Анализ и трансформации исполняемых UML-моделейИсточник: citforum
В статье рассмотрены конечные автоматы языка UML, представлен подход к анализу исполняемых моделей UML. На основании выборки моделей, использованных в промышленных проектах, исследованы их количественные свойства и продемонстрирована актуальность трансформации моделей. Выделены образцы, часто используемые при построении автоматов. Предложены новые трансформации, улучшающие структуру модели, описан процесс их применения к реальной системе. Анализ и трансформации исполняемых UML-моделей ВведениеПри создании сложных инженерных систем принято использовать приемы моделирования. Сложность большинства создаваемых сегодня программных систем не уступает сложности многих инженерных сооружений, поэтому моделирование программных систем является весьма актуальной задачей. Более того, в таких концепциях, как MDA (Model Driven Architecture - архитектура на основе моделей) и MDD (Model Driven Development - разработка на базе моделей), моделям отводится центральная роль в процессе создания программного продукта. Основной идеей этих концепций является представление процесса создания программного продукта в виде цепочки трансформаций его исходной модели в готовую программную систему. Почти во всех инструментальных средствах, воплощающих идеи MDD, в качестве языка моделирования используется язык UML (Unified Modeling Language - унифицированный язык моделирования), целиком или какие-либо его части. UML - это язык, предназначенный для визуализации, специфицирования, конструирования и документирования программных систем. Слово "унифицированный" в названии языка означает, что UML может использоваться для моделирования широкого круга приложений от встроенных систем и систем реального времени до распределенных web-приложений. Выразительные средства языка позволяют описать систему со всех точек зрения, имеющих отношение к разработке и развертыванию. В свете инициатив MDA и MDD роль моделей в жизненном цикле программного обеспечения (ПО) претерпевает значительные изменения. Если ранее моделирование рассматривалось как одно из удобных средств документирования, и, соответственно, жизненный цикл моделей был близок к жизненному циклу артефактов документации, то в последнее время работа с моделями становится все более похожа на работу с исходными кодами. Подобный подход ставит перед исследователями новые задачи исследования применимости к моделям методик и приемов работы, используемых для работы с исходными кодами. Одной из таких методик является рефакторинг. Рефакторинг - это изменение внутренней структуры ПО, имеющее целью облегчить понимание и упростить модификацию, но не затрагивающее при этом наблюдаемого поведения. Рефакторинг, как набор методик преобразования программ, помогает решать две глобальные задачи: облегчение процесса повторного использования каких-либо компонентов программной системы и снижение расходов на поддержку и сопровождение системы. Первые рефакторинги появились в результате обобщения опыта нескольких экспертов в области объектно-ориентированного проектирования. В этом отношении рефакторинги достаточно близки к широко известным на сегодняшний день паттернам проектирования. Существует много исследовательских работ и публикаций, посвященных методам и алгоритмам применения рефакторинга. Полноценная поддержка рефакторинга ставит перед производителями следующий ряд задач:
По каждому из указанных пунктов ведутся научные разработки, но лишь в немногих из них учитывается специфика UML. Анализ существующих UML моделей, приводимый в данной статье, показывает, что их структура сложна для понимания и содержит недостатки, которые можно было бы устранить путём проведения эквивалентных трансформаций. Особое внимание уделяется анализу и поиску методов рефакторинга для конечных автоматов языка UML, которые являются основой для полностью автоматической генерации исполняемого кода по UML-моделям. На базе проведённого анализа и выявленных недостатков описывается новая трансформация, специфичная для UML. Анализ исполняемых UML-моделейС целью выявления особенностей использования конечных автоматов UML в реальных промышленных проектах было проведено статистическое исследование набора моделей. Все рассмотренные модели описывают поведение системы с использованием конечных автоматов, по которым можно сгенерировать исполняемый код. Конечные автоматы UML могут описывать поведение следующих элементов исполняемых моделей:
В зависимости от своего происхождения, все исследованные модели UML можно разделить на два класса:
Исполняемые UML-модели второго класса в основном описывают различного рода коммуникационные системы (то есть такие классы систем, для моделирования которых предназначен язык SDL). Исполняемые модели первого класса в связи с универсальностью языка UML описывают гораздо более широкий спектр систем. Характеристика конечных автоматовОбщая статистика по исследованным моделям представлена в таблице 1. Перечисленные модели были заимствованы из реальных проектов коммерческих компаний. Для сбора и анализа необходимой информации был разработан дополнительный модуль к промышленной среде UML-моделирования Telelogic Tau G2.
Таблица 1. Общая статистика по исследованным UML-моделям. Ожидалось, что модели, используемые в реальных проектах, будут иметь достаточно высокий уровень сложности. Тем не менее, более 90% от всех описанных автоматов содержат не более трех состояний, а доля автоматов без состояний (включающих только один начальный переход) близка к 75% (рис. 1). Причем доля таких автоматов растет вместе с размером модели.
Рис. 1. Количество состояний в конечных автоматах Следует отметить, что автомат без состояний практически не обладает семантикой автомата и может использоваться только в качестве одной из форм записи некоторой последовательности действий, выполняемой в процессе во время начального перехода. Более того, текстовый синтаксис кажется намного более удобным средством для подобных спецификаций. Таким образом, оказывается, что в промышленных проектах примерно в половине случаев конечные автоматы используются не по своему прямому назначению. Причиной этому может служить недостаточный уровень владения инструментом у разработчиков модели или же, например, требование унифицировать все описания поведенческих аспектов системы с использованием для этого конечных автоматов. На основе полученных данных использование конечных автоматов без состояний может быть объяснено следующим образом. В рассмотренных моделях операции практически не обладали семантикой состояний, поэтому 99% операций описывались автоматами без состояний, вырождаясь в императивную последовательность действий. Таким образом, использование автоматов для спецификации операций, как правило, не оправдано, и, тем не менее, широко применяется на практике.
Рис. 2. Количество состояний в конечных автоматах, реализующих классы Если рассмотреть автоматы, реализующие классы, то распределение количества состояний значительно изменяется (рис. 2). Для спецификации классов практически не используются автоматы без состояний, в то время как преобладают автоматы, имеющие одно состояние. Такая структура характерна для классов, не обладающих сложной внутренней логикой, а реализующих некоторый сервис для других компонентов системы. В единственном имеющемся состоянии, которое очень часто носит имя "Idle" или "Wait", класс ожидает запроса на выполнение какой-либо операции. Получение запроса инициирует срабатывание перехода, в процессе которого выполняются необходимые действия. По завершении обработки класс вновь возвращается в исходное состояние. Автоматы, специфицирующие иерархические состояния, составили чуть менее 2% от всех обнаруженных автоматов и были найдены всего лишь в нескольких из рассмотренных моделей, что позволяет сделать вывод об их достаточно редком использовании, несмотря на их выразительную мощность. Причиной тому может служить тот факт, что составные состояния не являлись частью языка SDL до его версии SDL-2000. Большинство крупных промышленных моделей SDL, впоследствии трансформированных в UML, было разработано до того, как появился новый стандарт SDL-2000. На рис. 3 приведена статистика количества переходов, которые могут сработать в каждом из состояний автомата. И здесь снова 84% процента состояний достаточно просты в понимании, так как имеют не более 6 переходов. Однако состояния с большим числом переходом могут заметно затруднить понимание автомата, а их доля приближается к 15%; более того, как правило, эти состояния являются ключевыми в понимании алгоритмов, заложенных в конкретный автомат.
Рис. 3. Количество переходов из состояния Таким образом, в среднем автомат, реализующий класс, содержит 3 состояния и около 12 переходов и 4 диаграмм, при этом около 90% автоматов содержат не более 6 состояний, и, следовательно, их понимание не должно вызывать серьезных затруднений у разработчиков. Однако внутренняя логика работы системы, как правило, реализуется оставшимися 10%, среди которых встречаются автоматы, насчитывающие до 30 состояний. Вполне очевидно, что умственные затраты на понимание такого автомата достаточно велики; соответственно, значительно затрудняется процесс его модификации, поиска ошибок и проч. Поэтому средства, уменьшающие сложность автоматов, сохраняя их внешние свойства, действительно востребованы на практике.
Рис. 4. Распределение количества символов на диаграммах Анализ диаграмм состояний показал (см. рис. 4), что в среднем автомат, реализующий класс, включает в себя 3-4 диаграммы, каждая из которых содержит около 9 символов и 9 линий, что не должно в значительной степени препятствовать пониманию. В то же время для 10% автоматов, описывающих внутреннюю логику работы системы и содержащих более 6 состояний и переходов, количество диаграмм, на которых описан автомат, возрастает до пятидесяти, что очень сильно затрудняет понимание целостной картины работы системы. Используемые конструкцииДля повышения уровня выразительности и упрощения описания сложных систем в состав средств описания конечных автоматов UML был включен ряд специальных конструкций. Их использование позволяет во многом упростить и сократить описание сложных автоматов, и поэтому одной из целей проведенного исследования было выявление характера использования подобных конструкций. Далее приведен обзор полученных результатов. За счет использования операторов ветвления в действиях, выполняемых при срабатывании перехода в автомате, один и тот же переход может в различных условиях перевести автомат в различные состояния. Максимально возможное использование ветвления означало бы наличие в каждом состоянии не более чем одного перехода для любого сигнала. В этом случае выбор состояния, в которое перейдет автомат, происходил бы в процессе интерпретации действий, приписанных переходу. Результаты статистического исследования приведены на рис. 5.
Рис. 5. Ветвистость переходов Как и следовало ожидать, большинство переходов не разветвляются, а около 90% из них имеет не более трех ветвей. Однако 3% переходов, имеющие более 5 ветвей, могут заметно усложнить понимание логики работы системы. Абсолютный максимум составил 21 ветвь в одном переходе. Использование графического синтаксиса позволяет проводить графическую декомпозицию диаграмм состояний - распределять сложные автоматы по нескольким графическим сущностям, не упрощая при этом структуру автомата. Этот подход позволяет облегчить процесс понимания деталей работы сложного автомата, однако затрудняет восприятие автомата как единого целого, что немаловажно для понимания логики работы сложной системы. Одним из средств графической декомпозиции UML являются метки. Они позволяют графически отделить участки диаграммы состояний, чтобы, например, перенести их на другую диаграмму или расположить отдельно на исходной диаграмме. Кроме того, введение меток способствует повторному использованию фрагментов диаграмм, так как переход на единожды описанную метку может быть выполнен многократно из различных частей автомата. Статистика использования меток приведена на рис. 6.
Рис. 6. Распределение переходов на метки Распределение количества команд перехода на метки очень похоже на распределение количества ветвей. В обоих случаях наиболее простые варианты (одна ветвь и отсутствие переходов на метки) обеспечивают около 60% случаев, а следующие по сложности варианты (две ветви и одна команда перехода на метку) - около 20%, в то время как остальные варианты имеют по 3-4%. Однако в автоматах встречались и переходы, перегруженные командами перехода на метки. Для некоторых переходов в автомате максимальное количество команд перехода на метку превысило 20. Чтобы избежать дублирования переходов для различных состояний, можно использовать несколько приемов. В UML в символе состояния можно перечислить несколько имен состояний, и тогда все переходы, выходящие из этого символа, будут относиться ко всем перечисленным состояниям. Кроме того, если в качестве имени состояния указать символ "*", то переходы, выходящие из этого символа, будут относиться ко всем состояниям автомата. Также имеется возможность исключить определенные состояния из множества состояний, описываемого символом "*". Умелое использование этих возможностей позволяет значительно упростить описание переходов, применимых более чем к одному состоянию. Результаты статистического исследования показали, что символ * присутствует в 12% символов состояния, что свидетельствует о достаточно активном использовании этой подстановки и необходимости более детального изучения вариантов ее использования и возможных трансформаций с выделением или заменой символа "*". Кроме того, при описании состояния, в которое должен быть совершен переход, UML позволяет использовать символ "-", означающий состояние, в котором был инициирован исходный переход. Согласно статистике более трети символов состояния содержит символ "-". Это снова свидетельствует об удобстве и востребованности этой конструкции, а также о необходимости исследовать затрагивающие ее трансформации. Типичные способы построения конечных автоматовАнализ полученной выборки не выявил каких-либо стандартов или "правил хорошего тона" при разработке конечных автоматов. Единственным "паттерном" можно считать применяемую одной из компаний методику, когда при описании автомата для каждого перехода из заданного состояния используется отдельная диаграмма, и еще одна диаграмма используется для всех общих описаний. Естественным недостатком такого подхода является сложность получения целостного представления о моделируемом автомате по причине разрозненности отдельных диаграмм, описывающих состояния. Улучшение структуры конечных автоматов UMLТрансформация "выделение метода" для конечных автоматов UMLИдея трансформации "Extract method" состоит в создании нового метода и переносе части исходного автомата в добавленный метод. Данная трансформация во многом аналогична известному рефакторингу "Extract Method" для объектно-ориентированных языков программирования, описанному в каталоге Фаулера [1]. Суть традиционной трансформации состоит в выделении участка кода и перемещении его в другой метод. Это позволяет сделать код исходного метода более понятным и повышает вероятность повторного использования выделенного метода. Для корректного выполнения традиционного рефакторинга "Extract method" требуется тщательный анализ потока данных в выделяемом участке кода, так как все используемые переменные должны быть переданы в метод в качестве параметров, а все изменения переменных должны быть тем или иным образом возвращены исходному методу, если измененные переменные используются в нем далее. Для первичного рассмотрения проблемы выделения метода в автомате эту проблему можно обойти следующим образом. Если используемая переменная является атрибутом автомата или сущности, содержащей автомат, то она будет видна и в выделенном методе и, следовательно, ее не нужно передавать в качестве параметра. Если же используемая переменная является локальной для действий, выполняемых в переходе, то при перенесении всех действий перехода в выделяемый метод определение локальной переменной и все ее использования будут также перенесены. Для выделения метода, в который помещаются не все действия, выполняемые в переходе, требуется дополнительный анализ потока данных. Следует подчеркнуть исключительную важность автоматизированной поддержки рефакторинга при проведении подобных преобразований, ибо сложность проводимого анализа будет способствовать ошибкам. Идея, лежащая в основе традиционного рефакторинга "Extract method", может быть применена к конечным автоматам несколькими способами.
Выделение в метод части конечного автоматаРассмотрим определение части конечного автомата, представленное на рис. 7.
Риc. 7. Часть автомата, допускающая выделение метода Выбрав часть перехода вместе со следующим состоянием, можно выделить метод, в которую войдет часть состояний конечного автомата, начиная с состояния Y. Будем называть такую трансформацию Extract Sub State Machine. Применимость данной трансформации связана со следующим свойством. Состояния, переносимые в выделяемый метод, перестают принадлежать исходному автомату и, следовательно, команды перехода, приводящие из состояний исходного автомата в состояния, перенесенные в выделенный автомат, некорректны. Такие команды перехода (смены состояния) должны быть заменены командами вызова выделяемого метода. Однако у автомата, реализующего метод, может быть только одна входная точка, поэтому либо все такие команды должны осуществлять переход в одно и то же состояние, либо можно использовать целочисленный параметр для передачи номера того состояния, с которого должно начаться выполнение метода. Но введение такого параметра и добавление его обработки в начальном переходе усложняет выделяемый автомат и затрудняет его понимание. Для обработки обратных переходов из состояний выделенного метода в состояния исходного автомата может быть применен следующий прием. Все состояния исходного метода, в которые можно попасть из выделяемого метода, нумеруются последовательными натуральными числами. Все команды перехода, ведущие из состояний выделяемого метода в состояния исходного, заменяются командами возврата из метода, использующими в качестве возвращаемого значения номер того состояния, в которое должен был бы осуществиться переход. После замены тела выделенного метода его вызовом возвращаемое им значение присваивается новой локальной переменной, и после возврата из метода оно анализируется для определения состояния, в которое должен был осуществиться переход. Описанный прием, хотя и позволяет при выделении метода не накладывать ограничений на количество обратных переходов, на практике зачастую только затрудняет понимание автомата, что противоречит целям проведения рефакторинга. Таким образом, несмотря на то, что количество вариантов применения предлагаемой трансформации достаточно велико, далеко не все из них служат цели упрощения понимания автомата. Тем не менее, можно выделить несколько специальных случаев, когда все прямые и все обратные переходы ведут в одно состояние. Введём несколько обозначений. Обозначим через RS(x, y) множество, содержащее все состояния автомата, в которые можно попасть из состояния y, не проходя при этом через состояние x, включая y и исключая x. Специальный символ stop добавляется в множество RS(x, y), если из состояния y за некоторое количество переходов можно дойти до действия, завершающего работу автомата ( Определение 1. Множество состояний S замкнуто на множестве переходов T, если не существует перехода t(x',e->s)T : sS, x'S Трансформация Extract Sub State Machine для перехода
Трансформация Extract Sub State Machine для перехода
Рис. 8. Часть автомата после проведения преобразования Extract Method
Рис. 9. Описание выделенного метода Часть автомата, выделенная в метод, обладает следующей семантикой: получив сигнал В результате преобразования выделяется структурная единица автомата - метод, а диаграмма, описывающая конечный автомат, уменьшается, что упрощает его понимание Результат преобразования представлен на рис. 8. Выделенный метод показан на рис. 9. Выделенный метод можно использовать повторно для уменьшения дублирования кода. Существует несколько частных случаев трансформации Extract Sub State Machine.
Во втором случае выделение метода корректно при выполнении следующих условий:
В рассматриваемом случае преобразованный автомат будет выглядеть так, как показано на рис. 10
Рис. 10. Результаты применения второго варианта трансформации |