundunicasthoplimit.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.outputstream.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.ioutputstream.aspx
http://code.msdn.microsoft.com/windowsapps/DatagramSocket-sample-76a7d82b

1264

 socketsSample.listener.getOutputStreamAsync(eventArgument.remoteAddress,

 eventArgument.remotePort).done(function (outputStream) {

 // [Save the output stream with some other info, omitted]

 socketsSample.listenerOutputStream = outputStream;

 }

 // This is a helper function

 echoMessage(socketsSample.listenerOutputStream, eventArgument);

 });

}

// eventArgument here is a DatagramSocketMessageReceivedEventArgs with a getDataReader method

function echoMessage(outputStream, eventArgument) {

 // [Some display code omitted]

 // Get the message stream from the DataReader and send it to the output stream

 outputStream.writeAsync(eventArgument.getDataReader().detachBuffer()).done(function () {

 // Do nothing - client will print out a message when data is received.

 });

}

In most apps using sockets, the server side would do something more creative with the data than

just send it back to the client! But this just changes what you do with the data in the input stream.

Scenario 2 sets up a listener to the localhost on the same port. On this side we also create a

DatagramSocket and set up a listener for messagereceived. Those messages—such as the one written

to the output stream on the server side, as we’ve just seen—are picked up in the event handler below

(js/connectToListener.js), which uses the DataReader to extract and display the message:

function onMessageReceived(eventArgument) {

 try {

 var messageLength = eventArgument.getDataReader().unconsumedBufferLength;

 var message = eventArgument.getDataReader().readString(messageLength);

 socketsSample.displayStatus("Client: receive message from server \"" + message + "\"");

 } catch (exception) {

 status = Windows.Networking.Sockets.SocketError.getStatus(exception.number);

 // [Display error details]

 }

}

Note that when an error occurs on a socket connection, you can pass the error number to the

getStatus method of the SocketError object and get back a more actionable SocketErrorStatus

value. There are many possible errors here, so see its reference page for details .

Even with all the work we’ve done so far, nothing has yet happened because we’ve sent no data! So

switching to scenario 3, pressing its Send ‘Hello’ Now button does the honors from the client side

(js/sendData.js):

// [This comes after a check on the socket's validity]

socketsSample.clientDataWriter =

 new Windows.Storage.Streams.DataWriter(socketsSample.clientSocket.outputStream);

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerror.getstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerrorstatus.aspx

1265

var string = "Hello World";

socketsSample.clientDataWriter.writeString(string);

socketsSample.clientDataWriter.storeAsync().done(function () {

 socketsSample.displayStatus("Client sent: " + string + ".");

}, onError);

The DataWriter.storeAsync call is what actually writes the data to the stream in the socket. If you

set a breakpoint here and on both messagereceived event handlers, you’ll then see that storeAsync

generates a message to the server side, hitting onServerMessageReceived in js/startListener.js. This

will then write the message back to the socket, which will hit onMessageReceived in

js/connectToListener.js, which displays the message. (And to complete the process, scenario 4 gives you

a button to call the socket’s close method.)

The sample does everything with the same app on localhost to make it easier to see how the

process works. Typically, the server will be running on another machine entirely, but the steps of setting

up a listener apply just the same. As noted in Chapter 4, localhost connections work only on a machine

with a developer license and will not work for apps acquired through the Windows Store.

Stream Sockets

In contrast to datagram sockets, streaming data over sockets uses the Transmission Control Protocol

(TCP). The hallmark of TCP is accurate and reliable delivery—it guarantees that the bytes received are

the same as the bytes that were sent: when a packet is sent across the network, TCP will attempt to

retransmit the packet if there are problems along the way. This is why it’s part of TCP/IP, which gives us

the World Wide Web, email, file transfers, and lots more. HTTP, SMTP, and the Session Initiation

Protocol (SIP) are also built on TCP. In all cases, clients and servers just see a nice reliable stream of data

flowing from one end to the other.

Unlike datagram sockets, for which we have a single class in WinRT for both sides of the

relationship, stream sockets are more distinctive to match the unique needs of the client and server

roles. On the client side is Windows.Networking.Sockets.StreamSocket; on the server it’s

StreamSocketListener.

Starting with the latter, the StreamSocketListener object looks quite similar to the

DatagramSocket we’ve just covered, with these methods, properties, and events:

 information Provides a StreamSocketListenerInformation object containing a

localPort string.

 control Provides a StreamSocketListenerControl object with a qualityOfService

property.

 connectionreceived A WinRT event that’s fired when a connection is made to the listener.

Its event arguments are a StreamSocketListenerConnectionReceivedEventArgs that

contains a single property, socket. This is the StreamSocket for the client, in which is an

outputStream property where the listener can obtain the data stream.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistener.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenerinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenercontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenerconnectionreceivedeventargs.aspx

1266

 bindEndpointAsync and bindServiceNameAsync Binds the listener to a HostName and

service name, or binds just a service name.

 close Terminates connections and aborts pending operations.

On the client side, StreamSocket again looks like parts of the DatagramSocket. In addition to the

control (StreamSocketControl) and information properties (StreamSocketInformation) and the

ubiquitous close method, we find a few other usual suspects and one unusual one:

 connectAsync Connects to a HostName/service name or to an EndpointPair. In each case

you can also provide an optional SocketProtectionLevel object that can be plainSocket,

ssl, or sslAllowNullEncryption. There are, in other words, four variations of this method.

 inputStream The IInputStream that’s being received over the connection.

 outputStream The IOutputStream into which data is written.

 upgradeToSslAsync Upgrades a plainSocket connection (created through connectAsync)

to use SSL as specified by either SocketProtectionLevel.ssl or sslAllowNullEncryption.

This method also required a HostName that validates the connection.

For more details on using SSL, see How to secure socket connections with TLS/SSL.

In any case, you can see that for one-way communications over TCP, an app creates either a

StreamSocket or a StreamSocketListener, depending on its role. For two-way communications an

app will create both.

The StreamSocket sample, like the DatagramSocket sample, has four scenarios that are meant to be

run in sequence on the localhost: first to create a listener (to receive a message from a client, scenario

1), then to create the StreamSocket (scenario 2) and send a message (scenario 3), and then to close

the socket (scenario 4). With streamed data, the app implements a custom protocol for how the data

should appear, as we’ll see. Also note that scenario 5 demonstrates evaluating certificate validity and

displaying certificate properties, which you’d need to do when making connections over SSL.

Starting in scenario 1 (js/startListener.js), here’s how we create the listener and event handler.

Processing the incoming stream data is trickier than with a datagram because we need to make sure

the data we need is all there. This code shows a good pattern of waiting for one async operation to

finish before the function calls itself recursively. Also note how it creates a DataReader on the input

stream for convenience:

socketsSample.listener = new Windows.Networking.Sockets.StreamSocketListener(serviceName);

// Match with removeEventListener as needed

socketsSample.listener.addEventListener("connectionreceived", onServerAccept);

socketsSample.listener.bindServiceNameAsync(serviceName).done(function () {

 // ...

 }, onError);

}

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketprotectionlevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocket.upgradetosslasync.aspx
http://msdn.microsoft.com/library/windows/apps/hh780595.aspx
http://code.msdn.microsoft.com/windowsapps/StreamSocket-Sample-8c573931

1267

// This has to be a real function; it will "loop" back on itself with the call to

// acceptAsync at the very end.

function onServerAccept(eventArgument) {

 socketsSample.serverSocket = eventArgument.socket;

 socketsSample.serverReader =

 new Windows.Storage.Streams.DataReader(socketsSample.serverSocket.inputStream);

 startServerRead();

}

// The protocol here is simple: a four-byte 'network byte order' (big-endian) integer that

// says how long a string is, and then a string that is that long. We wait for exactly 4 bytes,

// read in the count value, and then wait for count bytes, and then display them.

function startServerRead() {

 socketsSample.serverReader.loadAsync(4).done(function (sizeBytesRead) {

 // Make sure 4 bytes were read.

 if (sizeBytesRead !== 4) { /* [Show message] */ }

 // Read in the 4 bytes count and then read in that many bytes.

 var count = socketsSample.serverReader.readInt32();

 return socketsSample.serverReader.loadAsync(count).then(function (stringBytesRead) {

 // Make sure the whole string was read.

 if (stringBytesRead !== count) { /* [Show message] */ }

 // Read in the string.

 var string = socketsSample.serverReader.readString(count);

 socketsSample.displayOutput("Server read: " + string);

 // Restart the read for more bytes. We could just call startServerRead() but in

 // the case subsequent read operations complete synchronously we start building

 // up the stack and potentially crash. We use WinJS.Promise.timeout() to invoke

 // this function after the stack for current call unwinds.

 WinJS.Promise.timeout().done(function () { return startServerRead(); });

 }); // End of "read in rest of string" function.

 }, onError);

}

This code is structured to wait for incoming data that isn’t ready yet, but you might have situations

in which you want to know if there’s more data available that you haven’t read. This value can be

obtained through the DataReader.unconsumedBufferLength property.

In scenario 2, the data-sending side of the relationship is simple: create a StreamSocket and call

connectAsync (js/connectToListener.js; note that onError uses StreamSocketError.getStatus

again):

socketsSample.clientSocket = new Windows.Networking.Sockets.StreamSocket();

socketsSample.clientSocket.connectAsync(hostName, serviceName).done(function () {

 // ...

}, onError);

Sending data in scenario 3 takes advantage of a DataWriter built on the socket’s output stream

(js/sendData.js):

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.unconsumedbufferlength.aspx

1268

var writer = new Windows.Storage.Streams.DataWriter(socketsSample.clientSocket.outputStream);

var string = "Hello World";

var len = writer.measureString(string); // Gets the UTF-8 string length.

writer.writeInt32(len);

writer.writeString(string);

writer.storeAsync().done(function () {

 writer.detachStream();

}, onError);

And closing the socket in scenario 4 is again just a call to StreamSocket.close.

As with the DatagramSocket sample, setting breakpoints within openClient (js/connectTo-

Listener.js), onServerAccept (js/startListener.js), and sendHello (js/sendData.js) will let you see what’s

happening at each step of the process.

Web Sockets: MessageWebSocket and StreamWebSocket

Having now seen both Datagram and Stream sockets in action, we can look at their equivalents on the

WebSocket side. As you might already know, WebSockets is a standard created to use HTTP (and thus

TCP) to set up an initial connection after which the data exchange happens through sockets over TCP.

This provides the simplicity of using HTTP requests for the first stages of communication and the

efficiency of sockets afterwards.

As with regular sockets, the WebSocket side of WinRT supports both water balloons and water

hoses: the MessageWebSocket class provides for discrete packets as with datagram sockets (though it

uses TCP and not UDP), and StreamWebSocket clearly provides for stream sockets. Both classes are

similar to their respective DatagramSocket and StreamSocket counterparts, so much so that their

interfaces are very much the same (with distinct secondary types like MessageWebSocketControl):

 Like DatagramSocket, MessageWebSocket has control, information, and outputStream

properties, a messagereceived event, and methods of connectAsync and close. It adds a

closed event along with a setRequestHeader method.

 Like StreamSocket, StreamWebSocket has control, information, inputStream, and

outputStream properties, and methods of connectAsync and close. It adds a closed event

and a setRequestHeader method.

Notice that there isn’t an equivalent to StreamSocketListener here. This is because the process of

establishing that connection is handled through HTTP requests, so such a distinct listener class isn’t

necessary. This is also why we have setRequestHeader methods on the classes above: so that you can

configure those HTTP requests. Along these same lines, you’ll find that the connectAsync methods

take a Windows.Foundation.Uri rather than hostnames and service names. But otherwise we see the

same kind of activity going on once the connection is established, with streams, DataReader, and

DataWriter.

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.messagewebsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamwebsocket.aspx

1269

Sidebar: Comparing W3C and WinRT APIs for WebSockets

Standard WebSockets, as they’re defined in the W3C API, are entirely supported for Windows

Store apps. However, they support only a transaction-based UDP model like DatagramSocket

and only text content. The MessageWebSocket in WinRT, however, supports both text and binary,

plus you can use the StreamWebSocket for a streaming TCP model as well. The WinRT APIs also

emit more detailed error information and so are generally preferred over the W3C API.

Let’s look more closely at these in the context of the Connecting with WebSockets sample. This

sample is dependent upon an ASP.NET server page running in the localhost, so you must first go into

its Server folder and run powershell.exe -ExecutionPolicy unrestricted -file setupserver.ps1 from

an Administrator command prompt. (For more on setting up Internet Information Services and the

localhost, refer to the “Using the localhost” sidebar in the “Using Windows.Web.Http.HttpClient”

section in Chapter 4.) If the script succeeds, you’ll see a WebSocketSample folder in c:\inetpub\wwwroot

that contains an EchoWebService.ashx file. Also, as suggested in Chapters 4 and 16, you can run the

Web platform installer to install Visual Studio Express for Web that will allow you to run the server page

in a debugger. Always a handy capability!

Within EchoWebService.ashx you’ll find an EchoWebSocket class written in C#. It basically has one

method, ProcessRequest, that handles the initial HTTP request from the web socket client. With this

request it acquires the socket, writes an announcement message to the socket’s stream when the

socket is opened, and then waits to receive other messages. If it receives a text message, it echoes that

text back through the socket with “You said” prepended. If it receives a binary message, it echoes back

a message indicating the amount of data received.

Going to scenario 1 of the Connecting with WebSockets sample, we can send a message to that

server page by using MessageWebSocket and get back a message of our own as shown below. In this

case the output in the sample reflects information known to the app and nothing from the service

itself.

http://code.msdn.microsoft.com/windowsapps/Connecting-with-WebSockets-643b10ab
http://www.microsoft.com/web/downloads/platform.aspx

1270

In the sample, we first create a MessageWebSocket, call its connectAsync, and then use a

DataWriter to write some data to the socket. It also listens for the messagereceived event to output

the result of the send, and it listens to the closed event from the server so that it can do the close

from its end. The code here is simplified from js/scenario1.js:

var messageWebSocket;

var messageWriter;

var webSocket = new Windows.Networking.Sockets.MessageWebSocket();

webSocket.control.messageType = Windows.Networking.Sockets.SocketMessageType.utf8;

webSocket.onmessagereceived = onMessageReceived;

webSocket.onclosed = onClosed;

// The server URI is obtained and validated here, and stored in a variable named uri.

webSocket.connectAsync(uri).done(function () {

 messageWebSocket = webSocket;

 // The default DataWriter encoding is utf8.

 messageWriter = new Windows.Storage.Streams.DataWriter(webSocket.outputStream);

 sendMessage(); // Helper function, see below

}, function (error) {

 var errorStatus = Windows.Networking.Sockets.WebSocketError.getStatus(error.number);

 // [Output error message]

});

function onMessageReceived(args) {

 var dataReader = args.getDataReader();

 // [Output message contents]

}

function sendMessage() {

 // Write message in the input field to the socket

 messageWriter.writeString(document.getElementById("inputField").value);

 messageWriter.storeAsync().done("", sendError);

1271

}

function onClosed(args) {

 // Close our socket if the server closes [simplified from actual sample; it also closes

 // the DataWriter it might have opened.]

 messageWebSocket.close();

}

Similar to what we saw in previous sections, when an error occurs you can turn the error number

into a SocketErrorStatus value. In the case of WebSockets you do this with the getStatus method

of Windows.Networking.Sockets.WebSocketError. Again, see its reference page for details.

Scenario 2, for its part, uses a StreamWebSocket to send a continuous stream of data packets, a

process that will continue until you close the connection:

Here’s the process in code, simplified from js/scenario2.js, where we see a similar pattern to what we

just saw for MessageWebSocket, only sending a continuous stream of data:

var streamWebSocket;

var dataWriter;

var dataReader;

var data = "Hello World";

var countOfDataSent;

var countOfDataReceived;

var webSocket = new Windows.Networking.Sockets.StreamWebSocket();

webSocket.onclosed = onClosed;

// The server URI is obtained and validated here, and stored in a variable named uri.

webSocket.connectAsync(uri).done(function () {

 streamWebSocket = webSocket;

 dataWriter = new Windows.Storage.Streams.DataWriter(webSocket.outputStream);

 dataReader = new Windows.Storage.Streams.DataReader(webSocket.inputStream);

 // When buffering, return as soon as any data is available.

 dataReader.inputStreamOptions = Windows.Storage.Streams.InputStreamOptions.partial;

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerrorstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.websocketerror.aspx

1272

 countOfDataSent = 0;

 countOfDataReceived = 0;

 // Continuously send data to the server

 writeOutgoing();

 // Continuously listen for a response

 readIncoming();

}, function (error) {

 var errorStatus = Windows.Networking.Sockets.WebSocketError.getStatus(error.number);

 // [Output error message]

});

function writeOutgoing() {

 try {

 var size = dataWriter.measureString(data);

 countOfDataSent += size;

 }

 dataWriter.writeString(data);

 dataWriter.storeAsync().done(function () {

 // Add a 1 second delay so the user can see what's going on.

 setTimeout(writeOutgoing, 1000);

 }, writeError);

 }

 catch (error) {

 // [Output error message]

 }

}

function readIncoming(args) {

 // Buffer as much data as you require for your protocol.

 dataReader.loadAsync(100).done(function (sizeBytesRead) {

 countOfDataReceived += sizeBytesRead;

 // [Output count]

 var incomingBytes = new Array(sizeBytesRead);

 dataReader.readBytes(incomingBytes);

 // Do something with the data. Alternatively you can use DataReader to

 // read out individual booleans, ints, strings, etc.

 // Start another read.

 readIncoming();

 }, readError);

}

function onClosed(args) {

 // [Other code omitted, including closure of DataReader and DataWriter]

 streamWebSocket.close();

}

As with regular sockets, you can exercise additional controls with WebSockets, including setting

credentials and indicating supported protocols through the control property of both

MessageWebSocket and StreamWebSocket. For details, see How to use advanced WebSocket controls

http://msdn.microsoft.com/library/windows/apps/hh761447.aspx

1273

in the documentation. Similarly, you can set up a secure/encrypted connection by using the wss://

URI scheme instead of ws:// as used in the sample. For more, see How to secure WebSocket

connections with TLS/SSL.

The ControlChannelTrigger Background Task
In Chapter 16 in the “Lock Screen Dependent Tasks and Triggers” section, we took a brief look at the

Windows.Networking.Sockets.ControlChannelTrigger class that can be used to set up a

background task for real-time notifications as would be used by VoIP, IM, email, and other “always

reachable” scenarios. To repeat, working with the control channel is not something that can be done

from JavaScript, so refer to How to set background connectivity options in the documentation along

with the following C#/C++ samples:

 ControlChannelTrigger StreamSocket sample

 ControlChannelTrigger XmlHttpRequest sample

 ControlChannelTrigger StreamWebSocket sample

 ControlChannelTrigger HTTP client sample

The Credential Picker UI

For enterprise scenarios where the Web Authentication Broker won’t suffice for authentication, WinRT

provides a built-in, enterprise-ready UI for entering credentials: Windows.Security.Credentials.-

UI.CredentialsPicker. When you instantiate this object and call its pickAsync method, as does the

Credential Picker sample, you’ll see the UI shown below. This UI provides for domain logins, supports,

and smart cards (I have two smart card readers on my machine, as you can see), and it allows for

various options such as authentication protocols and automatic saving of the credential.

The result from pickAsync, as given to your completed handler, is a CredentialPickerResults

http://msdn.microsoft.com/library/windows/apps/hh761446.aspx
http://msdn.microsoft.com/library/windows/apps/hh761446.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.controlchanneltrigger.aspx
http://msdn.microsoft.com/library/windows/apps/Hh771189.aspx
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-TCP-20c56711
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-6aedf1bc
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-91f6bed8
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-HTTP-9d7a6b3d
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpicker.aspx
http://code.msdn.microsoft.com/windowsapps/Credential-picker-sample-30fcba2e
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickerresults.aspx

1274

object with the following properties (when you enter some credentials in the sample, you’ll see these

values reflected in the sample’s output):

 credentialuserName A string containing the entered username.

 credentialPassword A string containing the password (typically encrypted depending on the

authentication protocol option).

 credentialDomainName A string containing a domain if entered with the username (as in

<domain>\<username>).

 credentialSaved A Boolean indicating whether the credential was saved automatically; this

depends on picker options, as discussed below.

 credentialSavedOption A CredentialSavedOption value indicating the state of the

Remember My Credentials check box: unselected, selected, or hidden.

 errorCode Contains zero if there is no error, otherwise an error code.

 credential An IBuffer containing the credential as an opaque byte array. This is what you

can save in your own persistent state if need be and pass back to the picker at a later time. We’ll

see how at the end of this section.

The three scenarios in the sample demonstrate the different options you can use to invoke the

credential picker. For this there are three separate variants of pickAsync. The first variant accepts a

target name (which is ignored) and a message string that appears in the place of “Please enter your

credentials” shown in the previous screenshot:

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message)

 .done(function (results) {

 }

The second variant accepts the same arguments plus a caption string that appears in the place of

“Credential Picker Sample” in the screenshot:

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message, caption)

 .done(function (results) {

 }

The third variant accepts a CredentialPickerOptions object that has properties for the same

targetName, message, and caption strings, along with the following:

 previousCredential An IBuffer with the opaque credential information as provided by a

previous invocation of the picker (see CredentialPickerResults.credential above).

 alwaysDisplayDialog A Boolean indicating whether the picker is displayed. The default is

false, but this applies only if you also populate previousCredential (with an exception for

domain-joined machines—see table below). The purpose here is to show the dialog when a

stored credential might be incorrect and the user is expected to provide a new one.

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickeroptions.aspx

1275

 errorCode The numerical value of a Win32 error code (default is ERROR_SUCCESS) that will be

formatted and displayed in the dialog box. You would use this when you obtain credentials

from the picker initially but find that those credentials don’t work and need to invoke the picke r

again. Instead of providing your own message, you just choose an error code and let the system

do the rest. The most common values for this are 1326 (login failure), 1330 (password expired),

2202 (bad username), 1907 or 1938 (password must change/password change required), 1351

(can’t access domain info), and 1355 (no such domain). There are, in fact, over 15,000 Win32

error codes, but that means you’ll have to search the reference linked above (or search within

the winerror.h file typically found in your Program Files (x86)\Windows Kits\8.0\Include\shared

folder). Happy hunting!

 callerSavesCredential A Boolean indicating that the app will save the credential and that

the picker should not. The default value is false. When set to true, credentials are saved to a

secure system location (not the credential locker) if the app has the Enterprise Authentication

capability (see below).

 credentialSaveOption A CredentialSaveOption value indicating the initial state of the

Remember My Credentials check box: unselected, selected, or hidden.

 authenticationProtocol A value from the AuthenticationProtocol enumeration: basic,

digest, ntlm, kerberos, negotiate (the default), credSsp, and custom (in which case you

must supply a string in the customAuthenticationProcotol property). Note that with basic

and digest, the CredentialPickerResults.credentialPassword will not be encrypted and

is subject to the same security needs as a plain text password you collect from your own UI.

Here’s an example of invoking the picker with an errorCode indicating a previous failed login:

var options = new Windows.Security.Credentials.UI.CredentialPickerOptions();

options.message = "Please enter your credentials";

options.caption = "Sample App";

options.targetName = "Target";

options.alwaysDisplayDialog = true;

options.errorCode = 1326; // Shows "The username or password is incorrect."

options.callerSavesCredential = true;

options.authenticationProtocol =

 Windows.Security.Credentials.UI.AuthenticationProtocol.negotiate;

options.credentialSaveOption = Windows.Security.Credentials.UI.CredentialSaveOption.selected;

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(options)

 .done(function (results) {

 }

http://msdn.microsoft.com/library/windows/desktop/ms681381(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.authenticationprotocol.aspx

1276

To clarify the relationship between the callerSavesCredential, credentialSaveOption, and the

credentialSaved properties, the following table lists the possibilities:

Enterprise

Auth

capability

callerSavesCredential credentialSaveOption Credential Picker saves

credentials

Apps saves

credentials to

credential locker

No true Selected No Yes

unselected or hidden No No

false Selected No Yes

unselected or hidden No No

Yes true Selected No Yes

unselected or hidden No No

false Selected Yes (credentialSaved will

be true)

Optional

unselected or hidden No No

The first column refers to the Enterprise Authentication capability in the app’s manifest, which

indicates that the app can work with Intranet resources that require domain credentials (and assumes

that the app is also running on the Enterprise Edition of Windows). In such cases the credential picker

has a separate secure location (apart from the credential locker) in which to store credentials, so the

app need not save them itself. Furthermore, if the picker saves a credential and the app invokes the

picker with alwaysDisplayDialog set to false, previousCredential can be empty because the

credential will be loaded automatically. But without a domain-joined machine and this capability, the

app must supply a previousCredential to avoid having the picker appear.

This brings us to the question about how, exactly, to persist a CredentialPickerResults.-

credential and load it back into CredentialPickerOptions.previousCredential at another time.

The credential is an IBuffer, and if you look at the IBuffer documentation you’ll see that it doesn’t

in itself offer any useful methods for this purpose (in fact, you’ll really wonder just what the heck it’s

good for!). Fortunately, other APIs understand buffers. To save a buffer’s content, pass it to the

writeBufferAsync method in either Windows.Storage.FileIO or Windows.Storage.PathIO. To

load it later, use the readBufferAsync methods of the FileIO and PathIO objects.

This is demonstrated in the modified Credential Picker sample in the appendices’ companion

content. In js/scenario3.js we save credential within the completed handler for CredentiaPicker.-

pickAsync:

//results.credential will be null if the user cancels

if (results.credential != null) {

 //Having retrieved a credential, write the opaque buffer to a file

 var option = Windows.Storage.CreationCollisionOption.replaceExisting;

 Windows.Storage.ApplicationData.current.localFolder.createFileAsync("credbuffer.dat",

 option).then(function (file) {

 return Windows.Storage.FileIO.writeBufferAsync(file, results.credential);

 }).done(function () {

 //No results for this operation

 console.log("credbuffer.dat written.");

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.writebufferasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pathio.writebufferasync.aspx

1277

 }, function (e) {

 console.log("Could not create credbuffer.dat file.");

 });

}

I’m using the local appdata folder here; you could also use the roaming folder if you want the

credential to roam (securely) to other devices as if it were saved in the Credential Locker.

To reload, we modify the launchCredPicker function to accept a buffer and use that for

previousCredential if given:

function launchCredPicker(prevCredBuffer) {

 try {

 var options = new Windows.Security.Credentials.UI.CredentialPickerOptions();

 //Set the previous credential if provided

 if (prevCredBuffer != null) {

 options.previousCredential = prevCredBuffer;

 }

We then point the click handler for button1 to a new function that looks for and loads the

credbuffer.dat file and calls launchCredPicker accordingly:

function readPrevCredentialAndLaunch() {

 Windows.Storage.ApplicationData.current.localFolder.getFileAsync("credbuffer.dat")

 .then(function (file) {

 return Windows.Storage.FileIO.readBufferAsync(file);

 }).done(function (buffer) {

 console.log("Read from credbuffer.dat");

 launchCredPicker(buffer);

 }, function (e) {

 console.log("Could not reopen credbuffer.dat; launching default");

 launchCredPicker(null);

 });

}

Other Networking SDK Samples

Sample Description (from the Windows Developer Center)

Connectivity Manager

Sample

Demonstrates how an app can activate and use a secondary packet device protocol (PDP) context

on a mobile broadband device, employing the Windows.Networking.Connectivity.-

ConnectivityManager class.

HomeGroup app sample Demonstrates how to use a HomeGroup to open, search, and share files. This sample uses some of

the HomeGroup options. In particular, it uses Windows.Storage.Pickers.PickerLocationId

enumeration and the Windows.Storage.KnownFolders.homeGroup property to select files

contained in a HomeGroup.

Remote desktop app

container client sample

Demonstrates how to use the Remote Desktop app container client objects in an app.

RemoteApp and desktop

connections workspace API

sample

Demonstrates how to use the WorkspaceBrokerAx object in a Windows Store app.

http://msdn.microsoft.com/library/windows/apps/dn266102
http://msdn.microsoft.com/library/windows/apps/dn266102
http://code.msdn.microsoft.com/windowsapps/HomeGroup-App-sample-d4da5cb2
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR227153
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://msdn.microsoft.com/library/windows/apps/Hh994983
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://msdn.microsoft.com/library/windows/apps/Hh974747

1278

SMS message send,

receive, and SIM

management sample

Demonstrates how to use the Mobile Broadband SMS API (Windows.Devices.Sms). This API can

be used only from mobile broadband device apps and is not available to apps generally.

SMS background task

sample

Demonstrates how to use the Mobile Broadband SMS API (Windows.Devices.Sms) with the

Background Task API (Windows.ApplicationModel.Background) to send and receive SMS text

messages. This API can be used only from mobile broadband device apps and is not available to

apps generally.

USSD message

management sample

Demonstrates network account management using the USSD protocol with GSM-capable mobile

broadband devices. USSD is typically used for account management of a mobile broadband

profile by the Mobile Network Operator (MNO). USSD messages are specific to the MNO and

must be chosen accordingly when used on a live network. (That sample is applicable only to those

building mobile broadband device apps; it draws on the API in Windows.Networking.-

NetworkOperators.)

http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://msdn.microsoft.com/library/windows/apps/BR206567
http://code.msdn.microsoft.com/windowsapps/SMS-background-task-sample-513576cb
http://code.msdn.microsoft.com/windowsapps/SMS-background-task-sample-513576cb
http://msdn.microsoft.com/library/windows/apps/BR206567
http://msdn.microsoft.com/library/windows/apps/BR224847
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://msdn.microsoft.com/library/windows/apps/BR241148
http://msdn.microsoft.com/library/windows/apps/BR241148

1279

Appendix D

Provider-Side Contracts

In this appendix:

 File picker providers

 The cached file updater

 Contact card action providers

 Contact picker providers

 Appointment providers

File Picker Providers

In Chapter 11, “The Story of State, Part 2,” we looked at how the file/folder picker can be used to

reference not only locations on the file system but also content that’s managed by other apps or even

created on-the-fly within other apps. Let’s be clear on this point: the app that’s using the file picker is

doing so to obtain a StorageFile or StorageFolder for some purpose. But this does not mean that

provider apps that can be invoked through the file picker necessary manage their data as files or

folders. Their role is to take whatever kind of data they manage and package it up so that it looks like a

file/folder to the picker.

In the “The File Picker UI” section of Chapter 11, for instance, we saw how the Windows Sound

Recorder app can be used to record and audio track and return it through the file picker. Such a

recording did not exist at the time the target app was invoked; instead, it displayed its UI through

which the user could create a file that was then passed back through the file picker. In this way, the

Sound Recorder app shortcuts the whole process of creating a new recording: it provides that function

exactly when the user is trying to select an audio file. Otherwise the user would have to start the Sound

Recorder app separately, make a recording, store it locally, and switch to the original app to invoke the

file picker, and locate that new file.

The file picker is not limited to audio or other media, of course: it works with any file type,

depending on what the caller indicates it wants. One app might let the user go into an online music

library, purchase and download a track, and then return that file to the file picker. Another app might

perform some kind of database query and return the results as a file, and still others might allow the

user to browse online databases of file-type entities, again hiding the details of downloading and

packaging that data as a file such that the user’s experience of the file picker is seamless across the

local file system, online resources, and apps that just create or acquire data dynamically. In such cases,

however, note that the file picker contracts are designed for relatively quick in-and-out experiences.

For this reason an app should provide only basic editing capabilities in this context (like cropping a

1280

photo or trimming the audio).

As with the Search and Share target contracts, Visual Studio and Blend provide an item template for

file picker providers, specifically the File Open Picker Contract item in a project’s Add > New Item

dialog. This gives you a basic selection structure built around a ListView control, but not much else. For

our purposes we won’t be using this template; we’ll draw on samples instead. Generally speaking, when

servicing the file picker contracts, an app should use the same views and UI as it does when launched

normally, thereby keeping the app experience consistent in both scenarios.

Manifest Declarations
To be a provider for the file picker, an app starts by—what else!—adding the appropriate declaration

to its manifest. In this case there are actually three declarations: File Open Picker, File Save Picker, and

Cached File Updater, as shown below in Visual Studio’s manifest designer. Each of these declarations

can be made once within any given app.

The File Open Picker and File Save Picker declarations are what make a provider app available in the

dialogs invoked through the Windows.Storage.Pickers.FileOpenPicker and FileSavePicker API.

The calling app in both cases is completely unaware that another app might be invoked—all the

interaction is between the picker and the provider app through the contract, with the contract broker

being responsible first for displaying a UI through which to select an object and second for returning a

StorageFile object for that item.

With both the File Open Picker and File Save Picker contracts, the provider app indicates in its

manifest those file types that it can service. This is done through the Add New button in the image

below; the file picker will then make that app available as a choice only when the calling app indicates

a matching file type. The Supports Any File Type option that you see here will make the app always

appear in the list, but this is appropriate only for apps like OneDrive that provide a general storage

location. Apps that work only with specific file types should indicate only those types.

1281

The provider app indicates a Start Page for the open and save provider contracts separately—the

operations are distinct and independent. In both cases, as we’ve seen for other contracts, these are the

pages that the file picker will load when the user selects this particular provider app. As with Share

targets, these pages are typically independent of the main app and will have their own script contexts

and activation handlers, as we’ll see in the next section. (Again, the Executable and Entry Point options

are there for other languages.)

You might be asking: why are the open and save contracts separate? Won’t most apps generally

provide both? Well, not necessarily. If you’re creating a provider app for a web service that is effectively

read-only (like the image results from a search engine), you can serve only the file open case. If the

service supports the creation of new files and updating existing files, such as a photo or document

management service would, then you can also serve the file save case. There might also be scenarios

where the provider would serve only the save case, such as writing to a sharing service. In short,

Windows cannot presume the nature of the data sources that provider apps will work with, so the two

contracts are kept separate.

The next main section in this Appendix covers the Cached File Updater contract, but it’s good to

know how it relates to the others here. This contract allows a provider app to synchronize local and

remote copies of a file, essentially to subscribe to and manage change/access notifications for provided

files. This is primarily of use to apps that represent a file repository where the user will frequently open

and save files, like OneDrive or a database app. It’s essentially a two-way binding service for files when

either local or remote copies can be updated independently. As such, it’s always implemented in

conjunction with the file picker provider contracts.

Tip The Sharing and exchanging data topic has some helpful guidance about when you might choose

to be a provider for the file save picker contract and when being a share target is more appropriate.

Activation of a File Picker Provider

Demonstrations of the file picker provider contracts—for open and save—are found in the File picker

contracts sample, which I’ll refer to as the provider sample for clarity. Declarations for both are included

in the manifest with Supports Any File Type, so the sample will be listed with other apps in all file

pickers:

http://msdn.microsoft.com/library/windows/apps/hh464923.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155

1282

When the provider app is invoked, the Start page listed in the manifest for the appropriate contract

(open or save) is loaded. These are fileOpenPicker.html and fileSavePicker.html, found in the root of the

project. Both of these pages are again loaded independently of the main app and appear as shown in

Figure D-1 and Figure D-2. Note that the title of the app and the color scheme is determined by the

Visual Assets section in the provider app’s manifest. In particular, the text comes from the Tile > Short

Name field and the colors come from the Tile > Foreground Text and Tile > Background Color settings.

Note that the system automatically adds the down chevron (⌄) next to the title (at the top of each

figure) through which the user can select a different picker location or provider app.

FIGURE D-1 The Open UI as displayed by the sample.

1283

FIGURE D-2 The Save UI as displayed by the sample.

When you first run this sample, you won’t see either of these pages. Instead you’ll see a page

through which you can invoke the file open or save pickers and then choose this app as a provider. You

can do this if you like, but I recommend using a different app to invoke the p ickers, just so we’re clear

on which app is playing which role. For this purpose you can use the sample we used in Chapter 11, the

File picker sample (this is the consumer side). You can even use something like the Windows Music app

where the Open File command on its app bar will invoke a picker wherein the provider sample will be

listed.

Whatever your choice, the important parts of the provider sample are its separate pages for

servicing its contracts, which are again fileOpenPicker.html and fileSavePicker.html. In the first case, the

code is contained in js/fileOpenPicker.js where we can see the activated event handler with the

activation kind of fileOpenPicker:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.fileOpenPicker) {

 fileOpenPickerUI = eventObject.detail.fileOpenPickerUI;

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 // Navigate to a scenario page...

 }));

 }

}

Here eventObject.detail is a WebUIFileOpenPickerActivatedEventArgs object, whose

fileOpenPickerUI property (a FileOpenPickerUI object) provides the means to fulfill the provider’s

responsibilities with the contract.

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileopenpickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.fileopenpickerui.aspx

1284

In the second case, the code is in js/fileSavePicker.js where the activation kind is fileSavePicker:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.fileSavePicker) {

 fileSavePickerUI = eventObject.detail.fileSavePickerUI;

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 // Navigate to a scenario page

 }));

 }

}

where eventObject.detail is a WebUIFileSavePickerActivatedEventArgs object. As with the

open contract, the fileSavePickerUI property of this (a FileSavePickerUI object) provides the

means to fulfill the provider’s side of the contract.

In both open and save cases, the contents of the contract’s Start page is displayed within the

letterboxed area between the system-provided top and bottom bands. If that content overflows the

provided space, scrollbars would be provided only within that area—the top and bottom bands always

remain in place. In both cases, WinRT also provides the usual features for activation, such as the

splashScreen and previousExecutionState properties, just as we saw in Chapter 3, “App Anatomy

and Performance Fundamentals,” meaning that you should reload necessary session state and use

extended splash screens as needed.

What’s most interesting, though, are the contract-specific interactions that are represented in the

different scenarios for these pages (as you can see in Figure D-1 and Figure D-2). Let’s look at each.

Note For specific details on designing a file picker experience, see Guidelines for file pickers.

File Open Provider: Local File

The provider for file open works through the FileOpenPickerUI object supplied with the

fileOpenPicker activation kind. Simply said, whatever kind of UI the provider offers to select some file

or data will be wired to the various methods, properties, and events of this object. First, the UI will use

the allowedFileTypes property to filter what it displays for selection—clearly, the provider should not

display items that don’t match what the file picker is being asked to pick! Next, the UI can use the

selectionMode property (a FileSelectionMode value) to determine if the file picker was invoked for

single or multiple selection.

When the user selects an item within the UI, the provider calls the addFile method with the

StorageFile object as appropriate for that item. Clearly, the provider has to somehow create that

StorageFile object. In the sample’s open picker > scenario 1 (js/fileOpenPickerScenario1.js), this is

accomplished with a StorageFolder.-getFileAsync (where the StorageFolder is the package

location).

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifilesavepickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.aspx
http://msdn.microsoft.com/library/windows/apps/hh465182.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.fileselectionmode.aspx

1285

Windows.ApplicationModel.Package.current.installedLocation

 .getFileAsync("images\\squareTile-sdk.png").then(function (fileToAdd) {

 addFileToBasket(localFileId, fileToAdd);

}

where addFileToBasket just calls FileOpenPickerUI.addFile and displays messages for the result.

That result is a value from the AddFileResult enumeration: added (success), alreadyAdded

(redundant operations, so the file is already there), notAllowed (adding is denied due to a mismatched

file type), and unavailable (app is not visible). These really just help you report the result to users in

your UI. Note also that the canAddFile method might be helpful for enabling or disabling add

commands in your UI as well, which will prevent some of these error cases from ever arising in the first

place.

The provider app must also respond to requests to remove a previously added item, as when the

user removes a selection from the “basket” in the multi-select file picker UI. To do this, listen for the

FileOpenPickerUI object’s fileRemoved event, which provides a file ID as an argument. You pass this

ID to containsFile followed by removeFile as in the sample (js/fileOpenPickerScenario1.js):

// Wire up the event in the page's initialization code

fileOpenPickerUI.addEventListener("fileremoved", onFileRemovedFromBasket, false);

function removeFileFromBasket(fileId) {

 if (fileOpenPickerUI.containsFile(fileId)) {

 fileOpenPickerUI.removeFile(fileId);

 }

}

If you need to know when the file picker UI is closing your page (such as the user pressing the Open

or Cancel buttons shown in Figure D-1), listen for the closing event. This gives you a chance to close

any sessions you might have opened with an online service and otherwise perform any necessary

cleanup tasks. In the eventArgs you’ll find an isCanceled property that indicates whether the file

picker is being canceled (true) or being closed due to the Open button (false). The

eventArgs.closingOperation object also contains a getDeferral method and a deadline property

that allows you to carry out async operations as well, similar to what we saw in Chapter 3 for the

suspending event.

A final note is that a file picker provider should respect the

FileOpenPickerUI.settingsIdentifier to relaunch the provider to a previous state (that is, a

previous picker session). If you remember from the other side of this story, an app that’s using the file

picker can use the settingsIdentifier to distinguish different use cases within itself—perhaps to

differentiate certain file types or feature contexts. The identifier can also differ between different apps

that invoke the file picker. By honoring this property, then, a provider app can maintain a case-specific

context each time it’s invoked (basically using settingsIdentifier in its appdata filenames and the

names of settings containers), which is how the built-in file pickers for the file system works.

1286

It’s also possible for the provider app to be suspended while displaying its UI and could possibly be

shut down if the calling app is closed. However, if you manage picker state based on

settingsIdentifier values, you don’t need to save or manage any other session state where your

picker functionality is concerned.

File Open Provider: URI

For the most part, scenario 2 of the open file picker case in the provider sample is just like we’ve seen in

the previous section. The only difference is that it shows how to create a StorageFile from a nonfile

source, such as an image that’s obtained from a remote URI. In this situation we need to obtain a data

stream for the remote URI and convert that stream into a StorageFile. Fortunately, a few WinRT APIs

make this very simple, as shown in js/fileOpenPickerScenario2.js within its onAddFileUri method:

function onAddUriFile() {

 // Respond to the "Add" button being clicked

 var imageSrcInput = document.getElementById("imageSrcInput");

 if (imageSrcInput.value !== "") {

 var uri = new Windows.Foundation.Uri(imageSrcInput.value);

 var thumbnail =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(uri);

 // Retrieve a file from a URI to be added to the picker basket

 Windows.Storage.StorageFile.createStreamedFileFromUriAsync("URI.png", uri,

 thumbnail).then(function (fileToAdd) {

 addFileToBasket(uriFileId, fileToAdd);

 },

 function (error) {

 // ...

 });

 } else {

 // ...

 }

}

Here Windows.Storage.StorageFile.createStreamedFileFromUriAsync (a static method) does

the honors to give us a StorageFile for a URI, and addFileToBasket is again an internal method that

just calls the addFile method of the FileOpenPickerUI object.

If you need to perform authentication or take other special steps to obtain content from a web

service, you’ll generally want to use the Windows.Netwoking.BackgroundTransfer API to acquire the

content (where you can provide credentials), followed by StorageFile.createStreamedFile to serve

that file up through the contract. StorageFile.createStreamedFileFromUriAsync does exactly this

but doesn’t provide for authentication.

File Save Provider: Save a File

Similar to how the file open provider interacts with a FileOpenPickerUI object, a provider app for

saving files works with the specific methods, properties, and events FileSavePickerUI class. Again, the

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx

1287

open and save contracts are separate concerns because the data source for which you might create a

provider app might or might not support save operations independently of open. If you do support

both, you will likely reuse the same UI and would thus use the same Start page and activation path.

Within the FileSavePickerUI class, we first have the allowedFileTypes as provided by the app

that invoked the file save picker UI in the first place. As with open, you’ll use this to filter what you

show in your own UI so that users can clearly see what items for these types a lready exist. You’ll also

typically want to populate a file type drop-down list with these types as well.

For restoring the provider’s save UI for the specific calling app from a previous session, there is again

the settingsIdentifier property.

Referring back to Figure D-2, notice the controls along the bottom of the screen, the ones that are

automatically provided by the file picker UI when the provider app is invoked. When the user changes

the filename field, the provider app can listen for and handle the FileSavePickerUI object’s

filenameChanged event; in your handler you can get the new value from the fileName property. If the

provider app has UI for setting the filename, it cannot write to this property, however. It must instead

call trySetFileName, whose return value from the SetFileNameResult enumeration is either

succeeded, notAllowed (typically a mismatched file type), or unavailable. This is typically used when

the user taps an item in your list, where the expected behavior is to set the filename to the name of

that item.

The most important event, of course, happens when the user finally taps the Save button. This will

fire the FileSavePickerUI object’s targetFileRequested event. You must provide a handler for this

event, in which you must create an empty StorageFile object in which the app that invoked the file

picker UI can save its data. The name of this StorageFile must match the fileName property.

The eventArgs for this event is a TargetFileRequestedEventArgs object. This contains a single

property named request, which is a TargetFileRequest. Its targetFile property is where you place

the StorageFile you create (or null if there’s an error). You must set this property before returning

from the event handler, but of course you might need to perform asynchronous operations to do this

at all. For this purpose, as we’ve seen many times, the request also contains a getDeferral method.

This is used in scenario 1 of the provider sample’s save case (js/fileSavePickerScenario1.js):

function onTargetFileRequested(e) {

 var deferral = e.request.getDeferral();

 // Create a file to provide back to the Picker

 Windows.Storage.ApplicationData.current.localFolder.createFileAsync(

 fileSavePickerUI.fileName).done(function (file) {

 // Assign the resulting file to the targetFile property and complete the deferral

 e.request.targetFile = file;

 deferral.complete();

 }, function () {

 // Set the targetFile property to null and complete the deferral to indicate failure

 e.request.targetFile = null;

 deferral.complete();

 });

http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.setfilenameresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.targetfilerequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.targetfilerequestedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.targetfilerequest.aspx

1288

};

In your own app you will, of course, replace the createFileAsync call in the local folder with

whatever steps are necessary to create a file or data object. Where remote files are concerned, on the

other hand, you’ll need to employ the Cached File Updater contract (see “Cached File Updater” below).

File Save Provider: Failure Case

Scenario 2 of the provider sample’s save UI shows one other aspect of the process: displaying errors in

case there is a real failure to create the necessary StorageFile. Generally speaking, you can use

whatever UI you feel is best and consistent with the app in general, to let the user know what they

need to do. The sample uses a MessageDialog like so (js/fileSavePickerScenario2.js):

function onTargetFileRequestedFail(e) {

 var deferral = e.request.getDeferral();

 var messageDialog = new Windows.UI.Popups.MessageDialog("If the app needs the user to

correct a problem before the app can save the file, the app can use a message like this to

tell the user about the problem and how to correct it.");

 messageDialog.showAsync().done(function () {

 // Set the targetFile property to null and complete the deferral to indicate failure

 // once the user has closed the dialog. This will allow the user to take any

 // necessary corrective action and click the Save button once again.

 e.request.targetFile = null;

 deferral.complete();

 });

};

Cached File Updater

Using the cached file updater contract provides for keeping a local copy of a file in sync with one

managed by a provider app on some remote resource. This contract is specifically meant for apps that

provide access to a storage location where users regularly save, access, and update files. The OneDrive

app in Windows is a good example of this.

Back in Chapter 11, we saw some of the method calls that are made by an app that uses the file

picker: Windows.Storage.CachedFileManager.deferUpdates and completeUpdatesAsync. This

usage is shown in scenarios 4 and 6 of the File picker sample we worked with in that chapter. These are

the calls that a file-consuming app makes if and when it writes to a file that it obtained from a file

picker. It does this because it won’t know (and shouldn’t care) whether the file provider has another

copy in a database, on a web service, etc., that needs to be kept in sync. If the provider needs to handle

synchronization, the consuming app’s calls to these methods will trigger the necessary cached file

updater UI of the provider app, which might or might not be shown, depending on the need. Even if

the consuming app doesn’t call these methods, the provider app will sti ll be notified of changes but

won’t be able to show any UI.

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

1289

There are two directions with which this contract works, depending on whether it’s updating a local

(cached) copy of a file or the remote (source) copy. In the first case, the provider is asked to update the

local copy, typically when the consuming app attempts to access that file (pulling it from the

FutureAccessList or MostRecentlyUsed list of Windows.Storage.AccessCache; it does not

explicitly ask for an update). In the second case, the consuming app has modified the file such that the

provider needs to propagate those changes to its source copy.

From a provider app’s point of view, updates come into play whenever it supplies a file to another

app. This can happen through the file picker contracts, as we’ve seen in the previous section, but also

through file type associations and the share contract. In the latter case a share source app is, in a sense,

a file provider and might make use of the cached file updater contract. In short, if you want your file-

providing app to be able to track and synchronize updates between local and remote copies of a file,

this is the contract to use.

Supporting the contract begins with a manifest declaration as shown below, where the Start page

indicates the page implementing the cached file updater UI. That page will handle the necessary events

to update files and might or might not actually be displayed to the user, as we’ll see later.

The next step for the provider is to indicate when a given StorageFile should be hooked up with

this contract. It does so by calling

Windows.Storage.Provider.CachedFileUpdater.setUpdateInformation on a provided file, as

shown in scenario 3 of the File picker contracts sample, which I’ll again refer to as the provider sample

for simplicity (js/fileOpenPickerScenario3.js):

function onAddFile() {

 // Respond to the "Add" button being clicked

 Windows.Storage.ApplicationData.current.localFolder.createFileAsync("CachedFile.txt",

 Windows.Storage.CreationCollisionOption.replaceExisting).then(function (file) {

 Windows.Storage.FileIO.writeTextAsync(file, "Cached file created...").then(

 function () {

 Windows.Storage.Provider.CachedFileUpdater.setUpdateInformation(

 file, "CachedFile",

 Windows.Storage.Provider.ReadActivationMode.beforeAccess,

 Windows.Storage.Provider.WriteActivationMode.notNeeded,

 Windows.Storage.Provider.CachedFileOptions.requireUpdateOnAccess);

 addFileToBasket(localFileId, file);

 }, onError);

http://msdn.microsoft.com/library/windows/apps/br230566.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdater.setupdateinformation.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155

1290

 }, onError);

};

Note Be careful to not confuse the CachedFileUpdater class, which we’re using here from the

provider side, with the CachedFileManager class, which is used from the consumer side of the

contract.

The setUpdateInformation method takes the following arguments:

 A StorageFile for the data in question.

 A content identifier string that identifies the remote resource to keep in sync.

 A ReadActivationMode indicating whether the calling app can read its local file without

updating it; values are notNeeded and beforeAccess.

 A WriteActivationMode indicating whether the calling app can write to the local file and

whether writing triggers an update; values are notNeeded, readOnly, and afterWrite.

 One or more values from CachedFileOptions (that can be combined with bitwise-OR) that

describes the ways in which the local file can be accessed without triggering an update; values

are none (no update), requireUpdateAccess (update on accessing the local file),

useCachedFileWhenOffline (update on access if the calling app desires, and access is allowed

if there’s no network connection), and denyAccessWhenOnline (triggers an update on access

and requires a network connection).

It’s through this call, in other words, that the provider specifically controls how and when it should

be activated to handle updates when a local file is accessed.

So, together we have two cases where the provider app will be invoked and might be asked to show

its UI: one where the calling app updates the file, and another when the calling app attempts to access

the file but needs an update before reading its contents.

Before going into the technical details, let’s see how these interactions appear to the user. To see

the cached file updater in action using the sample, invoke it by using the file picker from another app.

First, then, run the provider sample to make sure its contracts are registered. Then run the

aforementioned File picker sample. In the latter, scenarios 4, 5, and 6 cause interactions with the

cached file updater contract. Scenarios 4 and 6 write to a file to trigger an update to the remote copy;

scenario 5 accesses a local file that will trigger a local update as part of the process.

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.readactivationmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.writeactivationmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileoptions.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

1291

Updating a Local File: UI
In scenario 5 of the File picker sample (updating a local file), follow the instructions that it gives to tap

the Pick Cached File button and select the File Picker Contracts JS Sample from the location list:

This will launch the provider sample. In that view, select scenario 3 so that you see the UI shown in

Figure D-3. This is the mode of the provider sample that is just a file picker provider,

(js/fileOpenPickerScenario3.js) where it calls setUpdateInformation. This is not the UI for the cached

file updater yet. Tap the Add File to Basket button, and tap the Open button. This will return you to the

first app (the picker sample in the above graphic) where the Output Latest Version button will now be

enabled. Tapping that button will then invoke the provider sample through the cached file updater

contract, as shown in Figure D-4. This is what appears when there’s a need to update the local copy of

the cached file.

FIGURE D-3 The provider sample’s UI for picking a file; the setUpdateInfomation method is called on the provided

file to set up the cached file updater relationship.

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

1292

FIGURE D-4 The provider sample’s UI for the cached file updater contract on a local file.

Take careful note of the description in the sample. While the sample shows this UI by default, a

cached file updater app will not show it unless it’s necessary to resolve conflicts or collect credentials.

Oftentimes no such interaction is necessary and the provider silently updates the local file or indicates

that it’s current. The sample’s UI here choose instead to show both those options as explicit choices

(and be sure to choose one of them because selecting Cancel will throw an exception).

Updating a Remote File: UI
In scenario 6 of the File picker sample (updating a remote file), we can see the interactions that take

place when the consuming app writes changes to its local copy, thereby triggering an update to the

remote copy. Start by tapping the Get Save File button in the UI shown below, and then select the File

Picker Contracts JS Sample again from the location list:

This will invoke the provider sample’s UI of Figure D-5 through the file save picker contract, where

you should select scenario 3 (implemented in html/fileSavePickerScenario3.html and

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

1293

js/fileSavePickerScenaro3.js). If you look in the JavaScript file, you’ll again see a call to

setUpdateInformation that’s called when you enter a file name and tap Save. Doing so also returns

you to the picker sample above where Write To File should now be enabled. Tapping Write To File then

reinvokes the provider sample through the cached file updater contract with the UI shown in Figure D-

6. This UI is intended to demonstrate how such a provider app would accommodate overwriting or

renaming the remote file.

FIGURE D-5 The provider sample’s UI for saving a file; the setUpdateInfomation method is again called on the

provided file to set up the cached file updater relationship.

FIGURE D-6 The provider sample’s UI for the cached file updater contract on a remote file.

1294

Update Events
Let’s see how the cached file updater contract looks in code. As you will by now expect, the provider

app is launched, the Start page (cachedFileUpdater.html in the project root) is loaded, and the

activated handler is called with the activation kind of cachedFileUpdater. This will happen for both

local and remote cases, and as we’ll see here, you use the same activation code for both. Here

eventObject.detail is a WebUICachedFileUpdaterActivatedEventArgs that contains a

cachedFileUpdaterUI property (a CachedFileUpdaterUI) along with the usual roster of kind,

previousExecutionState, and splashScreen. Here’s how it looks in js/cachedFileUpdater.js of the

provider sample:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.cachedFileUpdater) {

 cachedFileUpdaterUI = eventObject.detail.cachedFileUpdaterUI;

 cachedFileUpdaterUI.addEventListener("fileupdaterequested", onFileUpdateRequest);

 cachedFileUpdaterUI.addEventListener("uirequested", onUIRequested);

 switch (cachedFileUpdaterUI.updateTarget) {

 case Windows.Storage.Provider.CachedFileTarget.local:

 // Code omitted: configures sample to show cachedFileUpdaterScenario1

 // if needed.

 break;

 case Windows.Storage.Provider.CachedFileTarget.remote:

 // Code omitted: configures sample to show cachedFileUpdaterScenario2

 // if needed.

 break;

 }

 }

}

When the provider app is invoked to update a local file from the remote source, the cachedFile-

UpdaterUI.updateTarget property will be local, as you can see above. When the app is being asked

to update a remote file with local changes, the target is remote. All the sample does in these cases is

point to either html/cachedFileUpdaterScenario1.html (Figure D-4) or html/cachedFile-

UpdaterScenario2.html (Figure D-6) as the update UI.

The UI is not shown initially. What happens first is that the CachedFileUpdaterUI object fires its

fileUpdateRequested event to attempt a silent update. Here the eventArgs is a

FileUpdateRequestedEventArgs object with a single request property (FileUpdateRequest), an

object that you’ll want to save in a variable that’s accessible from your update UI.

If it’s possible to silently update a local file, follow these steps:

 Because you’ll likely be doing async operations to perform the update, obta in a deferral from

request.getDeferral.

 To do the update, use one of these options:

http://msdn.microsoft.com/library/windows/apps/hh701752.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.fileupdaterequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdaterequest.aspx

1295

 If you already have a StorageFile with the new contents, just call

request.updateLocalFile. This is a synchronous call, in which case you do not need to

obtain a deferral.

 The local file’s StorageFile object will be in request.file. You can open this file and

write whatever contents you need within it. This will typically start an async operation, after

which you return from the event handler.

 To update the contents of a remote file, copy the contents from request.file to the remote

source.

 Depending on the outcome of the update, set request.status to a value from

FileUpdateStatus: complete (the copies are sync’d), incomplete (sync didn’t work but the

local copy is still available), userInputNeeded (the update failed for need of credentials or

conflict resolution), currentlyUnavailable (source can’t be reached, and the local file is

inaccessible), failed (sync cannot happen now or ever, as when the source file has been

deleted), and completeAndRenamed (the source version has been renamed, generally to resolve

conflicts).

 If you asked for a deferral and processed the outcome within completed and error handlers, call

the deferral’s complete method to finalize the update.

Now the provider might know ahead of time that it can’t do a silent update at all—a user might not

be logged into the back-end service (or credentials are needed each time), there might be a conflict to

resolve, and so forth. In these cases the event handler should check the value of

cachedFileUpdaterUI.uiStatus (a UIStatus) and set the request.status property accordingly:

 If the UI status is visible, switch to that UI and return from the event handler. Complete the

deferral when the user has responded through the UI.

 If UI status is hidden, set request.status to userInputNeeded and return. This will trigger the

CachedFileUpdaterUI.onuiRequested event followed by another fileUpdateRequested

event where uiStatus will be visible, in which case you’ll switch to your UI.

 If the UI status is unavailable, set request.status to currentlyUnavailable.

You can see some of this in the sample’s onFileUpdateRequest handler (js/cachedFileUpdater.js); it

really handles only the uiStatus check because it doesn’t attempt silent updates at all (as described in

the comments I’ve added below):

function onFileUpdateRequest(e) {

 fileUpdateRequest = e.request;

 fileUpdateRequestDeferral = fileUpdateRequest.getDeferral();

 // Attempt a silent update using fileUpdateRequest.file silently, or call

 // fileUpdateRequest.updateLocalFile in the local case, setting fileUpdateRequest.status

 // accordingly, then calling fileUpdateRequestDeferral.complete(). Otherwise, if you

 // know that user action will be required, execute the following code.

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdaterequest.updatelocalfile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdatestatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.uistatus.aspx

1296

 switch (cachedFileUpdaterUI.uiStatus) {

 case Windows.Storage.Provider.UIStatus.hidden:

 fileUpdateRequest.status =

 Windows.Storage.Provider.FileUpdateStatus.userInputNeeded;

 fileUpdateRequestDeferral.complete();

 break;

 case Windows.Storage.Provider.UIStatus.visible:

 // Switch to the update UI (configured in the activated event)

 var url = scenarios[0].url;

 WinJS.Navigation.navigate(url, cachedFileUpdaterUI);

 break;

 case Windows.Storage.Provider.UIStatus.unavailable:

 fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.failed;

 fileUpdateRequestDeferral.complete();

 break;

 }

}

Again, if a silent update succeeds, the provider app’s UI never appears to the user. In the case of the

provider sample, it never attempts to do a silent update and so always does the check on uiStatus.

When the app was just launched to service the contract, we’ll end up in the hidden case and return

userInputNeeded, as would happen if you attempted a silent update but returned the same status.

Either way, the CachedFileUpdateUI object will fire its uiRequested event, telling the provider app

that the system is making the UI visible. The app, in fact, can defer initializing its UI until this event

occurs because there’s no need to do so for a silent update.

After this, the fileUpdateRequested event will fire again with uiStatus now set to visible.

Notice how the code above will have called request.getDeferral in this case but has not called its

complete. We save that step for when the UI has done what it needs to do (and, in fact, we save both

the request and the deferral for use from the UI code).

The update UI is responsible for gathering whatever user input is necessary to accomplish the task:

collecting credentials, choosing which copy of a file to keep (the local or remote version), allowing for

renaming a conflicting file (when updating a remote file), and so forth. When updating a local file, it

writes to the StorageFile within request.file or calls request.updateLocalFile; in the remote

case it copies data from the local copy in request.file.

To complete the update, the UI code then sets request.status to complete (or any other

appropriate code if there’s a failure) and calls the deferral’s complete method. This will change the

status of the system-provided buttons along the bottom of the screen (see Figure D-4 and Figure D-6),

enabling the OK button and disabling Cancel. In the provider sample, both buttons just execute these

two lines for this purpose:

fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.complete;

fileUpdateRequestDeferral.complete();

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.uirequested.aspx

1297

All in all, the interactions between the system and the app for the cached file updater contract are

simple and straightforward in themselves: handle the events, copy data around as needed, and update

the request status. The real work with this contract is first deciding when to call

setUpdateInformation, providing the UI to support updates of local and remote files under the

necessary circumstances, and interacting with your backend storage system.

Contact Cards Action Providers

In Chapter 15, “Contracts,” we saw that contact cards can appear with up to three actions, depending

on the data contained in the contact. To repeat a few images from that chapter below, we see actions

such as Email, Call, Send Message, and Map:

Furthermore, when a contact is found via the Search charm, or opened in the People app (by

tapping More Details in the lower right of the contact card, not shown in the images above), these

actions are available along with other less common ones, again depending on the information that’s

available for that contact. To round out the list, the full set of supported actions are Call, Map, Send

Message, Post To, and Video Call. (A View Profile might also appear in the People app specifically for

Facebook contacts as well.)

1298

The question we want to answer here is how to create an app that can handle one or more of these

actions.

The answer has two parts. First, some actions work through URI associations. The two primary ones

are Email that uses mailto: and Call, which uses tel: for simple phone numbers.144 These actions will

just launch a URI with either scheme and let Windows take care of the rest. Providers that handle email

and phone-number calling thus register themselves to handle these URI schemes, as generally

described in Chapter 15 in the section “Launching Apps with URI Scheme Associations.” For more

details on the URIs schemes themselves, refer to the URI Scheme page on Wikipedia, where you’ll find

links to all the specifications.

For all other actions, and as an optional way to handle Call, there are special entries in the app

manifest and special cases of app activation. You can find an example of this in the Handling Contact

Actions sample as well as in the Quickstart: Handling contact actions topic in the documentation.

In these cases you’ll need to edit your manifest manually as XML (right-click package.appxmanifest

in Visual Studio, and select View Code). Within the Application element, make sure there’s an

Extensions section, within which you specify the windows.contact extension with one or more

actions. Here’s the XML from the SDK sample (noting that the m2 namespace is for the Windows 8.1

manifest additions):

<Application Id="App" StartPage="default.html">

 <!-- Other entries omitted -->

 <Extensions>

 <m2:Extension Category="windows.contact">

 <m2:Contact>

 <m2:ContactLaunchActions>

 <m2:LaunchAction Verb="call">

 <m2:ServiceId>telephone</m2:ServiceId>

 </m2:LaunchAction>

 <m2:LaunchAction Verb="message">

 <m2:ServiceId>skype.com</m2:ServiceId>

 </m2:LaunchAction>

 <m2:LaunchAction Verb="map"/>

 </m2:ContactLaunchActions>

 </m2:Contact>

 </m2:Extension>

 </Extensions>

</Application>

Each supported action is described by an m2:LaunchAction element, whose Verb attribute

identifies the action and must be a value from the Windows.ApplicationModel.Contacts.Contact-

LaunchActionVerbs class: call, message, map, post, and videoCall. The m2:ServiceId element then

describes the service that the app uses to complete the action (not needed for the map verb).

144 Two other URI schemes are for Facebook-specific messaging and View Profile actions: message-facebook-com: and

viewprofile-facebook-com:. You’d use these only if you’re making a dedicated Facebook app.

http://en.wikipedia.org/wiki/URI_scheme
http://code.msdn.microsoft.com/windowsapps/Handling-Contact-Actions-359380e2
http://code.msdn.microsoft.com/windowsapps/Handling-Contact-Actions-359380e2
http://msdn.microsoft.com/library/windows/apps/dn518338.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactlaunchactionverbs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactlaunchactionverbs.aspx

1299

Once an app with such manifest entries is installed, it shows up as a target when the user selects an

action. For example, run the Handling Contact Actions sample from Visual Studio and select a Call

action from a contact card or the Search charm. If you haven’t yet chosen a default handler for calls,

you’ll see something like this:

Tip Users control these associations through PC Settings > Search and Apps > Defaults > Choose

Default Apps By Protocol.

Assuming that your app—and we’re using the sample here—is the default provider for that action, it

will be launched with ActivationKind.contact, as shown here in the sample’s activated handler

alongside the protocol and launch activations for reference (js/default.js):

if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.contact) {

 arg = eventObject.detail;

 if (arg.verb === Windows.ApplicationModel.Contacts.ContactLaunchActionVerbs.call) {

 // Handle calls

 } else if (arg.verb === Windows.ApplicationModel.Contacts.ContactLaunchActionVerbs.message) {

 // Handle messaging

 } else if (arg.verb === Windows.ApplicationModel.Contacts.ContactLaunchActionVerbs.map) {

 // Handle mapping

 }

} else if (eventObject.detail.kind ===

Windows.ApplicationModel.Activation.ActivationKind.protocol) {

 // Protocol activation for URI associations

} else if (eventObject.detail.kind ===

Windows.ApplicationModel.Activation.ActivationKind.launch) {

 // Normal launch

}

In a contact activation, eventObject.detail.verb will contain one of the

ContactLaunchActionVerb values, so you’ll then take appropriate action for each one individually.

Here, eventObject.detail will be one of the following object types, depending on the verb. Note

that each object type includes the standard properties of kind, previousExecutionState, and

splashScreen, which I won’t show individually.

1300

Verb Event object type Properties
call ContactCallActivatedEventArgs contact, serviceId, serviceUserId, verb

map ContactMapActivatedEventArgs address, contact, verb

message ContactMessageActivatedEventArgs contact, serviceId, serviceUserId, verb

post ContactPostActivatedEventArgs contact, serviceId, serviceUserId, verb

videoCall ContactVideoCallActivatedEventArgs contact, serviceId, serviceUserId, verb

With each activation verb and a Contact object in the contact field, you have all the information

you need in hand including display names, thumbnails, and so forth. In the case of the map verb, the

other field of interest is ContactAddress, giving you what you need to do the mapping. In all other

cases, the serviceId is whatever string is specified in the manifest entry for this action, and

serviceUserId is the appropriate data from the contact for that service. For example, when

serviceId is telephone, the serviceUserId will be the telephone number. For a video call it could be

the user’s Skype ID, and for messaging it would be the appropriate user ID for that service. In short,

these two fields supply what you need to complete the basic action, and you build your UI with the

other details in contact.

Contact Picker Providers

On the provider side of the Contact Picker, which is demonstrated in the Contact Picker app sample

that we worked with in Chapter 15, we see the same pattern as for file picker providers. First, a provider

app declares the Contact Picker contract in its manifest, indicating the Start page to load within the

context of the picker. In the sample, the Start page is contactPicker.html that in turn loads

html/contactPickerScenario.html (with their associated JavaScript files):

As with the file picker, having a separate Start page means having a separate activated handler,

and in this case it looks for the activation kind of contactPicker (js/contactPicker.js):

function activated(e) {

 if (e.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.contactPicker) {

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactcallactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactmapactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactmessageactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactpostactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactvideocallactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactaddress.aspx
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

1301

 contactPickerUI = e.detail.contactPickerUI;

 e.setPromise(WinJS.UI.processAll().then(function () {

 // ...

 }));

 }

}

The e.detail here is a ContactPickerActivatedEventArgs (these names are long, but at least

they’re predictable!). As with all activations, it contains kind, previousExecutionState, and

splashScreen properties for the usual purposes. Its contactPickerUI property, a ContactPickerUI,

contains the information specific to the picker contract:

 The selectionMode and desiredFields properties as supplied by the calling app.

 Three methods—addContact, removeContact, and containsContact—for managing what’s

returned to the calling app. These methods correspond to the actions of a typical selection UI.

 One event, contactsRemoved, which informs the provider when the user removes an item from

the basket along the bottom of the screen. (Refer to Figure 15-15 in Chapter 15.)

Within a provider, each contact is represented by a Contact object. A provider will create an object

for each contact it supplies. In the sample (js/contactPickerScenario.js), there’s an array called

sampleContacts that simulates what would more typically come from a database. That array just

contains JSON records like this:

{

 displayName: "David Jaffe",

 firstName: "David",

 lastName: "Jaffe",

 personalEmail: "david@contoso.com",

 workEmail: "david@cpandl.com",

 workPhone: "",

 homePhone: "248-555-0150",

 mobilePhone: "",

 address: {

 full: "",

 street: "",

 city: "",

 state: "",

 zipCode: ""

 },

 id: "761cb6fb-0270-451e-8725-bb575eeb24d5"

},

Each record is shown as a check box in the sample’s UI (generated in the createContactUI

function), but your own provider app will likely use a ListView for this purpose. The sample is just trying

to keep things simple so that you can see what’s happening with the contract itself.

When a contact is selected, the sample’s addContactToBasket function is called. This is the point at

which we create the actual Contact object and call ContactPickerUI.addContact. The process here

for each field follows a chain of other function calls, so let’s see how it works for the single homeEmail

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactpickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.provider.contactpickerui.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contact.aspx

1302

field in the source record, starting with addContactToBasket (again in js/contactPickerScenario.js). The

rest of the field values are handled pretty much the same way:

function addContactToBasket(sampleContact) {

 var contact = new Windows.ApplicationModel.Contacts.Contact();

 contact.firstName = sampleContact.firstName;

 contact.lastName = sampleContact.lastName;

 contact.id = sampleContact.id;

 if (sampleContact.personalEmail) {

 var personalEmail = new Windows.ApplicationModel.Contacts.ContactEmail();

 personalEmail.address = sampleContact.personalEmail;

 personalEmail.kind = Windows.ApplicationModel.Contacts.ContactEmailKind.personal;

 contact.emails.append(personalEmail);

 }

 // Add other fields...

 // Add the contact to the basket

 switch (contactPickerUI.addContact(sampleContact.id, contact)) {

 // Show various messages based on the result, which is of type

 // Windows.ApplicationModel.Contacts.Provider.AddContactResult

 }

}

Now, when an item is unselected in the list, it needs to be removed from the basket:

function removeContactFromBasket(sampleContact) {

 // Programmatically remove the contact from the basket

 if (contactPickerUI.containsContact(sampleContact.id)) {

 contactPickerUI.removeContact(sampleContact.id);

 }

}

Similarly, when the user removes an item from the basket, the contact provider needs to update its

selection UI by handling the contactremoved event:

contactPickerUI.addEventListener("contactremoved", onContactRemoved, false);

function onContactRemoved(e) {

 // Add any code to be called when a contact is removed from the basket by the user

 var contactElement = document.getElementById(e.id);

 var sampleContact = sampleContacts[contactElement.value];

 contactElement.checked = false;

}

You’ll notice that we haven’t said anything about closing the UI, and in fact the ContactPickerUI

object does not have an event for this. Simply said, when the user selects the commit button (with

whatever text the caller provided), it gets back whatever the provider has added to the basket. If the

user taps the cancel button, the operation returns a null contact. In both cases, the provider app will

be suspended and, if it wasn’t running prior to being activated for the contact, closed automatically.

1303

Do note that as with file picker providers, a contact provider should save its session state when

suspended and restore that state when relaunched with previousExecutionState==terminated.

Although not demonstrated in the sample, a real provider app should save its current selections and

viewing position within its list, along with whatever else, to session state and restore that in its

activated handler when necessary.

Appointment Providers

An appointment provider app registers itself to handle the four distinct appointment actions apropos

to the Appointments API discussed in Chapter 15. Those actions are adding an appointment, removing

an appoint-ment, updating (replacing) an appointment, and showing a time frame.

To demonstrate at least the structure of a provider app, I’ve included the AppointmentsProvider

example in the companion content for the appendices. This example does not maintain any kind of

calendar—it only shows how to handle the activations for the different verbs and the data that’s passed

with each one.

To register itself, the provider app must declare appropriate extensions in its manifest XML. As with

contact actions described earlier, the Visual Studio manifest editor does not presently have a UI for

these entries, so you’ll need to right-click package.appxmanifest in Visual Studio and select View Code

to edit the XML directly. Then within Application > Extensions, add an Extension for the

windows.appointmentProvider category:

<Application>

 <Extensions>

 <m2:Extension Category="windows.appointmentsProvider" StartPage="default.html">

 <m2:AppointmentsProvider>

 <m2:AppointmentsProviderLaunchActions>

 <m2:LaunchAction Verb="addAppointment" StartPage="html/manageAppointment.html"/>

 <m2:LaunchAction Verb="removeAppointment" StartPage=" html/manageAppointment.html"/>

 <m2:LaunchAction Verb="replaceAppointment" StartPage=" html/manageAppointment.html"/>

 <m2:LaunchAction Verb="showTimeFrame" />

 </m2:AppointmentsProviderLaunchActions>

 </m2:AppointmentsProvider>

 </m2:Extension>

 </Extensions>

</Application>

Each action, as you can see, is represented by a LaunchAction entry that maps a verb to a particular

page in the app that handles that kind of activation.

Note An appointments provider must implement all four verbs because users set a default calendar

app for all verb together. If you don’t handle one of the verbs, you’ll break apps that attempt to use

the appointments API.

If a LaunchAction doesn’t specify its own StartPage attribute, the activation will use the

1304

StartPage specified with the Extension element. In the declarations above, we use

html/manageAppointment.html for add, remove, and replace cases, whereas the showTimeFrame verb

will go to default.html.

I’ve chosen to show it this way because if you refer back to Chapter 15, the APIs to add, remove, and

replace appointments display the provider’s UI in a flyout within the calling app, and so it makes sense

to have a dedicated HTML page for that purpose (or you can use distinct pages if you like). The call

that triggers the showTimeFrame verb, on the other hand, launches the provider app in its own view, so

it makes some sense to use the same view as the app would if it’s launched standalone and then to

navigate to the specific time frame.

The verbs themselves, by the way, come from the AppointmentsProviderLaunchActionVerbs, which

is found in the Windows.ApplicationModel namespace, down under

Appointments.AppointmentProvider, which, put altogether in code, forms about the longest fully-

qualified name I’ve encountered in all of WinRT! Its values are exactly those you see in the manifest

above.

Installing an app with these entries makes it available to handle calendar actions, and the act of

installation will cause a prompt to appear the next time the user performs an action that invokes the

default calendar. This way your users will have the opportunity to select your app that they just

installed and use it in favor of the built-in Calendar. The user can also change the default in PC Settings

> Search and Apps > Defaults > Calendar:

When the provider app is launched to handle an appointment action, Windows will load the

StartPage specified for that verb and call the activated handler in that page. The activation kind is

set to appointmentsProvider, and the appropriate verb in contained in eventObject.detail.verb.

In the example’s manageAppointments page, then, we have this basic structure

(html/manageAppointments.js):

var app = WinJS.Application;

var activation = Windows.ApplicationModel.Activation;

var verbs =

Windows.ApplicationModel.Appointments.AppointmentsProvider.AppointmentsProviderLaunchActionVerbs

;

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.appointments.appointmentsprovider.appointmentsproviderlaunchactionverbs.aspx

1305

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.appointmentsProvider) {

 switch (args.detail.verb) {

 case verbs.addAppointment:

 break;

 case verbs.removeAppointment:

 break;

 case verbs.replaceAppointment:

 break;

 }

 args.setPromise(WinJS.UI.processAll());

 }

};

app.start();

I told you the fully-qualified name of the verbs class was long! Anyway, notice that because this

page is being launched by itself, we have the same structure that we have in default.js, including a call

to app.start() at the bottom. And speaking of default.js, here’s how we differentiate the

showTimeFrame launch case from normal startup (js/default.js):

var verbs =

Windows.ApplicationModel.Appointments.AppointmentsProvider.AppointmentsProviderLaunchActionVerbs

;

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.appointmentsProvider) {

 if (args.detail.verb == verbs.showTimeFrame) {

 // Launched to show appointments time frame

 }

 args.setPromise(WinJS.UI.processAll());

 }

 if (args.detail.kind === activation.ActivationKind.launch) {

 // Normal launch

 args.setPromise(WinJS.UI.processAll());

 }

};

The type of object in eventObject.detail is unique in each case, as described in the following

table. I can’t stand typing out the really long types directly, so I’m going to rely on your inherent sense

of wildcards with which you can substitute the type noted into

AppointmentsProvider*ActivatedEventArgs. Each of these objects contains the usual kind,

previousExecutionState, and splashScreen properties, which I won’t list. The other properties are

then typically verb and an operation-specific object, except with showTimeFrame:

1306

Verb Event object type Properties (in eventObject.detail)

addAppointment AddAppointment verb, addAppointmentOperation (an AddAppointmentOperation)

removeAppointment RemoveAppointment verb, removeAppointmentOperation (a RemoveAppointmentOperation)

replaceAppointment ReplaceAppointment verb, replaceAppointmentOperation (a ReplaceAppointmentOperation)

showTimeFrame ShowTimeFrame verb, timeToShow (the starting Date), duration (period to short from the

starting date in milliseconds)

With showTimeFrame, the duration and timeToShow values are the same ones the client passed to

the AppointmentsManager.showTimeFrameAsync method, so you can just use these to configure your

calendar view. The example, for its part, just shows these values in its output. Enough said!

The other three verbs each receive an operation object, whose members are described in the

following table. Note that there are a number of common members across all three, and then a few

unique members for each:

Common Member Type Description
dismissUI method Closes the flyout UI in the client. The provider typically uses this to dismiss the UI

while it continues to complete the operation in the background. The provider

has 15 seconds from the time it calls dismissUI to call reportCompleted or

reportError. Calling reportCanceled will automatically dismiss the UI.

reportCanceled method Informs the client that the user canceled the operation through the flyout UI.

reportCompleted method Informs the client that the operation was carried out. In add and remove cases,

this is called with an app-defined appointmentId for the new entry. In the replace

operation object, this method takes no arguments.

reportError method Informs the client that an error occurred and the operation failed. This method

takes a string that describes the error.

sourcePackageFamilyName property The package family name of the client app.

Add/Replace operations

appointmentInformation property The Appointment object containing details for the new or replacement entry.

Remove/Replace operations

appointmentId property The id of the appointment to remove or replace, as was returned by the

reportCompleted method via add and replace verbs.

instanceStartDate property A Date indicating the specific appointment to remove or replace. This is included

because the appointmentId could represent a recurring appointment but the

client is asking to manage a specific instance in that series.

With all this it’s fairly obvious that you handle each verb with an appropriate bit of UI, displaying the

relevant change to the calendar with the provided Appointment object and perhaps including a button

to save the changes. The AppointmentsProvider example demonstrates the basics, again not showing a

calendar but at least displaying the information it receives. Refer to the code in

html/manageAppointment.js for details.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.appointmentsprovideraddappointmentactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentsprovider.addappointmentoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.appointmentsproviderremoveappointmentactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentsprovider.removeappointmentoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.appointmentsproviderreplaceappointmentactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointmentsprovider.replaceappointmentoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.appointmentsprovidershowtimeframeactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.appointments.appointment.aspx

1307

What’s interesting about activating the provider app within a flyout is that you’ll be working with a

smaller amount of screen real-estate than you ever encounter in normal views: 320x400 pixels.

Windows also provides a header with your app’s Display Name (from the Application tab in the

manifest) and square 30x30 logo (from Visual Assets), using The Tile > Background Color (from Visual

Assets) as the background.

When the provider is first launched, the flyout (below left) will show this header along with a scaled-

down splash screen image against your splash screen background color (which in this example is the

same as the tile color). And because of the downscaling of your splash screen image, make sure that

your image looks good at about 50% of its normal resolution. If your provider app gets stuck on this

splash screen, it means that Windows could not find the StartPage for that verb. Double-check that

your manifest is pointing to the right HTML page. Windows will eventually time out and show the error

below right. The same error will appear if your app crashes while handl ing the verb.

To debug your provider, run the app in the Visual Studio debugger and let it go through its normal

startup path. Later activations through appointments verbs will hit any breakpoints you set in those

code paths, including any activations that hit default.html and call your activated handler there again.

The caveat here is that if you’re debugging on the local machine, the flyout in the client will be

dismissed as soon as you switch focus to the debugger. It works better, then, to debug in the simulator

or on a remote machine where focus won’t be affected like this.

Anyway, if all goes well, you’ll see the UI you’ve defined in your verb-specific pages, such as the

image below from the example app. Of course, I wholly expect you to design a much better UI than

this!

1308

1309

About the Author

Kraig Brockschmidt has worked with Microsoft since 1988,

focusing primarily on helping developers through writing,

education, public speaking, and direct engagement. Kraig is

currently a Senior Program Manager in the Windows Ecosystem

team working directly with the developer community as well as

key partners on building apps for Windows. Through work like

Programming Windows Store Apps in HTML, CSS, and JavaScript,

he brings the knowledge gained through that direct experience to

the worldwide developer audience. His other books include Inside

OLE (two editions), Mystic Microsoft, The Harmonium Handbook,

and Finding Focus. His website is www.kraigbrockschmidt.com.

http://www.kraigbrockschmidt.com/

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Cover
	Copyright page
	Table of Contents
	Introduction
	Who This Book Is For
	What You'll Need (Can You Say “Samples”?)
	A Formatting Note
	Acknowledgements
	Free Ebooks from Microsoft Press
	The “Microsoft Press Guided Tours” App
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: The Life Story of a Windows Store App: Characteristics of the Windows Platform
	Leaving Home: Onboarding to the Windows Store
	Discovery, Acquisition, and Installation
	Playing in Your Own Room: The App Container
	Different Views of Life: Views and Resolution Scaling
	Those Capabilities Again: Getting to Data and Devices
	Taking a Break, Getting Some Rest: Process Lifecycle Management
	Remembering Yourself: App State and Roaming
	Coming Back Home: Updates and New Opportunities
	And, Oh Yes, Then There’s Design
	Feature Roadmap and Cross-Reference

	Chapter 2: Quickstart
	A Really Quick Quickstart: The Blank App Template
	Blank App Project Structure

	QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio
	Design Wireframes
	Create the Markup
	Styling in Blend
	Adding the Code
	Creating a Map with the Current Location
	Oh Wait, the Manifest!
	Capturing a Photo from the Camera
	Sharing the Fun!

	Extra Credit: Improving the App
	Receiving Messages from the iframe
	Improving the Placeholder Image with a Canvas Element
	Handling Variable Image Sizes
	Moving the Captured Image to AppData (or the Pictures Library)
	Using a Thumbnail Instead of the Full Image

	The Other Templates: Projects and Items
	Navigation App Template
	Grid App Template
	Hub App Template
	Split Template
	Item Templates

	What We’ve Just Learned

	Chapter 3: App Anatomy and Performance Fundamentals
	App Activation
	Branding Your App 101: The Splash Screen and Other Visuals
	Activation Event Sequence
	Activation Code Paths
	WinJS.Application Events
	Activation Deferrals and setPromise

	Optimizing Startup Time

	WinRT Events and removeEventListener
	App Lifecycle Transition Events and Session State
	Suspend, Resume, and Terminate
	Suspending Deferrals and Deadlines

	Basic Session State in Here My Am!

	Page Controls and Navigation
	WinJS Tools for Pages and Page Navigation
	The Navigation App Template, PageControl Structure, and PageControlNavigator
	The Navigation Process and Navigation Styles
	Optimizing Page Switching: Show-and-Hide
	Page-Specific Styling

	Async Operations: Be True to Your Promises
	Using Promises
	Joining Parallel Promises
	Sequential Promises: Nesting and Chaining
	Error Handling in Promise Chains: then vs. done

	Managing the UI Thread with the WinJS Scheduler
	Scheduler Priorities
	Scheduling and Managing Tasks
	Setting Priority in Promise Chains
	Long-Running Tasks

	Debugging and Profiling
	Debug Output and Logging
	Error Reports and the Event Viewer
	Async Debugging
	Performance and Memory Analysis
	The Windows App Certification Toolkit

	What We’ve Just Learned

	Chapter 4: Web Content and Services
	Network Information and Connectivity
	Network Types in the Manifest
	Network Information (the Network Object Roster)
	The ConnectionProfile Object
	Connectivity Events
	Cost Awareness
	Running Offline

	Hosting Content: the WebView and iframe Elements
	Local and Web Contexts (and iframe Elements)
	Dynamic Content
	App Content URIs
	The <x-ms-webview> Element
	Webview Navigation Events
	Calling Functions and Receiving Events from Webview Content
	Capturing Webview Content

	HTTP Requests
	Using WinJS.xhr
	Using Windows.Web.Http.HttpClient
	Suspend and Resume with Online Content
	Prefetching Content

	Background Transfer
	Basic Downloads
	Requesting an Unconstrained Download

	Basic Uploads
	Completion and Error Notifications
	Providing Headers and Credentials
	Setting Cost Policy
	Grouping Transfers
	Suspend, Resume, and Restart with Background Transfers

	Authentication, the Microsoft Account, and the User Profile
	The Credential Locker
	The Web Authentication Broker
	Single Sign-On
	Using the Microsoft Account
	The Live Connect User Experience
	Live SDK Library Basics

	The User Profile (and the Lock Screen Image)

	What We’ve Just Learned

	Chapter 5: Controls and Control Styling
	The Control Model for HTML, CSS, and JavaScript
	HTML Controls
	Extensions to HTML Elements

	WinJS Controls
	Syntax for data-win-options
	WinJS Control Instantiation
	Strict Processing and processAll Functions
	Example: WinJS.UI.HtmlControl
	Example: WinJS.UI.Rating (and Other Simple Controls)
	Example: WinJS.UI.Tooltip
	Example: WinJS.UI.ItemContainer

	Working with Controls in Blend
	Control Styling
	Styling Gallery: HTML Controls
	Styling Gallery: WinJS Controls
	Some Tips and Tricks

	Custom Controls
	Implementing the Dispose Pattern
	Custom Control Examples
	Custom Controls in Blend

	What We’ve Just Learned

	Chapter 6: Data Binding, Templates, and Collections
	Data Binding
	Data Binding Basics
	Data Binding in WinJS
	One-Time Binding
	One-Way Binding
	Implementing Two-Way Binding

	Under the Covers: Binding mixins
	Programmatic Binding and WinJS.Binding.bind
	Binding Initializers

	Binding Templates
	Template Options, Properties, and Compilation

	Collection Data Types
	Windows.Foundation.Collection Types
	Iterators
	Vectors and Vector Views
	Maps and Property Sets

	WinJS Binding Lists
	List-Array Relationships
	List Projections

	What We’ve Just Learned

	Chapter 7: Collection Controls
	Collection Control Basics
	Quickstart #1: The WinJS Repeater Control with HTML controls
	Quickstart #2: The FlipView Control Sample
	Quickstart #3: The ListView Essentials Sample
	Quickstart #4: The ListView Grouping Sample
	ListView in the Grid App Project Template

	The Semantic Zoom Control
	Repeater Features and Styling
	How Templates Work with Collection Controls
	Referring to Templates
	Template Functions (Part 1): The Basics
	Creating Templates from Data Sources in Blend

	FlipView Features and Styling
	Collection Control Data Sources
	The Structure of Data Sources (Interfaces Aplenty!)
	A FlipView Using the Pictures Library
	Custom Data Sources and WinJS.UI.VirtualizedDataSource

	ListView Features and Styling
	When Is ListView the Right Choice?
	Options, Selections, and Item Methods
	Styling
	Loading State Transitions
	Drag and Drop
	Layouts

	Template Functions (Part 2): Optimizing Item Rendering
	What We’ve Just Learned

	Chapter 8: Layout and Views
	Principles of Page Layout
	Sizing, Scaling, and Views: The Many Faces of Your App
	Variable View Sizing and Orientations
	Handling Size Changes
	Adaptive and Fixed Layouts
	Handling Orientations

	Screen Resolution, Pixel Density, and Scaling
	Graphics That Scale Well

	Multiple Views

	Pannable Sections and Styles
	Laying Out the Hub
	Laying Out the Sections
	Panning Styles and Railing
	Panning Snap Points and Limits
	Zooming Snap Points and Limits

	The Hub Control and Hub App Template
	Hub Control Styling

	Using the CSS Grid
	Overflowing a Grid Cell
	Centering Content Vertically
	Scaling Font Size

	Item Layout
	CSS 2D and 3D Transforms
	Flexbox
	Nested and Inline Grids
	Fonts and Text Overflow
	Multicolumn Elements and Regions

	What We’ve Just Learned

	Chapter 9: Commanding UI
	Where to Place Commands
	The App Bar and Nav Bar
	App Bar Basics and Standard Commands
	Command Events
	App Bar Events and Methods
	Showing, Hiding, Enabling, and Updating Commands

	App Bar Styling
	Custom Icons

	Command Menus
	Custom App Bars
	Nav Bar Features
	Nav Bar Styling

	Flyouts and Menus
	WinJS.UI.Flyout Properties, Methods, and Events
	Flyout Examples
	Menus and Menu Commands
	Context Menus

	Message Dialogs
	Improving Error Handling in Here My Am!
	What We’ve Just Learned

	Chapter 10: The Story of State, Part 1: App Data and Settings
	The Story of State
	App Data Locations

	App Data APIs (WinRT and WinJS)
	Settings Containers
	State Versioning

	Folders, Files, and Streams
	FileIO, PathIO, and WinJS Helpers (plus FileReader)
	Encryption and Compression
	Q&A on Files, Streams, Buffers, and Blobs

	Using App Data APIs for State Management
	Transient Session State
	Local and Temporary State
	IndexedDB, SQLite, and Other Database Options
	Roaming State

	Settings Pane and UI
	Design Guidelines for Settings
	Populating Commands
	Implementing Commands: Links and Settings Flyouts
	Programmatically Invoking Settings Flyouts

	Here My Am! Update
	What We’ve Just Learned

	Chapter 11: The Story of State, Part 2: User Data, Files, and OneDrive
	The Big Picture of User Data
	Using the File Picker and Access Cache
	The File Picker UI
	The File Picker API
	Access Cache

	StorageFile Properties and Metadata
	Availability
	Thumbnails
	File Properties
	Media-Specific Properties

	Folders and Folder Queries
	KnownFolders and the StorageLibrary Object
	Removable Storage
	Simple Enumeration and Common Queries
	Custom Queries
	Metadata Prefetching with Queries

	Creating Gallery Experiences
	File Activation and Association
	What We’ve Just Learned

	Chapter 12: Input and Sensors
	Touch, Mouse, and Stylus Input
	The Touch Language and Mouse/Keyboard Equivalents
	Edge Gestures
	CSS Styles That Affect Input

	What Input Capabilities Are Present?
	Unified Pointer Events
	Pointer Capture

	Gesture Events
	Multipoint Gestures
	The Input Instantiable Gesture Sample

	The Gesture Recognizer

	Keyboard Input and the Soft Keyboard
	Soft Keyboard Appearance and Configuration
	Adjusting Layout for the Soft Keyboard
	Standard Keystrokes

	Inking
	Geolocation
	Geofencing

	Sensors
	What We’ve Just Learned

	Chapter 13: Media
	Creating Media Elements
	Graphics Elements: Img, Svg, and Canvas (and a Little CSS)
	Additional Characteristics of Graphics Elements
	Some Tips and Tricks
	Img Elements
	Svg Elements
	Canvas Elements

	Rendering PDFs

	Video Playback and Deferred Loading
	Disabling Screen Savers and the Lock Screen During Playback
	Video Element Extension APIs
	Applying a Video Effect
	Browsing Media Servers

	Audio Playback and Mixing
	Audio Element Extension APIs
	Playback Manager and Background Audio
	The Media Transport Control UI
	Playing Sequential Audio

	Playlists
	Text to Speech
	Loading and Manipulating Media
	Image Manipulation and Encoding
	Transcoding and Custom Image Formats

	Manipulating Audio and Video
	Transcoding

	Handling Custom Audio and Video Formats
	Custom Decoders/Encoders and Scheme Handlers
	Media Stream Sources

	Media Capture
	Flexible Capture with the MediaCapture Object
	Selecting a Media Capture Device

	Streaming Media and Play To
	Streaming from a Server and Digital Rights Management
	Streaming from App to Network
	Play To

	What We Have Learned

	Chapter 14: Purposeful Animations
	Systemwide Enabling and Disabling of Animations
	The WinJS Animations Library
	Animations in Action

	CSS Animations and Transitions
	Designing Animations in Blend for Visual Studio
	The HTML Independent Animations Sample

	Rolling Your Own: Tips and Tricks
	What We’ve Just Learned

	Chapter 15: Contracts
	Share
	Share Source Apps
	Populating Metadata
	Populating Data Formats
	Custom Data Formats: schema.org
	Deferrals and Delayed Rendering

	Share Target Apps
	Long-Running Operations
	Quicklinks

	The Clipboard

	Launching Apps with URI Scheme Associations
	Search
	The Search Charm UI
	The WinJS.UI.SearchBox Control
	Providing Query Suggestions
	Providing Result Suggestions
	SearchBox Styling
	Indexing and Searching Content
	Using Indexed AppData Folders
	Using the ContentIndexer API

	The Search Contract

	Contacts
	Contact Cards
	Using the Contact Picker

	Appointments
	What We’ve Just Learned

	Chapter 16: Alive with Activity: Tiles, Notifications, the Lock Screen, and Background Tasks
	Alive with Activity: A Visual Tour
	The Four Sources of Updates and Notifications
	Tiles, Secondary Tiles, and Badges
	Secondary Tiles
	Creating Secondary Tiles
	Supplying Multiple Tile Graphics
	App Activation from a Secondary Tile
	Managing Secondary Tiles

	Basic Tile Updates
	Choosing a Tile Template
	Tile Template Schema: Versioning, Branding, and Other Options
	Creating the Payload, Method 1: Populating Template Content
	Creating the Payload, Method 2: XML Strings
	Creating the Payload, Method 3: The Notifications Extensions Library
	Using Local and Web Images

	Cycling, Scheduled, and Expiring Updates
	Badge Updates

	Periodic Updates
	Creating an Update Service
	Debugging a Service Using the Localhost
	Windows Azure and Azure Mobile Services

	Toast Notifications
	Creating Basic Toasts
	Butter and Jam: Options for Your Toast
	Tea Time: Scheduled Toasts and Alarms
	Toast Events and Activation

	Push Notifications and the Windows Push Notification Service
	Requesting and Caching a Channel URI (App)
	Managing Channel URIs (Service)
	Sending Updates and Notifications (Service)
	Raw Notifications (Service)
	Receiving Notifications (App)
	Debugging Tips
	Tools and Providers for Push Notifications

	Background Tasks and Lock Screen Apps
	Background Tasks in the Manifest
	Building and Registering Background Tasks
	Conditions
	Tasks for Maintenance Triggers
	Tasks for System Triggers (Non-Lock Screen)
	Lock Screen–Dependent Tasks and Triggers
	Debugging Background Tasks

	What We’ve Just Learned (Whew!)

	Chapter 17: Devices and Printing
	Declaring Device Access
	Enumerating and Watching Devices
	Scenario API Devices
	Image Scanners
	Barcode and Magnetic Stripe Readers (Point-of-Service Devices)
	Smartcards
	Fingerprint (Biometric) Readers
	Bluetooth Call Control

	Printing Made Easy
	The Printing User Experience
	Print Document Sources
	Providing Print Content and Configuring Options

	Protocol APIs: HID, USB, Bluetooth, and Wi-Fi Direct
	Human Interface Devices (HID)
	Custom USB Devices
	Bluetooth (RFCOMM)
	Bluetooth Smart (LE/GATT)
	Wi-Fi Direct

	Near Field Communication and the Proximity API
	Finding Your Peers (No Pressure!)
	Advertising a Connection
	Making a Connection
	Tap to Connect and Tap to Activate
	Watching for Peers

	Sending One-Shot Payloads: Tap to Share

	What We’ve Just Learned

	Chapter 18: WinRT Components: An Introduction
	Choosing a Mixed Language Approach (and Web Workers)
	Quickstarts: Creating and Debugging Components
	Quickstart #1: Creating a Component in C#
	Simultaneously Debugging Script and Managed/Native Code
	Quickstart #2: Creating a Component in C++
	Comparing the Results

	Key Concepts for WinRT Components
	Implementing Asynchronous Methods
	JavaScript Workers
	Async Basics in WinRT Components
	Arrays, Vectors, and Other Alternatives

	Projections into JavaScript

	Scenarios for WinRT Components
	Higher Performance (Perhaps)
	Access to Additional APIs
	The XInput API and Game Controllers

	Obfuscating Code and Protecting Intellectual Property
	Concurrency
	Library Components

	What We’ve Just Learned

	Chapter 19: Apps for Everyone, Part 1: Accessibility and World-Readiness
	Accessibility
	Screen Readers and Aria Attributes
	The ARIA Sample

	Handling Contrast Variations
	CSS Styling for High Contrast
	High-Contrast Resources
	Scale + Contrast = Resource Qualifiers
	High-Contrast Tile and Toast Images

	World Readiness and Localization
	Globalization
	User Language and Other Settings
	Formatting Culture-Specific Data and Calendar Math
	Sorting and Grouping
	Fonts and Text Handling

	Preparing for Localization
	Part 1: Separating String Resources
	Part 2: Structuring Resources for the Default Language
	Part 3: Creating a Project for Nonpackaged Resources

	Creating Localized Resources: The Multilingual App Toolkit
	Testing with the Pseudo Language

	Localization Wrap-Up

	What We’ve Just Learned

	Chapter 20: Apps for Everyone, Part 2: The Windows Store
	Your App, Your Business
	Planning: Can the App Be a Windows Store App?
	Planning for Monetization (or Not)
	Free Apps
	Ad-Supported Apps
	Paid Apps and Trial Versions
	In-App Purchases
	Revenue Sharing and Custom Commerce for In-App Purchases

	Growing Your Customer Base and Other Value Exchanges
	Measuring and Experimenting with Revenue Performance

	The Windows Store APIs
	The CurrentAppSimulator Object
	Trial Versions and App Purchase
	Listing and Purchasing In-App Products
	Handling Large Catalogs
	Receipts

	Instrumenting Your App for Telemetry and Analytics
	Releasing Your App to the World
	Promotional Screenshots, Store Graphics, and Text Copy
	Testing and Pre-Certification Tools
	Creating the App Package
	Onboarding and Working through Rejection

	App Updates
	Getting Known: Marketing, Discoverability, and the Web
	Connecting Your Website and Web-Mapped Search Results

	Face It: You’re Running a Business!
	Look for Opportunities
	Invest in Your Business
	Fear Not the Marketing
	Support Your Customers
	Plan for the Future
	Selling Your App When It’s Not Running
	You’re Not Alone

	Final Thoughts: Qualities of a Rock Star App
	What We’ve Just Learned

	Appendix A: Demystifying Promises
	What Is a Promise, Exactly? The Promise Relationships
	The Promise Construct (Core Relationship)
	Example #1: An Empty Promise!
	Example #2: An Empty Async Promise
	Example #3: Retrieving Data from a URI

	Benefits of Promises
	The Full Promise Construct
	Nesting Promises
	Chaining Promises

	Promises in WinJS (Thank You, Microsoft!)
	The WinJS.Promise Class
	Originating Errors with WinJS.Promise.WrapError

	Some Interesting Promise Code
	Delivering a Value in the Future: WinJS.Promise.timeout
	Internals of WinJS.Promise.timeout
	Parallel Requests to a List of URIs
	Parallel Promises with Sequential Results
	Constructing a Sequential Promise Chain from an Array
	PageControlNavigator._navigating (Page Control Rendering)

	Bonus: Deconstructing the ListView Batching Renderer

	Appendix B: WinJS Extras
	Exploring WinJS.Class Patterns
	WinJS.Class.define
	WinJS.Class.derive
	Mixins

	Obscure WinJS Features
	Wrappers for Common DOM Operations
	WinJS.Utilities.data, convertToPixels, and Other Positional Methods
	WinJS.Utilities.empty, eventWithinElement, and getMember
	WinJS.UI.scopedSelect and getItemsFromRanges

	Extended Splash Screens
	Adjustments for View Sizes

	Custom Layouts for the ListView Control
	Minimal Vertical Layout
	Minimal Horizontal Layout
	Two-Dimensional and Nonlinear Layouts
	Virtualization
	Grouping
	The Other Stuff
	Keyboard Support: getAdjacent
	Drag and Drop: dragLeave, dragOver, and hitTest
	Animations: setupAnimations and executeAnimations

	Appendix C: Additional Networking Topics
	XMLHttpRequest and WinJS.xhr
	Tips and Tricks for WinJS.xhr

	Breaking Up Large Files (Background Transfer API)
	Multipart Uploads (Background Transfer API)
	Notes on Encryption, Decryption, Data Protection, and Certificates
	Syndication: RSS, AtomPub, and XML APIs in WinRT
	Reading RSS Feeds
	Using AtomPub

	Sockets
	Datagram Sockets
	Stream Sockets
	Web Sockets: MessageWebSocket and StreamWebSocket
	The ControlChannelTrigger Background Task

	The Credential Picker UI
	Other Networking SDK Samples

	Appendix D: Provider-Side Contracts
	File Picker Providers
	Manifest Declarations
	Activation of a File Picker Provider
	File Open Provider: Local File
	File Open Provider: URI
	File Save Provider: Save a File
	File Save Provider: Failure Case

	Cached File Updater
	Updating a Local File: UI
	Updating a Remote File: UI
	Update Events

	Contact Cards Action Providers
	Contact Picker Providers
	Appointment Providers

	About the Author
	Tell us what you think!

