© А.Н. Вальвачев, К.А. Сурков, Д.А. Сурков, Ю.М. Четырько
Статья была опубликована на сайте rsdn.ru
Классы очень удобно собирать в модули. При этом их описание помещается в секцию interface, а код методов — в секцию implementation. Создавая модули классов, нужно придерживаться следующих правил:
Соберем рассмотренные ранее классы TTextReader, TDelimitedReader и TFixedReader в отдельный модуль ReadersUnit:
unit ReadersUnit; interface type TTextReader = class private // Поля FFile: TextFile; FItems: array of string; FActive: Boolean; // Методы procedure PutItem(Index: Integer; const Item: string); // Методы чтения и записи свойств procedure SetActive(const AActive: Boolean); function GetItemCount: Integer; function GetEndOfFile: Boolean; protected // Методы чтения и записи свойств function GetItem(Index: Integer): string; // Абстрактные методы function ParseLine(const Line: string): Integer; virtual; abstract; public // Конструкторы и деструкторы constructor Create(const FileName: string); destructor Destroy; override; // Методы function NextLine: Boolean; // Свойства property Active: Boolean read FActive write SetActive; property Items[Index: Integer]: string read GetItem; default; property ItemCount: Integer read GetItemCount; property EndOfFile: Boolean read GetEndOfFile; end; TDelimitedReader = class(TTextReader) private // Поля FDelimiter: Char; protected // Методы function ParseLine(const Line: string): Integer; override; public // Конструкторы и деструкторы constructor Create(const FileName: string; const ADelimiter: Char = ';'); // Свойства property Delimiter: Char read FDelimiter; end; TFixedReader = class(TTextReader) private // Поля FItemWidths: array of Integer; protected // Методы function ParseLine(const Line: string): Integer; override; public // Конструкторы и деструкторы constructor Create(const FileName: string; const AItemWidths: array of Integer); end; TMyReader = class(TDelimitedReader) property FirstName: string index 0 read GetItem; property LastName: string index 1 read GetItem; property Phone: string index 2 read GetItem; end; implementation { TTextReader } constructor TTextReader.Create(const FileName: string); begin inherited Create; AssignFile(FFile, FileName); FActive := False; end; destructor TTextReader.Destroy; begin Active := False; inherited; end; function TTextReader.GetEndOfFile: Boolean; begin Result := Eof(FFile); end; function TTextReader.GetItem(Index: Integer): string; begin Result := FItems[Index]; end; function TTextReader.GetItemCount: Integer; begin Result := Length(FItems); end; function TTextReader.NextLine: Boolean; var S: string; N: Integer; begin Result := not EndOfFile; if Result then // Если не достигнут конец файла begin Readln(FFile, S); // Чтение очередной строки из файла N := ParseLine(S); // Разбор считанной строки if N <> ItemCount then SetLength(FItems, N); // Отсечение массива (если необходимо) end; end; procedure TTextReader.PutItem(Index: Integer; const Item: string); begin if Index > High(FItems) then // Если индекс выходит за границы массива, SetLength(FItems, Index + 1); // то увеличение размера массива FItems[Index] := Item; // Установка соответствующего элемента end; procedure TTextReader.SetActive(const AActive: Boolean); begin if Active <> AActive then // Если состояние изменяется begin if AActive then Reset(FFile) // Открытие файла else CloseFile(FFile); // Закрытие файла FActive := AActive; // Сохранение состояния в поле end; end; { TDelimitedReader } constructor TDelimitedReader.Create(const FileName: string; const ADelimiter: Char = ';'); begin inherited Create(FileName); FDelimiter := ADelimiter; end; function TDelimitedReader.ParseLine(const Line: string): Integer; var S: string; P: Integer; begin S := Line; Result := 0; repeat P := Pos(Delimiter, S); // Поиск разделителя if P = 0 then // Если разделитель не найден, то считается, что P := Length(S) + 1; // разделитель находится за последним символом PutItem(Result, Copy(S, 1, P - 1)); // Установка элемента Delete(S, 1, P); // Удаление элемента из строки Result := Result + 1; // Переход к следующему элементу until S = ''; // Пока в строке есть символы end; { TFixedReader } constructor TFixedReader.Create(const FileName: string; const AItemWidths: array of Integer); var I: Integer; begin inherited Create(FileName); // Копирование AItemWidths в FItemWidths SetLength(FItemWidths, Length(AItemWidths)); for I := 0 to High(AItemWidths) do FItemWidths[I] := AItemWidths[I]; end; function TFixedReader.ParseLine(const Line: string): Integer; var I, P: Integer; begin P := 1; for I := 0 to High(FItemWidths) do begin PutItem(I, Copy(Line, P, FItemWidths[I])); // Установка элемента P := P + FItemWidths[I]; // Переход к следующему элементу end; Result := Length(FItemWidths); // Количество элементов постоянно end; end.
Как можно заметить, в описании классов присутствуют новые ключевые слова private, protected и public. С их помощью регулируется видимость частей класса для других модулей и основной программы. Назначение каждого ключевого слова поясняется ниже.
Программист может разграничить доступ к атрибутам своих объектов для других программистов (и себя самого) с помощью специальных ключевых слов: private, protected, public, published (последнее не используется в модуле ReadersUnit).
Перечисленные секции могут чередоваться в объявлении класса в произвольном порядке, однако в пределах секции сначала следует описание полей, а потом методов и свойств. Если в определении класса нет ключевых слов private, protected, public и published, то для обычных классов всем полям, методам и свойствам приписывается атрибут видимости public, а для тех классов, которые порождены от классов библиотеки VCL, — атрибут видимости published.
Внутри модуля никакие ограничения на доступ к атрибутам классов, реализованных в этом же модуле, не действуют. Кстати, это отличается от соглашений, принятых в некоторых других языках программирования, в частности в языке C++.
В языке Delphi существуют процедурные типы данных для методов объектов. Внешне объявление процедурного типа для метода отличается от обычного словосочетанием of object, записанным после прототипа процедуры или функции:
type TReadLineEvent = procedure (Reader: TTextReader; const Line: string) of object;
Переменная такого типа называется указателем на метод (method pointer). Она занимает в памяти 8 байт и хранит одновременно ссылку на объект и адрес его метода.
type TTextReader = class private FOnReadLine: TReadLineEvent; ... public property OnReadLine: TReadLineEvent read FOnReadLine write FOnReadLine; end;
Методы объектов, объявленные по приведенному выше шаблону, становятся совместимы по типу со свойством OnReadLine.
type TForm1 = class(TForm) procedure HandleLine(Reader: TTextReader; const Line: string); end; var Form1: TForm1; Reader: TTextReader;
Если установить значение свойства OnReadLine:
Reader.OnReadLine := Form1.HandleLine;
и переписать метод NextLine,
function TTextReader.NextLine: Boolean; var S: string; N: Integer; begin Result := not EndOfFile; if Result then // Если строки для считывания еще есть, то begin Readln(FFile, S); // Считывание очередной строки N := ParseLine(S); // Выделение элементов строки (разбор строки) if N <> ItemCount then SetLength(FItems, N); if Assigned(FOnReadLine) then FOnReadLine(Self, S); // уведомление о чтении очередной строки end; end;
то объект Form1 через метод HandleLine получит уведомление об очередной считанной строке. Обратите внимание, что вызов метода через указатель происходит лишь в том случае, если указатель не равен nil. Эта проверка выполняется с помощью стандартной функции Assigned, которая возвращает True, если ее аргумент является связанным указателем.
Описанный выше механизм называется делегированием, поскольку он позволяет передать часть работы другому объекту, например, сосредоточить в одном объекте обработку событий, возникающих в других объектах. Это избавляет программиста от необходимости порождать многочисленные классы-наследники и перекрывать в них виртуальные методы. Делегирование широко применяется в среде Delphi. Например, все компоненты делегируют обработку своих событий той форме, в которую они помещены.
Язык Delphi позволяет рассматривать классы объектов как своего рода объекты, которыми можно манипулировать в программе. Такая возможность рождает новое понятие — класс класса; его принято обозначать термином метакласс.
Для поддержки метаклассов введен специальный тип данных — ссылка на класс (class reference). Он описывается с помощью словосочетания class of, например:
type TTextReaderClass = class of TTextReader;
Переменная типа TTextReaderClass объявляется в программе обычным образом:
var ClassRef: TTextReaderClass;
Значениями переменной ClassRef могут быть класс TTextReader и все порожденные от него классы. Допустимы следующие операторы:
ClassRef := TTextReader; ClassRef := TDelimitedReader; ClassRef := TFixedReader;
По аналогии с тем, как для всех классов существует общий предок TObject, у ссылок на классы существует базовый тип TClass, определенный, как:
type TClass = class of TObject;
Переменная типа TClass может ссылаться на любой класс.
Практическая ценность ссылок на классы состоит в возможности создавать программные модули, работающие с любыми классами объектов, даже теми, которые еще не разработаны.
Физический смысл и взаимосвязь таких понятий, как переменная-объект, экземпляр объекта в памяти, переменная-класс и экземпляр класса в памяти поясняет рисунок 4.
Рисунок 4. Переменная-объект, экземпляр объекта в памяти, переменная-класс и экземпляр класса в памяти
Метаклассы привели к возникновению нового типа методов — методов класса. Метод класса оперирует не экземпляром объекта, а непосредственно классом. Он объявляется как обычный метод, но перед словом procedure или function записывается зарезервированное слово class, например:
type TTextReader = class ... class function GetClassName: string; end;
Передаваемый в метод класса неявный параметр Self содержит не ссылку на объект, а ссылку на класс, поэтому в теле метода нельзя обращаться к полям, методам и свойствам объекта. Зато можно вызывать другие методы класса, например:
class function TTextReader.GetClassName: string; begin Result := ClassName; end;
Метод ClassName объявлен в классе TObject и возвращает имя класса, к которому применяется. Очевидно, что надуманный метод GetClassName просто дублирует эту функциональность для класса TTextReader и всех его наследников.
Методы класса применимы и к классам, и к объектам. В обоих случаях в параметре Self передается ссылка на класс объекта. Пример:
var Reader: TTextReader; S: string; begin // Вызов метода с помощью ссылки на класс S := TTextReader.GetClassName; // S получит значение 'TTextReader' // Создание объекта класса TDelimitedReader Reader := TDelimitedReader.Create('MyData.del'); // Вызов метода с помощью ссылки на объект S := Reader.GetClassName; // S получит значение 'TDelimitedReader' end.
Методы классов могут быть виртуальными. Например, в классе TObject определен виртуальный метод класса NewInstance. Он служит для распределения памяти под объект и автоматически вызывается конструктором. Его можно перекрыть в своем классе, чтобы обеспечить нестандартный способ выделения памяти для экземпляров. Метод NewInstance должен перекрываться вместе с другим методом FreeInstance, который автоматически вызывается из деструктора и служит для освобождения памяти. Добавим, что размер памяти, требуемый для экземпляра, можно узнать вызовом предопределенного метода класса InstanceSize.
Особая прелесть ссылок на классы проявляется в сочетании с виртуальными конструкторами. Виртуальный конструктор объявляется с ключевым словом virtual. Вызов виртуального конструктора происходит по фактическому значению ссылки на класс, а не по ее формальному типу. Это позволяет создавать объекты, классы которых неизвестны на этапе компиляции. Механизм виртуальных конструкторов применяется в среде Delphi при восстановлении компонентов формы из файла. Восстановление компонента происходит следующим образом. Из файла считывается имя класса. По этому имени отыскивается ссылка на класс (метакласс). У метакласса вызывается виртуальный конструктор, который создает объект нужного класса.
var P: TComponent; T: TComponentClass; // TComponentClass = class of TComponent; ... T := FindClass(ReadStr); P := T.Create(nil); ...
На этом закончим изучение теории объектно-ориентированного программирования и в качестве практики рассмотрим несколько широко используемых инструментальных классов среды Delphi. Разберитесь с их назначением и работой. Это поможет глубже понять ООП и пригодится на будущее.
Как показывает практика, в большинстве задач приходится использовать однотипные структуры данных: списки, массивы, множества и т.д. От задачи к задаче изменяются только их элементы, а методы работы сохраняются. Например, для любого списка нужны процедуры вставки и удаления элементов. В связи с этим возникает естественное желание решить задачу "в общем виде", т.е. создать универсальные средства для управления основными структурами данных. Эта идея не нова. Она давно пришла в голову разработчикам инструментальных пакетов, которые быстро наплодили множество вспомогательных библиотек. Эти библиотеки содержали классы объектов для работы со списками, коллекциями (динамические массивы с переменным количеством элементов), словарями (коллекции, индексированные строками) и другими "абстрактными" структурами. Для среды Delphi тоже разработаны аналогичные классы объектов. Их большая часть сосредоточена в модуле Classes. Наиболее нужными для вас являются списки строк (TStrings, TStringList) и потоки (TSream, THandleSream, TFileStream, TMemoryStream и TBlobStream). Рассмотрим кратко их назначение и применение.
Для работы со списками строк служат классы TStrings и TStringList. Они используются в библиотеке VCL повсеместно и имеют гораздо большую универсальность, чем та, что можно почерпнуть из их названия. Классы TStrings и TStringList служат для представления не просто списка строк, а списка элементов, каждый из которых представляет собой пару строка-объект. Если со строками не ассоциированы объекты, получается обычный список строк.
Класс TStrings используется визуальными компонентами и является абстрактным. Он не имеет собственных средств хранения строк и определяет лишь интерфейс для работы с элементами. Класс TStringList является наследником TStrings и служит для организации списков строк, которые используются отдельно от управляющих элементов. Объекты TStringList хранят строки и объекты в динамической памяти.
Свойства класса TStrings описаны ниже.
Наследники класса TStrings иногда используются для хранения строк вида Имя=Значение, в частности, строк INI-файлов (см. гл. 6). Для удобной работы с такими строками в классе TStrings дополнительно имеются следующие свойства.
Управление элементами списка осуществляется с помощью следующих методов:
Класс TStringList добавляет к TStrings несколько дополнительных свойств и методов, а также два свойства-события для уведомления об изменениях в списке. Они описаны ниже.
Свойства:
Методы:
События:
Ниже приводится фрагмент программы, демонстрирующий создание списка строк и манипулирование его элементами:
var Items: TStrings; I: Integer; begin // Создание списка Items := TStringList.Create; Items.Add('Туризм'); Items.Add('Наука'); Items.Insert(1, 'Бизнес'); ... // Работа со списком for I := 0 to Items.Count - 1 do Items[I] := UpperCase(Items[I]); ... // Удаление списка Items.Free; end;
В среде Delphi существует иерархия классов для хранения и последовательного ввода-вывода данных. Классы этой иерархии называются потоками. Потоки лучше всего представлять как файлы. Классы потоков обеспечивают различное физическое представление данных: файл на диске, раздел оперативной памяти, поле в таблице базы данных (таблица 1).
Таблица 1. Классы потоков
Класс | Описание |
TStream | Абстрактный поток, от которого наследуются все остальные. Свойства и методы класса TStream образуют базовый интерфейс потоковых объектов. |
THandleStream | Поток, который хранит свои данные в файле. Для чтения-записи файла используется дескриптор (handle), поэтому поток называется дескрипторным. Дескриптор — это номер открытого файла в операционной системе. Его возвращают низкоуровневые функции создания и открытия файла. |
TFileStream | Поток, который хранит свои данные в файле. Отличается от ThandleStream тем, что сам открывает (создает) файл по имени, переданному в конструктор. |
TMemoryStream | Поток, который хранит свои данные в оперативной памяти. Моделирует работу с файлом. Используется для хранения промежуточных результатов, когда файловый поток не подходит из-за низкой скорости передачи данных. |
TResourceStream | Поток, обеспечивающий доступ к ресурсам в Windows-приложении. |
TBlobStream | Обеспечивает последовательный доступ к большим полям таблиц в базах данных. |
Потоки широко применяются в библиотеке VCL и наверняка вам понадобятся. Поэтому ниже кратко перечислены их основные общие свойства и методы.
Общие свойства:
Общие методы:
Ниже приводится фрагмент программы, демонстрирующий создание файлового потока и запись в него строки:
var Stream: TStream; S: AnsiString; StrLen: Integer; begin // Создание файлового потока Stream := TFileStream.Create('Sample.Dat', fmCreate); ... // Запись в поток некоторой строки StrLen := Length(S) * SizeOf(Char); Stream.Write(StrLen, SizeOf(Integer)); // запись длины строки Stream.Write(S, StrLen); // запись символов строки ... // Закрытие потока Stream.Free; end;
Теперь для вас нет секретов в мире ООП. Вы на достаточно серьезном уровне познакомились с объектами и их свойствами; узнали, как объекты создаются, используются и уничтожаются. Если не все удалось запомнить сразу — не беда. Возвращайтесь к материалам главы по мере решения стоящих перед вами задач, и работа с объектами станет простой, естественной и даже приятной. Когда вы достигните понимания того, как работает один объект, то автоматически поймете, как работают все остальные. Теперь мы рассмотрим то, с чем вы встретитесь очень скоро — ошибки программирования.
За дополнительной информацией обращайтесь в компанию Interface Ltd.
INTERFACE Ltd. |
|