Business Intelligence средствами MS SQL Server 2008 R2 в компании, использующей системы учета 1СИсточник: habrahabr Query
В этой статье я бы хотел описать основные этапы построение системы аналитической отчетности средствами MS SQL Server 2008 R2 в организации, использующей OLTP системы учета на платформе 1С. В статье описан мой первый опыт построения решений Business Intelligence.
Общие вводные данныеКомпания, в которой я работаю, занимается оптовой торговлей и состоит приблизительно из 30 офисов, расположенных в регионах России. В каждом офисе существует информационная база данных 1С, в которой регистрируются данные о продажах. В организации используется два вида конфигураций баз данных 1С. Одна конфигурация используется в центральном офисе в Москве, вторая - в филиалах (в регионах России). В качестве СУБД, обеспечивающей работу систем 1С, используется Microsoft SQL Server 2008 R2 (SP2) Standard Edition (64-bit). Единая общая нормативно-справочная информация (НСИ) отсутствует. Справочник "Продукция" и некоторые другие справочники, являющиеся классификаторами продукции и контрагентов, синхронизируются по коду или другому идентификатору, которые хранятся в системах 1С. Одним из основных отчетов, используемых в организации, является отчет о продажах. Существующий отчет о продажах позволяет извлекать данные только из той системы, в которой он формируется. Сформированные отчеты выгружаются в MS Excel, где происходит их дальнейшая обработка. В связи с ростом компании и появлением новых офисов руководство поставило перед IT-подразделением задачу о разработке консолидированного отчета, позволяющего автоматически получать информацию о продажах в разрезе всех офисов организации.
Требования бизнесаОсновным требованием бизнеса было автоматическое формирование отчета о продажах по всем офисам компании. Кроме этого, в отчете должны быть данные о количестве и сумме продаж в следующих аналитических разрезах:
Отчет должен позволять накладывать фильтры на выборку по любому из аналитических разрезов. В качестве фильтра может быть задано произвольное количество значений. Отчет должен формироваться не дольше минуты. Формирование отчета не должно существенно влиять на производительность учетных систем 1С. Реализация и дальнейшее сопровождение отчета должны быть минимально затратными.
Предварительная оценка и выбор решенияНа основании имеющихся вводных данных и требований заказчику было предложено следующее решение:
Реализация решения
Этап №1. Сбор информации об источниках данных в системах 1С. Создание представлений (View) для получения доступа к необходимым даннымПеред началом проектирования хранилища я создал представления (View) в базах данных SQL, обеспечивающих работу систем 1С. У меня получилось два набора представлений: набор для базы данных в центральном офисе (см. рис. 1) и набор для баз данных в филиалах (рис. 2). Напомню, что структура баз данных в филиалах организации одинаковая, но отличается от структуры базы данных в центральном офисе.
Состав представлений в центральном офисе и филиалах получился разный, так как часть НСИ является общей и хранится в полном объеме в базе данных в центральном офисе. В частности речь идет о представлениях:
Создание представлений в SQL-базах данных позволяет сделать решение более универсальным. Например, при изменении структуры таблиц в базах данных 1С нам не придется вносить изменения в ETL-пакеты, достаточно будет переделать представления.
Этап №2. Разработка структуры хранилища данных. Развертывание хранилища данныхЗавершив первый этап, мы можем с легкостью получить информацию о составе и типах данных, хранящихся в источниках данных, и спроектировать структуру хранилища. Для этого достаточно взглянуть на типы колонок представлений. Например, представление dbo.Clients выглядит следующим образом.
Обратите внимание, что в представлении dbo.Clients существует поле ParentId. С помощью этого поля в последствии мы сможем построить иерархию Parent-child в многомерной модели данных для измерения "Клиенты". Аналогичное поле присутствует в представлениях dbo.Products и dbo.Managers. Прежде чем начать проектировать хранилище данных, необходимо определиться с его схемой. Существует две схемы хранилища данных - это звезда и снежинка. Обе схемы имеют свои плюсы и минусы, и их сравнение выходит за пределы данной статьи. Я выбрал схему снежинка, руководствуясь тем, что при переходе на SQL Server 2012 и использовании в будущем self-service BI пользователям, вероятно, будет удобнее оперировать более нормализованными данными из хранилища данных при разработке собственных моделей данных в PowerPivot for Excel. Структура разработанного мной хранилища данных изображена на следующем рисунке.
Таблицы dim.DimDates (даты), dim.DimOffices (офисы), dim.DimRegions (регионы России) были заполнены один раз и не предполагают автоматического обновления. Таблица dim.DimOffices содержит наименования офисов компании. Таблица dim.DimDates содержит сведения о датах для соответствующего измерения в многомерной модели данных. В таблицах измерений содержится суррогатный ключ, выполняющий роль первичного ключа. Это связано с тем, что ключи записей в различных источниках данных могут пересекаться.
Этап №3. Разработка многомерной модели данных. Развертывание многомерной базы данныхПри создании многомерной модели данных было создано представление Data Source View, в которое были включены все таблицы из хранилища данных, кроме таблицы stage.FactSales. Эта таблица будет использоваться только для временного хранения данных о продажах перед загрузкой в таблицу фактов fact.FactSales. В кубе Sales реализованы две группы мер (см. рис. 5).
Группа мер Cross Products And Projects For Product Matrix обеспечивает связь много-ко-многим между измерениями Товары и Каналы сбыта для товарной матрицы. Список измерений изображен на рисунке 6.
Для измерений Товары, Клиенты, Менеджеры реализована иерархия Parent-child.
Для управления доступом к многомерной базе данных создана роль Analists, которой предоставлены права Read и Drillthrough для куба Sales. Права Drillthrough позволяют пользователям получать расшифровку с информацией о том, как были рассчитаны значения ячеек в отчете.
Чтобы развернуть многомерную базу данных на сервере, указываем в свойствах проекта имя экземпляра SQL-сервера SSAS, имя базы данных на сервере и в меню BIDS нажимаем Deploy. Подключаемся к экземпляру SSAS с помощью SMS и видим, что многомерная база данных была создана.
Этап №4. Разработка ETL-пакетов. Развертывание ETL-пакетов. Настройка автоматического выполнения ETL-пакетовНаиболее трудоемкий этап при проектировании решений Business Intelligence - это, разработка ETL-пакетов. Связано это с тем, что источники данных, как правило, имеют разную структуру, а данные, хранящиеся в них, содержат ошибки и имеют различный формат. Например, пол сотрудника в разных базах данных, может быть представлен буквами М и Ж или цифрами 0 и 1, и перед загрузкой этих данных в хранилище, необходимо выполнить их очистку и приведение к общему виду. Кроме того, в хранилище данных необходимо обновлять только те данные, которые были введены или изменены с момента последней загрузки. Это только основные сложности, на самом деле их гораздо больше. Однако благодаря инструментам SSIS большинство подобных проблем могут быть решены. В моей реализации данные в таблицах измерений обновляются полностью, т.е. новые записи добавляются, а существующие записи перезаписываются. Таблица фактов очищается и заполняется снова за период по умолчанию равный трем месяцам. Глубина обновления таблицы фактов в месяцах хранится в конфигурации SSIS пакетов, которая представляет из себя отдельную таблицу в хранилище данных.
На рисунке 10 изображены 4 пакета SSIS, назначение которых следующее:
Логика (Control Flow) мастер-пакета следующая (см. рис. 11).
Рассмотрим каждый элемент этой схемы:
Описанные выше пакеты развернуты на экземпляре SQL-сервера SSIS. Для автоматического запуска мастер-пакета на SQL-сервере создано задание Update DW and Process Sales OLAP (см. рис. 12).
Для контроля выполнения ETL-процесса в задании настроено уведомление специалистов службы поддержки по e-mail о завершении задания (см. рис. 13).
Этап №5. Предоставление доступа к многомерной база данныхДоступ к многомерной базе данных предоставлен сотрудникам организации с помощью включения их доменных учетных записей в роль Analists многомерной базы данных с помощью SMS (см. рис. 14).
Этап №6. Обучение сотрудников организацииДля обучение пользователей был записан 15 минутный видео-ролик, в котором были продемонстрированы возможности MS Excel, позволяющие подключиться к многомерной базе данных и построить отчет с помощью объекта PivotTable Report. Один из возможных вариантов отчета изображен на рисунке 15.
ВыводыТребования заказчика были реализованы в полной мере. Бета-тестирование выполнялось ключевыми пользователями компании, ежедневно формирующими отчеты о продажах. В своем отчете ключевые пользователи охарактеризовали созданное решение как очень удобное, быстрое и достаточное для проведение всестороннего анализа продаж. Для оценки решения привожу некоторые цифры:
|